沪科版(2012)初中数学九年级上册 21.5 反比例函数----二次函数与反比例函数 课件优品课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学
二次函数与反比例函数
21.5 反比例函数
第1课时 反比例函数的概念
第1课时 反比例函数的概念
基础自主学习
► 学习目标1 阅读教材到反比例函数定义前面内容,会 列出下列函数关系式
1.矩形的面积为10,一条边长为2,另一条边长为__5__. 若设一条边长为x,另一条边长为y,则y与x之间的关系式为 _y_=__1x_0_________.
第1课时 反比例函数的概念
[归纳] 1.一般地,形如 y=kx____(k 为常数,且 k≠0)的 函数,叫做反比例函数.
2.判断一个函数为反比例函数,看化简后关系式是否为 y=kx或 xy=k 或 y=kx-1(k 为常数,且 k≠0)的形式.
第1课时 反比例函数的概念
重难互动探究
探究问题一 能够根据反比例函数的概念确定反比例函数中 字母常数的值
第1课时 反比例函数的概念
探究问题二 根据函数概念求函数关系式 例 2 已知函数 y=2y1-y2,y1 与 x+1 成正比例,y2
与 x 成反比例,当 x=1 时,y=4,当 x=2 时,y=3,求 y 与 x 的函数关系式.
[解析] 根据正比例函数和反比例函数的定义得到 y1,y2 的关系式,进而得到 y 的关系式,把所给两组解代入即可得 到相应的比例系数,也就求得了所求的关系式.
第1课时 反比例函数的概念
学习目标 2 阅读教材本节反比例函数的定义,知道反比例 函数的一般形式 y=kx(k 为常数,且 k≠0),Fra Baidu bibliotek解反比例函数的概 念
4.下面的函数是反比例函数的是 ③⑤____(填写序号). ①y=-2x;②y=x2;③y=-4x;④y=x2-x;⑤y=3x-1. 5.反比例函数 y=kx中,常数 k 不能取零,自变量 x 的取值范 围是 x≠0 ____. 数的关 6.系在式反为比例y=函-数1x_2y_=__kx.中,当 x=3 时,y=-4,则反比例函
第1课时 反比例函数的概念
解:由题意,得 y1=k1(x+1)(k1≠0),y2=kx2(k2≠0).∵y =2y1-y2,∴y=2k1(x+1)-kx2,
∴43= =46kk11- -kk222, ,解得kk12= =14-,3, 即 y=12(x+1)+3x.
第1课时 反比例函数的概念
[归纳总结] 用待定系数法求函数关系式,关键是弄清y与 x(或x+a)是何种函数关系,需注意两个函数的比例系数 是不同的.
[解析] 反比例函数的一般形式是 y=kx(k≠0),对于待定 系数 k,只需要一组对应值即可求出,求出函数关系式,再 将 v 的值代入计算即可.
第1课时 反比例函数的概念
解:设 f,v 之间的函数关系式为 f=kv(k≠0). ∵v=50 时,f=80,∴80=5k0, 解得 k=4000,∴f=40v00. 当 v=100 时,f=4100000=40(度), ∴车速为 100 km/h 时,视野为 40 度. [归纳总结] 根据题意,两个变量之间是反比例函数关系,就 可以设函数关系式是 y=kx,然后用待定系数法代入求解即可.
2.某工厂运来14000吨煤,每天平均耗煤x吨,那么这些 煤可以用y天,写出y与x之间的关系式为__y_=__1_4_0x_00____.
第1课时 反比例函数的概念
3.某物体对地面的压力为定值,物体对地面的压强 p(Pa) 与受力面积 S(m2)之间有怎样的关系?写出它们之间的关系 式.
[答案] 如果设压力为 F,则 p=FS. [归纳] 学会利用面积公式、压强公式、速度公式等一些常 见的公式列函数关系式.
第1课时 反比例函数的概念
探究问题三 根据实际问题建立反比例函数模型 例3 人的视觉机能受运动速度的影响很大,行驶中司机在
驾驶室内观察前方物体时是动态的,车速增加,视野变窄. 当车速为50 km/h时,视野为80度.如果视野f(度)是车速 v(km/h)的反比例函数,求f,v之间的函数关系式,并计算当 车速为100 km/h时视野的度数.
第1课时 反比例函数的概念
课堂小结
第1课时 反比例函数的概念
[反思] 前面我们分别学习了一次函数与二次函数的图象和性 质,总是先__画_出__图__象___,然后得出__函__数__性__质__.那么反比例 函数的图象是怎样的?反比例函数具有什么性质?
无论有多困难,都坚强地抬头挺胸,人生 场醒悟,不要昨天,不要明天,只要今天 在当下,放眼未来。人生是一种态度,心 然天地宽。不一样的你我,不一样的心态 一样的人生活在人类世界,没有任何一个 以是高枕无忧,没有哪一个人能够永远的 风顺,但是,遇到挫折没关系,应该打起 ,善待一切,安安静静的能够坦然的面对 自身的坚强与否完全有可能就决定了你的 的成败。也许你想成为太阳,可你却只是 星辰;也许你想成为大树,可你却是一棵 。于是,你有些自卑。其实,你和别人一
例 1 已知 y=(m2+2m)xm2+m-1 是 y 关于 x 的反比 例函数,求 m 的值及函数关系式.
解:由题意,得mm22+ +m2m-≠1=0,-②1,① 由①,得 m=0 或 m=-1, 由②,得 m≠0 且 m≠-2,∴m=-1,y=-1x.
第1课时 反比例函数的概念
[归纳总结] 本题考查反比例函数的概念,反比例函数的关系 式除了 y=kx的形式外,还有 y=kx-1 和 xy=k(其中 k 是不等 于零的常数),在解题时特别注意不要忽略 k≠0 这一条件.
相关文档
最新文档