2018届高三数学模拟试题选择填空精选六含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
四川省成都2018届高考模拟数学文科试题(一)含答案
2018届高考模拟考试试题(一)数 学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,3,0122≤==≤-+=x y y N x x x M x,则集合{}N x M x x ∉∈且,为A .(]0,3B .[]4,3-C .[)4,0-D .[]4,0-2.已知向量()1,1AB =u u u r ,()2,3AC =u u u r,则下列向量中与BC uuu r 垂直的是A .()3,6a =B .()8,6b =-C .()6,8c =D .()6,3d =- 3.在四面体S ABC -中,2,==⊥BC AB BC AB 2===SB SC SA ,则该四面体外接球的表面积是A .π34B .π316C .π310 D .π384.已知ααππαα2cos 2sin ),,2(,53sin 则且∈=的值等于 A .23 B .43C .—23 D .—435.某几何体的三视图如图所示,则此几何体的体积为A .3B .38C .6226++D .226+A .若a ,b ,c 是等差数列,则log 2a ,log 2b ,log 2c 是等比数列B .若a ,b ,c 是等比数列,则log 2a ,log 2b ,log 2c 是等差数列C .若a ,b ,c 是等差数列,则2a,2b, 2c是等比数列 D .若a ,b ,c 是等比数列,则2a,2b,2c是等差数列7.为了有效管理学生迟到问题,某校专对各班迟到现象制定了相应的等级标准,其中D 级标准为“连续10天,每天迟到不超过7人”,根据过去10天1、2、3、4班的迟到数据,一定符合D 级标准的是A .1班:总体平均值为3,中位数为4B .2班:总体平均值为1,总体方差大于0C ..3班:中位数为2,众数为3D .4班:总体平均值为2,总体方差为3 8.若将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是A .512πB .3πC .23πD .56π- 9.执行如图所示的程序框图,若输入1m =,3n =,输出的 1.75x =,则空白判断框内应填的条件为A .1m n -<B .0.5m n -<C .0.2m n -<D .0.1m n -<10.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx -2在x =1处有极值,则ab 的最大值是A .2B .3C .6D .911.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤b 成立,则实数b 的最小值为A.15B.25 C.45D.1 12已知定义在Rk 的直线l ,若直线l图象至少有4个公共点,则实数k 的取值范围是BCD 第Ⅱ卷(共90分)本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.16. 13.________.14.的直径的最大值为 .15.是 .16.已知函若函所有零点依次记为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32.(1)证明:a ⊥b ;(2)若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ).18. 为了了解某学校高三年级学生的数学成绩,从中抽取n 名学生的数学成绩(百分制)作为样本,按成绩分成5组:[5060),,[6070),,[7080),,[8090),,[90100],,频率分布直方图如图所示.成绩落在[7080),中的人数为20.(Ⅰ)求a 和n 的值;(Ⅱ)根据样本估计总体的思想,估计该校高三年级学生数学成绩的平均数x 和中位数m ;(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[5080),中的男、女生人数比为1:2,成绩落在[80100],中的男、女生人数比为3:2,完成22⨯列联表,并判断是否有95%的把握认为数学成绩优秀与性别有关.参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++.20()P K k ≥ 0.50 0.05 0.025 0.005 0k0.4553.8415.0247.879男生 女生 合计 优秀 不优秀 合计19.如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC 丄侧面A 1ABB 1,且AA 1=AB = 2.(1)求证:AB 丄BC ;(2)若直线AC 与面A 1BC 所成的角为,求四棱锥A 1-BB 1C 1C 的体积.20.已知椭圆C :22221x y a b+=(0a b >>)的左右焦点分别为1F ,2F ,离心率为12,点A 在椭圆C 上,1||2AF =,1260F AF ∠=︒,过2F 与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点,N 为P ,Q 的中点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点1(0,)8M ,且MN PQ ⊥,求直线MN 所在的直线方程.21.(本小题满分12分) 已知函数()()22ln f x x x a x a R =-+∈.(1)当2a =时,求函数()f x 在()()1,1f 处的切线方程;(2)当0a >时,若函数()f x 有两个极值点()1212,x x x x <,不等式()12f x mx ≥恒成立,求实数m 取值范围.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.(本题满分10分)选修4—4:坐标与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ+π4,直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标; (2)求△PAB 面积的最大值.23.(本题满分10分)选修4-5:不等式选讲(1(2.成都龙泉中学2018届高考模拟考试试题(一)数学(文科)参考答案1—5 DDBCB 6—10 CDABD 11—12 CB14. 8 16.17.(1)证明 ∵a ·b =3×12-1×32=0, ∴a ⊥b .(2)解 ∵c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d , ∴c ·d =[a +(t 2-3)b ]·(-k a +t b )=-k a 2+t (t 2-3)b 2+[t -k (t 2-3)]a ·b =0. 又a 2=|a |2=4,b 2=|b |2=1,a ·b =0,∴c ·d =-4k +t 3-3t =0,∴k =f (t )=t 3-3t 4(t ≠0).18.解析:(Ⅰ)由题意可得∴∴(Ⅱ∴550.05650.2750.5850.15950.175.5x =⨯+⨯+⨯+⨯+⨯=. 设中位数为m ,则(70)0.050.5(0.050.2)m -⨯=-+,∴75m =.(Ⅲ)由题意,优秀的男生为6人,女生为4人,不优秀的男生为10人,女生为20人,22⨯列联表 男生 女生 合计 优秀 6410不优秀 10 2030 合计162440由表可得2240(620410) 2.222 3.84116241030K ⨯⨯-⨯=≈<⨯⨯⨯, ∴没有95%的把握认为数学成绩优秀与性别有关. 19.解:(1)取A 1B 的中点为D ,连接AD,面面,,面(2)∠ACD 即AC 与面A 1BC 所成线面角,等于;直角△ABC 中A 1A =AB =2, D 为AB 的中点,∵,【解析】本题主要考查的是线面垂直的性质以及棱锥体积的计算,意在考查考生的逻辑推理能力和运算求解能力.(1)根据线面垂直的判定定理证明,然后根据线面垂直的性质证得;(2)由(1)可得∠ACD 即AC 与面A 1BC 所成线面角,解三角形求得根据棱锥的体积公式即可得到答案.20.解:(Ⅰ)由12e =,得2a c =, 因为1||2AF =,2||22AF a =-,由余弦定理得22121212||||2||||cos ||AF AF AF AF A F F +-⋅=,解得1c =,2a =,∴2223b a c =-=,∴(Ⅱ∵∴21.解:(1)当时,;,则,所以切线方程为,即为.…4分(2)令,则当时,,函数在 增,无极值点;上单调递当且,即时,由,得当变化时,与的变化情况如下表:00单调递增极大值单调递减极小值单调递增当时,函数有两个极值点,则,.由可得..令.因为,所以,,即在递减,即有,所以实数的取值范围为.22.解 (1)圆 C 的普通方程为 x2+y2-2x+2y=0,即(x-1)2+(y+1)2=2.所以圆心坐标为(1,-1),圆心极坐标为 2,54π;(2)直线 l 的普通方程:2 2x-y-1=0,圆心到直线 l 的距离d=|2 2+3 1-1|=2 3 2,所以|AB|=2 2-89=2 310,点 P 到直线 AB 距离的最大值为 r+d= 2+2 3 2=5 3 2,Smax=12×210 5 3×32=1095 .23.解:(1)由 f (x) ≤ 0 有: ln(| 2x 1| | 2x 3|) ≤ln1 ,所以 0 | 2x 1| | 2x 3|≤1 ,即x ≤1 2,或 1 2x3, 2或x ≥3 2,0 2x 1 2x 3≤1 0 2x 1 2x 3≤1 0 2x 1 2x 3≤1,解得不等式的解集为 x1 2x≤3 4 .(2)由 f (x) m 恒成立得 f (x)max m 即可.由(1)0|2x1||2x3|得函数f(x)的定义域为 1 , 2 ,所以有f(x)ln(4x2) 1 2ln4 x≥3 2,x3 2,所以f( x)maxln 4 ,即 m ln 4 .。
安徽省阜阳市临泉县第一中学2018届高三数学上学期第二次模拟试题理(含解析)
临泉一中高三年级上学期数学第二次模拟考试(理科)本试卷分为必考部分和选考部分.满分150分,考试时间120分钟必考部分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.将所选答案标记在题后答题框内.1. 设集合2 [「:•,二:一 .,.,• 4 I ,若口厂1「则卜1 ()A. :'-1:B. '■).:C. 二;D.【答案】C【解析】•••集合二| I .'】;•,二:+ Ill HL, - f '丨丨;••• •丨是方程. Ill匚的解,即丨丨I •]]••• I - 7•二:一、+ III 川■;■ ■■■ -4- + ■!.:■;■■]丄.:■•;•,故选C2. 命题"若a > b,则a丰c > b + c”的否命题是()A.若丨•,则.1 | I;i ■B.若「i「I;i ■U 和二「C.若,则「: I.D. 若■: - I,则门-I: li -【答案】A【解析】命题"若a > b,则a十c》b + L的否命题是"若a<b,贝ija + c< b + c",故选A3. 已知点-■ ::H': I..-.III'c在第三象限,则角IJ的终边在()A.第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】试题分析:点MU-在第三象限可知;;:;;:;,所以角"的终边位置在第二象限考点:四个象限三角函数值的正负问题A. 'B. '■.:,C. 「ID.;丨;i4.若:.■-);!"L “门,贝y '的大小关系(【答案】D【解析】T、;一「、|「• J二 c 二^(-cosx) Q二-^(COSTI-COS O)二扌.•7 1._ I 一 -,门-I己,故选D5. 已知I I [ ' 口,;'. II :: I 一'.:■■■';. I, h,:,“11=( )A. B. C. D.4 32【答案】C【解析】IT E - C. ,.J、11=2cosa • ::;I「I门〔贝VCDSH二-3• r ¥;F Hl 二:■■.:■ ■■;:]= ',故选C6. 下列函数中,在丨丨|上与函数一二.:n 的单调性和奇偶性都相同的是( )A. < 「八B. ■■■ - 1 1C. ■ ■■:■:.D. : - -J ―【答案】D【解析】-一;-…r在-■ '■上递增,在d「上递减,且¥为偶函数,而:「- / - ■{也具有相同的奇偶性和单调性•本题选择D选项•7. 已知T\ -:■ =';in - .■:|r i= in ?'-,则下列结论中正确的是( )A. 函数1 1〔m:的周期为"B. 将li「的图像向左平移"个单位后得到NI -':的图像C. 函数I': - - ';':■:的最大值为ID. . I ■[I一:的一个对称中心是:.、【答案】Dn 1【解析】选项A:. “ …I rill :|一・]dr ■ ■. i;in.'-,则周期丨'兀,故A不对;选项B:将|的图像向左平移’「个单位后得到的函数解析式为■w <- ' - : ;in;.-. - :i i --JII ■,得不到‘乂的图像,故B不对;1 a .选项C :由A可得f(x),g(x) = 2sin2x ,因为sin2x的最大值为1 T所以朋)* 泊大值为指故C不对;选项D:+ g(x) = sin(x + ;) + sin(n-x)二sinx + cosx 二\J2sin(x +》根据正弦函数的对称性,令• - b II ■ •「,得• | 11- I- ■..',当•.-丨时,>:=.',故D正确.故选D8. 已知「:,-■:.,函数f 门[二Mi .:.:>■'在-二Y内单调递减,则‘::‘的取值范围是( )A.(斶B.開]。
18届江苏南京盐城高三第一次模拟考试数学试题及答案
南京市、盐城市2018届高三第一次模拟考试数学试题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲.2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为▲.3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为▲.4.执行如图所示的伪代码,若0x =,则输出的y 的值为▲.5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为▲.6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为▲.7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是▲.8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为▲.时间(单位:分钟)频率组距50607080901000.035a 0.0200.0100.005第3题图Read xIf 0x >Thenln y x←Elsexy e ←End If Print y第4题图9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是▲.10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为▲.11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m=-有四个不同的零点,则实数m 的取值范围是▲.12.在平面直角坐标系xOy中,若直线(y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为▲.13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为▲.14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为▲.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ;(2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =.(1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅ ,求cos()4B π+的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个AB第13题图ACA 1B 1C 1MN第15题图底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N .(1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N运动到点)2处时,点Q的坐标为(,0)3.(1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.19.(本小题满分16分)设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.xy O BN M PQ D第18题图ADCB EG FOM N H第17题-图甲NEFG第17题-图乙(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅- m 对任意的*n N ∈都成立,求m m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈).(1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D .若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内)22.(本小题满分10分)ABEDF O ·第21(A)图如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n n n n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.MABCDOP第22题图1.{}12.13.12004.15.236.67.(,2]-∞8.34π9.1(0,]410.403411.9[1,)412.13.2414.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN .……………4分又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC .…………6分(2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A .……………8分又1AB ⊂侧面11ABB A ,所以1AB CM ⊥.……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M = ,所以1AB ⊥平面1A MC .……………12分又1A C ⊂平面1A MC ,所以11AB A C ⊥.……………14分16.解:(1)因为52c b =,则由正弦定理,得5sin sin 2C B=.……………2分又2C B =,所以sin 2sin 2B B=,即4sin cos B B B =.……………4分又B 是ABC ∆的内角,所以sin 0B >,故5cos 4B =.……………6分(2)因为AB AC CA CB ⋅=⋅,所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =.……………10分从而2223cos 25a c b B ac +-===,……………12分又0B π<<,所以4sin 5B ==.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-.……14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2RMT OM OT =-=.从而2RBE MT ==,即22R BE ==.……………2分故所得柱体的底面积OEFOEF S S S ∆=-扇形22114sin120323R R ππ=-︒=-.……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-.…………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=-.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<.………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =.…………………12分列表如下:x (0,2)2(2,3)()f x '+0-()f x 增极大值减所以当2x =时,()f x 取得最大值.答:当BE 的长为2分米时,折卷成的包装盒的容积最大.…………………14分18.解:(1)由32N Q,得直线NQ 的方程为32y x =-.………2分令0x =,得点B的坐标为(0,.所以椭圆的方程为22213x y a +=.…………………4分将点N 的坐标2代入,得222((3)213a+=,解得24a =.ADCB EG FO MNHT所以椭圆C 的标准方程为22143x y +=.…………………8分(2)方法一:设直线BM 的斜率为(0)k k >,则直线BM的方程为y kx =-在y kx =0y =,得P xk =,而点Q 是线段OP的中点,所以2Q x k =.所以直线BN 的斜率22BN BQk k k k===.………………10分联立22143y kx x y ⎧=-⎪⎨+=⎪⎩,消去y ,得22(34)0k x +-=,解得234M x k =+.用2k 代k ,得2316N x k =+.………………12分又2DN NM =,所以2()N M N xx x =-,得23M N x x =.………14分故222334316k k ⨯=⨯++,又0k >,解得2k =.所以直线BM 的方程为62y x =.………………16分方法二:设点,M N 的坐标分别为1122(,),(,)xy x y .由(0,B ,得直线BN的方程为11y y x x =-,令0y =,得P x =同理,得Qx =.而点Q 是线段OP 的中点,所以2P Q x x ==.………10分又2DN NM = ,所以2122()x x x =-,得21203x x =>43=,解得21433y y =+.………12分将212123433x x y y ⎧=⎪⎪⎨⎪=+⎪⎩代入到椭圆C 的方程中,得2211(41927x y ++=.又22114(1)3yx=-,所以21214(1)(431927yy-+=21120y+=,解得1y=(舍)或13y=.又1x>,所以点M的坐标为(,33M.……………14分故直线BM的方程为2y x=.…………………16分19.解:(1)由题意,可得22()()n n na a d a d dλ=+-+,化简得2(1)0dλ-=,又0d≠,所以1λ=.………………4分(2)将1231,2,4a a a===代入条件,可得414λ=⨯+,解得0λ=,所以211n n na a a+-=,所以数列{}n a是首项为1,公比2q=的等比数列,所以12nna-=…6分欲存在[3,7]r∈,使得12nm n r-⋅-,即12nr n m--⋅对任意*n N∈都成立,则172nn m--⋅,所以172nnm--对任意*n N∈都成立.………………8分令172n nnb--=,则11678222n n n n nn n nb b+-----=-=,所以当8n>时,1n nb b+<;当8n=时,98b b=;当8n<时,1n nb b+>.所以n b的最大值为981128b b==,所以m的最小值为1128.………………10分(3)因为数列{}n a不是常数列,所以2T .①若2T=,则2n na a+=恒成立,从而31a a=,42a a=,所以22221212221221()()a a a aa a a aλλ⎧=+-⎪⎨=+-⎪⎩,所以221()0a aλ-=,又0λ≠,所以21a a=,可得{}n a是常数列.矛盾.所以2T=不合题意.………………12分②若3T=,取*1,322,31()3,3nn ka n k k Nn k=-⎧⎪==-∈⎨⎪-=⎩(*),满足3n na a+=恒成立.……14分由2221321()a a a a aλ=+-,得7λ=.则条件式变为2117n n na a a+-=+.由221(3)7=⨯-+,知223132321()k k ka a a a aλ--=+-;由2(3)217-=⨯+,知223313121()k k ka a a a aλ-+=+-;由21(3)27=-⨯+,知223133221()k k ka a a a aλ++=+-.所以,数列(*)适合题意.所以T 的最小值为3.………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x '=,所以(1)1f '=,.当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-.…2分因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩.………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x -+-=>在(0,)+∞上有相异两实根12,x x .………6分即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立.………………8分因为03a <<,所以3=2(当且仅当32a =时取等号),又0t -<,所以t 的取值范围是(,3)-∞,所以3c .故c 的最小值为3.………………10分(3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--.……………12分要证明122121x x x b x x x -<<-,即证211221212121ln ln (1x x x x x x x x x x x x --<-<--,即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-.………………14分令21x t x =,则1t >,此时即证11ln 1t t t -<<-.令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t -<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述,实数12,x x 满足122121x x x b x x x -<<-.………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,①在⊙O 中OE OA =,所以OEA OAE ∠=∠,②………………5分由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠,又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =,即E 到直径AB 的距离为4.………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,设点()00,P x y 在矩阵M对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y ⎧=⎪⎨⎪=⎩,………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程.………10分(C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos(13πρθ+=,得(cos cos sin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=.………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.ABE DF O ·第21(A)图因为直线cos(13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =.10分(D)解:由柯西不等式,得22222[)][1](133x x ++≥⨯+⨯,即2224(3)()3x y x y +≥+.而2231x y +=,所以24()3x y +≤,所以x y ≤+≤,………5分由133x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得26x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当且仅当,26x y ==时,max ()x y +=.所以当x y +取最大值时x的值为2x =.………………10分22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系.则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =- ,(1,1,2)BM =--,10AP BM ⋅=,||AP =,||BM =.则cos ,6||||AP BM AP BM AP BM ⋅<>===.故直线AP 与BM所成角的余弦值为6.………5分(2)(2,1,0)AB =- ,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB = ,所以n 4OB ⋅=,||n = ||1OB = .则cos ,||||n OB n OB n OB ⋅<>===.故平面ABM 与平面PAC……………10分23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+①,MABCDOP第22题图xyz在①中令1n =,得()011111f C C ==.………………1分在①中令2n =,得()011222222226f C C C C =+=,得()23f =.…………2分在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =.……3分(2)猜想()f n =21n n C -(或()f n =121n n C --).………………5分欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n 时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+.即证00111111211111n r r n n n n n n n n n n n C C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+.而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+②.由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n n n n n n n n n n C C x C x C xC C x C x C x ------=++++++++ ,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立.………………10分方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n r n n C C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n n C C C C C C -----+++ .另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21n n C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++ ,即②成立.余下同方法一.…………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x+=++++ ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x---+=+++++ ④.③×④,得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++ ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n nC C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n nn n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立.………………10分。
(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析
湖南师大附中2018届高三月考试卷(六)数 学(理科)命题人:吴锦坤 张汝波 审题人:黄祖军本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x |x 2+x -2≤0,x ∈Z },B ={a ,1},A ∩B =B ,则实数a 等于(D) (A)-2 (B)-1 (C)-1或0 (D)-2或-1或0(2)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是(A)(A)⎣⎡⎦⎤0,12 (B)⎝⎛⎭⎫0,12 (C)(-∞,0]∪⎣⎡⎭⎫12,+∞ (D)(-∞,0)∪⎝⎛⎭⎫12,+∞ 【解析】由p 得: 12<x ≤1 ,由q 得:a ≤x ≤a +1,又q 是p 的必要而不充分条件,所以a ≤12且a +1≥1,∴0≤a ≤12. (3)某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为(A)(A)20 (B)10 (C)14 (D)21【解析】由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×100=20.(4)某几何体的三视图如图所示,则其体积为(C) (A)83 (B)2 (C)43 (D)23【解析】该几何体是:在棱长为2的正方体中,连接相邻面的中心,以这些线段为棱的一个正八面体.可将它分割为两个四棱锥,棱锥的底面为正方形且边长为2,高为正方体边长的一半,∴V =2×13(2)2×1=43.(5)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =2.5 (单位:升),则输入k 的值为(D)(A)4.5 (B)6 (C)7.5 (D)10【解析】模拟程序的运行,可得n =1,S =k , 满足条件n <4,执行循环体,n =2,S =k -k 2=k2,满足条件n <4,执行循环体, n =3,S =k 2-k 23=k3,满足条件n <4,执行循环体, n =4,S =k 3-k 34=k4,此时,不满足条件n <4,退出循环,输出S 的值为k4,根据题意可得:k4=2.5,计算得出:k =10.所以D 选项是正确的.(6)将函数f ()x =cosωx 2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3,()ω>0的图像向左平移π3ω个单位,得到函数y =g ()x 的图像,若y =g ()x 在⎣⎡⎦⎤0,π4上为增函数,则ω的最大值为(B)(A)1 (B)2 (C)3 (D)4【解析】由题意,f ()x =2sin ⎝⎛⎭⎫ωx -π3()ω>0,先利用图像变换求出g ()x 的解析式:g ()x =f ⎝ ⎛⎭⎪⎫x +π3ω=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π3ω-π3,即g ()x =2sin ωx ,其图像可视为y =sin x 仅仅通过放缩而得到的图像.若ω最大,则要求周期T 取最小,由⎣⎡⎦⎤0,π4为增函数可得:x =π4应恰好为g ()x 的第一个正的最大值点,∴π4ω=π2ω=2.(7)已知x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,2x -y +2≥0,x +y -2≤0,若ax +y 取得最大值的最优解不唯一,则实数a 的值为(C)(A)12或-1 (B)2或12(C)-2或1 (D)2或-1【解析】由题中约束条件作可行域如右图所示:令z =ax +y ,化为y =-ax +z ,即直线y =-ax +z 的纵截距取得最大值时的最优解不唯一.当-a >2时,直线y =-ax +z 经过点A (-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =2时,直线y =-ax +z 与y =2x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-1<-a <2时,直线y =-ax +z 经过点B (0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =-1时,直线y =-ax +z 与y =-x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-a <-1时,直线y =-ax +z 经过点C (2,0)时纵截距最大,此时最优解仅有一个,故不符合题意.综上,当a =-2或a =1时最优解不唯一,符合题意.故本题正确答案为C.(8)若直线ax +by -2=0(a >0,b >0)始终平分圆x 2+y 2-2x -2y =2的周长,则12a +1b 的最小值为(D)(A)3-224 (B)3-222(C)3+222 (D)3+224【解析】直线平分圆周,则直线过圆心f (1,1),所以有a +b =2,12a +1b =12(a +b )⎝⎛⎭⎫12a +1b=12⎝⎛⎭⎫32+b 2a +a b ≥12⎝⎛⎭⎫32+2b 2a ·a b =3+224(当且仅当b =2a 时取“=”),故选D. (9)把7个字符a ,a ,a ,b ,b ,α,β排成一排,要求三个“a ”两两不相邻,且两个“b ”也不相邻,则这样的排法共有(B)(A)144种 (B)96种 (C)30种 (D)12种【解析】先排列b ,b ,α,β,若α,β不相邻,有A 22C 23种,若α,β相邻,有A 33种,共有6+6=12种,从所形成的5个空中选3个插入a ,a ,a ,共有12C 35=120种,若b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有6C 34=24,故三个“a ”两两不相邻,且两个“b ”也不相邻,这样的排法共有120-24=96种.(10)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB →=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是(A)(A)⎣⎡⎦⎤22,53 (B)⎣⎡⎭⎫53,1 (C)⎣⎡⎦⎤22,3-1 (D)[3-1,1) 【解析】作出椭圆左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设AF ′=n ,AF =m ,则在直角三角形ABF 中m +n =2a ,m 2+n 2=4c 2 ①,得mn =2b 2 ②,①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b2.又由|FB |≤|F A |≤2|FB |得m n =t ∈[1,2],∴t +1t =2c 2b2∈⎣⎡⎦⎤2,52,故离心率的取值范围是⎣⎡⎦⎤22,53.(11)在△ABC 中,AB =2m ,AC =2n ,BC =210,AB +AC =8,E ,F ,G 分别为AB ,BC ,AC 三边中点,将△BEF ,△AEG ,△GCF 分别沿EF 、EG 、GF 向上折起,使A 、B 、C 重合,记为S ,则三棱锥S -EFG 的外接球面积最小为(D)(A)292π (B)233π (C)14π (D)9π【解析】根据题意,三棱锥S -EFG 的对棱分别相等,将三棱锥S -EFG 补充成长方体, 则对角线长分别为m ,n ,10, 设长方体的长宽高分别为x ,y ,z,则x 2+y 2=m ,y 2+z 2=10,x 2+z 2=n ,∴x 2+y 2+z 2=5+m +n2,∴三棱锥S -EFG 的外接球直径的平方为5+m +n2,而m +n =4,m +n 2≥⎝ ⎛⎭⎪⎫m +n 22=4,∴5+m +n2≥9, ∴三棱锥S -EFG 的外接球面积最小为4π·94=9π,所以D 选项是正确的.(12)已知函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是(B)(A)⎝⎛⎦⎤23,ln 2 (B)⎝⎛⎦⎤23,ln 32+13 (C)⎣⎡⎦⎤ln 2,ln 32+13 (D)⎝⎛⎭⎫ln 2,ln 32+13【解答】作出函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0的图像如右,由x 1<x 2,且f (x 1)=f (x 2),可得0≤x 2<23,-32x 2+1=e -x 1-1,即为-x 1=ln ⎝⎛⎭⎫-32x 2+2, 可得x 2-x 1=x 2+ln ⎝⎛⎭⎫-32x 2+2,令g (x 2)=x 2+ln ⎝⎛⎭⎫-32x 2+2,0≤x 2<23, g ′(x 2)=1+-32-32x 2+2=3x 2-13x 2-4.当0≤x 2<13时,g ′(x 2)>0,g (x 2)递增;当13<x 2<23时,g ′(x 2)<0,g (x 2)递减.则g (x 2)在x 2=13处取得极大值,也为最大值ln 32+13,g (0)=ln 2,g ⎝⎛⎭⎫23=23,由23<ln 2,可得x 2-x 1的范围是⎝⎛⎦⎤23,ln 32+13.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分. (13)将八进制数705(8)化为三进制的数是__121210(3)__.【解析】705(8)=7×82+0×8+5×80=453, 根据除k 取余法可得453=121210(3).(14)计算:2cos 10°-23cos (-100°)1-sin 10°=.(15)已知P 是双曲线x 216-y 28=1右支上一点,F 1,F 2分别是双曲线的左、右焦点,O 为坐标原点,点M ,N 满足F 1P →=λPM →()λ>0,PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|,PN →·F 2N →=0.若|PF 2→|=3,则以O 为圆心,ON 为半径的圆的面积为__49π__.【解析】由PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|知PN 是∠MPF 2的角平分线,又PN →·F 2N →=0,故延长F 2N 交PM 于K ,则PN 是△PF 2K 的角平分线又是高线,故△PF 2K 是等腰三角形,|PK |=|PF 2|=3,因为|PF 2→|=3,故|PF 1→|=11,故|F 1K →|=14,注意到N 还是F 2K 的中点,所以ON 是△F 1F 2K 的中位线,|ON →|=12|F 1K →|=7,所以以O 为圆心,ON 为半径的圆的面积为49π.(16)如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD →=2DC →,BD =433,则BE =56__.【解析】由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3. S △ABC =12·AC ·AB sin A =12×3×2×223=22,S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE .S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE .由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE ,∴BE =456.70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设数列{a n }满足a 2n =a n +1a n -1+λ(a 2-a 1)2,其中n ≥2,且n ∈N ,λ为常数.(Ⅰ)若{a n }是等差数列,且公差d ≠0,求λ的值;(Ⅱ)若a 1=1,a 2=2,a 3=4,且数列{b n }满足a n ·b n =n -7对任意的n ∈N *都成立. ①求数列{}b n 的前n 项之和S n ;②若m ·a n ≥n -7对任意的n ∈N *都成立,求m 的最小值.【解析】(Ⅰ)由题意,可得a 2n =(a n +d )(a n -d )+λd 2,(2分)化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(3分)(Ⅱ)①将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,(4分) 所以a 2n =a n +1a n -1,则数列{}a n 是首项为1,公比q =2的等比数列,所以a n =2n -1,从而b n =n -72n -1,(6分)所以S n =-620+-521+-422+…+n -72n -1,12S n =-621+-522+-423+…+n -72n , 两式相减得:12S n =-620+121+122+…+12n -1-n -72n =-5+5-n 2n ;所以S n =-10+5-n2n -1.(8分)②m ·2n -1≥n -7,所以m ≥n -72n -1对任意n ∈N *都成立.由b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ; 当n =8时,b 9=b 8; 当n <8时,b n +1>b n . 所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.(12分) (18)(本小题满分12分)阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:(Ⅰ)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于1分”的概率. 【解析】(Ⅰ)根据统计数据可知,从本地区参加比赛的30名中学生中任意抽取一人,其成绩等级为“A 或B ”的概率为:430+630=13,(2分)即从本地区参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率为13.(3分)(Ⅱ)由题意知随机变量X 可取0,1,2,3,则X ~B ⎝⎛⎭⎫3,13. P (x =k )=C k 3⎝⎛⎭⎫13k ⎝⎛⎭⎫233-k(k =0,1,2,3),(5分)所以X 的分布列为:(6分)则E (x )=3×13=1,所求期望值为1.(7分)(Ⅲ)设事件M :从这30名学生中,随机选取2人,这两个人的成绩之差大于1分. 设从这30名学生中,随机选取2人,记两个人的成绩分别为m ,n , 则基本事件的总数为C 230,不妨设m >n ,当m =5时,n =3,2,1,基本事件的个数为C 14(C 110+C 17+C 13); 当m =4时,n =2,1,基本事件的个数为C 16(C 17+C 13); 当m =3时,m =1,基本事件的个数为C 110C 13;P (M )=3487.(12分)(19)(本小题满分12分)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(Ⅰ)求二面角F -AE -B 的余弦值;(Ⅱ)若点M 为线段AC 上异于点A 的一点,BE ⊥OM ,求a 的值. 【解析】(Ⅰ)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF , 又因为平面AEF ⊥平面EFCB ,平面AEF ∩平面EFCB =EF , AO平面AEF ,所以AO ⊥平面EFCB ,取BC 的中点G ,连结OG ,由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF , 由AO ⊥平面EFCB ,又GO平面EFCB ,所以AO ⊥GO ,建立如图所示空间直角坐标系,则E ()a ,0,0,A ()0,0,3a ,B ()2,3()2-a ,0,EA →=()-a ,0,3a , BE →=()a -2,3()a -2,0,设平面AEB 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,()a -2x +3()a -2y =0.令z =1,则x =3,y =-1,于是n =()3,-1,1,又平面AEF 的一个法向量为p =()0,1,0,设二面角F -AE -B 为θ,所以cos θ=cos 〈n ,p 〉=n ·p |n ||p |=-55.(6分) (Ⅱ)由(Ⅰ)知AO ⊥平面EFCB ,又BE 平面EFCB ,所以AO ⊥BE ,又OM ⊥BE ,AO ∩OM =O ,所以BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=()a -2,3()a -2,0,OC →=()-2,3()2-a ,0, 所以BE →·OC →=-2()a -2-3()a -22, 由BE →·OC →=0及0<a <2,解得a =43.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.(Ⅰ)求椭圆C 的标准方程和圆A 的方程;(Ⅱ)不过原点的直线l 与椭圆C 相交于M ,N 两点,设直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列.①求k 的值;②是否存在直线l 使得满足OD →=λOM →+μON →(λ2+μ2=1,λ·μ≠0)的点D 在椭圆C 上?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(Ⅰ)如图,设T 为线段PQ 的中点,连接AT , 则AT ⊥PQ ,∵AP →·AQ →=0, 即AP ⊥AQ , 则|AT |=12|PQ |,又OP →=3OQ →,则|OT |=|PQ |, ∴|AT ||OT |=12,即b a =12, 由已知c =3,则a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1;(2分)又|AT |2+|OT |2=4,则|AT |2+4|AT |2=4|AT |=255,r =|AP |=2105, 故圆A 的方程为(x -2)2+y 2=85.(4分)(Ⅱ)①设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m (1+4k 2)x 2+8kmx +4(m 2-1)=0,(5分) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,(6分)由已知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2+km (x 1+x 2)+m2x 1x 2,(7分)则km (x 1+x 2)+m 2=0,即-8k 2m 21+4k2+m 2=0k 2=14k =±12.(8分)②假设存在直线l 满足题设条件,且设D (x 0,y 0), 由OD →=λOM →+μON →,得x 0=λx 1+μx 2,y 0=λy 1+μy 2, 代入椭圆方程得:(λx 1+μx 2)24+(λy 1+μy 2)2=1,即:λ2⎝⎛⎭⎫x 214+y 21+μ2⎝⎛⎭⎫x 224+y 22+λμx 1x 22+2λμy 1y 2=1,则x 1x 2+4y 1y 2=0,即x 1x 2+4(kx 1+m )(kx 2+m )=0, 则(1+4k 2)x 1x 2+4km (x 1+x 2)+4m 2=0, 所以(1+4k 2)·4(m 2-1)1+4k 2-32k 2m 21+4k2+4m 2=0, 化简得:2m 2=1+4k 2,而k 2=14,则m =±1,(11分)此时,点M ,N 中有一点在椭圆的上顶点(或下顶点),与k 1,k ,k 2成等比数列相矛盾, 故这样的直线不存在.(12分) (21)(本小题满分12分)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 为自然对数的底数),求a 的取值范围.【解析】(Ⅰ)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a ,(1分) 当a >1时,ln a >0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减;(2分) 当0<a <1时,ln a <0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减.(3分)综上:x ∈(0,+∞)时,f (x )单调递增,x ∈(-∞,0)时,f (x )单调递减.(4分)(Ⅱ)不等式等价于:|f (x 1)-f (x 2)|max ≥e -1, 即f (x )max -f (x )min ≥e -1,(5分)由(Ⅰ)知,函数的最小值为f (0)=1,f (x )max =max {}f (-1),f (1), 而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 设g (a )=a -1a -2ln a ,则g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0,所以g (a )=a -1a -2ln a 在(0,+∞)单调递增,而g (1)=0,故a >1时,g (a )>0,即f (1)>f (-1);(7分) 0<a <1时,g (a )<0,即f (1)<f (-1).(8分) 所以当a >1时,原不等式即为:f (1)-f (0)≥e -1a -ln a ≥e -1,设h (a )=a -ln a (a >1),h ′(a )=1-1a =a -1a >0,故函数h (a )单调递增,又h (e)=e -1,则a ≥e ;(10分)当0<a <1时,原不等式即为:f (-1)-f (0)≥e -11a+ln a ≥e -1, 设m (a )=1a +ln a (0<a <1),m ′(a )=-1a 2+1a =a -1a 2<0,故函数m (a )单调递减,又m ⎝⎛⎭⎫1e =e -1,则0<a ≤1e.(11分) 综上,所求a 的取值范围是⎝⎛⎦⎤0,1e ∪[e ,+∞).(12分) 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =2+t (t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42cos ⎝⎛⎭⎫θ-π4.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设曲线C 与直线l 的交点为A ,B, Q 是曲线上的动点,求△ABQ 面积的最大值.【解析】(Ⅰ)由⎩⎪⎨⎪⎧x =3-t ,y =2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42cos ⎝⎛⎭⎫θ-π4=4cos θ+4sin θ,得ρ2=4ρcos θ+4ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式,得x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8.所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(5分)(Ⅱ)由(Ⅰ)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过定点P (3,2),P 在圆内,将直线的参数方程代入圆的普通方程,得2t 2-2t -7=0,t 1+t 2=1,t 1·t 2=-72.所以|AB |=|t 1-t 2|=15,又因为圆心到直线的距离d =|2+2-5|2=22,故△ABQ 面积的最大值为S △ABQ =12×15×⎝⎛⎭⎫22+22=5304.(10分)(23)(本小题满分10分) 已知函数f (x )=|2x +1|+|2x -1|. (Ⅰ)求f (x )的值域;(Ⅱ)若对任意实数a 和b ,|2a +b |+|a |-12|a +b |·f (x )≥0,求实数x 的取值范围.【解析】(Ⅰ)∵f (x )=⎩⎪⎨⎪⎧-4x ,x ≤-12,2,-12<x <12,4x ,x ≥12,∴f (x )≥2.∴f (x )的值域为[2,+∞).(5分)(Ⅱ)当a +b =0,即a =-b 时,|2a +b |+|a |-12|a +b |f (x )≥0可化为2|b |-0·f (x )≥0,即2|b |≥0恒成立,∴x ∈R .当a +b ≠0时,∵|2a +b |+|a |=|2a +b |+|-a |≥|(2a +b )-a |=|a +b |, 当且仅当(2a +b )(-a )≥0,即(2a +b )a ≤0时,等号成立, 即当(2a +b )a ≤0时,|2a +b |+|a ||a +b |=1.∴|2a +b |+|a ||a +b |的最小值等于1.∵|2a +b |+|a |-12|a +b |·f (x )≥0|2a +b |+|a ||a +b |≥12f (x ),∴12f (x )≤1,即f (x )≤2. 由(Ⅰ)知f (x )≥2,∴f (x )=2.当且仅当-12≤x ≤12时,f (x )=2.综上所述,实数x 的取值范围是⎣⎡⎦⎤-12,12.(10分)。
东北三省三校2018届高三第三次联合模拟考试数学(文)试卷(含答案)
黑龙江省哈师大附中、东北师大附中、辽宁省实验中学2018届东北三省三校高三第三次联合模拟考试文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}{}2=1,2,4,=2A B x R x ∈>则A B I =( )A .{}1B .{}4C .{}24,D .{}124,, 2.已知i 为虚数单位,()23i i i +=( )A .-3+2iB .3+2iC .3-2iD .-3-2i3..已知等差数列{}2357,2,15n a a a a a =++=,则数列{}n a 的公差=d ( ) A .0 B .1 C .-1 D .24.与椭园22:162y x C +=共焦点且渐近线方程为=y ±的双曲线的标准方程为( ) A .2213y x -= B .2213x y -= C.2213x y -= D .2213y x -= 5.已知互不相同的直线,,l m n 和平面,y αρ,,则下列命题正确的是( ) C 若 。
na= 1.pN 7- m 。
n y- n,l /r, 则 m 11 " ; D.若aLy.plLy.则a//p.A .若l 与m 为异面直线,,l m αβ⊂⊂,则//αβB .若 //,,l a m αββ⊂⊂.则//l m C.若,,,//l y m y n l αββαγ===I I I , 则 //m n D .若.a γβγ⊥⊥.则//a β 6.执行下面的程序框图,若0.9p =,则输出的n =( )A .5B .4 C.3 D .27.已知某几何体是一个平面将一正方体截去一部分后所得,该几何体三视图如图所示,则该几何体 的表面积为( )A .20+23.18+2318+3.20+38.设点()x y ,满足约束条件30510330x y x y x y -+≥⎧⎪--≤⎨⎪+-≤⎩,且,x Z y Z ∈∈,则这样的点共有( )个A .12B .11 C.10 D .99.动直线():22 0l x my m m R ++--∈与圆22:2440C x y x y +-+-=交于点,A B ,则弦AB最短为( )A .2B .25.4210.分形理论是当今世界十分风靡和活跃的新理论、新学科。
山东省济南市2018届高三第二次模拟考试理数试题word含答案
山东省济南市2018届高三第二次模拟考试理数试题word含答案山东省济南市2018届高三第二次模拟(5月)考试理科数学参考公式:锥体的体积公式:V=1/3Sh,其中S为锥体的底面积,h为锥体的高。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
21.设全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分表示的集合为()小幅度改写:已知全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分为集合A和集合B的交集。
2.设复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是()小幅度改写:已知复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是z=-1+i。
3.已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα等于()小幅度改写:已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα=±3/5.4.已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为()小幅度改写:已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为x2/b2-y2/a2=1.5.某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
则中奖的概率为()小幅度改写:某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
2018江苏高考数学模拟试题含答案
2018江苏高考数学模拟试题(含答案)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本市卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(3)执行如图所示的程序框图,输出的s值为(A)8(B)9(C)27(D)36(7)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x−y的最大值为(A)−1 (B)3 (C)7 (D)8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号 1 2 3 4 5 6 7 8 9 10立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.6030秒跳绳(单位:次)63 a 75 60 63 72 70 a−1 b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A)2号学生进入30秒跳绳决赛(B)5号学生进入30秒跳绳决赛(C)8号学生进入30秒跳绳决赛(D)9号学生进入30秒跳绳决赛2018江苏高考数学模拟试题第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.2018江苏高考数学模拟试题三、解答题(共6题,共80分.解答应写出文字说明,演算步骤或证明过程)(15)(本小题13分)已知{an}是等差数列,{bn}是等差数列,且b2=3,b3=9,a1=b1,a14=b4.(Ⅰ)求{an}的通项公式;(Ⅱ)设cn=an+bn,求数列{cn}的前n项和.(16)(本小题13分)已知函数f(x)=2sin ωxcosωx+cos 2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.(17)(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费. (18)(本小题14分)。
2018年北京东城高三一模数学试题及答案word版
数学(文科)学校 _____________ 班级 _______________ 姓名 ______________ 考号 ___________本试卷共 5 页, 150 分。
考试时长120 分钟。
考生务势必答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8 小题,每题 5 分,共 40 分。
在每题列出的四个选项中,选出吻合题目要求的一项。
( 1)若会集A{ x |3x1},B{ x | x1或 x2} ,则AI B( A){ x | 3 x1}( B){ x | 3 x 2}( C){ x | 1 x 1}( D){ x |1 x 2}i在复平面内对应的点位于( 2)复数z1i( A)第一象限(B)第二象限( C)第三象限(D)第四象限x y20,( 3)若x, y满足2x y20, 则y x 的最大值为y0,(A)2(B)1(C)2(D)4( 4)执行以以下图的程序框图,假如输出的S值为 30,那么空白的判断框中应填入的条件是( A)n2开始( B)n3( C)n4n0, S0( D)n5否是n n1输出 SS S2n结束( 5)某三棱锥的三视图以以下图,则该三棱锥最长棱的棱长为( A ) 2( B )2 2( C )2 3( D ) 4( 6)函数 f ( x)4 2x 的零点所在区间是x(A ) (0, 1 )(B ) (2( C ) (1, 3)(D ) (2( 7)已知平面向量 a,b, c 均为非零向量,则“1,1)23, 2)2(a b)c(b c)a ”是“向量 a,c 同向”的( A )充足而不用要条件( B )必需而不充足条件( C )充足必需条件( D )既不充足也不用要条件( 8)为弘扬中华传统文化,某校组织高一年级学生到古都西安游学.在某景区,因为时间关系,每个班只好在甲、 乙、丙三个景点中选择一个旅游. 127名同学决定投票来选定旅游的景点,高一 班的 商定每人只好选择一个景点,得票数高于其他景点的当选. 据认识, 在甲、乙两个景点中有 18 人会选择甲,在乙、丙两个景点中有18 人会选择乙.那么关于这轮投票结果,以下说法正确的选项是 ①该班选择去甲景点旅游;②乙景点的得票数可能会超出9 ;③丙景点的得票数不会比甲景点高;④三个景点的得票数可能会相等.( A )①② (B )①③( C )②④(D )③④第二部分 (非选择题 共 110 分)二、填空题共 6 小题,每题5 分,共 30 分。
山东省临沂市2018届高三第三次高考模拟考试数学(理)试题有答案
2018年普通高考模拟考试理科数学2018.5本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={}x x a >,B={}232x x x -+>0,若A ∪B=B ,则实数a 的取值范围是(A) (),1-∞ (B) (],1-∞ (C) ()2,+∞(D) [)2,+∞2.欧拉公式cos sin ix e x i x =+ (i 为虚数单位)是由瑞士著名数学家欧拉发明的,他将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,3i e 表示的复数在复平面中位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.给出以下三种说法:①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+<”; ②已知,p q 为两个命题,若p q ∨为假命题,则()()p q ⌝∧⌝为真命题; ③命题“,a b 为直线,α为平面,若//,//,a b αα,则//a b ”为真命题. 其中正确说法的个数为 (A)3个 (B)2个 (C)1个 (D)0个4.已知4cos 45πα⎛⎫-=⎪⎝⎭,则sin 2α= (A) 725- (B) 15- (C) 15 (D) 7255.直线40x y m ++=交椭圆2116x y +=于A ,B 两点,若线段AB 中点的横坐标为l ,则,m= (A)-2 (B)-1 (C)1 (D)2 6.执行如图所示的程序框图,则输出的a = (A)6.8 (B)6.5 (C)6.25 (D)67.已知定义域为R 的奇函数()f x 在(0,+∞)上的解析式为()()()23log 5,0233,,2x x f x f x x ⎧-<≤⎪⎪=⎨⎪->⎪⎩则()()32018f f +=(A)-2(B)-1 (C)1(D)28.一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“▂”组成.已知在一个显示数字8的显示池中随机取一点A ,点A 落在深色区域内的概率为12,若在一个显示数字0的显示池中随机取一点B ,则点B 落在深色区域内的概率为(A)67(B)37 (C) 34 (D) 389.记不等式组10,330,10x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,所表示的平面区域为D ,若对任意点(00,x y )∈D ,不等式0020x y c -+≤恒成立,则c 的取值范围是 (A) (],4-∞- (B) (],1-∞-(C) [)4,-+∞(D) [)1,-+∞10.如图是某几何体的三视图,则该几何体的体积为(A) 13π+(B) 223π+(C) 23π+(D) 123π+11.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为F 1,F 2,点A 为双曲线C 虚轴的一个端点,若线段AF 2与双曲线右支交于点B ,且112::AF BF BF =3:4:2,则双曲线C 的离心率为(A)(B)10(C)(D) 1012.在△ABC 中,D 为边BC 上的点,且满足∠DAC=90°,sin ∠BAD=13,若S △ADC =3S △ABD ,则cosC=(A)(B)6 (C)23(D)23二、填空题:本题共4小题,每小题5分,共20分。
江苏省常州市2018届高三数学第一次模拟考试
江苏省常州市2018届高三数学第一次模拟考试2018届高三年级第一次模拟考试(二)数学满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.1.若集合A={-2,1},B={x|x^2>1},则集合A∩B={1}.2.命题“∃x∈[0,1],x^2-1≥0”是真命题.3.若复数z满足z·2i=|z|^2+1(其中i为虚数单位),则|z|=2.4.若一组样本数据2015,2017,x,2018,2016的平均数为2017,则该组样本数据的方差为2.5.如图是一个算法的流程图,则输出的n的值是3.6.函数f(x)=lnx的定义域记作集合D.随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数1,2,…,6),记骰子向上的点数为t,则事件“t∈D”的概率为1/2.7.已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为3.8.在各项均为正数的等比数列{an}中,若a2a3a4=a2+a3+a4,则a3的最小值为3.9.在平面直角坐标系xOy中,设直线l:x+y+1=0与双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的两条渐近线都相交且交点都在y轴左侧,则双曲线C的离心率e的取值范围是(1,√2).10.已知实数x,y满足2x+y-2≥0,x-2y+4≥0,则x+y的取值范围是[2,∞).11.已知函数f(x)=bx+lnx,其中b∈R.若过原点且斜率为k 的直线与曲线y=f(x)相切,则k-b的值为1/e.12.如图,在平面直角坐标系xOy中,函数y=sin(ωx+φ)(ω>0,0<φ<π)的图象与x轴的交点A,B,C满足OA+OC=2OB,则φ=π/3.13.在△ABC中,AB=5,AC=7,BC=3,P为△ABC内一点(含边界),若满足BP=4BA+λBC(λ∈R),则BA·BP的取值范围为[25/4,35/4].二、解答题:共计90分.14.已知函数f(x)=sinx+cosx,x∈[0,π/2],则f(x)的最小值是√2-1.15.已知函数f(x)=x^3-3x,x∈[-2,2],则f(x)在[-2,2]上的最大值是4.16.如图,在△ABC中,AD是边BC上的高,点E,F分别在AB,AC上,且满足BE=CF=AD.若BE=CF=AD=1,AB=2,AC=√5,则三角形AEF的面积为(√5-1)/2.17.已知函数f(x)=x^3-3x,g(x)=f(x-2),则g(x)在[-2,2]上的最小值是-5.18.如图,在平面直角坐标系xOy中,点A(1,0),B(0,1),C(-1,0),D(0,-1),E(2,0),F(0,2),G(-2,0),H(0,-2).若点P(x,y)满足PA^2+PB^2+PC^2+PD^2=PE^2+PF^2+PG^2+PH^2,则点P的坐标为(0,0).19.已知函数f(x)=ln(1+2x)-ax,其中a为常数,f(x)在[0,1]上取得最大值,且f(1/2)=0,则a=1/2.20.已知函数f(x)=x^3-3x,g(x)=f(x-2),则当g(x)在[1,3]上单调递增时,x的取值范围是[1,3].已知在三角形ABC中,AB=AC=3,存在点P在三角形ABC所在平面内,使得PB²+PC²=3PA²=3,则三角形ABC的面积最大值为______。
2018届上海市高三数学一模金山卷(含答案)
3 ⎩⎨ ⎩2 金山区 2017 学年第一学期质量监控高三数学试卷(满分:150 分,完卷时间:120 分钟)(答题请写在答题纸上)一、填空题(本大题共有 12 题,满分 54 分,第 1–6 题每题 4 分,第 7–12 题每题 5 分) 考生应在答题纸相应编号的空格内直接填写结果.1. 若全集 U =R ,集合 A ={x |x ≤0 或 x ≥2},则U A = .x -1 2.不等式 x< 0 的解为 .⎧3x - 2 y = 1 3.方程组⎨2x + 3y = 5 的增广矩阵是.4. 若复数 z =2–i (i 为虚数单位),则 z ⋅ z + z = .5. 已知 F 1、F 2 是椭圆x + y 25 9= 1的两个焦点,P 是椭圆上的一个动点,则|PF 1|⨯|PF 2|的最大值是 .⎧x - y +1 ≥ 0 6.已知 x ,y 满足⎪x + y - 3 ≥ 0 ,则目标函数 k =2x +y 的最大值为.⎪x ≤ 2 7. 从一副混合后的扑克牌(52 张)中随机抽取 1 张,事件 A 为“抽得红桃 K ”,事件B 为“抽得为黑桃”,则概率 P (A ∪B )=(结果用最简分数表示).8. 已知点 A (2,3)、点 B (–2,),直线 l 过点 P (–1,0),若直线 l 与线段 AB 相交,则直线 l 的倾斜角的取值范围是.9. 数列{a n }的通项公式是 a n =2n –1(n ∈N *),数列{b n }的通项公式是 b n =3n (n ∈N *),令集合A ={a 1,a 2,…,a n ,…},B ={b 1,b 2,…,b n ,…},n ∈N *.将集合 A ∪B 中的所有元素按从小到大的顺序排列,构成的数列记为{c n }.则数列{c n }的前 28 项的和S 28=.2510. 向量 i 、 j 是平面直角坐标系 x 轴、y 轴的基本单位向量,且| a – i |+| a –2 j |=,则| a + 2 i | 的取值范围为.11. 某地区原有森林木材存有量为 a ,且每年增长率为 25%,因生产建设的需要,每年1年末要砍伐的木材量为10a ,设a n 为第n 年末后该地区森林木材存量,则a n = .12. 关于函数 f (x ) =,给出以下四个命题:(1)当 x >0 时,y=f (x )单调递减且没有最值;(2)方程 f (x )=kx+b (k ≠0)一定有实数解;(3)如果方程 f (x )=m (m 为常数)有解, 则解的个数一定是偶数;(4) y=f (x ) 是偶函数且有最小值. 其中假命题的序号是.二、选择题(本大题共 4 小题,满分 20 分,每小题 5 分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 若非空集合 A 、B 、C 满足 A ∪B =C ,且 B 不是 A 的子集,则().(A) “x ∈C ”是“x ∈A ”的充分条件但不是必要条件 (B) “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 (C) “x ∈C ”是“x ∈A ”的充要条件(D) “x ∈C ”既不是“x ∈A ”的充分条件也不是“x ∈A ”的必要条件14. 将如图所示的一个 Rt △ABC (∠C =90°)绕斜边 AB 旋转一周,所得到的几何体的主视图是下面四个图形中的().第 14 题图(A)(B) (C) (D).Cx x - 13 C 1ACF 15. 二项式(i –x )10(i 为虚数单位)的展开式中第 8 项是().(A) –135x 7(B)135x 7(C)360 i x 7(D)–360 i x 716. 给出下列四个命题:(1)函数 y =arccos x (–1≤x ≤1)的反函数为 y =cos x (x ∈R );(2)函数⎧ 1- t 22+ - ⎪x = 1+ t 2y = xmm 1(m ∈N )为奇函数;(3)参数方程 ⎨⎪ y = ⎩ 2t1+ t 2(t ∈R )所表示的曲线是圆;(4)函数 f (x )=sin 2x – ( 2)x+ 1,当 x >2017 时,f (x )> 1 恒成立.其中真命题的个数为().322(A) 4 个(B) 3 个(C) 2 个(D) 1 个三、解答题(本大题共有 5 题,满分 76 分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分 14 分,第 1 小题满分 7 分,第 2 小题满分 7 分)如图,已知正方体 ABCD –A 1B 1C 1D 1 的棱长为 2,E ,F 分别是 BB 1、CD 的中点.(1) 求三棱锥 F –AA 1E 的体积;1D 1(2) 求异面直线 EF 与 AB 所成角的大小(结果用反三 1角函数值表示).EDB18.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)已知函数 f (x )= sin2x+cos2x –1 (x ∈R ).(1) 写出函数 f (x )的最小正周期以及单调递增区间;(2) 在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c ,若 f (B )=0, BA ⋅ BC = 3,2且 a+c =4,求 b 的值.3 3 3 B A19.(本题满分14 分,第1 小题满分6 分,第2 小题满分8 分)2x x -a设P(x, y)为函数f(x)= (x∈D,D 为定义域)图像上的一个动点,O 为坐标原点,|OP|为点O 与点P 两点间的距离.(1)若a=3,D=[3,4],求|OP|的最大值与最小值;(2)若D=[1,2],是否存在实数a,使得|OP|的最小值不小于2?若存在,请求出a 的取值范围;若不存在,则说明理由.20.(本题满分16 分,第1 小题满分4 分,第2 小题满分5 分,第3 小题满分7 分) 给出定理:在圆锥曲线中,AB 是抛物线Γ:y2=2px (p>0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D,若A、B 两点纵坐标之差的绝对a3.试运用上述定理求解以下各题:值|y A-y B|=a(a>0),则△ADB的面积S△ADB=16p(1)若p=2,AB 所在直线的方程为y=2x–4,C 是AB 的中点,过C 且平行于x 轴的;直线与抛物线Γ的交点为D,求S△ADB(2)已知AB 是抛物线Γ:y2=2px (p>0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D,E、F 分别为AD 和BD 的中点,过E、F 且平行于x 轴的直线与抛物线Γ:y2=2px (p>0)分别交于点M、N,若A、B 两点纵坐标之差的绝对值|y A-y B|=a(a>0),求S△AMD和S△BND;(3)请你在上述问题的启发下,设计一种方法求抛物线:y2=2px (p>0)与弦AB 围成的“弓形”的面积,并求出相应面积.21.(本题满分18 分,第1 小题满分4 分,第2 小题满分6 分,第3 小题满分8 分) 若数列{a n}中存在三项,按一定次序排列构成等比数列,则称{a n}为“等比源数列”.(1)已知数列{a n}中,a1=2,a n+1=2a n–1.求数列{a n}的通项公式;(2)在(1)的结论下,试判断数列{a n}是否为“等比源数列”,并证明你的结论;(3)已知数列{a n}为等差数列,且a1≠0,a n∈Z(n∈N*),求证:{a n}为“等比源数列”.5 2 ⋅ 金山区 2017 学年第一学期期末考试高三数学试卷评分参考答案(满分:150 分,完卷时间:120 分钟)一、填空题(本大题共有 12 题,满分 54 分,第 1–6 题每题 4 分,第 7–12 题每题 5 分)⎛3 - 2 1 ⎫ 71.A ={x |0<x<2};2.0<x <1;3. ⎝ 2 3 ⎪ ;4.7–i ;5.25;6.7;7. ;5⎭268 [ π , 2π ].;9.820;10. ⎡ 6 5, 3⎤ ;11. a= 3 5 n+ a ;12.(1)、(3)4 3⎢⎣ 5 ⎥⎦ n( ) a 5 4 5 二、选择题(本大题共 4 小题,满分 20 分,每小题 5 分)13.B ; 14.B ; 15.C ; 16.D三、解答题(本大题共有 5 题,满分 76 分)17.解:(1)因为△AA 1E 的面积为 S =2, .................................................................. 2 分点 F 到平面 ABB 1A 1 的距离即 h=2, ....................................... 4 分所以V14 = S h = ;............................................... 7 分 F - AA 1E33(2)连结 EC ,可知∠EFC 为异面直线 EF 与 AB 所成角, ........................ 10 分在 Rt △EFC 中,EC = ,FC =1,所以 tan ∠EFC = , ................... 13 分即∠EFC =arctan ,故异面直线 EF 与 AB 所成角的大小为 arctan π. ...... 14 分18.解:(1)f (x )=2sin(2x+)–1,......................................... 2 分6所以,f (x )的最小正周期 T = π, ........................................ 4 分 f (x )的单调递增区间是[k π– π ,k π+ π ],k ∈Z ; ............................. 6 分 36π π 1 (2) f (B )=2sin(2B + 6)–1=0,故 sin(2B + )= 6 2, ............................. 8 分 所以,2B + π =2k π+ π 或 2B + π=2k π+5π ,k ∈Z ,6666π 因为 B 是三角形内角,所以 B =; ..................................... 10 分35 5 57 3x 2- 6x - x 2 + 2ax 3x 2- 2ax 3 - 2a 1 11 ⎩ 而 BA ⋅ BC =ac cos B = 3,所以,ac =3,又 a+c =4,所以 a 2+c 2=10, ........... 12 分2所以,b 2=a 2+c 2–2ac cos B =7,所以 b= ................................ 14 分19.解:(1) 当 a =3,D =[3,4],|OP |= = = 3(x -1)2- 3, x ∈[3, 4] ,................................... 4 分| OP |min = 3 ,| OP |max = 2 ;.......................................... 6 分(2) | OP |= x 2+ 2x x - a , x ∈[1,2] ,因为|OP |的最小值不小于 2,即 x 2+2x |x –a |≥4对于 x ∈[1,2]恒成立, ...................................................................... 8 分当 a ≥2 时,a ≥ 1(x + 2 4 ) 对于 x ∈[1,2]恒成立,所以 a ≥ 5 x 2,................. 10 分 当 1≤a <2 时,取 x=a 即可知,显然不成立, ............................. 11 分 当 a <1 时,a ≤ 1 (3x - 4 ) 对于 x ∈[1,2]恒成立,所以 a ≤ - 1, .............. 13 分2 x综上知,a ≤ - 或 a ≥ 52 22 ………………………………………………………………14 分(2)或解:| OP |= x 2+ 2x x - a , x ∈[1,2] , ............................... 7 分当 a ≥2 时, | OP |= = 5在[1,2]为增函数,| OP |min = ≥2,所以a ≥ , ..................................... 9 分 2 当 1≤a <2 时,取 x=a ,|OP |=a 不可能大于或等于 2, ....................... 11 分当 a <1 时,| OP |= =在[1,2]为增函数,| OP |min = ≥2 ,a ≤ - 2 ......................................................................13 分综上知,a ≤ - 或 a ≥ 52 2 ………………………………………………………………14 分⎧ y = 2x - 420.解:(1) 联立直线与抛物线方程⎨ y 2 = 4x,解得|y A –y B |=6, ...........2 分x 2 + 2x (x - 3) 6 - (x - a )2 + a 22a -1 3(x - a )2 - 1 a 23 3327 S △ADB =8; ......................................................... 4 分(2) 设点 D 、M 、N 的纵坐标分别为 y D 、y M 、y N ,易知 AD 为抛物线Γ:y 2=2px (p >0)的一a 条弦,M 是 AD 的中点,且 A 、D 两点纵坐标之差为定值,|y A –y D |=(a >0),……6 分2由已知的结论,得 S △AMD =( a)3 2= 1 ⋅ a, ............................... 8 分16 p 8 16 p同理可得 S △BND = ( a )3 2 = 1 ⋅ a ; ....................................... 9 分16 p 8 16 p(3) 将(2)的结果看作是一次操作,操作继续下去,取每段新弦的中点作平行于 x 轴的直线与抛物线得到交点,并与弦端点连接,计算得到新三角形面积。
上海市卢湾高级中学2018-2019学年上学期高三期中数学模拟题.docx
上海市卢湾高级中学2018-2019学年上学期高三期中数学模拟题班级_________ 座号_______ 姓名__________ 分数 ___________一、选择题(本大题共12小题,每小题5分,共60分•每小题给岀的四个选项中,只有一项是符合题目要求的•)_ 7T ] 711. 已知cos(o --- )= —,贝(J COSQ + COS(Q)=()6 2 31丄1 巧、怎2 2 2 22.已知A, B是球0的球面上两点,ZAOB = 60° , C为该球面上的动点,若三棱锥O - ABC体积的最大值为18內,则球。
的体积为()A . 81KB . 128兀C . 144KD . 288兀【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、求解能力•3.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为(A.| 谒4.设函数/S) = log」x—1|在(-8,1)上单调递增,则/(a+ 2)与/•⑶的( )A . /(a + 2) > /⑶B . /(a + 2) < /(3) C./(« + 2) = /(3) D.不能确定函数/«) = ln(严- x)的定义域为()BE〕方程思想、运算r 20D T5・A®)正视图侧视图俯视图大小关系是C(-°°,0)U(l,+oo)D (-oo,0]U[l,+oo)6 .《九章算术》是我国古代的数学巨著,其卷第五“商功” ”今有刍養,下广三丈,袤四丈,上袤二丈,无广,高一丈。
思为:"今有底面为矩形的屋脊形状的多面体(如图)",下 丈,长= 4丈,上棱EF=2丈,EFW 平面ABCD.EF 与平面 1丈,问它的体积是()7 .已知 a > —2,右■圆 0] : x~ + y~ + 2x - 2ay - 8a —15 = 0,圆 O? : + 2ax —2ay+a~ - 4a - 4 = 0恒有公共点,则a 的取值范围为( ).A • (―2,—l]U[3,+8)B .(弓―1)U(3,炖)C . [-|-1]U[3,^)D . (-2-1)U(3,+<x ))8 .已知圆M 过定点(0,1)且圆心M 在抛物线%2= 2y 上运动,若x 轴截圆M 所得的弦为\ PQ\ ,则弦长 IP0等于( )A . 2B . 3C . 4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高, 难度较大. 9 .已知=(其中为虚数单位),B = {*2<i},则 A B=()1+z22 110 .如图,在正方体4BCD —ABCQ 中,P 是侧面BBQC 内一动点,若P 到直线BC 与直线GD 的距离 相等,贝!J 动点P 的轨迹所在的曲线是()A.直线B.圆C.双曲线D.抛物线[命题意图]本题考査立体几何中的动态问题等基础知识知识,意在考査空间想象能力.有如下的问题: 问积几何?"意 底面宽AD = 3ABCD 的距离为sin 15°11•——-2sin 80°的值为( )sin 5A . 1B . - 1C . 2D .・ 212. 一个几何体的三个视图如下,每个小格表示一个单位,则该几何体的侧面积为( )A.4nB.2A/5KC. 5nD. 2K +2A/5K[命题意图】本题考査空间几何体的三视图,几何体的侧面积等基础知识,意在考査学生空间想象能力和计算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.曲线y = A-2 + 3x在点(-1 , - 2 )处的切线与曲线y = ax + In .v相切,则a = _____________ .14.若复数z「z,在复平面内对应的点关于V轴对称,且z, =2-1 ,则复数一—在复平面内对应的点在「IZ] r +Z?( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考査复数的几何意义、模与代数运算等基础知识,意在考査转化思想与计算能力•1JT15.已知函数f(x) = a sin xcos A- sin2 x + -的一条对称轴方程为x ,则函数/(x)的最大值为( )26A . 1B . ±1C . A/2D . ±A/2[命题意图]本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想■16.三角形ABC中,AB = 2A/3, BC = 2, ZC = 60,则三角形ABC的面积为_________________ .三、解答题(本大共6小题,共70分。
届汉中市高三理科数学模拟试卷题目及答案
届汉中市高三理科数学模拟试卷题目及答案2018届汉中市高三理科数学模拟试卷题目及答案要想在高考数学中取得好,就要在最短的时间内拟定解决问题的最佳方案,实现答题效率最优化。
我们可以多做一些数学模拟试卷来提升这方面的能力,以下是店铺为你整理的2018届汉中市高三理科数学模拟试卷,希望能帮到你。
2018届汉中市高三理科数学模拟试卷题目一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.83.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <04.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.35.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.10246.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.87.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=09.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]二、填空题(本大题共4小题,每小题5分)13.(2x﹣1)5的展开式中,含x3项的系数为(用数字填写答案)14.已知实数x,y满足则z= 的取值范围为.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为.三、解答题17.(12分)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.18.(12分)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.19.(12分)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:PQ∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.20.(12分)已知椭圆C: + =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .21.(12分)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )四、选修4-4:极坐标与参数方程22.(10分)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.选修4-5:不等式选讲23.(10分)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.2018届汉中市高三理科数学模拟试卷答案一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]【考点】交、并、补集的混合运算.【分析】求出A,B中不等式的解集确定出B,找出B的补集,求出A与B补集的交集即可.【解答】解:A={x|(x﹣2)(x+3)<0}=(﹣3,2),B={x|y= }=(﹣1,+∞),∴∁RB=(﹣∞,﹣1]∴A∩(∁RB)=(﹣3,﹣1].故选:B.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.8【考点】复数求模;复数代数形式的混合运算.【分析】利用复数运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:z( +3i)=16i(i为虚数单位),∴z( +3i)( ﹣3i)=16i( ﹣3i),∴16z=16i( ﹣3i),∴z=3+ i.则复数|z|= =4.故选:C.【点评】本题考查了复数运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.3.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <0【考点】线性回归方程.【分析】利用公式求出,,即可得出结论.【解答】解:样本平均数 =0.2, =﹣1.7,∴ = = >0,∴ =﹣1.7﹣×0.2<0,故选:C.【点评】本题考查线性回归方程的求法,考查最小二乘法,属于基础题.4.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.3【考点】平面向量数量积的运算.【分析】利用向量垂直关系推出等式,求出x,然后求解向量的模.【解答】既然:向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),2 + =(1,x﹣8),(2 + )⊥ ,可得:1+8﹣x=0,解得x=9.则| |= =3 .故选:D.【点评】本题考查平面向量的数量积的运算,向量的模的求法,考查计算能力.5.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.1024【考点】等比数列的性质.【分析】利用已知条件求出a2a8的值,然后利用等比数列的性质求解T9的值.【解答】解:log2a2+log2a8=2,可得log2(a2a8)=2,可得:a2a8=4,则a5=±2,等比数列{an}的前9项积为T9=a1a2…a8a9=(a5)9=±512.故选:A.【点评】本题考查的等比数列的性质,数列的应用,考查计算能力.6.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.8【考点】程序框图.【分析】模拟执行程序的运行过程,即可得出程序运行后输出的i 值.【解答】解:模拟执行程序的运行过程,如下;S=1,i=1,S<30;S=2,i=2,S<30;S=4,i=3,S<30;S=8,i=4,S<30;S=16,i=5,S<30;S=32,i=6,S≥30;终止循环,输出i=6.故选:B【点评】本题主要考查了程序框图的应用问题,模拟程序的运行过程是解题的常用方法.7.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.【考点】简单空间图形的三视图.【分析】找出各点在xoy平面内的投影得出俯视图.【解答】解:由题意,A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0)在xOy平面上投影坐标分别为A(2,0,0),B(2,1,0),C(0,2,0),D(1,2,0).故选:C.【点评】本题考查了三视图的定义,简单几何体的三视图,属于基础题.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=0【考点】圆的切线方程.【分析】求出P的坐标,设直线l的方程为x+ y+c=0,代入P,求出c,即可求出直线l的`方程.【解答】解:由题意,切线的倾斜角为30°,∴P(1, ).设直线l的方程为x+ y+c=0,代入P,可得c=﹣4,∴直线l的方程为x+ y﹣4=0,故选B.【点评】本题考查直线与圆的位置关系,考查直线方程,考查学生的计算能力,属于中档题.9.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.【考点】函数的图象.【分析】先判断函数的奇偶性,再取特殊值验证.【解答】解:∵f(x)=( ﹣1)•sinx,∴f(﹣x)=( ﹣1)•sin(﹣x)=﹣( ﹣1)sinx=( ﹣1)•sinx=f(x),∴函数f(x)为偶函数,故排除C,D,当x=2时,f(2)=( ﹣1)•sin2<0,故排除B,故选:A【点评】本题考查了函数图象的识别,关键掌握函数的奇偶性和函数值的特点,属于基础题.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)【考点】函数y=Asin(ωx+φ)的图象变换;余弦函数的单调性.【分析】利用三角恒等变换化简f(x)的解析式,利用正弦函数的周期性求得ω的值,再利用余弦函数的单调性,求得函数g(x)的增区间.【解答】解:函数f(x)= sinωx﹣cosωx(ω<0)=2sin(ωx﹣ ),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,则为函数f(x)的周期,即=k•| |,∴ω=±4k,k∈Z.记ω的最大值为ω0,则ω0=﹣4,函数g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).令2kπ﹣π≤4x+ ≤2kπ,求得﹣≤x≤ ﹣,故函数g(x)的增区间为[ ﹣,﹣ ],k∈Z.故选:A.【点评】本题主要考查三角恒等变换,正弦函数的周期性,余弦函数的单调性,属于中档题.11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2关于双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.【考点】双曲线的简单性质.【分析】设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.【解答】解:设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),即有 =﹣,且•n= • ,解得m= ,n=﹣,将F'( ,﹣ ),即( ,﹣ ),代入双曲线的方程可得﹣ =1,化简可得﹣4=1,即有e2=5,解得e= .故选:D.【点评】本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]【考点】函数恒成立问题.【分析】由条件利用函数的奇偶性和单调性,可得0≤2mx﹣lnx≤6对x∈[1,3]恒成立,2m≥ 且2m≤ 对x∈[1,3]恒成立.求得相应的最大值和最小值,从而求得m的范围.【解答】解:∴定义在R上的函数f(x)的图象关于y轴对称,∴函数f(x)为偶函数,∵函数数f(x)在[0,+∞)上递减,∴f(x)在(﹣∞,0)上单调递增,若不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)对x∈[1,3]恒成立,即f(2mx﹣lnx﹣3)≥f(3)对x∈[1,3]恒成立.∴﹣3≤2mx﹣lnx﹣3≤3对x∈[1,3]恒成立,即0≤2mx﹣lnx≤6对x∈[1,3]恒成立,即2m≥ 且2m≤ 对x∈[1,3]恒成立.令g(x)= ,则g′(x)= ,在[1,e)上递增,(e,3]上递减,∴g(x)max= .令h(x)= ,h′(x)= <0,在[1,3]上递减,∴h(x)min= .综上所述,m∈[ , ].故选D.【点评】本题主要考查函数的奇偶性和单调性的综合应用,函数的恒成立问题,体现了转化的数学思想,属于中档题.二、填空题(本大题共4小题,每小题5分)13.(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项的系数为﹣260 (用数字填写答案)【考点】二项式定理的应用.【分析】分析x3得到所有可能情况,然后得到所求.【解答】解:(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项为﹣30x2 =80x3﹣40x3﹣300x3=﹣260x3,所以x3的系数为﹣260;故答案为:﹣260.【点评】本题考查了二项式定理;注意各种可能.14.已知实数x,y满足则z= 的取值范围为[ ] .【考点】简单线性规划.【分析】由约束条件作出可行域,再由z= 的几何意义,即可行域内的动点与定点P(﹣2,﹣1)连线的斜率求解.【解答】解:由约束条件作出可行域如图:A(2,0),联立,解得B(5,6),z= 的几何意义为可行域内的动点与定点P(﹣2,﹣1)连线的斜率,∵ ,∴z= 的取值范围为[ ].故答案为:[ ].【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.【考点】数列递推式;数列的求和.【分析】n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),可得[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.可得Sn= = ﹣ .利用“裂项求和”方法即可得出.【解答】解:∵n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),∴[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.∴n(n+1)Sn﹣1=0,∴Sn= = ﹣ .∴S1+S2+…+S2017= +…+ = .故答案为: .【点评】本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为13π.【考点】球内接多面体;球的体积和表面积.【分析】由题意得PA2+PB2=AB2,即可得D为△PAB的外心,在CD上取点O1,使O1为等边三角形ABC的中心,在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心,在△DEC中求解OC,即可得到球半径,【解答】解:由题意,PA2+PB2=AB2,因为,∴AD⊥面DEC,∵AD⊂PAB,AD⊂ABC,∴面APB⊥面DEC,面ABC⊥面DEC,在CD上取点O1,使O1为等边三角形ABC的中心,∵D为△PAB斜边中点,∴在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心.∵∠EDC=90°,∴ ,又∵ ,∴OO1= ,三棱锥P﹣ABC的外接球的半径R= ,三棱锥P﹣ABC的外接球的表面积为4πR2=13π,故答案为:13π.【点评】本题考查了几何体的外接球的表面积,解题关键是要找到球心,求出半径,属于难题.三、解答题17.(12分)(2017•内蒙古模拟)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.【考点】正弦定理;三角形中的几何计算.【分析】(Ⅰ)根据题意,由正弦定理可得sinC= sinBsinC﹣sinCcosB,进而变形可得1= sinC﹣cosB,由正弦的和差公式可得1=2sin(B﹣ ),即可得B﹣的值,计算可得B的值,即可得答案;(Ⅱ)由余弦定理可得(a+c)2﹣3ac=12,又由a、b、c成等比数列,进而可以变形为12=(a+c)2﹣36,解可得a+c=4 ,进而计算可得△ABC的周长l=a+b+c,由面积公式S△ABC= acsinB= b2sinB计算可得△ABC的面积.【解答】解:(Ⅰ)根据题意,若c= bsinC﹣ccosB,由正弦定理可得sinC= sinBsinC﹣sinCcosB,又由sinC≠0,则有1= sinC﹣cosB,即1=2sin(B﹣ ),则有B﹣ = 或B﹣ = ,即B= 或π(舍)故B= ;(Ⅱ)已知b=2 ,则b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=12,又由a、b、c成等比数列,即b2=ac,则有12=(a+c)2﹣36,解可得a+c=4 ,所以△ABC的周长l=a+b+c=2 +4 =6 ,面积S△ABC= acsinB= b2sinB=3 .【点评】本题考查正弦、余弦定理的应用,关键利用三角函数的恒等变形正确求出B的值.18.(12分)(2017•汉中一模)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.【考点】独立性检验.【分析】(Ⅰ)求出前三组频率之和,即可根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)确定基本事件的个数,即可求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)根据所给数据得出2×2列联表,求出K2,即可判断是否有99%的把握认为月底丰富与性别有关.【解答】解:(Ⅰ)前三组频率之和为0.1+0.2+0.25=0.55,∴中位数位于第三组,设中位数为a,则 = ,∴a=38,∴估计该校女生年阅读量的中位数为38;(Ⅱ)利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,从这6人中随机抽取2人,共有方法 =15种,各组分别为4人,2人,[30,40)这一组中至少有1人被抽中的概率1﹣= ;(Ⅲ)性别阅读量丰富不丰富合计男 4 16 20女 9 11 20合计 13 27 40K2= ≈2.849<6.635,∴没有99%的把握认为月底丰富与性别有关.【点评】本题考查频率分布直方图,考查概率的计算,考查独立性检验知识的运用,属于中档题.19.(12分)(2017•内蒙古模拟)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF 的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:P Q∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取EB的中点M,连接PM,QM,证明:平面PMQ∥平面BCD,即可证明PQ∥平面BCD;(Ⅱ)建立坐标系,利用向量方法,即可求二面角A﹣DB﹣E的余弦值.【解答】(Ⅰ)证明:取EB的中点M,连接PM,QM,∵P为DE的中点,∴PM∥BD,∵PM⊄平面BCD,BD⊂平面BCD,∴PM∥平面BCD,同理MQ∥平面BCD,∵PM∩MQ=M,∴平面PMQ∥平面BCD,∵PQ⊂平面PQM,∴PQ∥平面BCD;(Ⅱ)解:在平面DFC内,过F作FC的垂线,则∠DFC= ,建立坐标系,则E(2,0,0),C(0,1,0),B(2,1,0),D(0,﹣1,﹣),A(2,﹣1, ),∴ =(﹣2,﹣2, ), =(0,2,﹣ ), =(0,1,0),设平面DAB的一个法向量为 =(x,y,z),则,取 =(0,, ),同理平面DBE的一个法向量为 =( ,0, ),∴cos< , >= = ,∴二面角A﹣DB﹣E的余弦值为 .【点评】本题考查线面平行的证明,考查二面角的大小的求法,考查向量方法的运用,是中档题.20.(12分)(2017•内蒙古模拟)已知椭圆C:+ =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆的离心率公式求得a和b的关系,将(﹣,)代入椭圆方程,即可求得a和b的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,求得P的横坐标,求得丨BP丨,利用直线垂直的斜率关系求得丨BQ丨,由= ,根据函数零点的判断即可存在k∈R, = .【解答】解:(Ⅰ)椭圆的离心率e= = = ,则a2=2b2,将点(﹣, )代入椭圆方程,解得:a2=4,b2=2,∴椭圆的标准方程为:,(Ⅱ)由题意的对称性可知:设存在存在k>0,使得 = ,由a2=2b2,椭圆方程为:,将直线方程代入椭圆方程,整理得:(1+2k2)x2+4kbx=0,解得:xP=﹣,则丨BP丨= × ,由BP⊥BQ,则丨BQ丨= ×丨丨= • ,由 = .,则2 × = • ,整理得:2k3﹣2k2+4k﹣1=0,设f(x)=2k3﹣2k2+4k﹣1,由f( )<0,f( )>0,∴函数f(x)存在零点,∴存在k∈R, = .【点评】本题考查椭圆的标准方程及椭圆的离心率,考查直线与椭圆的位置关系,弦长公式,考查函数零点的判断,考查计算能力,属于中档题.21.(12分)(2017•内蒙古模拟)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出lnx< x﹣,令x=1+ (n≥2),得到ln(1+ )< ( ﹣ ),累加即可证明结论.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)= ,令h(x)=﹣ax2+x﹣a,记△=1﹣4a2,当△≤0时,得a≥ ,若a≥ ,则﹣ax2+x﹣a≤0,f′(x)≤0,此时函数f(x)在(0,+∞)递减,当0显然x1>x2>0,故此时函数f(x)在( , )递增,在(0, )和( ,+∞)递减;综上,0在(0, )和( ,+∞)递减,a≥ 时,函数f(x)在(0,+∞)递减;(Ⅱ)证明:令a= ,由(Ⅰ)中讨论可得函数f(x)在区间(0,+∞)递减,又f(1)=0,从而当x∈(1,+∞)时,有f(x)<0,即lnx< x﹣,令x=1+ (n≥2),则ln(1+ )< (1+ )﹣ == ( + )< = ( ﹣ ),从而:ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< (1﹣ + ﹣ + ﹣+…+ ﹣ + ﹣ + ﹣ )= (1+ ﹣﹣ )< (1+ )= ,则有ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< ,可得(1+ )(1+ )(1+ )…(1+ )【点评】本题考查了函数的单调性问题,考查不等式的证明以及导数的应用,是一道中档题.四、选修4-4:极坐标与参数方程22.(10分)(2017•内蒙古模拟)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得普通方程,展开利用互化公式可得极坐标方程.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐标方程.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,利用|PQ|=|ρ1﹣ρ2|= 即可得出.【解答】解:(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得: +(y+1)2=9,展开为:x2+y2﹣2 x+2y﹣5=0,可得极坐标方程:ρcosθ+2ρsinθ﹣5=0.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,∴ρ1+ρ2=2,ρ1•ρ2=﹣5,∴|PQ|=|ρ1﹣ρ2|= = =2 .【点评】本题考查了直角坐标方程化为极坐标方程及其应用、参数方程化为普通方程、弦长公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲23.(10分)(2017•内蒙古模拟)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.【考点】函数的图象.【分析】(Ⅰ)根据函数解析式作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,可得p,q∈(﹣,3),若p,q∈M,且|p+q+pq|<λ,利用绝对值不等式,即可求实数λ的取值范围.【解答】解:(Ⅰ)函数g(x)=f(x)+|x+2|﹣4=|3x﹣4|+|x+2|﹣4,图象如图所示,由图象可得,x= ,g(x)有最小值﹣ ;(Ⅱ)由题意,|3x﹣4|<5,可得﹣∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,∴λ≥15.【点评】本题考查函数的图象,考查绝对值不等式的运用,考查数形结合的数学思想,属于中档题.【2018届汉中市高三理科数学模拟试卷题目及答案】。
江西省南昌市2018届高三第一次模拟考试数学(文)试题包括答案
江西省南昌市2018届高三第一次模拟考试数学(文)试题含答案第一次模拟测试卷文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{A x N y =∈=,{}21,B x x n n Z ==+∈,则AB =( )A.(],4-∞B.{}1,3C.{}1,3,5D.[]1,32.欧拉公式cos sin ixe x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,3i e π表示的复数位于复平面中的( ) A.第一象限B.第二象限C.第三象限D.第四象限3.已知()f x 是定义在R 上的偶函数,且()f x 在()0,+∞上单调递增,则( ) A.()()()320log 2log 3f f f >>- B.()()()32log 20log 3f f f >>- C.()()()23log 3log 20f f f ->>D.()()()23log 30log 2f f f ->>4.已知0a >,b R ∈,那么0a b +>是a b >成立的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设不等式组3010350x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩表示的平面区域为M ,若直线y kx =经过区域M 内的点,则实数k 的取值范围为( )A.1,22⎛⎤⎥⎝⎦B.14,23⎡⎤⎢⎥⎣⎦C.1,22⎡⎤⎢⎥⎣⎦D.4,23⎡⎤⎢⎥⎣⎦6.已知函数()()2sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的部分图象如图所示,则ω的值可以为( )A.1B.2C.3D.47.执行如图所示的程序框图,则输出的n 等于( )A.1B.2C.3D.48.设函数()2,11,1x a x f x x x -⎧≤⎪=⎨+>⎪⎩,若()1f 是()fx 的最小值,则实数a 的取值范围为( )A.[)1,2-B.[]1,0-C.[]1,2D.[)1,+∞ 9.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为( )A.6+B.152C.6D.810.函数()()()2sin xx ee xf x x e ππ-+=-≤≤的图象大致为( )ABCD11.已知12,F F 为双曲线()222:102x y C b b -=>的左右焦点,点A 为双曲线C 右支上一点,1AF 交左支于点B ,2AF B △是等腰直角三角形,22AF B π=∠,则双曲线C 的离心率为( )A.4B.C.212.已知台风中心位于城市A 东偏北α(α为锐角)度的200公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若3cos cos 4αβ=,则v =( )A.60B.80C.100D.125二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数()f x 在()0,+∞内可导,其导函数为()'f x ,且()ln ln f x x x =+,则()'1f =____________. 14.已知平面向量()1,a m =,()4,b m =,若()()20a b a b -⋅+=,则实数m =____________.15.在圆224x y +=上任取一点,则该点到直线0x y +-=的距离[]0,1d ∈的概率为____________. 16.已知函数()3sin f x x x =+,若[]0,απ∈,,44ππβ⎡⎤∈-⎢⎥⎣⎦,且()22f f παβ⎛⎫-= ⎪⎝⎭,则cos 2αβ⎛⎫+= ⎪⎝⎭________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列{}n a 的前n 项和为n S ,满足4421S a =-,3321S a =-.(1)求{}n a 的通项公式;(2)记161n n b S ⎛⎫=⎪+⎭,求12n b b b +++…的最大值. 18.某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数再取整,绘制成如下茎叶图,规定不低于85分(百分制)为优秀,甲班同学成绩的中位数为74.(1) 求x 的值和乙班同学成绩的众数;(2) 完成表格,若有90%以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大改革面?说明理由.19. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,ABCD 为直角梯形,AC 与BD 相交于点O ,AD BC ∥,AD AB ⊥,3AB BC AP ===,三棱锥P ACD -的体积为9.(1)求AD 的值;(2)过O 点的平面α平行于平面PAB ,α与棱BC ,AD ,PD ,PC 分别相交于点,,,E F G H ,求截面EFGH 的周长.20.已知椭圆()2222:10x y C a b a b +=>>的下顶点为A ,右顶点为B ,离心率e =抛物线2:8x E y =的焦点为F ,P 是抛物线E 上一点,抛物线E 在点P 处的切线为l ,且l AB ∥.(1)求直线l 的方程;(2)若l 与椭圆C 相交于M ,N 两点,且FMN S =△,求C 的方程. 21.已知函数()()ln xf x e a x e a =--∈R ,其中e 为自然对数的底数. (1)若()f x 在1x =处取到极小值,求a 的值及函数()f x 的单调区间; (2)若当[)1,x ∈+∞时,()f x 0≥恒成立,求a 的取值范围.22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(θ为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系. (1)求C 的极坐标方程;(2)若直线12,l l 的极坐标方程分别为()6R πθρ=∈,()2=3R πθρ∈,设直线12,l l 与曲线C 的交点为O ,M ,N ,求OMN △的面积.23.已知()223f x x a =+.(1)当0a =时,求不等式()23f x x +-≥的解集;(2)对于任意实数x ,不等式()212x f x a +-<成立,求实数a 的取值范围.80404061192713346乙班甲班合计合计不优秀人数优秀人数MN ODCBAP E FGH NCS20180607项目第一次模拟测试卷 文科数学参考答案及评分标准一.选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.二.13.e +1 14.13三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或推演步骤. 17.【解析】(Ⅰ)设{}n a 的公比为q ,由434S S a -=得,43422a a a -=,所以432a a =, 所以2q =. 又因为3321S a =-所以11112481a a a a ++=-, 所以11a =.所以12n na -=.(Ⅱ)由(Ⅰ)知,122112n n n S -==--,所以4216()2log 2821n n n b n S -===-+,12n n b b --=-,所以{}n b 是首项为6,公差为2-的等差数列, 所以12346,4,2,0,b b b b ====当5n >时0n b <,所以当3n=或4n =时,12n b b b +++的最大值为12.18. 【解析】(Ⅰ)由甲班同学成绩的中位数为74, 所以775274x +=⨯,得3x = 由茎叶图知,乙班同学成绩的众数为78,83(Ⅱ)依题意知2280(6271334)3.382 2.70640401961K⨯⨯-⨯=≈>⨯⨯⨯(表格2分,2K 计算4分)有90%以上的把握认为“数学成绩优秀与教学改革有关”,学校可以扩大教学改革面. 19. 【解析】(Ⅰ)四棱锥P ABCD -中,PA ^底面ABCD ,ABCD 为直角梯形,//,AD BC AD AB ^,3AB BC AP===,所以139322P ACDAB AD AD V AP -×=醋==,解得6AD =. (Ⅱ)【法一】因为//a 平面PAB ,平面a 平面ABCD EF =,O EF Î, 平面PAB 平面ABCD AB =, 根据面面平行的性质定理,所以//EF AB , 同理//,//EH BP FG AP , 因为//,2BC AD AD BC =,所以BOC D ∽DOA D ,且12BC CO AD OA ==, 又因为COE D ∽AOF D ,AF BE =,所以2BE EC =, 同理2AF FD =,2PG GD =,123,233EF AB EH PB FG AP ======如图:作//,,//,HN BC HN PB N GM AD GM PA M ==,所以//,HN GM HN GM=,故四边形GMNH 为矩形,即GH MN =, (求GH 长2分,其余三边各1分)在PMND 中,所以MN=所以截面EFGH的周长为325+++【法二】因为//a平面PAB ,平面a 平面ABCD EF=,O EF Î,平面PAB 平面ABCD AB =,所以//EFAB ,同理//,//EH BP FG AP 因为BC ∥,6,3AD AD BC ==所以BOC D ∽DOA D ,且12BC CO AD AO ==, 所以12EO OF =,11,23CE CB BE AF ==== 同理13CH EH CO PC PB CA ===,连接HO ,则有HO ∥PA , 所以HO EO ⊥,1HO =,所以13EH PB ==,同理,223FG PA ==,过点H 作HN ∥EF 交FG 于N ,则GH==所以截面EFGH的周长为325+++20. 【解析】(Ⅰ)因为222314b e a =-=, 所以12b a =, 所以12AB k =又因为l ∥AB , 所以l 的斜率为12设2(,)8t P t ,过点P 与E 相切的直线l ,由28x y =得1'|442x t x t y ====,解得2t =所以1(2,)2P , 所以直线l 的方程为210x y --= (Ⅱ)设),(),,(2211y x N y x M ,由22221412x y b b x y ⎧+=⎪⎪⎨-⎪=⎪⎩得2222140x x b -+-=,21212141,2b x x x x -+==,且248(14)0b D =-->,即218b >, 所以12||x x -==【法一】:210l x y --=中,令0x =得12y =-,l 交y 轴于D ,又抛物线焦点(0,2)F ,所以15||222FD =+=所以1211||||22FMNS FD x x ∆=⋅-==24b =, 所以椭圆C 的方程221.164x y +=【法二】12|||MNx x =-=:210l x y --=,抛物线焦点(0,2)F ,则F l d ®==所以11||22FMNF l S MN d ∆→=⋅==24b =, 所以椭圆C 的方程221.164x y += 21. 【解析】(Ⅰ)由()e ln e(R)x f x a x a =--?,得()e x a f x x¢=-因为(1)0f ¢=,所以e a =,所以e e e()e x xx f x x x-¢=-=令()e e x g x x =-,则()e (1)x g x x ¢=+,当0x >时,()0g x ¢>,故()g x 在(0,)x ??单调递增,且(1)0,g =所以当(0,1),()0x g x ?时,(1,),()0x g x ??时.即当(0,1)x Î时,'()0f x <,当(1,)x ??时,'()0f x >. 所以函数()f x 在(0,1)上递减,在(1,)+?上递增.(Ⅱ)【法一】由()e ln e x f x a x =--,得()e x af x x¢=-(1)当0a £时,()e 0x af x x¢=->,()f x 在[1,)x ??上递增 min ()(1)0f x f ==(合题意)(2)当0a >时,()e 0x af x x¢=-=,当[1,)x ??时,e e x y =? ①当(0,e]a Î时,因为[1,)x ??,所以e a y x =?,()e 0x a f x x¢=-?.()f x 在[1,)x ??上递增,min ()(1)0f x f ==(合题意)②当(e,)a ??时,存在0[1,)x ??时,满足()e 0x af x x¢=-= ()f x 在00[1,)x x Î上递减,0()x +?上递增,故0()(1)0f x f <=.不满足[1,)x ??时,()0f x ³恒成立综上所述,a 的取值范围是(,e]-?.【法二】由()e ln e x f x a x =--,发现(1)e ln e 0x f a x =--=由()e ln e 0x f x a x =--?在[1,)+?恒成立,知其成立的必要条件是(1)0f '≥而()e x af x x'=-, (1)e 0f a '=-≥,即e a ≤ ①当0a ≤时,()e 0x af x x '=->恒成立,此时()f x 在[1,)+?上单调递增,()(1)0f x f ?(合题意).②当0e a <≤时,在1x ≥时,有101x <≤,知e 0aa x -≤-≤-<, 而在1x >时,e e x ≥,知()e 0x af x x'=-≥,所以()f x 在[1,)+?上单调递增,即()(1)0f x f ?(合题意)综上所述,a 的取值范围是(,e]-?.22. 【解析】(Ⅰ)由参数方程2cos 2sin 2x y θθ=⎧⎨=+⎩得普通方程22(2)4x y +-=,所以极坐标方程2222cos sin 4sin 0rq r q r q +-=,即4sin r q =.(Ⅱ)直线()1π:R 6l q r =?与曲线C 的交点为,O M ,得||4sin26MOM pr ===,又直线()22π:R 3l q r =?与曲线C 的交点为,O N ,得2||4sin 3N ON pr ===且2MON π∠=,所以11||||222OMN S OM ON D ==创 23. 【解析】(Ⅰ)当0a =时,()|2||2||2|3f x x x x +-=+-?,0223x x x ì<ïïíï-+-?ïî 得13x ?;02223x x x ì#ïïíï+-?ïî 得12x #;2223x x x ì>ïïíï+-?ïî 得2x >, 所以()|2|2f x x +-?的解集为1(,][1,)3-?+?.(Ⅱ)对于任意实数x ,不等式|21|()2x f x a +-<成立,即2|21||23|2x x a a +-+<恒成立,又因为222|21||23||2123||31|x x a x x a a +-+?--=-,所以原不等式恒成立只需2|31|2a a -<,当0a <时,无解;当0a #时,2132a a -<,解得13a <?当a >时,2312aa -<1a <<. 所以实数a 的取值范围是1(,1)3.。
山东省沂水县第一中学2018届高三下学期模拟考试(一)数学(理)试题(附答案)
高三年级模拟测试数学(理)卷注意事项:1.考试范围:集合与简单逻辑用语,函数与初等函数,导数及其应用,三角函数,解三角形,平面向量,数列,不等式,立体几何,解析几何(直线、直线与圆的位置关系为主,可少量涉及圆锥曲线)。
2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}()(){}0,150=A x B x x x A B =≥=+-<⋂,则 A .[-1,4)B .[0,5)C .[1,4]D .[-4,-1) ⋃ [4,5)2.若直线()1:110l ax a y -++=与直线2:210l x ay --=垂直,则实数a = A .3B .0C .3-D .03-或3.在各项均为正数的等比数列{}n a 中,若511612894,8a a a a a a ===,则A .12B .C .D .324.若0,0x y >>,则“2x y += A .x y =B .2x y =C .2,1x y ==且D .,1x y y ==或5.设实数,,a b c 满足:221log 332,,ln a b a c a --===,则,,a b c 的大小关系为A .c<a <bB .c<b< aC .a <c<bD .b<c< a6.已知锐角α满足tan 1,tan 22ααα=-=则A .32B .2C .D 17.已知实数,x y 满足不等式组010,240y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则函数3z x y =++的最大值为A .2B .4C .5D .68.已知一个几何体的三视图如图所示,则该几何体的体积为A .8163π+ B .1683π+C .126π+D .443π+9.函数()()f x x g x =-的图象在点2x =处的切线方程是()()122y x g g '=--+=,则A .7B .4C .0D .- 410.设点12,F F 分别是双曲线()222102x y C a a-=>:的左、右焦点,过点1F 且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若2ABF ∆的面积为为A. y =B. y x =C. y =D. y x = 11.已知12a xdx =⎰,函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数4f x a π⎛⎫-+ ⎪⎝⎭图象的一个对称中心是A .,112π⎛⎫- ⎪⎝⎭B .,212π⎛⎫⎪⎝⎭C .7,112π⎛⎫⎪⎝⎭D .3,24π⎛⎫⎪⎝⎭12.已知定义在R上的函数()f x 满足()()()()(](]22l o g 1,1,00173,,122x x f x f x f x x x x ⎧--∈-⎪-+==⎨---∈-∞-⎪⎩,且,若关于x 的方程()()f x t t R =∈恰有5个不同的实数根12345,,,,x x x x x ,则12345x x x x x ++++的取值范围是 A .()2,1--B .()1,1-C .(1,2)D .(2,3)二、填空题:本题共4小题,每小题5分,共20分.将答案填写在题中的横线上. 13.已知()()1,1,3,a b x a b a ==+,若与垂直,则x 的值为_________.14.已知椭圆()222210x y a b a b+=>>的半焦距为c ,且满足220c b ac -+<,则该椭圆的离心率e 的取值范围是__________.15.“斐波那契数列”由十三世纪意大利数学家列昂纳多·斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”.斐波那契数列{}n a 满足:()12121,1,3,n n n a a a a a n n N *--===+≥∈,记其前n 项和为2018=n S a t ,设(t 为常数),则2016201520142013=S S S S +--___________ (用t 表示).16.正四面体A —BCD 的所有棱长均为12,球O 是其外接球,M ,N 分别是△ABC 与△ACD 的重心,则球O 截直线MN 所得的弦长为___________. 三、解否题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 已知函数()22f x x x =-.(1)当1,32x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域;(2)若定义在R 上的奇函数()f x 对任意实数x ,恒有()()[]40,2g x g x x +=∈,且当()g x =时,()()()()122017f x g g g ++⋅⋅⋅+,求的值.18.(本小题满分12分)如图所示,在ABC ∆中,M 是AC 的中点,,23C AM π∠==.(1)若4A π∠=,求AB ;(2)若BM ABC =∆的面积S .19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为()()2113,1,1,n n S S n n a n N a a *=+-∈-,且57a +成等比数列.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .20.(本小题满分12分)已知圆C 的圆心在x 轴的正半轴上,且y 轴和直线20x +=均与圆C 相切. (1)求圆C 的标准方程;(2)设点()0,1P ,若直线y x m =+与圆C 相交于M ,N 两点,且MPN ∠为锐角,求实数m 的取值范围.21.(本小题满分12分)如图,在直三棱柱ABC —1111=24,A B C BC AB CC AC M N ===中,,,分别是111,A B B C 的中点.(1)求证://MN 平面11ACC A ;(2)求平面MNC 与平面11A B B 所成的锐二面角的余弦值.22.(本小题满分12分) 已知函数()12x f x ekx k +=--(其中e 是自然对数的底数,k ∈R).(1)讨论函数()f x 的单调性;(2)当函数()f x 有两个零点12,x x 时,证明:122x x +>-.高三年级模拟测试 数学理科答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】集合{}15B x x =-<<,故A B ⋂=05[,). 2.【答案】D【解析】由题意可得30,0)1(2-==∴=++a a a a a 或. 3.【答案】B【解析】由等比数列的性质有22851196124,8a a a a a a ====,89a a ∴= 4.【答案】C【解析】 0,0>>y x ,2x y ∴+≥2x y =时取等号.故“2,1x y ==且”是“2x y +=. 5.【答案】A 【解析】22log 3223a ==,22033222()()1,ln ln 0333b ac a --==>===<,故c a b <<. 6.【答案】B 【解析】1)12(1)12(2tan 1tan 22tan 22=---=-=ααα, 又∵α为锐角,∴2,4πα= ∴sin 2sin42πα==,∴tan 22122αα+==. 7.【答案】D【解析】作出可行域如下图,当直线3y x z =-+-过点C 时,z 最大,由10240x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,所以z 的最大值为6.8.【答案】A【解析】三视图所对应的空间几何体为一个半圆锥拼接一个三棱锥所得,故其体积211118162442423323V ππ+=⨯⨯⨯⨯+⨯⨯⨯⨯=,故选A.9.【答案】A【解析】)(1)(),()(x g x f x g x x f '-='∴-= ,又由题意知1)2(,3)2(-='-=f f ,7)2(1)2(2)2()2(='-+-='+∴f f g g .10.【答案】D【解析】设)0,(1c F -,),(0y c A -,则,122022=-y a c 则2204a y =,又622=∆ABF S ,624221=⨯⨯∴a c ,221,2622=-=∴=∴a c a b a c ,故该双曲线的渐近线方程为x y 22±=. 11.【答案】C【解析】121==⎰dx x a ,4(),2312T πππω=-=∴=.又2,1223πππϕϕ⨯+=∴=.显然2A =,所以()2s i n (2)3f x x π=+.则()2sin(2)146f x a x ππ-+=-+,令Z k k x ∈=-,62ππ,则Z k k x ∈+=,212ππ,当1=k 时,127π=x ,故C 项正确.12.【答案】B【解析】作出函数)(x f 的图象,由图象可知)1,1(-∈t ,设54321x x x x x <<<<,则6,65421=+-=+x x x x ,由图象可知)1,1(3-∈x ,故)1,1(54321-∈++++x x x x x .x二、填空题:本题共4小题,每小题5分,共20分.将答案填写在题中的横线上. 13.【答案】5-【解析】由题知()0a b a +⋅=,即5,014-=∴=++x x . 14.【答案】1(0,)2【解析】 220c b ac -+<,222()0c a c ac ∴--+<,即2220c a ac -+<,22210,c c a a∴-+<即2210e e +-<,解得211<<-e ,又01e <<,102e ∴<<.15.【答案】t【解析】t a a a a a a a S S S S ==+=+++=--+20182016201720142015201520162013201420152016. 16.【答案】134【解析】正四面体A BCD -可补全为棱长为26的正方体,所以球O 是正方体的外接球,其半径632623=⨯=R ,设正四面体的高为h ,则64)34(1222=-=h ,故641===h ON OM ,又431==BD MN ,所以O 到直线MN 的距离为22)6(22=-,因此球O 截直线MN 所得的弦长为134)2()63(222=-.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)1)1(2)(22--=-=x x x x f ,3,21[∈x ], ∴当1=x 时,[]1)(min -=x f ;当3=x 时,[]3)(max =x f . 即函数)(x f 的值域是]3,1[-.(5分)(2)由g(4)()x g x +=可得:()g x 的周期4T =,()()()()()()()1(1)1,2(2)0,3111,40(0)0g f g f g g g g g f ==-===-=-====,()()()()12340g g g g ∴+++=,(8分) 故()(1)(2)(2017)150401g g g g +++=+⨯=-.(10分)18. 解:(1)53412ABC ππππ∠=--=, 在ABC ∆中,由正弦定理得sin sin AC ABABC C=∠∠4sin sin AC CAB ABC⨯∠∴===∠分) (2)在BCM ∆中,由余弦定理得2222212cos232BM CM BC CM BC CM BC CM BC π=+-⨯⨯=+-⨯⨯⨯, 2742BC BC ∴=+-,解得3=BC (负值舍去),1sin 232BMC S BC CM π∆∴=⨯⨯⨯=,M 是AC的中点,2BMC S S ∆∴==.(12分)19. 解:(1)()()211,n S n n a n N *=+-∈Q , 又()2111(),222n n n d dS na d n a n -=+=+- ∴2,d =(3分)又7,1,531+-a a a 成等比数列.∴2153(7)(1)a a a ⋅+=-,即2111(15)(3)a a a ⋅+=+,解得11=a ,1(1)21n a a n d n ∴=+-=-.(6分) (2) 111111()(21)(21)22121n n n b a a n n n n +===--+-+, 121n n n T b b b b -∴=++⋅⋅⋅++11111111[(1)()()()]233523212121n n n n =-+-+⋅⋅⋅+-+----+ 21nn =+.(12分) 20.解:(1)设圆C :222()()(0),x a y b r r -+-=>故由题意得00||a b a r r>⎧⎪=⎪⎪=⎨=,解得202a b r =⎧⎪=⎨⎪=⎩,则圆C 的标准方程为:22(2)4x y -+=.(6分)(2)将y x m =+代入圆C 的方程,消去y 并整理得2222(2)0x m x m +-+=. 令08)2(422>--=∆m m得22m --<-+(8分)设),(),,(2211y x N y x M ,则212122,2m x x m x x +=-=. ),1,(),1,(2211-=-=y x y x依题意,得0PM PN ⋅>,即1212(1)(1)0x x x m x m ++-+->210m m ⇒+->解得m <m >故实数m的取值范围是115(2(222--+---+.(12分) 21. (1)证明:如图,连接11,AC AB ,∵该三棱柱是直三棱柱,111AA A B ∴⊥,则四边形11ABB A 为矩形,由矩形性质得1AB 过1A B的中点M,(3分)在△11AB C 中,由中位线性质得1//MN AC , 又11A ACC MN 平面⊄,111A ACC AC 平面⊂, 11//MN ACC A ∴平面;(6分)(2) 解:12,4,BC AB CC AC ====AB ∴BC ⊥, 如图,分别以1,,BB BA BC 为z y x ,,轴正方向建立空间直角坐标系, 11(0,0,0),(2,0,0),(0,4,4),(2,0,4)B C A C ∴,(0,2,2),(1,0,4)M N , )4,0,1(),2,2,2(-=-=∴,(8分) 设平面MNC 的法向量为(,,)m x y z =,则 02220,400m CM x y z x z m CN ⎧⋅=-++=⎧⎪∴⎨⎨-+=⋅=⎩⎪⎩,令1,z =则4,y 3x ==,(4,3,1)m ∴=,(10分) 又易知平面B B A 11的一个法向量为(1,0,0)n =,2cos ,13||||4m n mn m n ⋅∴<>===, 即平面MNC 与平面B B A 11.(12分) 22.(1)解:因为k e x f x -='+1)(,(1分) 当0k >时,令1ln 0)(-=='k x x f 得,所以当(,ln 1)x k ∈-∞-时,0)(<'x f , 当(ln 1,)x k ∈-+∞时,0)(>'x f ,所以函数)(x f 在区间(,ln 1)k -∞-上单调递减, 在区间(ln 1,)k -+∞上单调递增;(3分) 当0k ≤时,0)(1>-='+k e x f x 恒成立,故此时函数)(x f 在R 上单调递增.(5分) (2)证明:当0k ≤时,由(1)知函数)(x f 单调递增,不存在两个零点,所以0k >,设函数)(x f 的两个零点为1212,,x x x x >且, 则1211112121222(2),(2),20,20,ln 2x x x e k x e k x x x x x x +++=+=+∴+>+>∴-=+, 设12112122222,122ln 2x t x x t t x x x x x +⎧=⎪++⎪=>⎨++⎪-=⎪+⎩,则且, 解得12ln ln +2,+211t t t x x t t ==--,所以12(1)ln +41t t x x t ++=-,(8分) 欲证122x x +>-,只需证明(1)ln 2,(1)ln 2(1)01t t t t t t +>+-->-即证, 设,11ln 2)1(1ln )(),1(2ln )1()(-+=-++='∴--+=t t t t t t g t t t t g 设)(,011)(,11ln )(2t h tt t h t t t h >-='∴-+=单调递增,所以0)1()(='>'g t g , 所以()g t 在区间(1,)+∞上单调递增, 所以(1)ln ()(1)0,21t t g t g t +>=∴>-,故122x x +>-成立.(12分)。
2018届吉林省长春市普通高中高三一模考试数学试题卷
2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1在区间[?3π2,3π]上所有零点之和为()A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,且|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,则|a ⃑+b ⃑⃑+c ⃑|=__________. 【答案】2【解析】因为平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,所以由题意可知,a ⃑,b ⃑⃑,c ⃑的夹角为120°,又知|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,所以a ⃑.b ⃑⃑=?12 ,a ⃑?c ⃑=b ⃑⃑?c ⃑=?32,|a ⃑+b ⃑⃑+c ⃑|= √1+1+9+2×(?12)+2×(?32)+2×(?32)=2 故答案为2.15. 在ΔABC 中,三个内角A,B,C 的对边分别为a,b,c ,若(12b?sinC)cosA =sinAcosC ,且a =2√3,ΔABC 面积的最大值为__________. 【答案】3√3【解析】由(12b −sinC)cosA =sinAcosC 可得12bcosA =sin (A +C )=sinB ,cosA2=sinB b=sinA a,得 tanA =√3,A =π3,由余弦定理12=b 2+c 2?bc ≥2bc?bc =bc , ΔABC 面积的最大值为12×12×√32=3√3,当且仅当b =c 时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及b 2 、a 2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________. 【答案】2√3π【解析】设圆锥的底面半径为R ,由题意可得其体积为:V =13Sℎ=13×πR 2×√9?R 2=2π×√R 2×R 2×(9?R 2)=23π×3√3=2√3π.当且仅当R =√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000. (Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为0 20 40 60即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,∠ABC=60°,三棱锥E?ACD的体积为√38,求二面角D?AE?C的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD交AC于点O,连接OE,根据中位线定理可得PB//OE,由线面平行的判定定理即可证明PB//平面AEC;(Ⅱ)以点A为原点,以AM方向为x轴,以AD方向为y轴,以AP方向为z轴,建立空间直角坐标系,分别求出平面CAE与平面DAE的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接BD交AC于点O,连接OE在△PBD中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0) AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313, 即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围. 【答案】(Ⅰ)x 24+y 23=1;(Ⅱ)0<k ≤√52. 【解析】试题分析:(1)由题意可得a =2,c =1,b =√3,则椭圆方程为x 24+y 23=1. (2)联立直线与椭圆的方程,结合韦达定理得到关于实数k 的不等式,求解不等式可得直线的斜率k 的取值范围是k=√52. 试题解析:(1)由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3,从而x 24+y 23=1.(2)设直线l:y =k (x +1)(k >0),有{y =k (x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A (x 1,y 1),B (x 2,y 2),有y 1=−λy 2,y 1y 2=−λ(1−λ)2(y 1+y 2)2,(1−λ)2λ=43+4k 2,λ+1λ−2=43+4k 2, 由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k 2<43,解得0<k ≤√52. 3+4k 2=8,k =±√52,由已知k =√52.21. 已知函数f (x )=e x ,g (x )=ln (x +a )+b .(Ⅰ)若函数f (x )与g (x )的图像在点(0,1)处有相同的切线,求a,b 的值; (Ⅱ)当b =0时,f (x )?g (x )>0恒成立,求整数a 的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3 +?+[ln(n +1)?lnn]n <ee?1. 【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x )与g′(x ),由f(1)=g(1)且f ′(1)=g ′(1)解方程组可求a,b 的值;(Ⅱ)f (x )−g (x )>0恒成立等价于e x ≥ln(x +a)恒成立,先证明当a ≤2时恒成立,再证明a ≥3时不恒成立,进而可得结果;(Ⅲ))由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2),令n =1,2,3,4... ,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线, 即在(0,1)处f(1)=g(1)且f ′(1)=g ′(1), 解得a =1,b =1.(Ⅱ)现证明e x ≥x +1,设F(x)=e x −x −1, 令F ′(x)=e x −1=0,即x =0,因此F(x)min =F(0)=0,即F(x)≥0恒成立, 即e x ≥x +1, 同理可证lnx ≤x −1.由题意,当a ≤2时,e x ≥x +1且ln(x +2)≤x +1,即e x ≥x +1≥ln(x +2), 即a =2时,f(x)−g(x)>0成立.当a ≥3时,e 0<lna ,即e x ≥ln(x +a)不恒成立. 因此整数a 的最大值为2. (Ⅲ)由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2)由此可知,当n =1时,e 0>ln2, 当n =2时,e −1>(ln3−ln2)2, 当n =3时,e −2>(ln4−ln3)3, ……当n =n 时,e −n+1>[ln(n +1)−lnn]n .综上:e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n11−1e>e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln (n +1)−lnn ]n .即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n <ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|?|PB|. 【答案】(Ⅰ){x =1+√32ty =2+12t(t 为参数),ρ=6sinθ;(Ⅱ)7. 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |?|PB |=|t 1t 2|=7 试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ .(Ⅱ)把{x =1+√32t,y =2+12t,代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2,则|PA |=|t 1|,|PB |=|t 2|,|PA |?|PB |=7. 23. 选修4-5:不等式选讲设不等式||x +1|?|x?1||<2的解集为A .(Ⅰ)求集合A ;(Ⅱ)若a,b,c ∈A ,求证:|1?abcab?c |>1.【答案】(Ⅰ){x|?1<x <1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a 2b 2)(1−c 2)>0,再根据a,b,c ∈A ,证明(1−a 2b 2)(1−c 2)>0试题解析:(1)由已知,令f(x)=|x +1|−|x −1|={2(x ≥1)2x(−1<x <1)−2(x ≤−1)由|f(x)|<2得A ={x|−1<x <1}.(2)要证|1−abcab−c |>1,只需证|1−abc|>|ab −c|,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1−a 2b 2>c 2(1−a 2b 2)只需证(1−a 2b 2)(1−c 2)>0,由a,b,c ∈A ,则(1−a 2b 2)(1−c 2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。
浙江省杭州市第二中学2018届高三仿真考数学试题(精编含解析)
的最大值为( ,然后分析平面
详解:作出不等式组对应的平面区域如图所示:
则 解得
,所以平面区域的面积
,此时
,
由图可得当
过点 时,
, 取得最大值 9,故选 C.
5. 一个几何体的三视图如图所示,则这个几何体的体积为( )
A.
B.
C.
D.
【答案】D
【解析】该立方体是由一个四棱锥和半个圆柱组合而成的,
所以体积为
根据题意可知
,得
), ,
解得
,而
,故选 B.
点睛:该题考查的是数列的有关问题,涉及到的知识点有三个数成等差数列的条件,等比数列的性质等,
注意题中的隐含条件.
3. 函数 f(x)=sin(wx+ )(w>0, < )的最小正周期是 π,若将该函数的图象向右平移 个单位后得到的函
数图象关于直线 x= 对称,则函数 f(x)的解析式为( )
,再根据全集
R,求出
,从而求得结果.
详解:由
可得
,所以
,
从而可求得
,所以
,故选 B.
点睛:该题考查的是有关集合的运算的问题,注意把握交集和补集的概念,即可求得结果,属于基础题目.
2. 各项都是正数的等比数列 中, , , 成等差数列,则
的值为( )
A.
B.
C.
D.
或
【答案】B
详解:设 的公比为 q(
;
(4)AE 的中点 M 与 AB 的中点 N 连线交平面 BCD 于点 P,则点 P 的轨迹为椭圆.
其中,正确说法的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:首先结合正四面体的特征以及等腰直角三角形在旋转的过程中对应的特点,得到相关的信
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届高三数学模拟试题选择填空精选六1. 将函数()的图象向右平移个单位,得取函数的图象,若在上为减函数,则的最大值为( ) A. 2 B. 3 C. 4 D. 5 【答案】B点睛:已知函数的单调区间,求参,直接表示出函数的单调区间,让已知区间是单调区间的子集;2. 已知为虚数单位,复数的共轭复数为,且满足,则 ( ) A. B. C. D. 【答案】A【解析】设,则,由,得:,即,易得:,∴,故选:A3. 已知三棱锥的所有顶点都在球的球面上,,,,,,,则球的表面积为()A.B.C.D.【答案】A 【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A .点睛:空间几何体与球接、切问题的求解方法i z z 232z z i +=-z =12i -12i +2i -2i +z a bi a b R =+∈,、a bi z =-232z z i +=-()2a bi a bi 32i ++-=-3a bi 32i +=-1{2a b ==-12z i =-(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.4. 已知函数f(x)=+,则满足f(x-2)<+1的x的取值范围是A. x<3B. 0<x<3C. 1<x<eD. 1<x<3【答案】D5. 市场调查发现,大约的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器。
经工商局抽样调查发现网上购买的家用小电器合格率约为,而实体店里的家用小电器的合格率约为。
现工商局12315电话接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是A. B. C. D.【答案】A【解析】不合格小电器在网上购买的概率为,不合格小电器在实体店购买的概率为,∴这台被投诉的家用小电器是在网上购买的可能性是.故选:A6. 已知:sinα+cosβ=,则cos2α+cos2β的取值范围是A. [-2,2]B. [-,2]C. [-2,]D. [-,]【答案】D7. 设r 是方程f (x )=0的根,选取x 0作为r 的初始近似值,过点(x 0,f (x 0))做曲线y =f (x )的切线l ,l 的方程为y =f (x 0)+(x -x 0),求出l 与x 轴交点的横坐标x 1=x 0-,称x 1为r 的一次近似值。
过点(x 1,f (x 1))做曲线y =f (x )的切线,并求该切线与x 轴交点的横坐标x 2=x 1-,称x 2为r 的二次近似值。
重复以上过程,得r 的近似值序列,其中,=-,称为r 的n +1次近似值,上式称为牛顿迭代公式。
已知是方程-6=0的一个根,若取x 0=2作为r 的初始近似值,则在保留四位小数的前提下,≈A. 2.4494B. 2.4495C. 2.4496D. 2.4497 【答案】B 【解析】,,点处的切线方程为:,解得:,又=-,∴,.故选:B .8. 已知双曲线的渐近线与抛物线的准线分别交于两点,若抛物线的焦点为,且,则双曲线的离心率为( ) A.B.C.D.【答案】D9. 太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆()2222:10,0x y C a b a b-=>>()2:20E y px p =>,A BE F 0FA FB ⋅= C 2O被的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A.B. C. D. 【答案】B【解析】设大圆的半径为R ,则:,则大圆面积为:,小圆面积为:,则满足题意的概率值为:.本题选择B 选项. 点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可. 10. 执行如图所示的程序框图,则输出的结果是( ) A. 4 B. -4 C. 5 D. -5 【答案】A点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -43sin6y x π=136********126226T R ππ==⨯=2136S R ππ==22122S ππ=⨯⨯=213618p ππ==【答案】C 【解析】因为,由于圆的半径为,是圆的一条直径,所以,,又,所以,所以,当时,,故的最小值为,故选C .12.已知函数,,如果对于任意的,都有成立,则实数的取值范围为( )A.B.C.D.【答案】C【解析】对于任意的,都有成立,等价于在,函数,,在上单调递减,在上单调递增,且,∴.在上,恒成立,等价于恒成立.设,,在上单调递增,在上单调递减,所以,所以,故选C .点睛:函数的双变元问题,任意的,都有成立,等价于在,函数,转化为两侧的函数最值问题,先求出最值好求的一边,,转化为恒成立,再变量分离;13. 已知抛物线:的焦点到其准线的距离为2,过焦点且倾斜角为的直线与抛物线交于,两点,若,,垂足分别为,,则的面积为( )A. B. C. D.【答案】BC 22(0)y px p =>F l 60︒M N 'MM l ⊥'NN l ⊥'M 'N ''M N F∆14. 三棱锥的一条长为,其余棱长均为,当三棱锥的体积最大时,它的外接球的表面积为( ) A.B. C. D. 【答案】A【解析】不妨设,底面积不变,高最大时体积最大,所以,面ACD 与面ABD 垂直时体积最大,由于四面体的一条棱长为a ,其余棱长均为1,所以球心在两个正三角形的重心的垂线的交点,半径;经过这个四面体所有顶点的球的表面积为:S=;故选A .点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.15.过双曲线22221(0,0)x y a b a b -=>>的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐进线交于C ,D 两点,若3||||5AB CD ≥,则双曲线离心率的取值范围为( ) A .5[,)3+∞ B .5[,)4+∞ C .5(1,]3 D .5(1,]4【答案】BA BCD -a 1A BCD -53π54π56π58πa BC =222125113312R π⎫⎫=⨯+⨯=⎪⎪⎪⎪⎝⎭⎝⎭254π3R π=考点:1、双曲线的几何性质;2、双曲线的离心率.16. 已知单位向量与的夹角为,向量与的夹角为,则( )A. B. C. 或 D. 或 【答案】B【解析】由题意可得:,且:()()121222e e e e λ+⋅+ ()221122242e e e e λλ=++⋅+()()152244,22λλλ=+++=+而:,利用平面向量夹角公式可得:,解得:.本题选择B 选项.17. 如图,在长方体中,,,点是长方体外的一点,过点作直线,记直线与直线,的夹角分别为,,若,则满足条件的直线( )A. 有1条B. 有2条C. 有3条D. 有4条 【答案】D【解析】由题意有:,即:,则,考虑与直线所成的角相同的直线,其在平面内的射影应该平分,这样的直线只有1条,同理其补角也存在1条满足题意的直线,这样1e 2e 3π122e e + 122e e λ+ 23πλ=23-3-3-23-1-3-12111cos 32e eπ⋅=⨯⨯= 122e e +=== 122e e λ+===5421cos 32λπ+==-3λ=-1111ABCD A BC D -AB =11BB BC ==P P l l 1AC BC 1θ2θ()1sin 50θ-︒()2cos 140θ=︒-l ()()()122sin 50cos 9050sin 50θθθ-=+-=--()()12sin 50sin 50θθ-=-12θθ=111,AC B C 11ADC B 11AC B ∠找到2条满足题意的直线,同理,在处也可以找到2条满足题意的直线;综上可得:满足条件的直线有4条。
本题选择D 选项.18.函数()f x 的定义域为R ,(0)2f =,对任意x R ∈,都有()'()1f x f x +>,则不等式()1x x e f x e >+ 的解集为()A .{|0}x x >B .{|0}x x < C.{|1}x x <-或1x > D .{|1}x x <-或01}x << 【答案】A【易错点晴】本题以可导函数满足的不等式为背景,考查的是导函数的与函数的单调性之间的关系的应用问题.解答本题的关键是如何将不等式()1x x e f x e >+ 进行等价转化与化归.求解时依据题设条件先构造函数x x e x f e x F -=)()(,将不等式()'()1f x f x +>进行等价转化为0)(/>x F ,从而确定函数x x e x f e x F -=)()(在R 上单调递增,从而将不等式()1x x e f x e >+ 化为)0()(F x F >,即0>x ,从而使得问题最终获解.19.已知当时,关于的方程有唯一实数解,则距离最近的整数为()A. 2B. 3C. 4D. 5 【答案】B点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.20.已知原点到直线l 的距离为1,圆22(2)(4x y -+=与直线l 相切,则满足条件的直线l有多少条?1DAC ∠l ()1,x ∈+∞x ()ln 11x x k xk+-=-kA .1条B .2条C .3条D .4条 【答案】C【解析】由已知,直线l 满足到原点的距离为1,到点(2的距离为2,满足条件的直线l 即为圆221x y +=和圆22(2)(4x y -+=的公切线,因为这两个圆有两条外公切线和一条内公切线. 故选C.21. 已知是所在平面内一点,,现将一粒黄豆随机撒在内,则黄豆落在内的概率是( ) A .B .C .D . 【答案】C【解析】由得,设BC 边中点为D ,则,P 为AD 中点,所以黄豆落在内的概率是22. 设是定义在的奇函数,其导函数为,且当时,,则关于的不等式的解集为 ( )A. B. C. D.【答案】B∵,∴,∵,即; ①当sinx >0时,即x ∈(0,π), ;所以;②当sinx <0时,即x ∈(−π,0)时, ;所以;不等式的解集为解集为P ABC ∆PB PC PA 20++=ABC ∆PBC ∆14131223PB PC PA 20++= 2PB PC PA +=-PD PA =- ∴12PBC ABC S S ∆∆=PBC ∆12()f x ()(),00,ππ-⋃()f x '()0,x π∈()()sin cos 0f x x f x x '-<x ()2sin 6f x f x π⎛⎫< ⎪⎝⎭,00,66ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,0,66πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,,66ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭,0,66πππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭02f π⎛⎫=⎪⎝⎭sin 0222g f πππ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2sin 6f x f x π⎛⎫< ⎪⎝⎭()sin 6g x f x π⎛⎫⋅> ⎪⎝⎭()()6sin f x g g x x π⎛⎫>= ⎪⎝⎭,6x ππ⎛⎫∈ ⎪⎝⎭()()66sin f x g g g x xππ⎛⎫⎛⎫=-<= ⎪ ⎪⎝⎭⎝⎭,06x π⎛⎫∈- ⎪⎝⎭()2sin 6f x fx π⎛⎫< ⎪⎝⎭.本题选择B 选项. 23. 洛书古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图案,如图结构是戴九履一,左三右七,二匹为肩,六八为足,以五居中,洛书中蕴含的规律奥妙无穷,比如:,据此你能得到类似等式是__________.【答案】【解析】根据题意得:,即有又可得到24.已知双曲线C :(a >0,b >0),其右焦点为F (c ,0),O 为坐标原点,以OF 为直径的圆交曲线C 于A 、B 两点,若S 四边形OAFB =bc ,则双曲线C 的离心率e =___________.【答案】【解析】可设A (m ,n ),(m >0,n >0),S 四边形OAFB =bc ,由双曲线和圆的对称性可得,cn=bc ,即n=b ,将A 的坐标代入双曲线的方程可得,,解得:,又OA ⊥AF ,可得,即,由b 2=c 2﹣a 2,化为3a 2﹣2ac+c 2=0,可得c=a ,e==.故答案为:.25.过点C (3,4)作圆225x y +=的两条切线,切点分别为A ,B ,则点C 到直线AB 的距离为. 【答案】4,0,66πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭222222492816++=++222222438276++=++222222492816.++=++222222438276++=++26. 已知数列满足,且,则数列的通项公式__________. 【答案】【解析】∵,两边同除以,得:,整理,得:即是以3为首项,1为公差的等差数列.,即.27. 用表示自然数的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则的因数有1,2,5,10,,那么__________.【答案】,以上各式相加可得:. {}n a ()()11110,2121n n n n n n n n n a a a a a a a a a ++++≠---=-+⋅113a ={}n a n a =12n +()()11110,2121n n n n n n n n n a a a a a a a a a ++++≠---=-+⋅1n n a a +⋅()()1112121111n n n nn n a a a a a a +++---=-+1111n n a a +-=,1n a ⎧⎫⎨⎬⎩⎭()13112nn n a =+-⨯=+12n a n =+()g n n ()99,10g =()105g =()()()1221ng g g +++-= 413n-()()()()()()()11,214,328,,144f f f f f f n f n n =-=-=--=- ()()11441143nnf n ⨯--==-28.已知双曲线:的左、右焦点分别为,,过点且与双曲线的一条渐进线垂直的直线与的两条渐进线分别交于,两点,若,则双曲线的渐进线方程为__________. 【答案】 ,结合和两点之间距离公式可得:,据此有:,则双曲线的渐进线方程为. 点睛:在双曲线的几何性质中,涉及较多的为离心率和渐近线方程.(1)求双曲线离心率或离心率范围的两种方法:一种是直接建立e 的关系式求e 或e 的范围;另一种是建立a ,b ,c 的齐次关系式,将b 用a ,e 表示,令两边同除以a 或a 2化为e 的关系式,进而求解.(2)求曲线的渐近线的方法是令,即得两渐近线方程.29.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是______.C 22221(0)x y a b a b-=>>1F 2F 1F C l C M N 112NF MF =C y x =22222,a c abc N b a a b ⎛⎫- ⎪--⎝⎭112NF MF =222ab abc c a b -=-2213a b =C 3y x =()222210,0x y a b a b -=>>22220x y a b-=【答案】[]1,1-【解析】以A 为坐标原点,,AB AD 分别为,x y 轴建立平面直角坐标系,依题意得()()()310,1,1,0,(1,1),2,0,,22D E C B F ⎛⎫ ⎪⎝⎭,()311,1,,22ED AF ⎛⎫=-= ⎪⎝⎭ ,设()c o s ,s i n ,0,2P πθθθ⎡⎤∈⎢⎥⎣⎦,依题意AP ED AF λμ=+ ,即()31cos ,sin ,22θθλμλμ⎛⎫=-++ ⎪⎝⎭,3cos 21sin 2θλμθλμ⎧=-+⎪⎪⎨⎪=+⎪⎩,两式相减得2sin cos 4πλμθθθ⎛⎫-=-=- ⎪⎝⎭,,444πππθ⎡⎤-∈-⎢⎥⎣⎦[]1,14πθ⎛⎫-∈- ⎪⎝⎭.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 30.函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,如下结论中正确的是______________.(写出所有正 确结论的编号).①图象C 关于直线1112x π=对称;②图象C 关于点2,03π⎛⎫⎪⎝⎭对称;③函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数;④由3sin 2y x =的图角向右平移3π个单位长度可以得到图象C . 【答案】①②③【易错点睛】本题主要考查了三角函数的对称性,单调性及函数图象的变换. 求形如)0,0)(sin(>>+=ωϕωA x A y 的函数的单调区间,基本思路是把ϕω+x 看作一个整体,由22()22k x k k πππωφπ-+≤+≤+∈Z 求得函数的增区间,由322()22k x k k πππωφπ+≤+≤+∈Z 求得函数的减区间.若在)0,0)(sin(>>+=ωϕωA x A y 中,0<ω,则应先利用诱导公式将解析式转化,使x 的系数变为正数,再进行求解.。