ecmm of titanium alloy Ti5Al4V
氢化钛粉制备钛及Ti-6Al-4V钛合金粉末冶金工艺与性能研究
氢化钛粉制备钛及Ti-6Al-4V钛合金粉末冶金工艺与性能研究摘要:为了降低制造钛和钛合金半成品的成本,以氢化钛和氢化钛与铝-钒中间合金的混合物为原料,采用粉末冶金制备工艺分别制备了用于轧制的TA2和TC4多孔坯料,研究了热轧后合金的组织与力学性能。
研究结果表明,不同形变程度(50%和75%)的热轧工艺有效消除了残余孔隙,改变了微观结构特征(之前的β晶粒边界α相消失),极大地提高了TA2和TC4合金的强度和塑性,而且与传统工艺相比,省略了锭块熔炼步骤,降低了钛和钛合金轧制产品的价格,而且与传统工艺相比,省略了锭块熔炼步骤,降低了钛和钛合金轧制产品的价格。
关键词:钛合金;轧制;多孔坯料;微观结构;机械性能现如今金属钛和钛合金在不同的工业行业中有着相当广泛的应用。
早期金属钛作为结构材料局限在航空航天领域得到广泛使用,后来钛在造船、化学机械制造、医学、体育、建筑、日用品等领域也占据了一席之地[1-2]。
但是,目前钛合金产品的高价格仍然是现实中阻碍钛合金应用发展的关键因素[3-4]。
根据Ilyin等[5]的研究数据表明,在锭块熔炼和半成品制备(采用当今世界上通用的真空电弧重熔技术)上的费用占钛产品制造所有费用的62%,这是由于钛在高温下有很高的化学活性,以及高熔化温度和容易发生热形变[6-8]。
因此,从掺杂合金元素的钛合金中制备锭块,必须经过两次或三次重熔,以保证里面的合金元素均匀分布;必须多次加热到随后热转变所需的高温,以保证必要的性能要求,这些性能由合金的化学组成、所形成的组织类型决定[9-10]。
另一方面,Ivasishin等所做的研究工作表明,使用以钛氢化物为初始原料的粉末冶金方法得到的钛零件在产品数量和成本方面具有优势[11-14]。
粉末工艺在零件制备上的主要优点是跳过锭块制备阶段,不需要后续的机械加工。
然而粉末冶金工艺需要在单相β区高温烧结,使钛合金不可能形成物理机械性能和实用性能,以达到最佳组合的组织[15-16]。
一种含钨的高强钛合金
龙源期刊网
一种含钨的高强钛合金
作者:
来源:《有色金属材料与工程》2016年第06期
专利名称:一种含钨的高强钛合金
专利申请号:CN201610378836.4
公布号:CN105803262A
申请日:2016.05.31 公开日:2016.07.27
申请人:西北有色金属研究院
本发明公开了一种含钨的高强钛合金,由以下质量分数的成分组成:Al 4.0%~5.5%,Cr 3.0%~5.0%,Mo 2.0%~4.0%,W 2.0%~4.5%,Fe 0.2%~0.8%,余量为Ti和不可避免的杂质.本发明含钨的高强钛合金热加工性优良,经退火后的室温抗拉强度可在860~1 500 MPa的范
围内调整,并且具备良好的强塑性及强韧性匹配,满足多种应用领域对高强钛合金性能的要求.。
钛合金TiAlV材料参数
Estimated from Rockwell C. Estimated from Rockwell C. Estimated from Rockwell C.
Kt (stress concentration factor) = 6.7 e/D = 2 e/D = 2
Poisson's Ratio Charpy Impact Fatigue Strength Fatigue Strength Fracture Toughness Shear Modulus Shear Strength
8.6 祄/m-癈
4.78 礽n/in-癋
9.2 祄/m-癈
5.11 礽n/9 礽n/in-癋
0.5263 J/g-癈
0.126 BTU/lb-癋
6.7 W/m-K 46.5 BTU-in/hr-ft�-癋
1604 - 1660 癈
2920 - 3020 癋
1604 癈
Key Words: Ti-6-4; UNS R56400; ASTM Grade 5 titanium; UNS R56401 (ELI); Ti6Al4V, biomaterials, biomedical implants, biocompatibility
Component Wt. %
Al
6
Physical Properties Density
Metric 4.43 g/cc
English 0.16 lb/in�
Comments
Mechanical Properties
Hardness, Brinell Hardness, Knoop Hardness, Rockwell C Hardness, Vickers Tensile Strength, Ultimate Tensile Strength, Yield Elongation at Break Reduction of Area Modulus of Elasticity Compressive Yield Strength Notched Tensile Strength Ultimate Bearing Strength Bearing Yield Strength
基于长疲劳寿命的钛合金Ti6Al4V铣削加工表面完整性研究
基于长疲劳寿命的钛合金Ti6Al4V铣削加工表面完整性研究一、本文概述钛合金Ti6Al4V因其优异的机械性能,如高强度、低密度和良好的耐腐蚀性,在航空、医疗和能源等多个领域得到了广泛应用。
然而,钛合金的高硬度、低热导率以及化学活性等特点,使得其加工过程具有挑战性,特别是在保证长疲劳寿命的前提下,对钛合金Ti6Al4V的加工表面完整性提出了更高的要求。
因此,本文旨在深入研究钛合金Ti6Al4V在铣削加工过程中的表面完整性,以期为提高其长疲劳寿命提供理论支持和实践指导。
本文将首先介绍钛合金Ti6Al4V的基本性能和加工特点,然后重点分析铣削加工过程中影响表面完整性的关键因素,包括切削参数、刀具材料和几何形状等。
在此基础上,通过实验研究和理论分析,探究这些因素对加工表面粗糙度、残余应力和表面微观结构的影响规律。
结合实验结果和理论分析,提出优化钛合金Ti6Al4V铣削加工表面完整性的策略和方法,为提高其长疲劳寿命提供科学依据。
本文的研究不仅有助于深入理解钛合金Ti6Al4V的铣削加工机理,还为钛合金零件的制造工艺优化和质量控制提供了有益的参考。
二、钛合金Ti6Al4V的铣削加工理论基础钛合金Ti6Al4V作为一种高强度、低密度的轻质金属,在航空航天、医疗器械和汽车制造等领域具有广泛的应用。
由于其优异的力学性能和耐腐蚀性,Ti6Al4V在承受高负荷和恶劣环境条件下表现出色,但同时也给铣削加工带来了一定的挑战。
因此,深入研究钛合金Ti6Al4V的铣削加工理论基础,对于提高加工效率、保证表面完整性和延长刀具寿命具有重要意义。
在铣削加工过程中,钛合金Ti6Al4V的高硬度、高强度和低热导率等特点使得切削力、切削热和刀具磨损等问题变得尤为突出。
切削力的大小直接影响着加工表面的粗糙度和刀具的寿命,而切削热则会导致工件表面产生热应力和热变形,进一步影响加工精度和表面质量。
因此,建立准确的切削力模型和热传导模型,对于分析铣削加工过程中的物理现象和预测加工结果至关重要。
ti6al4v晶胞结构
ti6al4v晶胞结构Ti6Al4V是一种常见的钛合金材料,由钛(Titanium)、铝(Aluminum)和铁(Vanadium)三种元素组成。
它的晶胞结构对于材料的性能和用途具有重要影响。
本文将介绍Ti6Al4V的晶胞结构及其特点。
1. 晶胞结构概述Ti6Al4V采用了一种称为六方最密堆积(hcp)的晶胞结构。
在这个晶胞结构中,钛、铝和铁原子紧密地排列在六方堆积的晶胞中。
这种结构与钛的纯金属晶格相似,但掺杂了铝和铁元素,从而形成了Ti6Al4V合金的特殊晶胞结构。
2. 晶胞参数Ti6Al4V的晶胞参数是晶胞结构的重要参数,它影响了材料的物理性质和机械性能。
对于Ti6Al4V合金,其晶胞参数为a = 0.295 nm和c = 0.468 nm,其中a是六边形晶胞的边长,c是晶胞的高度。
这样的晶胞参数使得Ti6Al4V具有良好的力学性能和耐腐蚀性能。
3. 晶胞填充Ti6Al4V的晶胞填充是指晶胞中钛、铝和铁原子的相对位置和排列方式。
在Ti6Al4V的晶胞结构中,钛原子占据了晶胞的1/3个位置,铝和铁原子各占据了晶胞的1/6个位置。
这种紧密堆积的排列方式使得Ti6Al4V具有高度的结构稳定性和机械强度。
4. 晶胞间距Ti6Al4V的晶胞间距是指相邻晶胞之间的距离。
根据晶胞参数和晶胞填充方式,可以计算出Ti6Al4V的晶胞间距。
对于Ti6Al4V合金,晶胞间距为d = 0.242 nm。
晶胞间距的大小直接影响了材料的密度和晶体的稳定性。
5. 晶胞方向Ti6Al4V的晶胞方向是指晶胞中原子排列的方向。
在Ti6Al4V晶胞中,存在着六个基本的晶胞方向,分别为a1、a2、a3、c1、c2和c3。
其中a1、a2和a3是六边形晶胞平面的沿着边长方向,c1、c2和c3是晶胞高度方向。
晶胞方向的差异影响了晶体中原子的排列方式和晶体的性质。
总结:Ti6Al4V是一种具有特殊晶胞结构的钛合金材料。
它的晶胞结构采用六方最密堆积,钛、铝和铁原子紧密排列在晶胞中。
Ti6Al4V钛六铝四钒64Ti,Gr5(Grade5)钛合金
Ti6Al4V钛六铝四钒64Ti,Gr5(Grade5)钛合金一般认为钛6铝-4钒是钛工业的“基层”,因为它是目前为止应用广泛的钛合金,超过钛的总用量的50%。
它是一种α+β合金,可通过热处理来达到适中的强度。
钛6铝-4钒建议在不超过350℃/660℉的温度下使用。
钛6铝-4钒具有硬度好、重量轻、可锻造和耐腐蚀的特点,广泛运用于航空工业。
成份分析:描述纯钛在882.5℃/1620℉的温度下经历了从拥挤的六角α相到立体的个体中心的β象的转换。
合金元素通过作用可稳定为α相或β相。
通过运用其它合金,β相在室温内可稳定地与α相共存。
这就是生产可通过热处理来增加强度的钛合金的基础原理。
钛合金一般可分为三大类:α合金:含有中性合金元素如锡,和/或只有α稳定素如铝、氧,不能做热处理;α+β合金:一般含有一种α和β结合的稳定素,可做不同水平的热处理。
β合金:亚稳定的,含有大量的β稳定素如钼,钒,当淬火时能完整地保持β相,可通过溶液处理和时效处理来明显提高硬度。
一般认为钛6铝-4钒是钛工业的“基层”,因为它是目前为止应用最广泛的钛合金,超过钛的总用量的50%。
它是一种α+β合金,可通过热处理来达到适中的强度。
钛6铝-4钒建议在不超过350℃/660℉的温度下使用。
钛6铝-4钒具有硬度好、重量轻、可锻造和耐腐蚀的特点,广泛运用于航空工业。
应用钛6铝-4钒可用于在低温至中温,要求高强度、重量轻和极好的防腐蚀的环境中。
如飞机汽轮机发动机的零部件,飞机的结构部件,航空紧固件,高性能自动部件,船舶,医疗器械和体育装备。
强度系数钛6铝-4钒能如此广泛应用的一个原因是它的重量轻而相对硬度高。
它与其它材料相比较的强度系数如下:物理性能密度:4.428g/cm3(0.160lb/in3)弹性模数:105-116Gpa (15.2-16.8 psi x 106)β换相点:955+/-15℃(1825+/-25℉)液相点:1655+/-20℃(3011+/-35℉)固相点:1605+/-10℃(2920+/-20℉)电阻系数:~1.5μΩ*m(-250℃)~1.75μΩ*m(室温)~1.9μΩ*m(530℃)磁性:钛6铝-4钒没有磁性热膨胀图表耐腐蚀性当接触到空气或水中的氧气时,钛6铝-4钒立即自然地形成一层稳定、连续和紧密的附着氧化膜。
钛合金钻杆用Ti5Al3VMoZr合金的Tαβ相转变温度研究
论谕牽鏑均仪器-34-PETROLEUM TUBULAR GOODS&INSTRUMENTS2020年12月•试验研究#钛合金钻杆用Ti5A13VMoZr合金的定相转变温度研究!T&李睿哲】,冯春1,李宁2,李双贵3(1•中国石油集团石油管工程技术研究院,石油管材及装备材料服役行为与结构安全国家重点实验室陕西西安710077;2•中国石油塔里木油公司新疆库尔勒841000;3•中国石化西北油公司新疆乌鲁木齐830011)摘 要:钛合金钻杆具有密度低、强韧性好、耐疲劳及耐腐蚀性能好等优点,是当前油气工业研究的热点。
通过连续升温金相法、DSC差热分析法和计算法研究确定了钛合金钻杆用Ti5A13VMoZr合金的T&定相转变温度。
结果表明,通过连续升温金相法所测的T定相转变温度为970d$DSC差热分析法由于在加热过程中产生热滞后,所的T"相转变温度为980°C;计算法所测的%定相转变温度为966.3C。
综合三种方法所测结果,确定了Ti5A13VMoZr合金的T&0相转变温度为970C。
根据该T&0相转变温度结果可合理制定钛合金钻杆用Ti5A13VMoCr合金管材的热处理工艺。
关键词:油气井;管材;钻杆;钛合金;热处理中图法分类号:TE921文献标识码:A文章编号:2096-0077(2020)06-0034-04DOI:10.19459/ki.61-1500/te.2020.06.008T!p Phase Transition of Tl5Al3VMoZrAlloy for Titanium Alloy Drill PipeLNRuizhe1,FENGChun1,LNNing2,LNShuanggui3(PC Tubular Goods Researct Institute,State Key Laborator*for Performance and Structure Safety o PetroleumTubular Goods and Equipment Materials,Xi'an,Shaanxi710077,China;2.PetroChina Tarim Oilfield Company,Korla,Xinjiang841000,China;3.Sinopec Northwesi Oifedl Company,Urumqi,Xinjiang830011,China)AbstraC:Titanium alloy drill pipe has the adventages of low density,good toughness,fatigue resistancc and corrosion resistancc,etc.N is a highlight in current oil and gas industo research.In this paper,the T&'phase transition temperature of Ti5AKVM o Z-alloy for titanium alloy drVl pipe is determined by three methods,which ae continuous temperature metalloyraphic method,DSC dVferential thermal analysis method and calculation method.The result of continuous heating metallurgical method is970C.DSC dVferenticl thermal analysis method has a thermal laa during heating,and the result is980C.The result of calculation method is966.3C.By combining resultr of the three methods,the T&'phase transition temperature of Ti5AKVM o Z-alloy is determine to be970C.The above research resultr provide a labc-ratoo data basis for rationtly formulating the heat treatment process of Ti5AKVM o Z-alloy pipe for titanium alloy drill pipe.Key words:oil and gas well;tubular goods;drill pipe;titanium alloy;heat treatment性好和耐高温性能优越等特点,对于石油勘探开发的深、超、水平井以及海洋有广阔的应用前钛合金钻杆是一种轻合金钻杆,具有强度高、耐蚀景)1_4*。
钛合金Ti-6Al-4V室温保载-疲劳寿命预报方法研究
关 键 词 :保载-疲劳;钬合金;保载时间;寿命
中 图 分 类 号 :0346.2
文献标识码: A
〇 引言
二十一世纪前后大深度载人潜水器发展迅速,全 世 界 约 有 1 0 0 艘载人潜水器活跃于海底。大深度 载 人 潜 水 器 承 受 着 巨 大 的 外 压 ,复 杂 的 水 下 环 境 对 其 耐 压 壳 体 结 构 、生 命 支 持 、潜 浮 与 应 急 抛 载 、导 航 通 讯 以 及 作 业 等 系 统 都 有 着 特 殊 的 要 求 。其 中 ,作 为 乘 员 和 仪 器 搭 载 设 备 的 耐 压 壳 体 其 安 全 和 可 靠 性尤其重要。钛 合 金 Ti-6A 1-4V 的力学性能有强度-重量比高、抗腐蚀能力强等优点[1],它在大深度载 人 潜 水 器 中 有 着 广 泛 的 应 用 。潜 水 器 在 服 役 期 间 不 仅 要 承 受 上 浮 和 下 潜 循 环 载 荷 的 作 用 ,而 且 要 承 受 在海底工作中保载的作用。因此,耐压壳结构疲劳问题实际上是保载-疲劳问题。国内外大量试验结果 表 明 ,钛 合 金 材 料 在 保 载 -疲 劳 下 的 裂 纹扩展速率要明显高于纯疲劳载荷情况,即保载-疲劳寿命要明显 低 于 疲 劳 寿 命 。普 遍 认 为 在 室 温 下 保 载 对 钛 合 金 的 影 响 会 随 着 应 力 峰 值 和 保 载 时 间 的 增 加 而 增 加 [2_8]。 因此,用传统疲劳载荷来预报钛合金材料的寿命是偏危险的。本文在考虑小裂纹效应的基础上提出室
硬质合金刀具切削钛合金Ti6Al4V界面摩擦特性研究
硬质合金刀具切削钛合金Ti6Al4V界面摩擦特性研究∗范依航;郝兆朋【摘要】Titanium alloys Ti6Al4V have superior properties,such as excellent strength⁃to⁃weight ratio,high corrosion resistance and good mechanical properties. However, due to its high chemical reaction and low thermal conductivity, tool wears seriously during cutting.In order to choose resonable cutting parameters so as to reduce tool wear,the frictioncharac⁃teristic of tool⁃chip/workpiece interface in machining Ti6Al4V with carbide tools were studied under different cutting speeds.The results show that,at rather low cutting speed,there are lots of adhesion materials in the close contact area in tool wear surface.At quite high cutting speed,the adhesion materials become unstable and diffusion occurs in thetool⁃work⁃piece interface.The peeling off of unstable adhesion material leads to tool micro⁃chipping and accelerates tool wear.When employing optimum cutting speed,the oxidation reaction occurs in tool⁃workpiece interface.The oxides generated in the cut⁃ting process acts as a boundary lubrication layer,which makes the chemical wear and adhesive wear to reach equilibrium, therefore,the high⁃temperature adhesion is inhibited and tool wear is reduced.%钛合金Ti6Al4V具有高的比强度、良好的机械性能和抗蚀性,但因其化学活性大、导热系数低,切削时刀具磨损严重。
钛合金表面激光重熔NiCrBSi_TiN涂层的组织研究
第30卷 第2期2009年 4月材 料 热 处 理 学 报TRANS ACTIONS OF M ATERIA LS AND HE AT TRE AT ME NTV ol .30 N o .2April2009钛合金表面激光重熔NiCrBSi +TiN 涂层的组织研究郭立新, 刘荣祥, 王亚明, 周 玉, 雷廷权(哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨 150001)摘 要:对T C4合金喷涂NiCrBS i +20v ol %T iN 涂层进行激光重熔试验,利用SE M 、TE M 等手段对熔覆层的组织进行了分析。
结果表明,激光重熔层组织消除了喷涂层的组织缺陷,其相组成为(Cr 2Ni 2Fe ),T iNi ,NiB ,Cr 2T i ,T i 2Ni 等,在熔覆区主要以富铬相和富镍相为主,稀释区内的黑色和白色衬度的杆状组织是T i 2Ni 型的金属间化合物。
关键词:激光重熔; 钛合金; 显微组织中图分类号:TG 174144;T N249 文献标识码:A 文章编号:100926264(2009)022*******Study on microstructure of laser remelted NiCrBSi +TiN coatings on surface of tianium alloyG UO Li 2xin , LI U R ong 2xiang , W ANG Y a 2ming , ZH OU Y u , LEI T ing 2quan(School of Material Science and Engineering ,Harbin Institute of T echnology ,Harbin 150001,China )Abstract :Laser remelting of thermal spray coating of NiCrBS i +T iN powders on sur face of T C4alloy was per formed ,and its microstructure was studied by means of SE M and TE M.The experimental results show that macroscopic defects in the thermal spray coatings are eliminated after laser remelting.The phases of the coatings are com posed of (Cr 2Ni 2Fe ),T iNi ,NiB ,Cr 2T i ,T i 2Ni.Cr 2rich phase and Ni 2rich phase are dominant in the clad zone ,and the rod 2like phase in the dilution zone is T i 2Ni 2type intermetallics.K ey w ords :laser remelting ;titaunium alloy ;microstructure收稿日期:2008211220; 修订日期:2009202223作者简介: 郭立新(1968—),男,高级工程师,主要从事激光表面改性及微弧氧化研究,联系电话:0451286418897,E 2mail :guolixin @hit. 。
约束氢致密化处理对粉末冶金Ti-6Al-4V合金致密度与力学性能的影响
第27卷第2期粉末冶金材料科学与工程2022年4月V ol.27 No.2 Materials Science and Engineering of Powder Metallurgy Apr. 2022 DOI:10.19976/ki.43-1448/TF.2021104约束氢致密化处理对粉末冶金Ti-6Al-4V合金致密度与力学性能的影响段中元1,陈奏君1,祝贤智1,刘彬1,刘咏1,梁霄鹏2,周承商1(1. 中南大学粉末冶金研究院,长沙 410083;2. 中南大学材料科学与工程学院,长沙 410083)摘要:以氢化钛粉和6Al-4V预合金粉为原料,采用真空烧结法制备Ti-6Al-4V合金,然后在高纯氢气气氛中进行约束氢致密化处理,再真空退火去除合金中残余的氢。
用光学显微镜观察Ti-6Al-4V合金的显微组织与形貌,测定合金的密度和拉伸性能,并用MTS-810液压伺服疲劳试验机进行疲劳性能测试。
结果表明:约束氢致密化处理可使粉末冶金Ti-6Al-4V合金的残余孔隙率从2.5%降低至1.3%,致密度达到(98.7±0.3)%。
约束氢致密化处理后,合金的抗拉强度从(936±18) MPa提高到(959±10) MPa,伸长率从(6.7±1.6)%提升到(12±1.1)%。
同时疲劳性能得到改善,在0.5%循环应变幅条件下循环周次达到4 670周次。
关键词:钛合金;约束氢致密化;残余孔隙;显微组织;低周疲劳中图分类号:TG146.23文献标志码:A 文章编号:1673-0224(2022)02-171-09Effects of confined hydrogen densification treatment on the densityand mechanical properties of powder metallurgy Ti-6Al-4V alloyDUAN Zhongyuan1, CHEN Zoujun1, ZHU Xianzhi1, LIU Bin1, LIU Yong1, LIANG Xiaopeng2, ZHOU Chengshang1(1. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China;2. School of Materials Science and Engineering, Central South University, Changsha 410083, China)Abstract: Titanium hydride powder and 6Al-4V pre-alloyed powder were used as raw materials to prepare Ti-6Al-4V alloy by vacuum sintering. Then confined hydrogen densification treatment in a high-purity hydrogen atmosphere was carried out, and finally vacuum annealing was performed to remove the residual hydrogen in the alloy. The microstructure morphology of the alloy was observed by an optical microscope. The density and tensile properties of the alloy were determine, and the fatigue performance testing was tested using the MTS-810 hydraulic servo fatigue testing machine .The results show that the confined hydrogen densification treatment can reduce the residual porosity of the sintered Ti-6Al-4V alloy from 2.5% to 1.3%, and the relative density can reach (98.7±0.3)%. After confined hydrogen densification treatment, the tensile strength of the alloy increases from (936±18) MPa to (959±10) MPa, and the elongation increases from (6.7±1.6)% to (12±1.1)%. At the same time, the fatigue performance is improved, and the cycle times reach 4670 cycles under the condition of 0.5% cyclic strain amplitude.Keywords: titanium alloy; confined hydrogen densification; residual porosity; microstructure; low cycle fatigueTi-6Al-4V合金是一种应用最广泛的α+β型钛合金[1−2],具有良好的综合性能,在海洋船舶,航天航空等领域得到广泛应用[3−4]。
《钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究》范文
《钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究》篇一钛合金Ti-6Al-4V修正本构模型在高速铣削中的应用研究一、引言钛合金Ti-6Al-4V因其出色的机械性能和耐腐蚀性,在航空、医疗和汽车制造等领域得到了广泛应用。
然而,由于钛合金的加工特性复杂,其高速铣削过程中的材料去除机制和切削力控制一直是研究的热点。
为了更好地理解和控制这一过程,本研究引入了修正的本构模型,旨在提高高速铣削的效率和精度。
二、钛合金Ti-6Al-4V的修正本构模型本构模型是描述材料在变形过程中的应力-应变关系的数学模型。
对于钛合金Ti-6Al-4V,传统的本构模型往往无法准确描述其在高速铣削过程中的复杂行为。
因此,我们提出了一种修正的本构模型,该模型考虑了切削速度、切削深度和切削温度等多个因素的影响。
三、修正本构模型在高速铣削中的应用1. 材料去除机制的研究:通过引入修正的本构模型,我们可以更准确地描述钛合金Ti-6Al-4V在高速铣削过程中的材料去除机制。
这有助于我们理解切削力、切削温度和切屑形成等过程,从而优化切削参数。
2. 切削力控制:修正的本构模型可以帮助我们预测和控制切削过程中的切削力。
通过调整切削参数,如切削速度和切削深度,我们可以实现切削力的有效控制,从而提高加工精度和表面质量。
3. 优化加工工艺:基于修正的本构模型,我们可以对加工工艺进行优化。
例如,通过调整切削液的使用、刀具的选择和切削参数的匹配,我们可以提高加工效率,降低工具磨损和成本。
四、实验验证与分析为了验证修正本构模型的准确性,我们进行了高速铣削实验。
通过比较实验结果和模型预测,我们发现修正的本构模型能够更准确地描述钛合金Ti-6Al-4V在高速铣削过程中的行为。
此外,我们还分析了不同切削参数对切削力和加工质量的影响,为实际生产提供了有价值的指导。
五、结论本研究引入了修正的钛合金Ti-6Al-4V本构模型,并探讨了其在高速铣削中的应用。
热处理对EBM Ti-4Al-5V-5Mo-6Cr-1Nb合金显微组织与拉伸性能的影响
RESEARCH研究论文Ti–4Al–5V–5Mo–6Cr–1Nb (Ti–45561)是一种近β钛合金,其Mo 当量为13.3。
该类合金经固溶+时效处理后,可展现出良好的强度韧性匹配[1–3],在航空主承力结构上具有广阔的应用前景。
例如,TB9合金经820℃/30min/水冷+460℃/8h/空冷后,其抗拉强度显著提高[4]。
Ti–15–3合金经300℃/8h+450℃/16h 的双时热处理对EBM Ti–4Al–5V–5Mo–6Cr–1Nb 合金显微组织与拉伸性能的影响*乔 虹1,刘运玺1,陈 玮1,2,杨 洋1,2(1. 中国航空制造技术研究院,北京 100024; 2. 高能束流加工技术重点实验室,北京 100024)[摘要] 研究了电子束选区熔化(EBM )Ti–45561合金的显微组织及热处理对其组织性能的影响。
发现成形态材料具有沿z 方向外延生长的β柱状晶,这是由于凝固过程中的温度梯度造成的,而730℃的成形腔温度环境使得每一个β晶粒内部有针状α相析出。
在后续热处理过程中,随着时效温度的升高与时间的延长,晶界处析出的α相逐渐粗化并趋向于连续分布,晶界内的次生α相逐渐粗化;随着固溶温度的升高,初生α相的数量逐渐减少。
在影响EBM Ti–45561合金强度与塑性的热处理参数中,时效温度的影响最大,固溶温度次之,时效时间的影响最小。
随着时效温度升高,材料的强度下降而塑性增加。
关键词: 增材制造;钛合金;热处理;显微组织;拉伸性能Effect of Heat Treatment on Microstructure and Tensile Properties of EBMTi–4Al–5V–5Mo–6Cr–1Nb AlloyQIAO Hong 1, LIU Yunxi 1, CHEN Wei 1,2, YANG Yang 1,2( 1. A VIC Manufacturing Technology Institute, Beijing 100024, China; 2. Key Laboratory of Power Beam Processing, Beijing 100024, China )[ABSTRACT] The effect of heat treatment on microstructure and tensile properties of EBM Ti–45561 was investigated. The as-build material exhibited columnar β grains epitaxially grew along z direction, which is caused by the temperature gradient during the solidification process. Acicular α phase precipitated inside each β grains due to the 730℃ environment temperature. With the increase of post-build annealing temperature and extension of annealing time, the grain boundary α phase and secondary α phase were both coarsened. When the solution treat temperature was increased, the percentage of primary α phase decreased. Among the 3 heat treatment parameters, the annealing temperature has the strongest influence on tensile properties, and the annealing time has the smallest influence. The elongation of the EBM Ti–45561 increased with annealing temperature; while the strength of the material decreased with annealing temperature.Keywords: Additive manufacturing; Titanium alloy; Heat treatment; Microstructure; Tensile properties DOI:10.16080/j.issn1671-833x.2020.19.085效处理后,其屈服强度相比450℃/16h 的单时效进一步提高5%[5]。
Mo、V和Ag对粉末冶金Ti-5Al合金组织与力学性能的影响
Mo、V和Ag对粉末冶金Ti-5Al合金组织与力学性能的影响肖代红;杨宝刚;申婷婷;袁铁锤;贺跃辉;王守仁【摘要】采用元素混合法制备粉末冶金Ti-Al-Mo-V-Ag合金,通过金相观察、扫描电镜及力学性能测试等方法研究Mo、V和Ag的添加及烧结温度对Ti-5Al合金的烧结行为、显微组织与力学性能影响,并对其作用机制进行探讨.结果表明1350℃烧结时,V与Mo的添加能改善烧结合金的压缩强度,单独添加Ag时,则降低基体合金的综合性能,但当Ag与Mo、V同时添加到基体合金中时,改变合金的显微组织,提高烧结合金的致密度与抗压缩强度,致密度能达到96%,抗压缩强度达到1782MPa.同时,烧结温度不同时,相同成分的粉末冶金Ti-5Al合金的显微组织与性能也表现出不同的特征.【期刊名称】《中国有色金属学报》【年(卷),期】2011(021)006【总页数】7页(P1265-1271)【关键词】钛合金;微合金化;烧结温度;显微组织;力学性能【作者】肖代红;杨宝刚;申婷婷;袁铁锤;贺跃辉;王守仁【作者单位】中南大学粉末冶金国家重点实验室,长沙410083;中南大学粉末冶金国家重点实验室,长沙410083;中南大学粉末冶金国家重点实验室,长沙410083;中南大学粉末冶金国家重点实验室,长沙410083;中南大学粉末冶金国家重点实验室,长沙410083;中南大学粉末冶金国家重点实验室,长沙410083【正文语种】中文【中图分类】TG146.23钛合金具有密度低、比强度高、屈强比高、塑韧性良好、耐腐蚀性好等优点,在军工和民用等领域具有广阔的应用[1−2]。
扩大钛合金市场的瓶颈是钛的提取、熔炼、机加工很难,从而导致生产成本高[3−4]。
粉末冶金技术由于在零部件近净形方面具有优势,能大大提高材料利用率,降低加工成本,并能获得均匀细小的显微组织,因此成为降低钛合金成本的重要技术[3−6]。
粉末冶金钛合金的研究主要集中在混合元素法((BE)、预合金法(PA)和快速凝固法(RS)等3种方法上,其中混合元素法无论是经济效益、成分选择及微观组织设计上,都比其它两种方法优越[7−8]。
钛合金用 Al - V中间合金的生产研究概况
钛合金用Al - V中间合金的生产研究概况铝(Al)和钒(V)是钛合金中的关键元素,尤其在航空用钛合金中起着很重要的作用。
非钢铁合金中90 %以上的V 可用来生产有色合金和磁性合金。
其中钛合金占绝大多数。
钛合金中的V (添加量为 1 %)可作为强化剂和稳定剂,钛合金中添加4 %V 时,合金具有好的延展性和成形性。
钛合金中最重要的两种合金是Ti - 6Al - 4V 和Ti - 8Al - 1Mo1V,这两种合金共占钛合金市场的50 % ,可用于生产喷气发动机、高速飞行器骨架和火箭发动机机壳。
钒通常以Al - V 中间合金形式加入到钛合金中。
Al - V 中间合金是银灰色块状合金,是钛合金生产中主要的合金成分,其质量的优劣直接影响钛合金的性能。
在钛合金生产中,一小部分合金元素是以纯金属的形式加入,但主要合金成分是以中间合金形式加入的。
以中间合金形式加入的合金元素可以更好地调节这些元素在最终合金中的比例。
此外,中间合金的熔点比纯金属熔点低,这对最终合金中达到较好的均匀度是非常有利的。
1 、Al - V中间合金的制备方法为了达到所期望的钛合金的最佳性能,其关键是制备高纯、均匀的中间合金,这对于满足特殊使用的宇航、航空工业钛合金的高质量要求是至关重要的。
除了足够均匀度外,有害元素如Fe、Si、O、C等,必须降低至最低限度。
目前Al - V 中间合金的制备方法主要有三种:铝热法、两步法和自燃烧法。
(1)铝热法是一种常规方法,该法是采用五氧化二钒(V2O5) 、铝粉和造渣剂(CaF2)等混合料在大气中进行铝热反应来实现的。
其优点是设备和工艺较简单,但质量均匀性较差,某些杂质元素含量偏高,环境污染大。
(2)两步法,即铝热+真空感应熔炼法。
德国于1957年就开始研究Al - V 合金,60 年代确立了两步法。
该法是将铝热法制出的Al - V 中间合金再进行第二次真空熔炼,以进一步提纯,即用铝热法得到含钒85 %的高钒合金,然后再进行二次真空感应熔炼,在熔炼过程中加入Al 制造所需的Al - V中间合金。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ORIGINAL PAPERA potential method for electrochemical micromachining of titanium alloy Ti6Al4VL.M.Jiang ÆW.Li ÆA.Attia ÆZ.Y.Cheng ÆJ.Tang ÆZ.Q.Tian ÆZ.W.TianReceived:29August 2007/Revised:31January 2008/Accepted:31January 2008/Published online:21February 2008ÓSpringer Science+Business Media B.V.2008Abstract The micromachining of complex three-dimen-sional microstructures (bulk micromachining)on metals can be applied to fabricate many novel devices for micro electromechanical system (MEMS),which will greatly benefit the development of MEMS.In this paper,a new electrochemical micromachining method named the con-fined etchant layer technique (CELT)was explored on the micromachining of the titanium alloy.Micro-scale trape-zoidal slots were replicated on titanium alloy by using a mold with the corresponding negative microstructures (trapezoidal teeth).The machining resolution reached 0.503l m.The electrochemical mechanisms involved in the process are analyzed and the parameters that influenced the machining resolution are discussed.Keywords Bulk micromachining ÁConfined etchant layer technique ÁEtching ÁTitanium1IntroductionSo far silicon is still predominant among the materials used for micro electromechanical systems (MEMS).In recent years,more metals have been investigated for MEMS due to their excellent electrical and thermal con-ductivity and mechanical and magnetic properties [1–6].However,up to now metallic MEMS components that have been fabricated are mainly nickel and copper with simple structures since the main micromachining tech-nology is based on LIGA (an acronym from German words for lithography,electroforming,and molding)[7,8]that can be applied to fabricate high-aspect-ratio bulk microstructure for Ni and Cu [9,10].Titanium is an important metal,but it is difficult to micromachine by LIGA due to the difficulty in electro-or electroless-deposition of titanium in the microstructured photoresist formed by X-ray photolithography,which is one of the key steps of the LIGA process.Furthermore,the complex three-dimensional (3D)microstructures without straight sidewalls are very difficult to machine by LIGA.Ti and its alloys possess the best strength-to-weight ratio and corrosion resistance among metals.In contrast with Si,Ti and its alloys have much higher fracture toughness,better electrical conductivity and greater bio-compatibility.Therefore,they are very attractive for MEMS uses.Although as a functional thin film material,Ti has long been used in the microelectronics industry where only patterning titanium thin film (known as sur-face micromachining)is needed [11,12],it is rarely used in MEMS due to the difficulty of micromachining com-plex 3D microstructure with a high-aspect-ratio.Surface micromachining on Ti is easy to carry out by photoli-thography,electronic beam,ionic beam or reactive ion etching and so on;however,these techniques are difficultA.Attia is on leave from Physical Chemistry Department,National Research Centre,El-Tahrir St.,Dokki,Cairo,Egypt.L.M.Jiang (&)ÁA.Attia ÁJ.Tang ÁZ.Q.Tian ÁZ.W.Tian State Key Laboratory for Physical Chemistry of Solid Surfaces,Department of Chemistry,Xiamen University,Xiamen 361005,Chinae-mail:lm-jiang@L.M.Jiang ÁW.Li ÁZ.Y.ChengSchool of Material Science and Engineering,Nanchang Hangkong University,Nanchang 330063,ChinaA.AttiaPhysical Chemistry Department,National Research Centre,El-Tahrir St.,Dokki,Cairo,EgyptJ Appl Electrochem (2008)38:785–791DOI 10.1007/s10800-008-9513-7to apply in micromachining complex3D microstructure for Ti.As well as the techniques mentioned above for metal micromachining,other methods of interest such as through-mask electrochemical micromachining(EMM) [13–15]have been investigated and some useful micro-structures have been obtained[16–18].However,due to the isotropy of electrochemical dissolution of metals, undercutting inevitably takes place.Therefore,it is dif-ficult to get high-aspect-ratio microstructures,especially for complex three-dimensional microstructures.In the 1980s,Bard’s group invented scanning electrochemical microscopy(SECM)[19]and used it in micromachining of metals[20–22].It generated etchant electrochemically on a microelectrode to etch the samples and was effec-tive for etching of copper.Nevertheless,owing to the free diffusion of the etchant,its spatial resolution was limited.Recently,two new approaches for bulk mi-cromachining of metals were proposed.One was ultrashort voltage pulses electrochemical machining reported by Schuster et al[23–26].The other was anisotropic reactive ion etching with oxidation(ARIO) reported by Aimi et al.[27].However,complex3D microstructures are still difficult to micromachine by these methods.In this paper we present an electrochemical bulk micromachining method named the confined etchant layer technique(CELT)[28–32]for micromachining titanium and its alloys.The fundamentals of CELT can be described as follows:The etchant is generated elec-trochemically on the surface of a machining tool or a mold with desired3D microstructures.A specific scav-enger is added to the electrolyte that captures the etchant within a very short duration so as to prevent the etchant from diffusing away from the mold surface.Thus,the etchant layer around the mold is kept so thin that its profile takes approximately the contour of the micro-structures of the mold.When moving the mold until the etchant layer contacting the workpiece,the workpiece will be etched.By continuously approaching the mold to the workpiece with etching proceeding,an approximate mirror-image replica of the microstructures of the mold is obtained.Theoretically,if the concentration of the scavenger is much greater than that of the etchant generated on the mold,it can be assumed that the scavenger concentration remains constant during the whole process and the scav-enging reaction is of pseudo-first-order with rate constant k s.The thickness of the confined etchant layer(l)can be estimated as:l=(D/k s)1/2[32],where D is the diffusion coefficient of the etchant in the solution.The major advantages of CELT can be summarized as follows:it can be used to fabricate complex3-dimen-sional micro-(or nano-)structures;it can control precisely the machining depth by controlling the moving distance of mold(through high precision PZT),rather than by approximately controlling the machining time as in pho-tolithography;it can be used in a batch process with fewer steps than in photolithography.The possible destruction and denaturalization of the intrinsic structure beneath the machining surface usually caused by high-energy beam machining can be avoided.In our laboratory the replication of complex3D microstructures has been achieved on the surface of GaAs,Si,copper and nickel with a nano or sub-micro resolution[28–31].Here,micromachining on titanium related alloys is reported.Microstructures like trapezoidal slots are repli-cated on titanium alloy(Ti6Al4V)by using a mold with trapezoidal teeth.The electrochemical mechanisms involved in the process are analyzed in detail and the parameters influencing machining resolution are discussed. 2ExperimentThe titanium alloy to be etched was Ti6Al4V with1mm thickness.It was polished with alumina powder of2l m, 0.5l m and0.05l m diameter successively,then rinsed with water and acetone in an ultrasonic bath,andfinally washed with ultra pure water prior to use.The3D mold on which the etchant is generated electrochemically was set as the working electrode in a three-electrode system. The counter electrode was a Fe wire ring surrounding the working electrode,and a saturated calomel electrode (SCE)was used as reference electrode.The workpiece (Ti6Al4V)was set at open-circuit in the solution.As the contact between the mold and workpiece would lead to anodic dissolution of the workpiece,a potentiometer was connected between them to detect the voltage change so as to judge whether they were contact or not.Great care should be taken to avoid contact between them as the mold approaches the workpiece surface.During the etching process,the mold was raised some distance and then lowered periodically to allow the solution between mold and workpiece to be refreshed.The mold used in this work was a silicon wafer containing some regular trapezoidal gear-like microstructures.In order to achieve good conductivity of the mold,a100nm thick of Ptfilm was deposited by RF magnetron sputtering on the mold surface to ensure good conductivity on the mold.All chemicals were of analytical grade and diluted with ultra-pure water.The etchant-forming solution comprised 0.2M NaF+0.4M NaClO3+0.6M NaClO4+0.3M NaNO2+0.1M ing constant current polariza-tion,I=5mA cm-2.The working temperature was maintained in the range40–45°C.The microstructures of the mold and the etched work-piece were characterized by atomic force microscopy (AFM),(Nanoscope IIIa,Digital Instruments)and scanning electron microscopy(SEM),(QUANTA-200).3Results and discussion3.1The investigation on the‘‘confining-etching’’systemA solution containing NaF,NaClO3and NaNO2as pre-cursors to generate electrochemically etchants of HF and HNO3in situ was used.The NaOH was used as a scav-enger as described above.The electrochemical and chemical reactions during the micromachining process are described as follows:(1)Generation reactions of etchants(on the surface of themold)ClOÀ3þH2O!ClOÀ4þ2Hþþeð1ÞNOÀ2þH2O!NOÀ3þ2Hþþeð2ÞHþþFÀ!HFð3ÞHþþNOÀ3!HNO3ð4ÞPreviously,the mechanism of reaction(1)had been studied extensively[33,34].The H+generated from reactions(1) and(2)combines with F-and NO3-on the surface of the mold to form etchants HF and HNO3.(2)Etching reactions(on the surface of the workpiece) Tiþ6HF!H2½TiF6 þ2H2ð5ÞAlþ4HNO3!AlðNO3Þ3þNOþ2H2Oð6Þ2Vþ6HF!2VF3þ3H2ð7ÞHNO3is a well-known passivator for Ti,especially at high concentrations.It can suppress the corrosion of Ti. However,in a solution of‘‘HNO3+NaF’’,a systematic experiment indicated that this solution still corrodes Ti6Al4V rapidly until the concentration of HNO3reaches 1M.(3)Destruction reaction of etchant(in solution near thesurface of the mold)HþþOHÀ!H2Oð8ÞNO2-can also combine with H+since HNO2is also a weak acid similar to HF.Therefore it is expected that a competition between NO2-and F-for electrogenerated H+may occur.In the solution,the following equilibria exist:HNO2 HþþNOÀ2K aðHNO2Þ¼½Hþ ½NOÀ2½HNO2¼5:13Â10À4HF HþþFÀK aðHFÞ¼½Hþ ½FÀ½HF¼6:61Â10À4where K a is the ionization constant of the acid.According to the above equations NO2-has even stronger ability to combine with H+than F-.For example,if1mol L-1of [H+]is added to a neutral solution of1mol L-1NaF,the F-will associate with H+to form HF,andfinally [HF]&0.99935mol L-1while[H+]&0.00065mol L-1.On the other hand,if1mol L-1of[H+]is added to a neutral solution of1mol L-1NaNO2,the NO2-will also associate with H+to form HNO2andfinally[HNO2]& 0.9995mol L-1and[H+]&0.0005mol L-1.Appar-ently,NO2-has a greater tendency to combine with H+.In addition,if the concentration of the electrogenerated H+is sufficiently high,a decomposition reaction,H++ NO2-?HNO2?NO:+NO2:+H2O,may take place, which will lead to more H+being consumed by NO2-.From thermodynamic data it is possible that there exists another etching reaction:Alþ6HNO2!AlðNO2Þ3þ3NOþ3H2O.Figure1shows the cyclic voltammetric(CV)curves of a polycrystalline Pt electrode in different electrolytes. Curve1corresponds to the electrolyte composed of0.2M NaF+0.2M NaClO3.The oxidation peak with a current(I p1)of3.71910-3A cm-2at the peak potential(u p1)of1.53V was observed.When the potential was higher than 1.56V,the dissociation reaction of waterð2H2OÀ4e¼O2þ4HþÞtook place,and oxygen bubbles evolved on theelectrode.In the case of curve 2in the electrolyte of 0.2M NaF +0.1M NaNO 2,an oxidation peak with a current (I p2)of 8.04910-3A cm -2was observed at the peak potential (u p2)of 1.00V.It can be shown that NO 2-has higher anodic oxidation reaction rate than ClO 3-.However,in the electrolyte containing two oxidable precursor of 0.2M NaF +0.2M NaClO 3+0.1M NaNO 2,as shown in curve 3,theoretically it should have two oxidation peaks,but its only oxidation peak u p3with a current (I p3)of 1.05910-2A cm -2is at 1.2V,which is higher than u p2and less than u p1.The peak is a very wide one.When the potential moved positively to 1.6V,oxygen bubbles also began to evolve on the electrode.There was no second peak in curve 3.This is likely due to interaction betweenClO 3-and NO 2-radicals on the electrode surface during adsorbing and discharging processes,which leads to the oxidation peaks of two precursors shifting and tending to anarrow potential range.A synergistic effect between ClO 3-and NO 2-for electrochemical oxidation can be observed from the CV curves.Corresponding to the potential u p3of curve 3,the current values on the curve 1and curve 2are I 1=1.48910-4A cm -2and I 2=7.52910-3A cm -2respectively.Obviously,I p3is much larger than the sum of I 1and I 2.This may be caused by the catalysis of ClO 3-tothe electrooxidation of NO 2-on the electrode surface.To understand the interaction,A algebraic summation of curve 1and curve 2of Fig.1is calculated and shown in Fig.2(here only the positive scanning segments of curve 1and curve 2are calculated).Curve 3of Fig.2represents the summation curve of curves 1and 2.It has two oxida-tion current peaks,I p30and I p300,corresponding to the peak potential values of curve 1and curve 2respectively.Curve 3of Fig.2is very different from the curve 3of Fig.1obtained by experiment.It suggests that the effect of combining the precursors of NaClO 3and NaNO 2is not simply through the summation of the effects of each.The interactions between the two precursors of H +in the electrode processes made their behavior different from that when they are separated.During the etching process,some hydrogen evolved on the titanium surface,which may influence the thickness of etchant layer.A small amount of surfactant (hexadecyl trimethyl ammonium chloride,0.1g L -1)was added to facilitate hydrogen bubble detachment and evolution.3.2Electrochemical micromachining on Ti6Al4V alloy Figure 3illustrates a significant improvement in resolution caused by scavenger during the micro hole machining.Figure 3a is an SEM image of a Pt tip used as mold for machining Ti alloy.Its apex-diameter is about 48l m.Figure 3b is the microstructure machined on the surface of titanium alloy with the above Pt tip as the etchant layer wasFig.3(a )SEM image of a mold for etching titanium alloy—Pt tip.Apex-diameter is about 48l m,(b )SEM image of the microstructure etched on the surface of titanium alloy with above Pt tip as the etchant layer not being confined.The pit-diameter is about 131l m.The etching solution composed of 0.2M NaF +0.4M NaClO 3+0.6M NaClO 4+0.3M NaNO 2.Machining time t =25min,(c )SEMimage of the microstructure etched on the surface of titanium alloy with above Pt tip as the etchant layer being confined by scavenger NaOH.The surface hole-diameter is about 54l m.The etching solution composed of 0.2M NaF +0.4M NaClO 3+0.6M Na-ClO 4+0.3M NaNO 2+0.1M NaOH.Machining time t =25minnot confined by scavenger.It is merely a pit.The pit-diameter is about 131l m.Figure 3c shows a micro hole machined on the surface of titanium alloy with the Pt tip The etchant layer was confined by NaOH scavanger.The surface hole-diameter is about 54l m.Obviously,the res-olution is enhanced greatly by the scavenger.Figure 4a shows the trapezoidal gear-like microstruc-tures on another mold used for micromachining.Figure 4b shows the mirror-image replica microstructures of trape-zoidal slots fabricated on Ti6Al4V alloy with the mold.Thirteen slots were fabricated,which is approximately the negative copy of thirteen protruding teeth on the mold surface.In the top left corner of Fig.4b some reaction product remains in the slots.This should be removed by rinsing the workpiece completely after etching.Figures 5a,b are the AFM images and their section profiles of the microstructures on the mold and etched on Ti6Al4V,respectively.Figure 5a shows that the width of the teeth on the mold is 2.45l m (b 1),while the corresponding feature width etched on titanium is 3.50l m (b 2).From the difference of the corresponding feature dimensions between the mold and the etched pattern,the resolution of the microma-chining can be estimated to be D b =(b 2-b 1)/2=0.503l m.Finally,to obtain a higher micromachining resolution,it is necessary to adjust the other processing parameters suchas the current density,the concentration of ClO 3-and OH -.A current density (4–6mA cm -2)was needed to achieve a good surface roughness after micromachining.Too low current density may lead to non-uniform corrosion on the etched surface,while too high current density causes decreased resolution.Theoretically,an increase in NaClO 3concentration enhances the ClO 3-conversion rate andgenerates more H +,which leads to high etching rate.But the experiments indicate that if the concentration of Na-ClO 3is too high ([0.6M in present solution composition),it is difficult to obtain the microstructures.Too high scavenger (NaOH)concentration also did not produce microstructures.Figure 5b shows that the etched titanium surface is still rough;however,further optimization of the process parameters or appropriate post-treatment steps such as electropolishing [35]will improve the smoothness of the etched surface.4ConclusionThe results demonstrate that the confined etchant layer technique (CELT)has potential for machining complex three-dimensional microstructures on Ti alloy (Ti6Al4V).It can be used in a batch process with fewer steps compared to multiple steps in photolithography technique.CELT has low cost as compared with high energy beam machining.Its micromachining resolution depends mainly on the rate of the scavenging reaction.The electrolyte system con-taining NaClO 3,NaNO 2and NaF is suitable for the generation of etchants of HF and HNO 3in situ.Sub-micrometer resolution can be obtained using NaOH as an effective scavenger.Further experiments to achieve high-aspect-ratio complex three-dimensional microstructures for the Ti alloy will make the fabrication of novel micro devices possible and will extend the functionalities of MEMS.Of course,CELT also has some limits.For example,its machining rate is lower than that of high energy beam machining and EMM.After a certain duration the etching rate becomes slow and it is necessary to lift the mold for some distance and replace it periodically to allow ionic diffusion.In addition,contact between the mold and the workpiece should be avoided duringmicromachining.Fig.4(a )SEM image of the mold with trapezoidal gear-like microstructure,(b )Trapezoidal slot microstructure fabricated on Ti alloy surface in the solution composed of 0.2M NaF +0.4M NaClO 3+0.6M NaClO 4+0.3M NaNO 2+0.1M NaOH.Machining time t =35minAcknowledgements This work was supported by Foundation of 863Plan of China (2002AA40170),Foundation of the Material Research Center of Jiangxi Province (ZX200301013),Foundation of the Jiangxi Province Department of Education and the Aeronautical Science Foundation.A.Attia would like to thank Xiamen University for financial support.References1.Mineta T,Mitsui T,Watanabe Y,Kobayashi S,Haga Y,Esashi M (2001)Sens Actuators A Phys 88:1122.Arias F,Oliver SRJ,Xu B,Holmlin RE et al (2001)J Micro-electromech Syst 10:1073.Cagatay S,Koc B,Uchino K (2003)IEEE Trans Ultrason Fer-roelectr Freq Control 50:7824.Friend J,Nakamura K,Ueha S (2004)IEEE ASME Trans Mechatron 9:4675.Serre C,Yaakoubi N,Martı´nez S et al (2005)Sens Actuators A Phys 123–124:633i YJ,Bordatchev EV,Nikumb SK et al (2006)J Intelligent Mater Syst Struc 17:9197.Becker EW,Ehrfeld W,Hagmann P,Maner A,Mu¨nchmeyer D (1986)Microelectron Eng 4:358.Romankiw LT (1997)Electrochim Acta 42:29859.Leith SD,Schwartz DT (1999)J Microelectromech Syst 8:38410.Rajan N,Mehregany M,Zorman CA et al (1999)J Microelec-tromech Syst 8:25111.Zant PV (2000)Microchip fabrication:a practical guide tosemiconductor processing,4th edn,chapter 13.The McGraw-Hill Companies,Inc12.Plummer JD,Deal MD,Griffin PB (2000)Silicon VLSI tech-nology:fundamentals,practice and modeling,chapter 2.Pearson Education,Inc13.Datta M,Romankiw LT (1989)J Electrochem Soc 136:285C 14.Datta M (1998)IBM J Res Develop 42:65515.Datta M,Landolt D (2000)Electrochim Acta 45:253516.Datta M (1995)J Electrochem Soc 142:380117.Madore C,Piotrowski O,Landolt D (1999)J Electrochem Soc146:252618.Zinger O,Chauvy P-F,Landolt D (2003)J Electrochem Soc 150:B49519.Kwak J,Bard AJ (1989)Anal Chem 61:122120.Mandler D,Bard AJ (1989)J Electrochem Soc 136:314321.Hu¨sser OE,Craston DH,Bard AJ (1989)J Electrochem Soc 136:322222.Mandler D,Bard AJ (1995)J Electrochem Soc 142:L8223.Schuster R,Kirchner V,Allongue P,Ertl G (2000)Science289:9824.Kirchner V,Cagnon L,Schuster R,Ertl G (2001)Appl Phys Lett79:172125.Kock M,Kirchner V,Schuster R (2003)Electrochim Acta48:321326.Trimmer AL,Maurer JJ,Schuster R,Zangari G,Hudson JL(2005)Chem Mater 17:675527.Aimi MF,Rao MP,MacDonald NC (2004)Nat Mater 3:10328.Zu YB,Xie L,Mao BW,Mu JQ,Tian ZW (1998)ElectrochimActa 43:168329.Sun JJ,Huang HG,Tian ZQ,Xie L,Luo J,Ye XY,Zhou ZY,XiaSH,Tian ZW (2001)Electrochim Acta 47:9530.Zhang L,Ma XZ,Zhuang JL et al (2007)Adv Mater 19:391231.Jiang LM,Liu ZF,Tang J,Zhang L,Shi K,Tian ZQ,Liu PK,SunLN,Tian ZW (2005)J Electroanal Chem581:153Fig.5(a )AFM image and section of the microstructure on the mold,(b )AFM image and section of the microstructure fabricated on Ti alloy surface.The etching solution composed of 0.2M NaF +0.4M NaClO 3+0.6M NaClO 4+0.3MNaNO 2+0.1M NaOH32.Tian ZW,Feng ZD,Tian ZQ,Zhuo XD,Mu JQ,Li CZ,Lin HS,Ren B,Xie ZX,Hu WL(1992)Faraday Discuss94:3733.De Nora O,Gallone P,Traini C,Meneghini G(1969)J Elect-rochem Soc116:14634.Osuga T,Fujii S,Sugino K,Sekine T(1969)J Electrochem Soc116:20335.Piotrowski O,Madore C,Landolt D(1998)J Electrochem Soc145:2362。