2019九年级数学上册 22.2 一元二次方程的解法 22.2.5 一元二次方程根与系数的关系导学案
华东师大版九年级数学上册《22章 一元二次方程 22.2 一元二次方程的解法 配方法》公开课课件_11
一元二次方程的解法
例2 用配方法解下列方你程知:道用配方法解一
(1) x2 -4x +1 = 0
元二次方程的步骤了
解: 移项,得 x2 - 4x =-1
吗?
1、移项:常数项 移到方程右
方程左边配方,得
边.
x2 –2·x·2 + 22 = -1+ 22 2、配方:将方程左边配成一个
完全平方式。(两边都加上一次
例1. 解下列方程:
一元二次方程的解法
x2 + 2x = 5
思考:能否经过适当变形,将它们转化为 2 a
的形式,用直接开平方法求解?
解: 原方程两边都加上1,得
x2 + 2x +1 = 6 _(x__+_1_)_2 = __6__
即: __x_+_1_ = ±__√_6_ ∴ _x_1____6__1_ , _x_2 ____6__1
xΒιβλιοθήκη 52
41
2 4
x 5 41
2
2
x1
5 2
41
,
x2
5 2
41
课堂
演练三
一元二次方程的解法
试讨论关于x的一元二次方程 x2 -2x -m = 0的解的情况
小结
请你和同桌讨论一下: 1、配方 法的步骤?2、我们在配方的过程中 应该注意什么问题?
课堂作业:
一元二次方程的解法
演练二
用配方法解下列方程:
(1) x2 -2x -1 = 0 (2) x2–4 = 5x
解: x2 2x 1
3 x2 2x 111
解: x2 5x 4
22.2解一元二次方程配方法
22.2 解一元二次方程(配方法)第1课时教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=mx+n=p≥0).如:4x2+16x+16=(2x+4)2二、探索新知列出下面二个问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,•八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.大意是说:一群猴子分成两队,一队猴子数是猴子总数的18的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,•修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?老师点评:问题1:设总共有x只猴子,根据题意,得:x=(18x)2+12整理得:x2-64x+768=0问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500整理,得:x2-36x+70=0(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2-64x+768=0 移项→ x=2-64x=-768两边加(642)2使左边配成x2+2bx+b2的形式→ x2-64x+322=-768+1024左边写成平方形式→(x-32)2=•256 •降次→x-32=±16 即 x-32=16或x-32=-16解一次方程→x1=48,x2=16可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子.学生活动:例1.按以上的方程完成x2-36x+70=0的解题.老师点评:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=±,x-18=或x1≈34,x2≈2.可以验证x1≈34,x2≈2都是原方程的根,但x≈34不合题意,所以道路的宽应为2.例2.解下列关于x的方程(1)x2+2x-35=0 (2)2x2-4x-1=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:(1)x2-2x=35 x2-2x+12=35+1 (x-1)2=36 x-1=±6x-1=6,x-1=-6x1=7,x2=-5可以,验证x1=7,x2=-5都是x2+2x-35=0的两根.(2)x2-2x-12=0 x2-2x=12x2-2x+12=12+1 (x-1)2=32x-1=±2x-1=2x-1=-2x1x2可以验证:x 1=1+2x 2=1-2三、巩固练习教材P 38 讨论改为课堂练习,并说明理由. 教材P 39 练习1 2.(1)、(2). 四、应用拓展例3.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.C A QP分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式. 解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半. 根据题意,得:12(8-x )(6-x )=12×12×8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去. 所以2秒后△PCQ 的面积为Rt △ACB 面积的一半. 五、归纳小结 本节课应掌握:左边不含有x 的完全平方形式,•左边是非负数的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程. 六、布置作业1.教材P 45 复习巩固2.22.2.2 配方法 第2课时教学内容给出配方法的概念,然后运用配方法解一元二次方程. 教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目. 重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教具、学具准备 小黑板 教学过程一、复习引入(学生活动)解下列方程:(1)x 2-8x+7=0 (2)x 2+4x+1=0老师点评:我们前一节课,已经学习了如何解左边含有x 的完全平方形式,•右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题. 解:(1)x 2-8x+(-4)2+7-(-4)2=0 (x-4)2=9 x-4=±3即x 1=7,x 2=1(2)x 2+4x=-1 x 2+4x +22=-1+22(x+2)2=3即x+2=x 1,x 2二、探索新知像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1.解下列方程(1)x 2+6x+5=0 (2)2x 2+6x-2=0 (3)(1+x )2+2(1+x )-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x 的完全平方. 解:(1)移项,得:x 2+6x=-5配方:x 2+6x+32=-5+32(x+3)2=4 由此可得:x+3=±2,即x 1=-1,x 2=-5 (2)移项,得:2x 2+6x=-2二次项系数化为1,得:x 2+3x=-1 配方x 2+3x+(32)2=-1+(32)2(x+32)2=54由此可得x+32=x 132,x 232(3)去括号,整理得:x 2+4x-1=0移项,得x 2+4x=1 配方,得(x+2)2=5x+2=x 1,x 2三、巩固练习教材P 39 练习 2.(3)、(4)、(5)、(6). 四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=12(6x+7)+12,x+1=16(6x+7)-16,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=12y+12,x+1=16y-16依题意,得:y2(12y+12)(16y-16)=6去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72,y4-y2=72(y2-12)2=2894y2-12=±172y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-2 3当y=-3时,6x+7=-3 6x=-10 x=-5 3所以,原方程的根为x1=-23,x2=-53五、归纳小结本节课应掌握:配方法的概念及用配方法解一元二次方程的步骤.六、布置作业1.教材P45复习巩固3.。
人教版九年级数学上册22.2二次函数与一元二次方程(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.培养学生的合作意识和团队精神,通过小组讨论、合作完成抛物线与坐标轴围成图形面积等问题的探讨,增强学生之间的沟通与协作。
三、教学难点与重点
1.教学重点
(1)二次函数的定义及其图像性质:理解并掌握二次函数的基本形式,明确a、b、c的取值对二次函数图像的影响,特别是a的正负决定图像开口方向,顶点坐标的求法等。
举例:y=x²+2x+1与y=-2x²+3x+1的图像区别及顶点坐标的求解。
(2)一元二次方程的解法:熟练掌握因式分解法、配方法、求根公式法等解一元二次方程的方法,并能够根据方程特点选择合适解法。
举例:解方程x²-5x+6=0,通过因式分解法求解;解方程x²-4x+3=0,通过配方法求解。
(3)二次函数与一元二次方程的关系:理解二次函数图像与x轴交点坐标即为相应一元二次方程的解,并能应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如抛掷物体时的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与一元二次方程的奥秘。
九年级数学上册 22.2 一元二次方程的解法 配方法课件 (新版)华东师大版
知识点1:配方
1.已知x2+16x+k是完全平方式,则常数k=__6_4_;若x2-2kx+ 9是完全平方式,则k=_____±__3____.
2.用适当的数填空: (1)x2-4x+__4__=(x-__2__)2;
(2)m2+__7__m+449=(m+__72__)2;
(3)x2-12x+_1_1_6_=(x-__14__)2.
17.已知点P(x,y)满足x2-4x+y2+6y+13=0,且点P在函数 y=的图象上,则k的值为_-__6_.
18.用配方法解下列方程: (1)2x2+7x-4=0; 解:x1=12,x2=-4
(3)x(x+4)=6x+12; 解:x1=1+ 13,x2=1- 13 (4)3(x-1)(x+2)=x-7.
3.将代数式x2+8x+7化成(x+p)2+q的形式为(C )
A.(x-4)2+26
B.(x-4)2-26
C.(x+4)2-9
D.(x+4)2+9
知识点2:用配方法解二次项系数是1的一元二次方程
4.用配方法解方程 x2+x=2,应把方程的两边同时( A)
A.加14
B.加12
C.减14
D.减12
5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中
D.3x2-4x-2=0 化为(x-23)2=190
14.方程x2-6x+q=0可配方成(x-p)2=7的形式,则x2-6x+q =2可以配方成下列的(B ) A.(x-p)2=5 B.(x-p)2=9 C.(x-p+2)2=9 D.(x-p+2)2=5 15.若三角形两边的长分别为3和4,第三边的长是方程x2-12x +35=0的根,则该三角形的周长为(B ) A.14 B.12 C.12或14 D.以上都不对 16.若a的值使得x2+4x+a=(x+2)2-1成立,则a的值为__3__.
秋九年级数学上册 第22章 一元二次方程 22.2 一元二次方程的解法 22.2.5 一元二次方程的
*22.2.5 一元二次方程的根与系数的关系知识点 1 利用一元二次方程根与系数的关系求两根之和或两根之积1.[2016·黄冈]若方程3x 2-4x -4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( )A .-4B .3C .-43D.432.[2016·某某]一元二次方程x 2-3x -2=0的两根分别为x 1,x 2,则下列结论正确的是( )A .x 1=-1,x 2=2B .x 1=1,x 2=-2C .x 1+x 2=3D .x 1x 2=2知识点 2 利用一元二次方程根与系数的关系求代数式的值3.若α,β是一元二次方程x 2+2x -6=0的两根,则α2+β2=( )A .-6B .32C .16D .404.[2017·某某]若方程x 2-4x +1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为________. 知识点 3 已知方程及方程的一个根求方程的另一个根5.[2017·某某]已知关于x 的方程x 2+x -a =0的一个根为2,则另一个根是( )A .-3B .-2C .3D .66.[2016·潍坊]关于x 的一元二次方程3x 2+mx -8=0有一个根是23,求该一元二次方程的另一个根及m 的值.7.若关于x 的一元二次方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( )A .-2或3B .3C .-2D .-3或28.[教材练习第3(1)题变式][2017·某某]关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m的值为( )A .-8B .8C .16D .-169.[2017·某某]定义运算:a ★b =a (1-b ).若a ,b 是方程x 2-x +14m =0(m <0)的两根,则b ★b -a ★a 的值为( )A .0B .1C .2D .与m 有关10.[2017·某某]已知方程x 2+5x +1=0的两个实数根分别为x 1,x 2,则x 12+x 22=________.11.[2017·某某]已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =________.12.[2017·某某]已知关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2.(1)某某数k 的取值X 围;(2)若x 1,x 2满足x 12+x 22=16+x 1x 2,某某数k 的值.13.若a ,b 是方程x 2+x -2018=0的两个实数根,则a 2+2a +b =( )A .2018B .2017C .2016D .201514.已知关于x 的方程x 2+(m -3)x -m (2m -3)=0.(1)证明:无论m 为何值,方程都有两个实数根.(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.1.D [解析] ∵方程3x 2-4x -4=0的两个实数根分别为x 1,x 2, ∴x 1+x 2=-b a =43.故选D.2.C3.C [解析] 根据题意,得α+β=-2,αβ=-6,所以α2+β2=(α+β)2-2αβ=(-2)2-2×(-6)=16.故选C.4.5 [解析] 根据题意得x 1+x 2=4,x 1x 2=1,所以x 1(1+x 2)+x 2=x 1+x 1x 2+x 2=x 1+x 2+x 1x 2=4+1=5.故答案为5.5.A [解析] 设方程的另一个根为t ,根据题意得2+t =-1,解得t =-3,即方程的另一个根是-3.故选A.6.解:设方程的另一个根为t .依题意得3×⎝ ⎛⎭⎪⎫232+23m -8=0,解得m =10. 又23t =-83,所以t =-4. 故该一元二次方程的另一个根是-4,m 的值为10.7.[全品导学号:15572076]C [解析] ∵x 1+x 2=m +6,x 1x 2=m 2,x 1+x 2=x 1x 2, ∴m +6=m 2,解得m 1=3,m 2=-2.∵方程x 2-(m +6)x +m 2=0有两个相等的实数根,∴Δ=b 2-4ac =(m +6)2-4m 2=-3m 2+12m +36=0,解得m 1=6,m 2=-2,∴m =-2.故选C.8.C [解析] ∵关于x 的方程2x 2+mx +n =0的两个根是-2和1,∴-m 2=-1,n 2=-2, ∴m =2,n =-4,∴n m =(-4)2=16.故选C.9. A [解析] ∵a ,b 是方程x 2-x +14m =0(m <0)的两根,∴a +b =1,ab =14m . ∴b ★b -a ★a =b (1-b )-a (1-a )=b (a +b -b )-a (a +b -a )=ab -ab =0.故选A.10.23 [解析] ∵方程x 2+5x +1=0的两个实数根分别为x 1,x 2,∴x 1+x 2=-5,x 1·x 2=1,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=(-5)2-2×1=23.故答案为23.11. 214[解析] 由根与系数的关系,得x 1+x 2=5,x 1·x 2=a , 由x 12-x 22=10得(x 1+x 2)(x 1-x 2)=10.∵x 1+x 2=5,∴x 1-x 2=2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=25-4a =4,∴a =214. 故答案为214. 12.[解析] (1)根据方程的系数结合根的判别式,即可得出Δ=-4k +5≥0,解之即可得出实数k 的取值X 围;(2)由根与系数的关系可得x 1+x 2=1-2k ,x 1·x 2=k 2-1,将其代入x 12+x 22=(x 1+x 2)2-2x 1·x 2=16+x 1x 2中,解之即可得出k 的值.解:(1)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2,∴Δ=(2k -1)2-4(k 2-1)=-4k +5≥0,解得k ≤54, ∴实数k 的取值X 围为k ≤54. (2)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=16+x 1x 2,∴(1-2k )2-2(k 2-1)=16+(k 2-1),即k 2-4k -12=0,解得k =-2或k =6(不符合题意,舍去).∴实数k 的值为-2.13.B [解析] ∵a 是方程x 2+x -2018=0的根,∴a 2+a -2018=0,∴a 2=-a +2018,∴a 2+2a +b =-a +2018+2a +b =2018+a +b .∵a ,b 是方程x 2+x -2018=0的两个实数根,∴a +b =-1,∴a 2+2a +b =2018-1=2017.故选B.14.[解析] (1)求出根的判别式,再根据非负数的性质即可证明;(2)根据一元二次方程根与系数的关系即可求得方程两根的和与两根的积,两根的平方和可以用两根的和与两根的积表示,根据方程的两个实数根的平方和等于26,即可得到一个关于m 的方程,求得m 的值.解:(1)证明:∵关于x 的方程x 2+(m -3)x -m (2m -3)=0的判别式Δ=(m -3)2+4m (2m -3)=9(m -1)2≥0,∴无论m 为何值,方程都有两个实数根.(2)设方程的两个实数根为x 1,x 2,则x 1+x 2=-(m -3),x 1x 2=-m (2m -3),令x 12+x 22=26,得(x 1+x 2)2-2x 1x 2=(m -3)2+2m (2m -3)=26,整理,得5m 2-12m -17=0,解这个方程,得m =175或m =-1. 所以存在正数m =175,使方程的两个实数根的平方和等于26.。
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。
通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。
二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。
但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。
三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。
2.学会运用二次函数的性质解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。
2.如何运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。
2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。
3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。
4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的多媒体课件和教学素材。
2.准备一些实际问题,用于让学生运用二次函数解决。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。
例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。
2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。
22.2.5 一元二次方程根的判别式 华师大版数学九年级上册课件
一元二次方程根的判别式 一元二次方程根的类别 一元二次方程根的判别式的应用
逐点 导讲练
课堂 小结
作业 提升
复
习
回
顾
我们在用配方法推导一元二次方程求根公
式的过程中,得到
x2 b a 2b24 a4 2ac.
只有当b2-4ac≥0时,才能直接开平方,得
b
b2 4ac
x 2a
【例1】 方程x2-4x=0中, b2-4ac的值为( B )
A.-16
B.16
C.4
D.-4
2+bx+c=0后,
a=________, b=________,
2
c=________, b2-4ac=________.
2 已知方程2x2+mx+1=0的判别式的值为16,则 m的值为( )
【例3】 用k取何值时,关于x的一元二次方程kx2-12x+ 9=0有两个不相等的实数根?
导引:已知方程有两个不相等的实数根,则该方 程的Δ>0,用含k的代数式表示出Δ,然后 列出以k为未知数的不等式,求出k的取值 范围.
知3-讲
解:∵ 方程kx2-12x+9=0是关于x的一元二次方程, ∴ k≠0.方程根的判别式 Δ=(-12)2-4k×9=144-36k. 由144-36k>0,求得k<4,又 k≠0, ∴当k<4且k≠0时,方程有两个不相等的实数根.
的实数根. (2) (2) 当Δ=0时,方程ax2+bx+c=0(a≠0)有两个相等
的 (3) 实数根. (4) (3) 当Δ<0时,方程没有实数根.
知2-讲
【例2】 不解方程,判断下列方程的根的情况:
(1)3x2=5x-2; (2)4x2-2x+ 1 =0;
22.2解一元二次方程公式法教案
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax² + bx + c = 0(a≠0)的方程。它在数学和物理学等多个领域有广泛的应用,是解决实际问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示一元二次方程在实际中的应用,以及如何运用公式法帮助我们解决问题。
4.增强学生的数据分析观念,通过对判别式Δ的分析,培养学生对数学问题进行深入探讨的能力。
5.激发学生的数学探究精神,鼓励他们通过一元二次方程的学习,探索数学问题的内在规律,培养创新意识。
本节课将紧密围绕核心素养目标,注重培养学生的综合运用能力和数学思维能力。
三、教学难点与重点
1.教学重点
-理解一元二次方程的标准形式及其相关概念,特别是系数a、b、c的作用和意义。
-提供多道练习题,让学生在教师的指导下逐步完成,特别关注符号的准确使用。
(4)对于解的情况的分类讨论,教师可以通过以下方式帮助学生理解:
-通过图形展示,当Δ > 0时,抛物线与x轴有两个交点;当Δ = 0时,抛物线与x轴有一个交点;当Δ < 0时,抛物线与x轴无交点。
-引导学生思考,为什么在实际情境中,无实数根可能意味着某件事不可行或不存在。
-掌握一元二次方程的求根公式,并能够熟练运用公式进行计算。
-理解判别式Δ的计算方法及其与方程根的关系,能够根据Δ的值判断根的情况。
-能够将实际问题抽象为一元二次方程,并运用公式法解决。
举例解释:在讲解重点内容时,教师可以通过以下例题进行强调:
(1)方程2x² - 5x + 3 = 0中,指出a、b、c的值及其对应的物理意义。
(2)给定方程的系数,如a = 1, b = -3, c = 2,要求学生直接写出求根公式并计算。
2019秋华师大数学九年级上册(HS)精品课件22.2 第2课时 配方法
讲授新课
用配方法解一元二次方程
x2-4x+1=0
变形为 (x-2)2=3
变
这种方程
形 为
怎样解?
• • • • 2 a 的形式.(a为非负常数)
像这种先对原一元二次方程配方,使它出现完全平方式后, 再用直接开平方法求解的方法叫做配方法.
探究归纳 (1)x2+8x+ 16 =(x+4)2 (2)x2-4x+ 4 =(x- 2)2 (3)x2-__6_x+ 9 =(x- 3 )2
配方时, 等式两边同时加上的是一次项系数一半的平方.
典例精析
例 用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-3x-1=0.
解: (1)移项,得x2 4x 1.
2
q
p2 4
0,
x
p
2
2
q
p2 4
0,
p2 4q 0.
课堂小结
1.一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义, 可解得 x1 a , x2 a ,这种解一元二次方程的方法叫做 直接开平方法.
2.像这种先对原一元二次方程配方,使它出现完全平方式 后, 再用直接开平方法求解的方法叫做配方法.
解:(1) 左右两边同时加2,得x2-2x+1=2,
配方得(x-1)2=2,解得 x1 1 2 , x2 1 2; (2)左右两边同时减去3,得x2-2x+1=-3,
配方得(x-1)2=-3,很明显此方程无解;
(3)原方程配方得(x-1)2=0,解得x=1;
(4)略;
(5)Q
x2பைடு நூலகம்
九年级数学人教版第二十二章二次函数22.2用函数观点看一元二次方程(同步课本知识图文结合例题详解)
多少飞行时间?
20.5 h
(3)解方程 20.5=20t+5t2
O
t
t24t+4.1=0 因为(4)244.1<0,所以方程无解。 球的飞行高度达不到20.5米
你能结合图形指 出为什么球不能 达到20.5m的高 度?
九年级数学第22章二次函数
(4)球从飞出到落地要用多少时间? h
O
t
九年级数学第22章二次函数
2.已知二次函数y=ax2+bx+c的图象如图所示,则一元二 次方程ax2+bx+c=0的解是 x1=0,x2=5 .金华中考)若二次函数y=-x2+2x+k
y
的部分图象如图所示,且关于x的一元二
次方程-x2+2x+k=0的一个解x1=3,则另一 O 1 3 x 个解x2= -1 ;
九年级数学第22章二次函数
4.(绥化中考)抛物线
y x2 4x m 2
与x轴的一个交点的坐标为(l,0), 则此抛物线与x轴
的另一个交点的坐标是 (3,0) .
九年级数学第22章二次函数
5. (济宁中考)已知二次函数y=ax2+bx+c中,其函数y与自 变量x之间的部分对应值如下表所示: 点A(x1,y1)、B(x2,y2)在函数的图象上, 则当1<x1<2,3<x2<4时,y1 与y2的大小关系正确的是( ) A.y1 >y2 B. y1 < y2 C. y1 ≥y2 D.y1 ≤ y2
没有交点
有两个不相 等的实数根
有两个相等 的实数根
没有实数根
b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
22.2 降次-解一元二次方程-配方法,公式法,因式分解法
2 3 2 3 y1 1 , y2 1 . 3 3
(1)3 x 2 x 5 0;
2
(2)2 y y 6 0;
2
(3)3 x 6 x 1.
2
1.熟悉配方法解方程的步骤 2.体会转化的数学思想.
解下列方程:
(1)t 2t 48;
2
(2)2 x 4 x 5 0.
x 3 5, x1 3 5 , x2 3 5.
解: x 2 5 x 6,
(2)
5 5 x 5x 6 , 2 2
2
2
2
x 5x 6 0.
2
5 25 x 6 , 2 4 5 49 x , 2 4 5 7 5 7 x1 , x2 , 2 2 2 2 x1 1, x2 6.
课时总结
(1)、可直接开方解形如 x p ( p 0) 的方程,那么 x p 达到降次的目的;
2
(2)、可直接开方解形如 ( mx n) p ( p 0) 的方程,那么 mx n p 达到降次的目 的;
2
一元二次方程配方的一般步骤: 化简:把方程化简为一般形式, 把二次项系数化为1 配方:方程两边都加上一次项系数一半的平方 开方:根据平方根意义,方程两边开平方 求解:解一元二次方程 定解:写出原方程的解
2
(2) 可直接开方解形如 (mx n) p ( p 0) 的方程, 那么 mx n p 达到降次的目的;
2
问题2 要使一块矩形场地的长比宽多6m , 并且 面积为16 m2 ,场地的长和宽应各是多少?
解:设场地的宽为 x m ,长为( x 6) m .根据 2 矩形面积为16 m ,列方程
人教版九年级数学上册《二十二章 一元二次方程 22.2 降次 .解一元二次方程 黄金分割数》优质课教案_0
教学设计一元二次方程的解法【教学目标】1.让学生知道一元二次方程的重要性.2.复习一元二次方程及其有关概念.3.会用直接开平方法、因式分解法、配方法、公式法解简单的一元二次方程(数字系数),并在解一元二次方程的过程中体会转化等数学思想.【教学重点】一元二次方程的解法是本节课的重点.【课型】复习课课时1课时教学过程一复习:1.什么叫一元二次方程?化简后只含有一个未知数,并且未知数的次数为 2 次的整式方程.2.一元二次方程的一般形式是什么?ax2+bx+c=0(a≠0)3.解一元二次方程的基本方法有哪几种?(1)直接开平方法;(2)因式分解法;(3)配方法;(4)公式法二、例题讲解例1(1)下列方程中,关于x 的一元二次方程有几个?( ) ①x 2=0 ,②ax 2+bx+c=0,③x 2-3=x ,④a 2+a -x=0,⑤ x 21 + x 1 =31 , ⑥ 12-x =2, ⑦(x+1)2=x 2-9A 、2个B 、3个C 、4个D 、5个例2 关于x 的方程是一元二次方程,则a=3解:∵a+1≠0∴a ≠-1∵a ²-2a-1=2a ²-2a-3=0∴a=-1或a=3∴a=3例3 选用适当的方法解下列方程(1)(x-2)2-9=0(2)m 2-6m+5=0(3) x 2+4x-1=0(3) y(y-1)=2(1)(x-2)2-9=0解:移项,得:(x-2)²=9两边直接开平方,得: 221(1)50a a a x x --++-=x-2= ±3 ∴ 51=x ,12-=x(2) m 2-6m+5=0解:分解因式,得 (m-1)(m-5)=0∴m ₁=1,m ₂=5(3)x 2+4x-1=0解: 配方,得:x ²+4x+4=1+4 (x+2)²=5∴x ₁= 5-2 x₂=-5-2(4) y(y-1)=2解:去括号,得: y ²-y=2y ²-y-2=0∵a=1,b=-1,c=-2 b ²-4ac=1-4×(-2)=9 ∴y= 291±∴y ₁=2 y ₂=-1三、课堂训练(1) (2) (3) (4)392+=-x x(5) 22)3(4)23(-=+x x 2)3(2=+x 562=+x x )32(4)32(2+=+x x四、课外作业1.4x²-25=02.x²-6x-391=0=03.y²-3y+14.y²+6y+5=0。
九年级数学上第22章一元二次方程22.2一元二次方程的解法4一元二次方程根的判别式课华东师大
(3)4x-x2=x2+2; 方程整理为x2-2x+1=0,∵Δ=(-2)2-4×1×1=0, ∴方程有两个相等的实数根.
(4)3x-1=2x2.
方程整理为2x2-3x+1=0,∵Δ=(-3)2-4×2×1=1>0, ∴方程有两个不相等的实数根.
9.【中考·陇南】关于x的一元二次方程x2+4x+k=0有两 个实数根,则k的取值范围是( C )
A.k≤-4 B.k<-4 C.k≤4 D.k<4
10.【2020·攀枝花】若关于x的方程x2-x-m=0没有实数
1.已知关于x的方程x2+mx-1=0的根的判别式的值为5, 则m的值为( D )
A.±3 B.3 C.1 D.±1
2.【2021·长春师大附中新城校区期末】一元二次方程x2 -x-3=0根的判别式的值是___1_3____.
3.已知关于x的一元二次方程mx2-(3m-1)x=1-2m,其 根的判别式的值为4,求m的值.
第22章 一元二次方程
22.2 一元二次方程的解法
4.一元二次方程根的判别式
提示:点击 进入习题
新知笔记 1 b2-4ac;一般形式 2 (1)> (2)= (3)<
1D 2 13 3 见习题
4C
5A
答案显示
6B 7C 8 见习题 9C 10 A
11 1
16 B
答案显示
12 见习题 17 4
13 D
(2)若a、b、c为△ABC的三边长,方程有两个相等的实数根 ,求证:△ABC为等边三角形. ∵方程有两个相等的实数根, ∴Δ=8[(a-b)2+(b-c)2+(a-c)2]=0, ∴a-b=0,b-c=0,a-c=0. ∵a、b、c为三角形的三边长, ∴a=b≠0,b=c≠0,a=c≠0, ∴a=b=c.∴△ABC为等边三角形.
华师版数学九年级上册-22.2一元二次方程的解法
注意:配方时,等式两边同时加上的是一次项系数 一半的平方.
华师版数学九年级上册
第22章 一元二次方程
22.2 一元二次方程的解法
第 3 课时 公式法
回顾与思考
“配方法”解方程的基本步骤: 1. 化1:把二次项系数化为 1; 2. 移项:把常数项移到方程的右边; 3. 配方: 方程两边同加一次项系数一半的平方; 4. 变形:化成 (x + m)2 = a(a≥0); 5. 开平方,求解.
解:将原方程化为一般形式,得
运用公式法解一元二次方程的步骤:
(1)把方程化为一般形式,确定 a、b、c 的值;
(2)求出 b2 4ac的值;
(3)若
,把 a、b、c 及 b2 4ac的值
代入一元二次方程的求根公式,求出方程的根;
若
,此时方程无实数解.
练一练
1.
用公式法解下列一元二次方程:23
用配方法解一元二次方程 x2-4x+1=0 变形为 (x-2)2 = 3
变 形
这种方程
为
怎样解?
•• • • 2 a 的形式.(a 为非负常数)
像这种通过方程的简单变形,将左边配成一个含有 未知数的完全平方式,右边是一个非负常数,从而可 以直接开平方法求解,这种解一元二次方程的方法叫 做配方法.
(1) x2+8x+ 16 =(x+4)2
(2) x2-4x+ 4 =(x-2 )2
(3) x2-_6__x+ 9 =(x- 3 )2
配方时,等式两边同时加上的是一次项系数一半的平方
典例精析 例 用配方法解下列方程: (1) x2 - 4x - 1 = 0; (2) 2x2 - 3x - 1 = 0.
人教版九年级数学上册22.2二次函数与一元二次方程课件(共40张用WPS打开)
(3)铅球离地面的高度能否达
到3m?为什么?
(1)当铅球离地面的高度为2.1m时,它离初始
位置的水平距离是多少?
解: 由抛物线的表达式得
即
解得
x2 6
8
2.1 - x
10 10
5
x2 6 x 5 0
x1 =1,x2 =5.
即当铅球离地面的高度为2.1m时,它离初始位置的
h
15
O
1
3
t
解:15=20t-5t2,
t2-4t+3=0,
t1=1,t2=3.
∴当球飞行1s或3s时,它的高度为15m.
(2)球的飞行高度能否到达20m?如果能,需
要多少飞行时间?
解: 20=20t-5t2,
t2-4t+4=0,
t1=t2=2.
当球飞行2秒时,它
的高度为20米.
h=20t-5t2
有两个重合的交点
有两个相等的
实数根
b2-4ac = 0
没有实数根
b2-4ac < 0
没有交点
考点探究2 利用二次函数与一元二次方程的根的关系确定字母的值(范围)
例2 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).
(1)求证:此抛物线与x轴总有交点;
(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整
y
△<0
△ = b2 – 4ac
△=0
a>0
△>0
o
那么a<0时呢?
x
y = x2-6x+9
y = x2-x+1
视察图象,完成下表:
y = x2+x-2
1
抛物线与x轴公
22.2_一元二次方程的解法(直接开平方法配方法公式法因式分解)--
9.x 12x 27 0;
2
8.x1 0; x2 1. 9.x1 3, x2 9.
简记歌诀:
右化零
两因式
左分解
各求解
用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。
2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系 数 p的一半的平方。 x2+px+( )2 = -q+( ) 2= )2 -q
1 2
例2:用配方法解下列方程
x 6 x 16 0
2
x 8x 1 0
2
二次项系数为1
2 x 1 3x
2 2
二次项系数不为1
3x 6 x 4 0 可以先将系数化为1
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 系数化为1:将二次项系数化为1; 配方:方程两边都加上一次项系数一半的平方 ; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
用公式法解一元二次方程的一般
求根公式 : X=
(a≠0, b2-4ac≥0)
步骤:
1、把方程化成一般形式。 并写出a,
b,c的值。
例1.用公式法解方程2x2+5x3=0
①
2、求出b2-4ac的值。
解: a=2, b=5,
∴ 3)=49 ∴x =
= =
c= -3,
②
3、代入求根公式 : X=
b2-4ac=52-4×2×(③
对于方程(2) χ2-1=0 ,你可以怎样解它?
还有其它的解法吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.2.5一元二次方程根与系数的关系
【学习目标】
1.掌握一元二次方程的根与系数关系.
2.灵活运用一元二次方程的根与系数关系解决实际问题;
3.激发学生发现规律的积极性,激励学生勇于探索的精神。
【重点】一元二次方程的根与系数的关系;
【难点】运用根与系数的关系求代数式的值。
【使用说明与学法指导】
1.认真阅读课本P33-P34,初步认识根与系数的关系;再针对预习案二次阅读教材,解答预习案中的问题;疑惑随时记录在“我的疑惑”栏内,准备课上讨论质疑;
2.通过预习A、B层能够掌握根与系数的关系,A层能综合运用根与系数关系解决较复杂的问题,B、C层能够记住关系式并初步会用其解决问题。
预习案
一、预习自学
1.阅读课本P33-P34内容,解决如下问题:
3x2-.
两根之积
请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?
3. 请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________.
4. 你能证明上面的猜想吗?请证明,并用文字语言叙述说明.
(课本例9)
自我评价:
1. 若一元二次方程x2+px+q=0的两根分别为x1、x2,则有x1+x2=______,x1•x2=______;若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则有x1+x2=______,x1•x2=______.即两根的和等于______系数与______系数的比的相反数;两根的积等于______与______系数的比.
2. 已知方程x2+kx-6=0的一个根为x1=2,则另一个根x2=___,k=___.
二、我的疑惑
探究案
探究一:不解一元二次方程,求方程两根的和与积
仔细阅读课本P34页例8解答过程,讨论如何利用一元二次方程根与系数的关系,不解方程求出方程两根的和与积?
变式训练:
1.根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x1,x2、k是常数)(1)2x2-3x+1=0 x1+x2= ________ x1x2=_________
(2)3x2+5x=0 x1+x2=________ x1x2=__________
(3)5x2+x-2=0 x1+x2= _________ x1x2=__________
(4)
5x2+kx-6=0 x1+x2=_________ x1x2=__________
探究二:利用根与系数的关系求有关代数式的值
设x1、x2是一元二次方程x2+3x-4=0的两个根,不解方程,求x1+x2+2x1x2的值
小结:你是如何运用根与系数的关系求代数式的值的?
变式训练:
1. 若方程x 2-3x -1=0的两根为x 1、x 2,则11
x +2
1x 的值为( )
A .3
B .-3
C .1
3 D .-1
3
2. 利用根与系数的关系,求一元二次方程2x 2+3x -1=0两个根的平方和.
【拓展提升】
1.已知关于x 的方程02=+-q px x 的两根是0和-3,求p 和q 的值?
2.已知关于x 的方程052622=+-+-p p x x 的一个根是2,求它的另一个根和P 的值。
3.以-3,5为两根的一元二次方程可以写成
小结:你是如何解答的,与同学分享,比一比谁的解法较简单?
训 练 案
1.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为( )
A .7-
B .3-
C .7
D .3
2.如果关于x 的方程2x 2-5x +m =0的两个实数根互为倒数,那么m 的值为( )
A .1
2 B .-1
2 C .2 D .-2
3.已知x 1,x 2是方程2x 2+3x -4=0的两个根,则x 1+x 2=__,x 1x 22+x 12
x 2=__.
4.设方程3x 2-5x +q =0的两根分别为x 1、x 2,且6x 1+x 2=0,那么q 的值为______.
5.已知关于x 的方程k 2x 2+(2k -1)x +1=0有两个不相等的实数根x 1、x 2.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.。