collisions of multibody systems

合集下载

混凝土泵车液压柔性臂架动力学分析与控制

混凝土泵车液压柔性臂架动力学分析与控制

东北大学
硕士学位论文
混凝土泵车液压柔性臂架动力学分析与控制
姓名:张婧
申请学位级别:硕士
专业:机械电子工程
指导教师:刘杰
20060101
东北大学硕士学位论文第四章系统动力学分析与数值仿真
求解器的计算时间主要由方程求解、分析雅可比矩阵和数值计算雅可比矩阵三部分时间组成。

实际工作中,用户采用MEBDFDAE求解器对所求问题进行数值仿真可以在FortranPowerStation4.0环境下进行。

FortranPowerStation40是基于Fortran90标准的Fortran应用程序的集成开发环境,可运行于Windows95及以上的操作系统中。

数值仿真的主要步骤如下:
(1)建立微分代数方程,并化为求解器需要的形式;
(2)通过在FortranPowerStation4.0环境下采用Fortran语-k编制求解程序,对建立的DAE方程进行程序输入,在此程序中要调用MEBDFDAE求解器文件,将编制的程序保存为文件:
(3)建立项目ProjectWorkspace,将MEBDFDAE求解器文件及(2)中编制的程序文件添加到项目当中,对(2)中编制的程序文件进行编译、链接、执行,最终计算结果以.dat的形式输出。

(41将输出的计算数据绘成图形,进行分析。

FortranPowerStation4.0环境下仿真工作窗口如图42所示。

图4.2FortranPowerStation4.0环境下仿真工作窗口
Fig.4.2SimulatingworkwindowunderFortranPowerStation4.0。

组织学与胚胎学单词

组织学与胚胎学单词

英文单词:组织学与胚胎学(白皮)Histology 组织学[hɪˈstɒlədʒi] Embryology 胚胎学[embriˈɒlədʒi]tissue 组织[ˈtɪʃu:]Extracellular matrix 细胞外基质[ˌekstrəˈseljuləˈmeɪtrɪks] Light microscope 光学显微镜[lait ˈmaikrəskəup] Electron microscope 电子显微镜[iˈlektrɔn ˈmaikrəskəup] Paraffin sectioning 石蜡切片[ˈpærəfɪn ˈsekʃən] Hematoxylin cosin staining 苏木精-伊红染剂[hi:məˈtɔksilin ˈi:əusin ˈsteini]Histochemistry 组织化学Immunohistochemistry 免疫组织化学[ɪmjʊnəʊhɪstəʊ'kemistri] Cell culture 细胞培养[sel ˈkʌltʃə]Tissue engineering 组织工程Epithelium 上皮[ˌepɪ'θi:lɪəm] Endothelium 内皮[ˌendəʊ'θi:lɪəm] Mesothelium 间皮[ˌmezə'θi:lɪəm] Exocrine gland 外分泌腺[ˈeksəukrain ɡlænd] Endocrine gland 内分泌腺[ˈendəukrain ɡlænd] Acinus 腺泡['æsɪnəs]Serous cell 浆液细胞[ˈsiərəs sel]Mucous cell 粘液细胞[ˈmju:kəs sel]Serous demilune 浆液半月[ˈsiərəs ˈdemilu:n]Micro villus 微绒毛[maɪkrəʊ'vɪləs]Cilium 纤毛['sɪlɪəm]Desmosome 桥粒['desməsəm] Junctional complex 连接复合体Basement membrane 基膜[ˈbeismənt ˈmemˌbreɪn] Basal lamina 基板[ˈbeisəl ˈlæminə] Reticular lamina 网板[riˈtikjuləˈlæminə]loose connective tissue 疏松结缔组织[kəˈnektɪv ˈtisju:] Connective tissue proper 固有结缔组织[kəˈnektɪv ˈtisju: ˈprɔpə] Mesenchyme 间充质['mezənkaɪm] Fibroblast 成纤维细胞['faɪbrəblæst] Fibrocyte 纤维细胞['faɪbroʊsaɪt]Plasma cell 巨噬细胞[ˈplæzmə sel] Macrophage 浆细胞[ˈmækrəfeɪdʒ]mast cell 肥大细胞[mɑ:st sel]fat cell 脂肪细胞[fat sel] mesenchymal cell 间充质细胞[mes'eŋkɪməl][sel] Collagenous fiber 胶原纤维[kɒ'lɑ:dʒenəs]['faɪbə] Elastic fiber 弹性纤维[iˈlæstik ˈfaibə]Reticular fiber 网状纤维[rɪ'tɪkjʊlə]['faɪbə]Groung substance 基质[ɡraund ˈsʌbstəns] Adipose tissue 脂肪组织[ˈædɪpəʊs][ˈtɪʃu:] Reticular tissue 网状组织[rɪ'tɪkjʊlə][ˈtɪʃu:]plasma 血浆[ˈplæzmə]Serum 血清[ˈsɪərəm]wright staining 瑞氏染色[rait][steɪnɪŋ]erythrocyte ,red blood cell 红细胞[ɪˈrɪθrəsaɪt] Hemoglobin 血红蛋白[ˌhi:məʊ'gləʊbɪn] erythrocyte membrane skeleton 红细胞膜骨架[ɪˈrɪθrəsaɪt] ['membreɪn][ˈskelɪtn]Hemolysis 溶血[hɪ'mɒlɪsɪs] reticulocyte 网织红细胞[rɪ'tɪkjʊləsaɪt] leukocyte,white blood cell 白细胞['lu:kəˌsaɪt] neutrophilic granulocyte ,neutrophil 中性粒细胞[nju:trə'fɪlɪk] ['grænjʊləsaɪt],['nju:trəfɪl]azurophilic granule 嗜天青颗粒[æʒʊərə'fɪlɪk][ˈgrænju:l]specific granule 特殊颗粒[spəˈsɪfɪk][ˈgrænju:l] basophilic granulocyte 嗜碱性颗粒[bæsə'fɪlɪk]['grænjʊləsaɪt]eosinophilic granulocyte,eosinophil 嗜酸性颗粒[ˌi:əˌsɪnə'fɪlɪk] ['grænjʊləsaɪt],[ˌi:ə'sɪnəfɪl]monocyte 单核细胞['mɒnəsaɪt] lymphocyte 淋巴细胞[ˈlɪmfəsaɪt]blood platelet 血小板[blʌd] [ˈpleɪtlət] bone marrow 骨髓[bəʊn] [ˈmæro] hemopoietic stem cell 造血干细胞[ˌhi:məpɔɪ'i:tɪk] [stem] [sel]multipotential stem cell 多能干细胞[mʌltɪpəʊ'tenʃl] [stem] [sel]Cartilage tissue 软骨组织[ˈkɑ:tlɪdʒˈtisju:] Chondrocyte 软骨细胞[kʌdrɒsɪt]Cartilage lacuna 软骨陷窝[ˈkɑ:tlɪdʒləˈkju:nə] Isogenous group 同源细胞群[aiˈsɔdʒinəs ɡru:p Cartilage capsule 软骨囊[ˈkɑ:tlɪdʒˈkæpsju:l] Hyaline cartilage 透明软骨[ˈhaiəli:n ˈkɑ:tlɪdʒFibrous cartilage 纤维软骨[ˈfaɪbrəs]Elastic cartilage 弹性软骨[ɪˈlæstɪk]Chondroblast 成软骨细胞['kɒndrəʊblɑ:st] Osseous tissue 骨组织[ˈɔsi:əs ˈtisju:]Bone matrix 骨基质[bəun ˈmeɪtrɪks]Osteoid 类骨质['ɒstɪɔɪd]Bone lamella 骨板[bəun ləˈmelə]Osteoprogenitor cell 骨祖细胞Osteoblast 成骨细胞['ɒstɪəblæst]Matrix vesicle 基质小炮[ˈvɛsɪkəl]Osteocyte 骨细胞['ɒstɪəsaɪt]Bone lacuna 骨陷窝[bəun ləˈkju:nə]Bone canaliculus 骨小管[bəun ˌkænəˈlikjuləs] Osteoclast 破骨细胞Perforating canal 穿通管Circumferential lamella 环骨板[səˌkʌmfəˈrenʃəl ləˈmelə]Haversian system 哈弗斯系统[həˈvə:ʃən ˈsistəm] Osteon 骨单位['ɒstɪɒn]Skeletal muscle 骨骼肌[ˈskelitl ˈmʌsl]Cardiac muscle 心肌[ˈkɑ:diæk]Smooth muscle 平滑肌Myofibril 肌原纤维[ˌmaɪə'faɪbrəl]Sarcomere 肌节['sɑ:kəmɪə]Sarcoplasm 肌浆['sɑ:kəʊˌplæzəm] Sarcoplasmic reticulum 肌浆网['sɑ:kəʊˌplæzəm][rɪ'tɪkjʊləm] Intercalated disk 闰盘Transverse tubule 横小管[ˈtrænzvɜ:s]['tju:bju:l] Longitudinal tubule 纵小管[ˌlɒŋgɪˈtju:dɪnl]['tju:bju:l]Terminal cisternae 终池[si'stə:ni:]Triad 三联体[ˈtraɪæd]Thick filament 粗肌丝[θik ˈfɪləmənt]Thin filament 细肌丝[θin ˈfɪləmənt]nervous tissue 神经组织[ˈnə:vəs ˈtisju:] neuron 神经元[ˈnʊərˌɔn, ˈnjʊər-]Neuroglial cell 神经胶质细胞[n'jʊərəʊɡlɪəl ‘ sel] Nissl body 尼氏体[ˈbɒdi] Neurotransmitter 神经胶质[ˈnjʊərəʊtrænzmɪtə(r)]Neurofibril 神经原纤维[ˌnjʊərə'faɪbrɪl] Dendrite 树突[ˈdendraɪt]Axon 轴突[ˈæksɒn]Axolemma 轴膜['æksəʊlemə] Axoplasm 轴浆[æk'sɒplæzəm] Pseudounipolar neuron 假单极神经元[sju:dəʊnaɪ'pəʊlə][ˈnʊərˌɔn, ˈnjʊər-]Synapse 突触['saɪnæps] Presynaptic element 突触前成分[prisiˈnæptik ˈelimənt] Synaptic cleft 突触间隙[sɪˈnæptɪk kleft] Postsynaptic element 突触后成分[pəustsiˈnæptik ˈelimənt]Postsynaptic membrane 突触后膜[pəustsiˈnæptik ˈmemˌbreɪn]presynaptic membrane 突触前膜[prisiˈnæptik ˈmemˌbre ɪn]Synaptic knob 突触小体[sɪˈnæptɪk nɔb] Astrocyte 星形胶质细胞['æstrəsaɪt] Oligodendrocyte 少突胶质细胞['ɒlɪgəʊ'dendrəsaɪt] Ependymal cell 室管膜细胞[e'pendɪməl ‘sel] Schwann cell 施万细胞[ʃwɔn ‘sel]Myelin sheath 髓鞘[ˈmaiəli(:)n ʃi:θ] Myelinated nerve fiber 有髓神经纤维[ˈmaiəlineitid nə:v ˈfaɪb ə]Ranvier node 郎飞结[‘ræviə‘nəʊd] Internode 中间体['ɪntənəʊd]Tactile corpuscle 触觉小体[ˈtæktəl ˈkɔ:pəsəl] Lamellar corpuscle 环层小体[lə'melə][ˈkɔ:pʌsl] Neuromuscular junction 神经肌连接[ˌnjʊərəʊ'mʌskjʊlə'dʒʌŋkʃn]epineurium 神经外膜[ˌepɪ'njʊərɪəm] perineurium 神经束膜[ˌperə'nju:rɪəm] endoneurium 神经内膜[endəʊ'nju:rɪəm] motor end plate 运动终板[ˈməutəend pleit]tunica intima 内膜[ˈtju:nikəˈintimə]Tunica media 中膜[ˈtju:nikəˈmi:djə]Tunica adventitia 外膜[ˈtju:nikəˌædvenˈtiʃjə] Endocardium 心内膜[endəʊ'kɑ:dɪəm] Myocardium 心肌膜[maɪə'kɑ:dɪəm] Epicardium 心外膜[ˌepɪ'kɑ:dɪəm]arteriole 微动脉[ɑ:ˈtɪəriəʊl]Venule 微静脉['venju:l]Capillary 毛细血管[kəˈpɪləri]elastic membrane 弹性膜[iˈlæstik ˈmemˌbreɪn] Pericyte 周细胞[peri:'saɪt]continuous capillary 连续毛细血管[kənˈtinjuəs ˈkæpəˌleri:]Fenestrated capillary 有孔毛细血管[fiˈnestreitid ˈkæpəˌleri:] Sinusoid capillary 血窦['saɪnəsɔɪd ˈkæpəˌleri:]Purkinje fiber 浦肯野纤维[pu ken ye~(就是音译)'faɪbə]Microcirculation 微循环[maɪkrəʊsɜ:kjʊ'leɪʃn] skin 皮肤[skɪn]epidermis 表皮[,epɪ'dɜːmɪs] keratinocyte 角质形成细胞[kə'rætinəsait]stratum basale 基底层[ˈstrɑ:təm] [beɪseɪl] stratum spinosum 棘层[ˈstrɑ:təm][spaɪ'nəʊsʌm]stratum granulosum 颗粒层[ˈstrɑ:təm]stratum lucidum 透明层[ˈstrɑ:təm] ['lu:si:dəm] stratum corneum 角质层[ˈstrɑ:təm]['kɔ:niəm] melanocyte 黑素细胞['melənəsaɪt]langerhans cell 朗格汉斯细胞[sel]dermis 真皮['dɜːmɪs]hair 毛[heə]sebaceous gland 皮脂腺[sɪ'beɪʃəs][glænd] sweat gland 汗腺[swet][glænd] recirculation of lymphocyte 淋巴细胞再循环[ri:'sɜ:kjʊ'le ɪʃən] [ˈlɪmfəsaɪt]mononuclear phagocytic system 单核吞噬细胞系统[mɒnəʊn'ju:klɪər][fægə'sɪtɪk][ˈsɪstəm]dendritic cell 树突状细胞[ˌden'drɪtɪk][sel]Diffuse lymphoid tissue 弥散淋巴组织[dɪˈfju:s]['lɪmfɔɪd][ˈtɪʃu:]Lymphoid nodule 淋巴小结[ˈnɒdju:l]Germinal center 生发中心[ˈdʒə:minl]['sentə] Thymic lobule 胸腺小叶['θaɪmɪk] ['lɒbju:l]Thymocyte 胸腺细胞['θaɪməsaɪt]Thymic corpuscle 胸腺小体[ˈθaimik ˈkɔ:pəsəl]Blood-thymus barrier 血胸屏障[ˈθaɪməs][ˈbæriə(r)] Supercial cortex 浅层皮质[ˌsu:pəˈfɪʃl][ˈkɔ:teks] Paracortex zone 副皮质区[pærə'kɔ:teks]Cortical sinus 皮质淋巴窦['kɔ:tɪkl]Medullary cord 髓索['medələrɪ]Medullary sinus 髓窦['medələrɪ]White pulp 白髓[pʌlp]Red pulp 红髓[pʌlp]Periarterial lymphatic sheath 动脉周围淋巴鞘[pɪə'rɪətɪərɪəl][lɪm'fætɪk][ʃi:θ]Marginal zone 边缘区Splenic cord 脾索['splenɪk][kɔ:d]Splenic sinus 脾血窦['splenɪk][ˈsaɪnəs] endocrine system 内分泌系统[ˈendəukrain ˈsistəm]hormone 激素['hɔ:məʊn]paracrine 旁分泌[pəræk'raɪn]thyroid follicle 甲状旁腺滤泡[ˈθaɪˌrɔɪd ˈfɔlɪkəl] parafollicular cell 滤泡旁细胞[pærə'fɒlɪkjʊlə]zona glomerulosa 球状带['zoʊnə][ɡlɒmrjʊ'loʊzə]zona fasciculate 束状带['zoʊnə][fə'sɪkjʊˌleɪt] zona reticularis 网状带['zoʊnə]chromaffin cell 嗜铬细胞[ˈkroməfɪn sɛl]pars distalis 远侧部[pɑ:z] [dɪs'təlɪs]acidophil 嗜酸性细胞['æsɪdoʊˌfɪl]basophil 嗜碱性细胞[bæsə'fɪl]chromophobe cell 嫌色细胞[ˈkroməˌfob sɛl] herring body 赫令体[ˈhɛrɪŋ]gonadotroph 促性腺激素细胞[ɡənədət'rɒf] pituicyte 垂体细胞[pɪ'tju:ɪˌsaɪt] somatotroph 生长激素细胞['soʊmətətroʊf] hypophyseal portal system 垂体门脉系统[haɪ'pɒfəsi:l]['pɔ:tl] Digestive system 消化系统[daɪˈdʒestɪv ˈsistəm] Mucosa 粘膜[mju:'kəʊsə] Submucosa 粘膜下层[sʌbmju:'kəʊsə] Muscularis 肌层['mʌskjʊlærɪs] Adventitia 外膜[ˌædvən'tɪʃɪə]Plica 皱襞['plaɪkə]Serosa 浆膜[sɪ'rəʊsə]Gastric area 胃小凹[ˈgæstrɪk ˈɛəriə] Fundic gland 胃底腺[ˈfʌndik ɡlænd]Parietal cell 壁细胞[pəˈraiətəl sel]Oxyntic cell 泌酸细胞['ɒksɪntɪk sel]Chief cell 主细胞[tʃi:f sel]Intracellular secretory canaliculus 细胞内分泌小管[ˌɪntrəˈseljələsiˈkri:təri ˌkænəˈlikjuləs]Intestinal villus 肠绒毛[ɪnˈtestənəl ˈviləs] Absorptive cell 吸收细胞[əbˈsɔ:ptiv sel]Paneth cell 潘氏细胞Duodenal gland 十二指肠腺[ˌdju(:)əuˈdi:nl ɡlænd] Central lacteal 中央乳糜管[ˈsentrəl ˈlæktiəl] digestive gland 消化腺[daɪˈdʒestɪv ɡlænd] intercalated duct 闰管[ɪntɜ:kə'leɪtɪd dʌkt] centroacinar cells 泡心细胞pancreas islet 胰岛[ˈpæŋkri:əs ˈailit] hepatic lobule 肝小叶[hɪˈpætɪk ˈlɔbju:l] central vein 中央静脉[ˈsentrəl vein] Hepatocyte 肝细胞['hepətəsaɪt]hepatic plate 肝板[hɪˈpætɪk pleit]Kupffer cell 肝巨噬细胞perisinusoidal space 窦周隙bile canaliculi 胆小管[baɪl kænə'likjulai]portal area 门管区[ˈpɔ:təl ˈɛəriə]respiratory system 呼吸系统[ˈrespərəˌtɔ:ri]['sɪstəm] trachea 气管[trə'ki:ə]brush cell 刷细胞[brʌʃ][sel]ciliated cell 纤毛细胞['sɪlɪeɪtɪd][sel]bronchus 支气管[ˈbrɒŋkəs]lung 肺[lʌŋ]respiratory bronchiole [ˈrespərəˌtɔ:ri]alveolar duct 肺泡管[ælˈvi:ələ(r)][dʌkt]alveolar sac 肺泡囊[ælˈvi:ələ(r)][sæk] pulmonary alveolus 肺泡[ˈpʌlmənəri][ælˈvi:ələs] alveolar septum 肺泡隔[ælˈvi:ələ(r)][ˈseptəm] pulmonary macrophage 肺巨噬细胞[ˈpʌlmənəri][ˈmækrəfeɪdʒ] blood-air barrier 气-血屏障[blʌd] [eə(r)] [ˈbæriə(r)] Nephron 肾单位['nefrɒn]Medullary ray 髓放线[meˈdʌləri rei] Uriniferous tubule 泌尿小管['jʊərə'nɪfərəs]['tju:bju:l]Renal corpuscle 肾小体[ˈri:nəl ˈkɔ:pəsəl] Glomerulus 血管球[gləʊ'meərjʊləs]Renal capsule 肾小囊[ˈri:nəl ˈkæpsju:l]Renal tubule 肾小管[ˈri:nəl ˈtju:bju:l] Podocyte 足细胞[pɒdə'saɪt]Proximal tubule 近端小管[ˈprɔksiməl ˈtju:bju:l] Distal tubule 远端小管[ˈdistəl ˈtju:bju:l] Brush border 刷状缘[ˈdistəl ˈtju:bju:l] Macula densa 致密斑['mækjʊlə]Filtration barrier 滤过屏障[filˈtreiʃən ˈbæriə]Renin 肾素Juxtaglomerular complex 球旁复合体[ˌdʒʌkstəˌɡlɔˈmeruləˈkɔmpleks]seminiferous tubule 生精小管[ˌsemə'nɪfərəs]['tju:bju:l] Spermatozoa 精子细胞[ˌspɜ:mətəˈzəʊə] spermatogonium 精原细胞[ˌspɜ:mətə'gəʊnɪəm] Spermatocyte 精母细胞[spə'mætəsaɪt] spermatogenesis 精子发生[spɜ:mətəʊ'dʒenɪsɪs] spermatogenic cell 生精细胞[ˌspə:mətəˈdʒenik sel] Acrosome 顶体['ækrəˌsəʊm] Sperminogenesis 精子形成[ˌspɜ:mɪəʊ'dʒenəsɪs] Epididymis 附睾Sustentacular cell 支持细胞[ˌsʌstenˈtækjulə sel] Prostate 前列腺[ˈprɒsteɪt]Blood-testis barrier 血-睾屏障[ˈtestɪs]Testicular interstitial cell 睾丸间质细胞Androgen binding protein 雄激素结合蛋白[ˈændrədʒən ˈbaɪndɪŋˈprəuti:n]Female reproductive system 女性生殖系统['fi:meɪl][ˌri:prəˈdʌktɪv]['sɪstəm]Vary 卵巢['veərɪ]Follicle 卵泡[ˈfɒlɪkl]Primordial follicle 原始卵泡[praɪˈmɔ:di:əl ˈfɔlɪkəl] Primary follicle 初级卵泡[ˈpraiməri ˈfɔlɪkəl] Follicular theca 卵泡膜[fəˈlikjuləˈθi:kə] Secondary follicle 次级卵泡[ˈsekəndəri ˈfɔlɪkəl] Mature follicle 成熟卵泡[məˈtjuəˈfɔlɪkəl] Oogonia 卵原细胞Secondary oocyte 次级卵母细胞[ˈsekəndəri ˈəuəsait] Ovulation 排卵[ˌɒvjʊ'leɪʃn]Ovum 卵细胞[ˈəʊvəm]Zona pellucida 透明带[ˈzəʊnəpəˈlu:sɪdə, pel ˈju:-]Corona radiata 放射冠[kə'rəʊnə]Corpus luteum 黄体['kɔ:pəs][ˈlu:ti:əm] Granulosa lutein cell 颗粒黄体细胞[grænjʊ'ləʊsə]['lu:tɪɪn][sel] Theca lutein cell 膜黄体细胞[ˈθi:kəˈlu:tiin sel]Uterus 子宫['ju:tərəs]Uterine gland 子宫腺[ˈju:tərain ɡlænd]Mammary gland 乳腺[ˈmæməri ɡlænd] Germ cell 生殖细胞[dʒə:m sel]Gamete 配子[ˈgæmi:t]Capacitation 获能[kəpæsɪ'teɪʃən] Fertilization 受精[ˌfɜ:təlaɪ'zeɪʃn] Acrosome reaction 顶体反应['ækrəˌsəʊm riˈækʃn]Zone reaction 透明带反应[zəʊn riˈækʃn]Male pronucleus 雄原核[meil prəˈnju:kliəs] Female pronucleus 雌原核[ˈfi:meil prəˈnju:kliəs] Fertilized ovum/zygote 受精卵/合子[ˈfɜ:təlaɪzd ˈəʊvəm/ˈzaɪgəʊt]Cleavage 卵裂[ˈkli:vɪdʒ] Blastomere 卵裂球[blɑ:stə'mɪə]Morula 桑椹胚['mɔ:rʊlə]Blastocyst 胚泡['blæstəsɪst]blastocoele 胚泡腔[blɑ:stəʊ'kəʊl] Trophoblast 滋养层['trɒfəblæst]Inner cell mass 内细胞群[ˈinəsel mæs] Implantation/imbed 植入/着床[ˌɪmplɑ:n'teɪʃn]/[imˈbed]Syncytiotrophoblast 合体滋养层[sɪnsɪti:əʊt'rɒfəʊblæst]Cytotrophoblast 细胞滋养层[saɪtəʊ'trɒfəblæst] Decidua 蜕膜[dɪ'sɪdjʊə] Decidual cell 蜕膜细胞[dɪsɪd'jʊəl]Decidua basalis 基蜕膜[dɪ'sɪdjʊə'beɪsəlɪs ]Decidua capularis 包蜕膜[dɪ'sɪdjʊə?] Decidua parietalis 壁蜕膜[dɪ'sɪdjʊə?] Embryonic disc 胚盘[ˌembri:ˈɔnɪk disk] Epiblast 上胚层['epɪblæst]Hypoblast 下胚层['haɪpəblæst]body stalk 体蒂['bɒdɪ] [stɔːk] primitive streak/node/pit 原条['prɪmɪtɪv][stri:k]/[nəʊd]/[pɪt] intraembryonic mesoderm 胚内中胚层[ɪntrə,embrɪ'ɒnɪk] ['mesədɜ:m]mesoderm 中胚层['mesədɜ:m] ectoderm 外胚层['ektəʊˌdɜ:m] endoderm 内胚层['endəʊdɜ:m] notochord 脊索['nəʊtəˌkɔ:d] neural plate/groove/fold/tube 神经板/沟/褶/管[ˈnjʊərəl][pleɪt][fəʊld][tju:b]neural crest 神经嵴[ˈnjʊərəl] [krest] mesenchyme 间充质['mezənkaɪm]paraxial mesoderm 轴旁中胚层[pæ'ræksɪəl]['mesədɜ:m] intermediate mesoderm 间质中胚层[ˌɪntəˈmi:diət] ['mesəd ɜ:m]lateral mesoderm 侧中胚层[ˈlætərəl]['mesədɜ:m] parietal mesoderm 体壁中胚层[pə'raɪɪtl]['mesədɜ:m] visceral mesoderm 脏壁中胚层[ˈvɪsərəl]['mesədɜ:m] afterbirth 衣胞[ˈɑ:ftəbɜ:θ]fetal membrane 胎膜['fi:tl][ˈmembreɪn] chorion 绒毛膜['kɔ:rɪɒn]amnion 羊膜['æmnɪən]amniotic fluid 羊水[ˌæmnɪ'əʊtɪk][ˈflu:ɪd] yolk sac 卵黄囊[jəʊk][sæk]umbilical cord 脐带[ʌm'bɪlɪkəl][kɔ:d] placenta 胎盘[pləˈsentə]placental septum 胎盘隔[pləˈsentl][ˈseptəm] placental membrane /placental barrier 胎盘膜/胎盘屏障[pləˈsentl][ˈmembreɪn]/[pləˈsentl][ˈbæriə(r)]twins 双胎[twɪnz]multiplets 多胎['mʌltɪpləts]conjoined twins 联体双胎[kən'dʒɔɪnd] [twɪnz] Frontonasal process 额鼻[f'rʌntəʊnəsl][ˈprəʊses] Heart process 心突[ˈprəʊses]Branchial arch/groove 鳃弓/沟[b'rɑ:nkɪəl] [gru:v] Pharyngeal pouch 咽囊[fəˈrɪndʒiəl] [paʊtʃ] Branchial membrane/apparatus 鳃膜/器[b'rɑ:nkɪəl][ˈmembreɪn]/ [ˌæpəˈreɪtəs]Maxillary/mandibular process 上/下颌突[mæk'sɪlərɪ]/[mæn'dɪbjʊlə] Stomodeum 口凹/原始口腔[stəmɒ'di:əm]Nasal placode/pit 鼻扳/窝[ˈneɪzl] ['plækəʊd]/[pɪt] Median palatine process 正中腭突[ˈpælətaɪn]Lateral palatine process 外侧腭突[ˈlætərəl][ˈpælətaɪn] Dental lamina 牙扳[ˈdentl] ['læmənə]Tooth bud 牙蕾[tu:θ bʌd]Enamel organ 造釉器[iˈnæməl ˈɔ:ɡən] Ameloblast 成釉质细胞[æmə'lɒblæst]Dental papilla 牙乳头[ˈdentl][pə'pɪlə]Limb bud 上/下肢牙[lim‘bʌd]Cleft lip 唇裂[kleft lip]Cleft palate 腭裂[ˈpælət]Oblique facial 面斜裂[əˈbli:k]primitive digestive duct 原始消化管[ˈprɪmətɪv daɪˈdʒestɪv dʌkt]foregut 前肠['fɔ:gʌt]midgut 中肠['mɪdgʌt]hindgut 后肠['haɪndgʌt] midgut loop 中肠袢[ˈmidˌgʌtlu:p]caecal bud 盲肠突/盲肠芽['si:kəbʌd] umbilical coelom 脐腔[ˌʌmbiˈlaikəl ˈsi:ləm]cloaca 泄殖腔[kləʊ'eɪkə] urorectal septum 尿直肠隔[ˈseptəm] urogenital sinus 尿生殖窦[juərəuˈdʒenitl ˈsaɪn əs]urogenital membrance 尿生殖膜[juərəuˈdʒenitlˈmembreɪn]anal menbrance 肛膜[ˈeɪnlˈmembreɪn]hepatic diverticulum 肝憩室[hɪˈpætɪk ˌdaivə:ˈtikjuləm]ventral pancreatic bud 腹胰芽[ˈventrəl ˌpæŋkriˈætik bʌd]dorsal pancreatic bud 背胰芽[ˈdɔ:səl ˌpæŋkriˈætik bʌd]thyroglossal cyst 甲状舌管囊肿[θaɪ'roʊɡlɒsl]Meckel's diverticulum 梅克尔憩室[ˌdaɪvɜ:'tɪkjʊləm] umbilical fistula 脐瘘;脐粪瘘[ˌʌmbiˈlaikəl ˈfistjulə]congenital umbilical hernia 先天性脐疝[kənˈdʒenɪtl ˌʌmbiˈlaikəl ˈhə:njə]laryngotracheal groove 喉气管沟[ˌləriŋɡəuˌtrəˈkiəl ɡru:v]laryngotracheal diverticulum 喉气管憩室[ˌləriŋɡəuˌtrəˈkiəl ˌdaivə:ˈtikjuləm]lung bud 肺芽[lʌŋbʌd] tracheoesophageal fistula 气管食管瘘[treikiəui:ˌsɔfəˈdʒi:əl ˈfistjulə]hyaline membrane disease 透明膜病[ˈhaiəli:n ˈmemˌbreɪn diˈzi:z]nephrotome 生肾节['nefrəˌtəʊm] urogenital ridge 尿生殖嵴[juərəuˈdʒenitl ridʒ] mesonephric ridge 中肾嵴[mi:sə'nefrɪk ridʒ] genital ridge 生殖腺嵴[ˈdʒenitl ridʒ] pronephros 前肾[prəʊ'nefrɒs] mesonephros 中肾[ˌmesəʊ'nefrəs] metanephros 后肾[ˌmetə'nefrɒs] mesonephric duct/Wolffian duct 中肾管[mi:sə'nefrɪk]ureteric bud 输尿管芽[bʌd] metanephrogenic tissue 生后肾组织[metənɪfrəd'ʒenɪk] primordial germ cell 原始生殖细胞[praɪˈmɔ:di:əl dʒə:m sel]paramesonephric duct 中肾旁管Blood island 血岛[blʌd ˈailənd] Primitive cardiovascular system 原始心血管系统[ˈprɪmətɪv ˌkɑ:diəʊˈvæskjələ(r) 'sɪstəm]Vitelline artery 卵黄动脉[viˈtelin ˈɑ:təri] Umbilical artery 脐动脉[ˌʌmbiˈlaikəl ˈɑ:təri]Aortic artery 弓动脉[eɪ'ɔ:tɪk ˈɑ:təri] Anterior cardinal vein 前主静脉[ænˈtɪəri:əˈkɑ:dinl vein] Posterior cardinal vein 后主静脉[pɔˈstɪəri:əˈkɑ:dinl vein] Common cardinal vein 总主静脉[ˈkɔmən ˈkɑ:dinl vein]Vitelline vein 卵黄静脉[viˈtelin vein]Umbilical vein 脐静脉[ˌʌmbiˈlaikəl vein] Pericardial coelom 围心腔[ˌperiˈkɑ:diəl ˈsi:ləm] Cardiogenic plate 生心扳[ˌkɑ:diəuˈdʒenik pleit] Cardiogenic tube 心管Myoepicardial mantle 心肌外套层[ˌmaɪə'kɑ:dɪəl][ˈmæntl] Cardiac jelly 心胶质[ˈkɑ:di:ˌæk ˈdʒeli:] Bulbus cordis 心球['bʌlbʌs 'kɔ:dɪs] Sinus venosus 静脉窦[vi:ˈnəʊsəs]Truncus arteriosus 动脉干[ˈtrʌŋkəs] Bulboventricular loop 球室袢[bʌlbʌvent'rɪkjʊləlu:p] Atrioventricular canal 房室管[ˌeitriəuvenˈtrikjuləkəˈnæl]Endocardial cushion 心内膜垫[ˌendəʊ'kɑ:dɪəl ˈku ʃənz]Foramen ovale 卵圆孔[əʊˈvæli:, -ˈveɪli:, -ˈv ɑ:-]Truncal ridge 动脉干嵴['trʌŋkl rɪdʒ]Bulbar ridge 球嵴[ˈbʌlbəridʒ]Aorico-pulmonary septum 主动脉肺动脉隔[eɪɔ:tɪkəʊ'pʌlmənərɪˈseptəm]Atrial septal defect 房间隔缺损[ˈeitriəl ˈseptl diˈfekt] Ventricular septal defect 室间隔缺[venˈtrikjuləˈseptl diˈfekt] Tetralogy of Fallot 法络四联症[te'trælədʒɪ] [fæˈləʊ]。

hmc80h卧式加工中心稳定性分析和评价

hmc80h卧式加工中心稳定性分析和评价

北京工业大学工学硕士学位论文图3-2HMC80H卧式加工中心床身Fig.3-2ThebedofttMC80Hhorizontalmachiningcenter图3-3HMC80H卧式加工中心立柱Fig.3-3ThecolumniationofI皿IC80Hhorizontalmachiningcenter第3章HMC80H有限元模型的生成图3—4l删lCSOH卧式加工中心主轴箱Fig3-4ThespindleboxofHMC80Hhorizontalmachiningcenter图3-5HMC80H卧式加工中心主轴Fig.3-5ThespindleoflillC80Hhorizontalmachiningcenter-l9-北京工业大学工学硕士学位论文3.2结构件的简化对结构件的小圆角、小倒角全部以直角处理;小角度斜面以平面处理,对分析无影响或影响较小的搭子面、螺孔及孔内部筋孔等去除,安装地脚螺钉的凹槽去除,安装导轨压板的斜槽去除。

安装光栅的支撑台去除,主轴以实心处理,主轴与转子及轴承内圈做一体处理,定子与轴承外圈及外部支撑冷却件一体处理,工作台以内部布筋的箱体来简化,简化后的床身、立柱、主轴箱、主轴定子、及主轴转子见图3-6、图3—7、图3-8、图3-9、图3一10。

图3-6HMCSOH卧式加工中心简化床身Fig·3-6ThesimplifiedbedoftIMC80Hhorizontalmachiningcenter图3~7HMCSOH卧式加工中心简化立柱Fig·3—7ThesimplifiedcolumniationofI埘C80Hhorizontalmachiningcenter第3章HMC80H有限元模型的生成图3-8HMC80H卧式加工中心简化主轴箱Fig·3-8ThesimplifiedspindleboxofHMC80Hhorizontalmachiningcenter图3-9HMCSOH卧式加工中心简化主轴定子Fig·3-9ThesimplifiedspindlestatorofIPJIC80flhorizontalmachiningcenter北京工业大学工学硕士学位论文图3—10I珈C80H卧式加工中心简化主轴转子Fig.3-10ThesimplifiedspindlerotorofIBfC80Hhorizontalmachiningcenter3.3结合部的简化HMC80H卧式加工中心的结合部主要包括导轨结合部、丝杠结合部、轴承结合部及主轴与主轴箱之间的固定结合部四种。

多体动力学基础公式介绍之二Magg‘s Equations

多体动力学基础公式介绍之二Magg‘s Equations
VOL. 13, NO. 1, 13
Role of Maggi's Equations in Computational Methods for Constrained Multibody Systems
Andrew Kurdila,* John G. Papastavridis,t and Manohar P. KamatJ Georgia Institute of Technology, Atlanta, Georgia
This paper presents a unified theoretical basis for a class of methods that generate the governing equations of constrained dynamical systems by eliminating the constraints. By using Maggi's equations in conjunction with a common projective theory from numerical analysis, it is shown that members of the class are precisely characterized by the basis they choose for the null-space of the variational form of the constraints. For each method considered, the specific basis chosen for the null-space of the variational constraints is derived, as well as a dual basis for the orthogonal complement. The latter basis is of particular interest since it is shown that its knowledge theoretically enables one to generalize certain methods of the class to calculate constraint forces and torques. Practical approaches based on orthogonal transformations to effect this strategy are also outlined. In addition, since the theory presented herein stresses a common, fundamental structure to the various methods, it is especially useful as a means of comparing and evaluating individual numerical algorithms. The theory presented makes clear the relationship between certain numerical instabilities that have been noted in some methods that eliminate a priori constraint contributions to the governing equations by selecting an independent subset of unknowns. It is also briefly indicated how this formalism can be extended, in principle, to the wider class of nonlinear nonholonomic constraints.

多体动力学和非线性有限元联合仿真

多体动力学和非线性有限元联合仿真

A New Solution For Coupled Simulation Of Multi-Body Systems And Nonlinear Finite Element Models Giancarlo CONTI, Tanguy MERTENS, Tariq SINOKROT(LMS, A Siemens Business)Hiromichi AKAMATSU, Hitoshi KYOGOKU, Koji HATTORI(NISSAN Motor Co., Ltd.)1 IntroductionOne of the most common challenges for flexible multi-body systems is the ability to properly take into account the nonlinear effects that are present in many applications. One particular case where these effects play an important role is the dynamic modeling of twist beam axles in car suspensions: these components, connecting left and right trailing arms and designed in a way that allows for large torsional deformations, cannot be modeled as rigid bodies and represent a critical factor for the correct prediction of the full-vehicle dynamic behavior.The most common methods to represent the flexibility of any part in a multi-body mechanism are based on modal reduction techniques, usually referred to as Component Mode Synthesis (CMS) methods, which predict the deformation of a body starting from a preliminary modal analysis of the corresponding FE mesh. Several different methods have been developed and verified, but most of them can be considered as variations of the same approach based on a limited set of modes of the structure, calculated with the correct boundary conditions at each interface node with the rest of the mechanism, allowing to greatly reduce the size of system’s degrees of freedom from a large number of nodes to a small set of modal participation factors. By properly selecting the number and frequency range of the modes, as well as the boundary conditions at each interface node [1], it is possible to accurately predict the static and dynamic deformation of the flexible body with remarkable improvements in terms of CPU time: this makes these methods the standard approach to reproduce the flexibility of components in a multi-body environment. Still, an important limitation inherently lies in their own foundation: since displacements based on modal representation are by definition linear, any nonlinear phenomena cannot be correctly simulated. For example, large deformations like twist beam torsion during high lateral acceleration cornering maneuvers typically lead to geometric nonlinearities, preventing any linear solution from accurately predicting most of the suspension’s elasto-kinematic characteristics like toe angle variation, wheel center position, vertical stiffness.One possible solution to overcome these limitations while still working with linear modal reduction methods is the sub-structuring technique [2]: the whole flexible body is divided into sub-structures, which are connected by compatibility constraints preventing the relative motion of the nodes that lie between two adjacent sub-structures. Standard component mode synthesis methods are used in formulating the equations of motion, which are written in terms of generalized coordinates and modal participation factors of each sub-structure. The idea behind it is that each sub-portion of the whole flexible structure will undergo smaller deformations, hence remaining in the linear flexibility range. By properly selecting the cutting sections it is usually possible to improve the accuracy of results (at least in terms of nodal displacements: less accuracy can be expected for stress and strain distribution). Another limitation of these methods is the preliminary work needed to re-arrange the FE mesh, although some CAE products already offer automatic processes enabling the user to skip most of the re-meshing tasks and hence reducing the modeling efforts.An alternative approach to simulate the behavior of nonlinear flexible bodies is based on a co-simulation technique that uses a Multi-body System (MBS) solver and an external nonlinear Finite Element Analysis (FEA) solver. Using this technique one can model the flexible body in the external nonlinear FEA code and the rest of the car suspension system in the MBS environment. The loads due to the deformation of the body are calculated externally by the FEA solver and communicated to the MBS solver at designated points where the flexible body connects to the rest of the multi-body system. The MBS solver, on the other hand, calculates displacements and velocities of these points and communicates them to the nonlinear FEA solver to advance the simulation. This approach doesn’t suffer from the limitations that arise from the linear modeling of the flexibility of a body. This leads to more accurate results, albeit at the price of much larger CPU time. In fact, simulation results are strongly affected by the size of the communication time step between the two solvers: a better accuracy (and more stable solver convergence) can be generally obtained by using smaller time steps which require larger calculation times, as shown also in [3].2 Overview of the activityThis paper presents the results of a benchmark activity performed in collaboration with Nissan Auto where a new FE-MBS variable-step co-simulation technique was used: a coupling at the iteration level currently implemented in commercial FEA package LMS SAMCEF Mecano [4] and general purpose multi-body system package LMS b Motion [5]. In this technique each solver uses its own integrator but only one Newton solver is used. In this case one solver is designated as the master and will be responsible for solving the Newton iterations. The coupled iterations continue until both solvers satisfy their own solution tolerances and convergence is achieved. The co-simulation process is organized by means of a supervisor code that manages the data exchange and determines the new time step of integration for both solvers. Further technical details on this “coupled simulation“ method, as well as a comparison with the variable-step co-simulation method, are available in [6].A multi-body model of a rear twist beam suspension has been created, where the flexibility of the twist beam was simulated with three alternative modeling techniques to be compared:- Component Mode Synthesis (Craig-Bampton method)- Linear sub-structuring- Nonlinear FE-MBS coupled simulation.As a further step also the two bushings connecting the twist beam with the car body, originally modeled in b Motion as standard force elements with nonlinear stiffness and damping characteristics for all directions, have been replaced by two SAMCEF Mecano nonlinear flexible bodies.Two different suspension events have been simulated in order to compare the results from the different modeling methods:- Suspension roll (opposite wheel vertical travel applied at wheel centers)- Braking in turn (dynamic loads applied at wheel centers).Figure 1 shows the b Motion suspension model used for this activity, where the FE mesh models of twist beam and bushings are also displayed:3 Modeling and simulations3.1 Model validationAs a first step a multi-body model of rear suspension was created in b Motion with input data provided by Nissan Auto from a pre-existing model developed with another multi-body software package: hardpoints location, bodies mass and inertia data, kinematic and compliant connections characteristics, properties of coil springs, shock absorbers, end stop elements. Since the original model included a flexible twist beam based on a modal reduction method (Craig-Bampton) the same original mode set has been used to obtain a linear flexible representation of the twist beam in b Motion. Then a suspension roll has been simulated in both environments in order to validate Motion results with the data from the source model, obtained by applying a vertical displacement in opposite directions at the two wheel centers. The main elasto-kinematic suspension characteristics have been compared: toe and camber variation, wheel center longitudinal and lateral displacements, vertical stiffness. In fig.2 the vertical force at wheel center and the toe angle variation are plotted versus the wheel vertical displacement: the differences between the two models are negligible.Fig. 1b Motion multi-body model of rear suspension with flexible twist beam and bushings3.2 Flexible twist beam modeling Once validated the b Motion model, the linear flexible twist beam was replaced by the two alternative modeling methods intended to take into account the geometric nonlinearities due to the large deformations of the beam element: sub-structuring and coupled simulation Motion – Mecano.- Sub-structuring: the twist beam was cut in3 sections along the central pipe, resultingin 4 separate linear flexible bodies: the twolongitudinal arms + two symmetric halves ofthe beam. Figure 3 shows the three cuttingsections used.- Coupled simulation Motion – Mecano -starting from the original Nastran FE mesh, the dynamic behavior of the full twist beam is calculated by the SAMCEF Mecano nonlinear solver through a specific Analysis Case added to the VL Motion model.3.3 FE bushings modelingAs a further task of the activity, starting from the CAD representation of the geometry of the bushings connecting the twist beam with the car body a Mecano FE model of each bushing has been created and implemented into the b Motion mechanism to replace the original bushing force elements, modeled as nonlinear stiffness and damping curves in all six directions. Material properties for the rubber and metal parts of the bushings were not known in detail, so tentative values have been used for the rubber whereas the metal parts have been considered as rigid: although these assumptions were expected to have a major impact on results, the main purpose of this task was not to obtain accurate and correlated results, rather to prove the capability of the Motion-Mecano coupled simulation method to successfully solve multiple nonlinear flexible bodies in the same model.3.4 Results comparisonFigure 4 shows the results of the suspension roll analysis for two of the most relevant outputs for the handling performance of a car: toe angle and wheel track variation, plotted vs. left wheel vertical displacement. The main outcome is that sub-structuring and coupled Motion-Mecano simulation (not including FE bushings) give very similar results, both different from the linear case: as expected, the linear approach gives reliable results only in a limited range of displacements, whereas for larger deformations of the twist beam a more accurate prediction of the behavior of the system can be obtained only by considering the nonlinear flexibility of the body.In Fig.5 some of the results from the dynamic braking-in-turn maneuver are displayed, where during a cornering maneuver started at around 0.7s a braking force is applied after 1.5s. In this comparison the additional case with the two nonlinear FE bushings is also displayed: again, a remarkable difference can be detected between the linear case and the nonlinear FE-MBS coupled simulation; furthermore a clear effect from nonlinear FE bushings can be seen, although most likely affected by uncertainties on the material properties applied in the Mecano FE bushing models.Fig. 3 Sub-structuring of the linear flexible twist beam Fig. 2Comparison of results between b Motion model and source MBS model4 ConclusionsIn this paper the usage of a new FE-MBS co-simulation technique for an automotive application is compared with two alternative solutions to represent the nonlinear flexibility of a body in a multi-body mechanism. A b Motion rear suspension model with flexible twist beam has been created with the aim to simulate two typical handling events where the proper prediction of the large deformation of the twist beam strongly affects most of the elasto-kinematic characteristics of the suspension. The compared results show a clear difference between the linear approach, based on a modal representation of the flexibility of the body, and the alternative methods which allow a more correct prediction of the geometric nonlinearity.This new b Motion – SAMCEF Mecano co-simulation technique allows also the simulation of multiple nonlinear flexible bodies in the same mechanisms as shown in this paper. Further studies are currently on-going to extend the usage of this solution to complex applications like flexible contact and friction forces, nonlinear material properties, thermal effects.5 References[1] Yoo W.S., Haug E.J.: “Dynamics of flexible mechanical systems using vibration and static correctionmodes ”, Journal of Mechanisms, Transmissions and Automation in Design, 108, 315-322, 1985[2] Sinokrot T.Z., Nembrini M., Toso A., Prescott W.C.: "A Comparison Of Sub-Structuring Synthesis And TheCosimulation Approach In The Dynamic Simulation Of Flexible Multi-body Systems ", MULTIBODYDYNAMICS 2011, ECCOMAS Thematic Conference, Brussels, Belgium, 4-7 July 2011[3] Sinokrot T.Z., Nembrini M., Toso A., Prescott W.C.: "A Comparison Of Different Multi-body SystemApproaches In The Modeling Of Flexible Twist Beam Axles ", Proceedings of the 8th International Conference on Multi-body Systems, Nonlinear Dynamics, and Control, August 28-31, 2011, Washington D.C., USA[4] LMS International, b Online Help Manual , 2013.[5] LMS Samtech, Samcef Online Help Manual – version 15.1, 2013.[6] Sinokrot T., Jetteur P., Erdelyi H., Cugnon F., Prescott W.: "A New Technique for Stronger Couplingbetween Multi-body System and Nonlinear Finite Element Solvers in Co-simulation Environments ",MULTIBODY DYNAMICS 2013, ECCOMAS Thematic Conference, Zagreb, Croatia, 1-4 July 2013Fig. 4Suspension roll analysis: toe angle and wheel track variationsFig. 5Braking-in-turn analysis: wheel base and toe angle variations。

西医神经科术语英文翻译

西医神经科术语英文翻译

西医神经科术语英文翻译以下是常见的西医神经科术语英文翻译:1. 神经学:Neurology2. 神经系统:Nervous System3. 大脑:Brain4. 脊髓:Spinal Cord5. 神经元:Neuron6. 神经胶质细胞:Glial Cells7. 突触:Synapse8. 轴突:Axon9. 树突:Dendrites10. 髓鞘:Myelin Sheath11. 神经递质:Neurotransmitters12. 神经传导通路:Nerve Conduction Pathways13. 反射:Reflex14. 痛觉:Pain Sensation15. 感觉运动传导通路:Sensorimotor Pathways16. 自主神经系统:Autonomic Nervous System17. 中枢神经系统:Central Nervous System (CNS)18. 外周神经系统:Peripheral Nervous System (PNS)19. 神经肌肉接头:Neuromuscular Junction20. 癫痫:Epilepsy21. 帕金森病:Parkinson's Disease22. 多发性硬化症:Multiple Sclerosis (MS)23. 脑卒中:Stroke24. 脑外伤:Traumatic Brain Injury (TBI)25. 脑瘤:Brain Tumors26. 脑炎:Brain Infections / Encephalitis27. 神经痛:Neuralgia28. 头痛:Headache29. 失眠:Insomnia30. 肌肉萎缩:Muscle Atrophy31. 肌无力:Muscle Weakness32. 神经根病:Radiculopathy33. 神经丛病变:Plexopathy34. 脊髓病变:Myelopathy35. 脑积水:Hydrocephalus36. 脊髓空洞症:Syringomyelia37. 脑电图(EEG):Electroencephalogram (EEG)38. 肌电图(EMG):Electromyogram (EMG)39. 经颅磁刺激(TMS):Transcranial Magnetic Stimulation (TMS)40. 正电子发射断层扫描(PET):Positron Emission Tomography (PET)41. 功能磁共振成像(fMRI):Functional Magnetic Resonance Imaging (fMRI)42. 单光子发射计算机断层扫描(SPECT):Single Photon Emission Computed Tomography (SPECT)43. 经颅多普勒超声(TCD):Transcranial Doppler Ultrasound (TCD)44. 认知障碍:Cognitive Dysfunction45. 情绪障碍:Mood Disorders46. 神经退行性疾病:Neurodegenerative Diseases47. 中毒性脑病:Toxic Encephalopathy48. 脑死亡:Brain Death49. 昏迷:Coma50. 意识障碍:Disorders of Consciousness。

地球脉动简短总结

地球脉动简短总结

地球脉动简短总结地球脉动是一个复杂而神奇的现象,它是指地球表面上不断发生的各种振动和震动。

这些脉动现象是由地震、地表水、大气等多种因素所引起的。

地球脉动对于地球科学研究具有重要意义,本文将对地球脉动的概念、成因及其意义进行简要总结。

地球脉动的概念地球脉动是指地球表面或地下各种振动和震动的集合。

它是一个广义的概念,包括了地震、地面振动、水波等各种形式的振动。

这些振动是地球内部能量的释放和传递的结果,反映了地球的动态变化和内部结构。

地球脉动的成因地球脉动的成因非常多样化,主要包括以下几个方面:1.地震:地震是地球脉动最重要的成因之一。

当地球板块发生断裂和滑动时,释放出的能量就会引起地震波的传播,导致地球表面的振动和震动。

2.地表水:地表水也是引起地球脉动的重要因素之一。

当洪水、冰川大小变化等情况发生时,地表水的质量分布会发生变化,从而引起地球表面的振动和脉动。

3.大气运动:大气运动也会对地球脉动产生影响。

例如,风暴、气压变化等现象都会引起大气的振动和波动,进而影响地球表面的振动。

4.人类活动:人类活动也会对地球脉动产生一定的影响。

例如,大规模的人类工程活动,如建筑物的施工、挖掘矿井等,都会引起地球表面的振动和脉动。

地球脉动的意义地球脉动对地球科学研究具有重要意义,以下是几个方面的体现:1.揭示地球内部结构:地震波的传播路径和速度可以帮助地球科学家研究地球内部的物质组成和结构。

通过分析地震波的传播路径和速度变化,可以推测地球的内部结构,包括地壳、地幔和核心的分布和性质。

2.监测地震活动:地球脉动是地震活动的重要指标之一。

通过监测地球脉动,可以及时掌握地震活动的情况,预警和预测地震灾害的发生,有助于减少地震造成的损失。

3.研究地球的动态变化:地球脉动反映了地球的动态变化。

通过分析地球脉动的特征和变化规律,可以研究地球的演化历史和动态变化过程,对于理解地球的演化和地质构造有着重要意义。

4.深入研究地球系统:地球脉动是地球系统的一个组成部分,通过研究地球脉动,可以深入了解地震、海洋、大气等多个地球系统之间的相互作用和影响关系,为开展地球系统科学研究提供数据和支持。

matlab simscape multibody 例子

matlab simscape multibody 例子

matlab simscape multibody 例子Matlab Simscape Multibody: Exploring the World of Multi-Domain Physical ModelingMatlab Simscape Multibody is a powerful tool that allows engineers and scientists to model and simulate complex mechanical systems. From simple linkages to advanced robotics, Simscape Multibody provides a comprehensive set of tools and libraries that enable users to design, simulate, and analyze various physical systems.One of the key features of Simscape Multibody is its ability to handle multi-domain physical modeling. This means that you can combine mechanical, electrical, hydraulic, and other physical domains into a single simulation model. For example, you can model a machine that consists of mechanical linkages, electrical motors, sensors, and hydraulic actuators, all within the same simulation environment.To give you a better understanding of the capabilities of Simscape Multibody, let's explore a few examples:1. Robotic Arm: In this example, we can create a simulation model of a robotic arm using Simscape Multibody. By defining the joint constraints, motor properties, and link lengths, we can simulate the arm's movements and analyze its performance. This example can be extended to include control systems and trajectory planning algorithms to make the arm perform specific tasks.2. Suspension System: Simscape Multibody allows us to model the dynamics of a vehicle suspension system. By incorporating the mechanical properties of the suspension components, such as springs and dampers, we can simulate the vehicle's response to different driving conditions. This enables us to optimize the suspension system for improved ride comfort and handling.3. Hydraulic System: Simscape Multibody also supports hydraulic modeling. We can create a simulation model of a hydraulic system, including pumps, valves, cylinders, andfluid components. This allows us to analyze the hydraulic system's behavior, such as pressure, flow rate, and actuator response, under different operating conditions.4. Walking Robot: By combining mechanical and electrical components, we can simulate the motion of a walking robot using Simscape Multibody. By defining the leg kinematics, motor characteristics, and ground contact forces, we can study the robot's gait and stability. This example can be expanded to include sensor feedback and control algorithms for autonomous navigation.Simscape Multibody provides a user-friendly interface for building and simulating multi-domain physical models. It offers a wide range of pre-built components and libraries, allowing users to quickly assemble and simulate complex systems. Additionally, Matlab's extensive documentation and online community support provide resources for learning and troubleshooting.In conclusion, Matlab Simscape Multibody is a versatile tool for engineers and scientists seeking to explore multi-domain physical modeling. Its ability to integrate mechanical, electrical, hydraulic, and other physical domains opens up endless possibilities for simulating and analyzing complex systems. Whether it's robotics, vehicle dynamics, or hydraulic systems, Simscape Multibody empowers users to bring their designs to life in a virtual environment.。

说明-大连理工大学运载工程与力学学部

说明-大连理工大学运载工程与力学学部

力学(专业代码:0801 授予工学博士学位)一、培养目标本专业培养适应社会主义现代化建设需要,德、智、体全面发展,具备坚实的数理和力学基础,具有系统而深入的专业知识,掌握力学试验技能和计算方法,熟练掌握一门外国语,了解本学科最新发展前沿动态,具有独立从事科研能力的,能够在力学及相邻学科从事科研、教学、设计、生产和管理等工作的能力的高层次、创新性专门人才。

二、学科、专业及研究方向简介力学一级学科下设10个二级学科硕士点:一般力学与力学基础专业研究方向:01 分析结构力学与辛数学方法02 动力学与最优控制03 随机振动及非线性振动04 复杂系统与多体系统动力学固体力学专业研究方向:01应用力学的辛数学方法02 多孔多相介质力学03 计算固体力学与耦合问题数值方法04 破坏力学05 工程流变学与颗粒材料力学流体力学专业研究方向:01 流体力学中的辛技术及应用02 磁流体中智能机器鱼机理与优化设计03 流动的稳定性分析及湍流模拟04 流体的混合及热质传递强化技术05 港口海岸工程及海洋工程06 计算流体力学工程力学专业研究方向:01 工程结构多学科优化与反问题02 结构与多学科耦合系统仿真软件与应用03 先进材料与结构性能表征与现代设计理论04 工程结构动力分析与控制05 工程结构可靠性分析与健康诊断计算力学专业研究方向:01 工程优化与反问题的数值方法及应用02 多场与多尺度耦合问题的数值方法及应用03 现代有限元方法、计算建模与科学计算可视化04交缘与交叉学科中的关键力学问题05计算流体力学岩土与环境力学专业研究方向:01多孔多相材料中非线性力学及耦合问题02 环境土力学03 岩土力学试验测试技术与土的本构关系04 岩石力学、地下工程与边坡工程05 土壤渗流动力学与控制专业研究方向:01工程结构振动分析、控制与优化02 智能材料与结构控制03 机器人系统动力学04 航天器动力学与控制应用与实验力学专业研究方向:01材料和结构在特殊环境下的力学行为02 岩土和环境力学实验测试技术及基础理论研究03 海洋工程抗振技术与实验监测技术04 爆炸力学、冲击动力学、爆破工程、爆炸加工05 大型工业装备故障诊断、强度与可靠性分析生物与纳米力学专业研究方向:01生物器官生物力学模型及新材料应用研究02分子模拟和计算机辅助药物分子设计03微纳米与多尺度力学研究04生物材料的力学行为及其多功能化航空航天力学与工程专业研究方向:01飞行器结构优化设计02 先进材料与结构03 气动与热防护04 航天器动力学与控制05 航空航天推进技术三、培养方式【参照写法】博士研究生培养实行导师负责制,也可实行以导师为主的指导小组负责制。

DMBS使用说明

DMBS使用说明

机械系统动力学仿真软件(DMBS1.0)使用说明编写人:齐朝晖大连理工大学工业装备结构分析国家重点实验室目录1. 引言2. 建模过程2.1 路径设置以及主界面操作方法2.1.1 模型保存2.1.2 模型初始化2.1.3 求解器的选择2.1.4 动力学求解2.1.5 动画仿真2.2 系统参数定义2.2.1 系统重力加速度大小和方向2.2.2 系统参考点Markers的建立2.2.3 参考点生成的辅助工具2.2.4 定义物体坐标系和物体上的铰点2.2.5 编辑物体坐标系和铰点2.3 铰的相关信息定义2.3.1 定义铰的类型和位置2.3.2 指定铰坐标系辅助线2.3.3 定义铰坐标系及验证2.4 系统拓扑结构及约束元和磨擦铰的定义2.4.1 检查拓扑结构2.4.2 定义约束元2.4.3 指定含摩擦的铰3 系统初始参数和磨擦铰参数的设定3.1 铰初始化3.2 约束力元设定区3.3 铰内摩擦参数设定区3.4 铰分析4 外力、外力矩、力元的设定5 物体定义以及后处理5.1 物体实体的建立5.2 物体实体的自动剖分5.2.1 菜单及按钮功能5.2.2 网格剖分操作5.2.2.1平面问题5.2.2.2 三维问题5.3 物体后处理5.4 铰后处理6 简单算例——曲柄滑块机构6.1 新建文件6.2 系统参考点Markers的建立6.3 物体坐标系和物体上铰点的确定6.4 铰关联物体、铰点及铰坐标系的确定6.5 系统拓扑结构及约束元和磨擦铰的定义6.6 系统初始参数和磨擦铰参数的设定6.7 外力/外力矩、力元的设定6.8 物体实体的建立6.9 模型的保存、求解及仿真6.10 结果后处理1. 引言Dynamics of MultiBody Syetems (DMBS)软件可求解由刚体、柔体组成的机械系统动力学问题,自带网格自动剖分、柔体模态计算等有限元分析工具。

本软件可用于复杂机械系统的运动学和动力学数值分析,可作为虚拟样机技术的基础软件。

3自由度工业机器人(外文翻译)

3自由度工业机器人(外文翻译)

动态优化的一种新型高速,高精度的三自由度机械手①彭兰(兰朋)②,鲁南立,孙立宁,丁倾永(机械电子工程学院,哈尔滨理工学院,哈尔滨 150001,中国)( Robotics Institute。

Harbin Institute of Technology,Harbin 150001,P。

R。

China)摘要介绍了一种动态优化三自由度高速、高精度相结合,直接驱动臂平面并联机构和线性驱动器,它可以提高其刚度进行了动力学分析软件ADAMS仿真模拟环境中,进行仿真模拟实验.设计调查是由参数分析工具完成处理的,分析了设计变量的近似的敏感性,包括影响参数的每道光束截面和相对位置的线性驱动器上的性能.在适当的方式下,模型可以获得一个轻量级动态优化和小变形的参数。

一个平面并联机构不同截面是用来改进机械手的.结果发生明显的改进后的系统动力学仿真分析和另一个未精制一个几乎是几乎相等.但刚度的改进的质量大大降低,说明这种方法更为有效的。

关键词: 机械手、 ADAMS、优化、动力学仿真0 简介并联结构机械手(PKM)是一个很有前途的机器操作和装配的电子装置,因为他们有一些明显的优势,例如:串行机械手的高负荷承载能力,良好的动态性能和精确定位的优点等. 一种新型复合3一DOF臂的优点和串行机械手,也是并联机构为研究对象,三自由度并联机器人是少自由度并联机器人的重要类型。

三自由度并联机器人由于结构简单,控制相对容易,价格便宜等优点,具有很好的应用前景。

但由于它们比六自由度并联机器人更复杂的运动特性,增加了这类机构型综合的难度,因此对三自由度并联机器人进行型综合具有理论意义和实际价值。

本文利用螺旋理论对三自由度并联机器人进行型综合,以总结某些规律,进一步丰富型综合理论,并为新机型的选型提供理论依据,以下对其进行阐述。

如图-1所示机械手组成的平面并联机构(PPM)包括平行四边形结构和线性驱动器安装在PPM.两直接驱动电机c整合交流电高分辨率编码器的一部分作为驱动平面并联机械装置.线型致动器驱动的声音线圈发动机.这被认为是理想的驱动短行程的一部分.作为一个非换直接驱动类,音圈电机可以提供高位置敏感和完美的力量与中风的角色,高精密线性编码作为回馈部分保证在垂直方向可重复性。

Multibody Systems

Multibody Systems

Multibody SystemsMultibody systems are a crucial aspect of engineering and physics, playing a significant role in various fields such as robotics, biomechanics, vehicle dynamics, and many others. Understanding and analyzing the behavior of multibody systems is essential for designing and controlling complex mechanical systems. These systems consist of interconnected bodies or links, each with its own degrees of freedom, and their dynamics are influenced by forces, constraints, and interactions between the bodies. As a result, engineers and researchers face numerous challenges when dealing with multibody systems, including modeling, simulation, analysis, and control. One of the primary challenges in dealing with multibody systems is the complexity of their dynamics. Unlike single body systems, multibody systems involve multiple interconnected bodies, making it difficult to analyze their motion and behavior. The interactions between the bodies, such as contact forces, friction, and constraints, further complicate the dynamics of the system. As a result, engineers and researchers need to develop advanced mathematical models and simulation techniques to accurately predict the behavior of multibody systems under different conditions. This requires a deep understanding of mechanics, dynamics, and control theory, as well as proficiency in numerical methods and computer programming. Another challenge in dealing with multibody systems is the computational cost associated with simulating their dynamics. Since multibody systems involve a large number of interconnected bodies and complex interactions, simulating their dynamics can be computationally intensive. This is particularly challenging when dealing with real-time applications such as virtual prototyping, motion analysis, and control of robotic systems. Engineers and researchers need to develop efficient algorithms and computational techniques to reduce the computational cost of simulating multibody systems without compromising accuracy and reliability. This often involves leveraging parallel computing, optimization techniques, and model reduction methods to improve the efficiency of simulation and analysis. In addition to the technical challenges, dealing with multibody systems also requires a multidisciplinary approach that integrates knowledge from various fields such as mechanical engineering, robotics, control systems, and biomechanics. Engineers andresearchers need to collaborate across different disciplines to develop comprehensive solutions for modeling, simulating, and controlling multibody systems. This involves understanding the unique requirements and constraints of each application domain, as well as integrating advanced technologies and methodologies to address the specific challenges of multibody systems in different contexts. Moreover, dealing with multibody systems also involves addressing practical considerations such as design optimization, energy efficiency, and safety. Engineers and researchers need to consider the trade-offs between performance, cost, and reliability when designing and controlling multibody systems for real-world applications. This often requires conducting extensive experimental testing and validation to ensure that the behavior of the multibody system aligns with the desired specifications and requirements. Additionally, engineers need to consider the impact of external factors such as environmental conditions, wear and tear, and maintenance requirements when dealing with multibody systems in practical settings. Furthermore, dealing with multibody systems also involves addressing ethical and societal implications, particularly in fields such as robotics and biomechanics. As multibody systems become increasingly integrated into everyday life, it is essential to consider theethical and societal implications of their use. This includes addressing concerns related to safety, privacy, and the impact of automation on the workforce. Engineers and researchers need to engage in meaningful discussions with stakeholders and the public to ensure that the development and deployment of multibody systems are aligned with ethical principles and societal values. In conclusion, dealing with multibody systems presents numerous challenges that require a multidisciplinary approach, advanced technical expertise, and consideration of practical, ethical, and societal implications. Engineers and researchers need to develop comprehensive solutions for modeling, simulating, and controlling multibody systems, addressing the complexity of their dynamics, computational cost, multidisciplinary nature, practical considerations, andethical and societal implications. By addressing these challenges, we can unlock the full potential of multibody systems and leverage their capabilities to drive innovation and improve the quality of life for people around the world.。

多体系统动力学经典书籍

多体系统动力学经典书籍

多体系统动力学经典书籍多体系统的动力学领域是物理学中的重要分支,涉及到描述和研究多个相互作用的物体的运动。

下面是几本关于多体系统动力学的经典书籍,它们从不同的角度深入探讨了这个领域的内容。

1. 《多体系统:动力学与几何交融》("Many-Particle Systems: Dynamics and Geometry") -作者:Gerald Gustav Mahan 这本书介绍了多体量子力学和多体统计力学的基本概念和方法,并讨论了与凝聚态物理中的多体问题相关的几何形态。

作者通过几个例子,如理想气体和平均场近似下的费米系统,阐述了多体系统动力学中的关键概念。

此外,书中还涵盖了费米子和玻色子的统计力学和凝聚态物理中的超导现象。

2. 《Classical Mechanics: Point Particles and Relativity》-作者:Walter Greiner这本书介绍了经典力学中多体系统的动力学。

它从单点粒子的运动开始,逐渐引入多体系统,并讨论了与相对论相关的动力学效应。

作者通过详细的数学推导和丰富的实例,展示了多体系统的运动规律和相互作用。

3. 《一般多体动力学:约束系统的力学和数学分析》("General Dynamics of Particles and Fields: Constrained Systems") -作者:René Thorn这本书着重介绍了多体系统受到约束条件限制的力学和数学分析方法。

它涵盖了广义坐标系统、拉格朗日力学和哈密顿力学,以及与约束系统相关的辛几何和辛积分算法。

该书内容深入浅出,既适合初学者入门,也适合专业研究者深入研究。

4. 《多体系统动力学》("Dynamics of Multibody Systems")-作者:Ahmed A. Shabana这本书主要介绍了多体系统中的刚体动力学和柔体动力学。

第三代轮毂轴承负游隙的弹性变形检测方法

第三代轮毂轴承负游隙的弹性变形检测方法

第三代轮毂轴承负游隙的弹性变形检测方法田助新1,3,李江全2,葛志华2(1.华中科技大学 机械科学与工程学院,武汉 430074;2.湖北新火炬科技有限公司,湖北 襄阳 441004;3.湖北文理学院 机械工程学院,湖北 襄阳 441053)摘要:针对第三代轮毂轴承负游隙难以直接测量的问题,提出了一种间接测量负游隙的方法。

基于赫兹接触理论建立了轮毂轴承负游隙与弹性变形量之间的映射关系,将负游隙的测量转换为零游隙样件弹性变形量与成品轴承弹性变形量的测量,从而实现第三代轮毂轴承负游隙的快速、简便测量。

关键词:滚动轴承;轮毂轴承;负游隙;赫兹接触理论;弹性变形中图分类号:TH133.33;TH124 文献标志码:B DOI:10.19533/j.issn1000-3762.2021.04.013ElasticDeformationDetectionMethodforNegativeClearanceofThird-GenerationHubBearingsTIANZhuxin1,3,LIJiangquan2,GEZhihua2(1.SchoolofMechanicalScienceandEngineering,HuazhongUniversityofScienceandTechnology,Wuhan430074,China;2.HubeiNewTorchTechnologyCo.,Ltd.,Xiangyang441004,China;3.SchoolofMechanicalEngineering,HubeiUniversityofArtsandScience,Xiangyang441053,China)Abstract:Thenegativeclearanceofthird-generationhubbearingsisdifficulttobemeasureddirectly,anindirectmeasuringmethodisproposed.BasedonHertzcontacttheory,themappingrelationshipisestablishedbetweennegativeclearanceandelasticdeformationofhubbearings,themeasurementofnegativeclearanceisconvertedintomeasurementofelasticdeformationofsampleswithzeroclearanceandelasticdeformationoffinishedbearings,realizingrapidandsimplemeasurementofnegativeclearanceofthird-generationhubbearings.Keywords:rollingbearing;hubbearing;negativeclearance;Hertzcontacttheory;elasticdeformation 轮毂轴承是汽车的关键功能部件,其运行状态直接决定了整车的安全性、舒适性和可靠性[1-2]。

多体机械系统的建模、控制与容错

多体机械系统的建模、控制与容错

多体机械系统的建模、控制与容错杨浩;张泽君;姜斌【摘要】M ultibody mechanical systems have been a difficult aspect in the control field in recent years . The paper firstly introduces the general structure and characteristics of multibody mechanical systems .Then ,frequently used modeling methods are analyzed andcompared .Advantages and drawbacks of these methods are given afterwards .Moreover ,the paper gives a detailed review of recent results on dif-ferent control schemes and fault-tolerant control methods applied to the multibody mechanical systems . Finally ,some perspectives are provided .%多体机械系统是近年来控制领域研究的难点.本文首先介绍了多体机械系统的结构和基本特性.其次,总结了近年来多体机械系统动力学常用的建模方法,分析了各种建模方案的优缺点.进一步介绍了近年来针对多体机械系统所采用的不同控制方法.最后,列举了容错控制在多体机械系统中的应用,并对多体机械系统控制未来的发展趋势进行了展望.【期刊名称】《南京航空航天大学学报》【年(卷),期】2017(049)005【总页数】10页(P612-621)【关键词】多体系统;建模理论;控制;容错控制【作者】杨浩;张泽君;姜斌【作者单位】南京航空航天大学自动化学院 ,南京 ,210016;南京航空航天大学自动化学院 ,南京 ,210016;南京航空航天大学自动化学院 ,南京 ,210016【正文语种】中文【中图分类】O313.7随着控制系统规模的日益增大和机器人技术的迅速发展,各类复杂机械系统大规模涌现,如车辆、各类航天器、机械臂、机器人及人体科学等。

MSA多系统萎缩

MSA多系统萎缩
• α- synuclein也是Lewy-body的主要成分,
因此,MSA和PD、Lewy体痴呆、Down综合
(四)临床表现(clinical feature)
Autonomic failure
• OH(Orthostatic hypotension)
• A reduction of systolic blood pressure by at least 30 mm
Other features
• Sleep disorders(REM) • Inspiratory sighs • Severe dysphonia • New or increased snoring • Cold hands and feet • Pathologic laughter or crying • postural/action tremor
频及淋沥不尽,因四肢活动僵硬,行走困
病例介绍(case description)
• 既往:否认脑外伤、脑炎、一氧化碳中毒;
否认类似家族史、否认药物中毒及过敏史。
• 2002年诊断帕金森病? • 2003年开始服药,曾服药苯海索、金刚烷
胺、多巴丝肼、吡呗地尓,症状略有改善。
• 2007年诊断帕金森叠加综合征?
Nonsupporting features
• Classic pill-rolling rest tremor • Clinically significant neuropathy • Hallucinations not induced by drugs • Onset before age 30y or after age 75y • Family history of ataxia or parkinsonism • Dementia • White matter lesions suggesting multiple

多体系统传递矩阵法研究进展

多体系统传递矩阵法研究进展

多体系统传递矩阵法研究进展芮筱亭;戎保【期刊名称】《力学进展》【年(卷),期】2012(042)001【摘要】作为一种多体系统动力学新方法,多体系统传递矩阵法由于其无需系统总体动力学方程和快速计算的特点,已被广泛用于各种多管火箭、自行火炮、舰炮等复杂大型机械系统动力学分析与设计.本文介绍了该方法的研究进展,包括:线性多体系统传递矩阵法、多体系统离散时间传递矩阵法、二维系统传递矩阵法、受控多体系统传递矩阵法、多体系统传递矩阵法和通常动力学方法的混合方法等,给出了该方法解决自行火炮、多管火箭武器多体系统动力学的重大工程应用实例.%As a new method of multibody system dynamics, the transfer matrix method of multibody system has the following characteristics: without the global dynamics equation of system, low order of matrix involved, high efficiency. It has been widely used in the dynamic design of many complex mechanical systems, such as multiple launch rocket system, self-propelled artillery system, and warship gun system. In this paper, the advances in transfer matrix method of multibody system, including linear transfer matrix method of multibody system, discrete time transfer matrix method of multibody system, transfer matrix method of two-dimension system, transfer matrix method of controlled multibody system, and the mixed method of transfer matrix method of multibody system and ordinary dynamics methods, are presented. Some engineering applications of thismethod on self-propelled artillery system and multiple launch rocket system are also given.【总页数】14页(P4-17)【作者】芮筱亭;戎保【作者单位】南京理工大学发射动力学研究所,南京210094;南京理工大学发射动力学研究所,南京210094【正文语种】中文【中图分类】O313.7【相关文献】1.计算多体系统动力学中引入多体系统离散时间传递矩阵法的混合算法研究 [J], 高浩鹏;黄映云;赵建华;孙宇鹏2.基于多体系统传递矩阵法的四旋翼飞行器振动建模 [J], 范肖肖;贺嘉璠;戚国庆;李银伢;盛安冬3.多体火炮系统的固有振动特性-多体系统动力学的传递矩阵法 [J], 芮莜亭;邱风昌4.多体系统传递矩阵法的载货汽车动力学建模方法 [J], 莫荣博; 王秋花; 许恩永; 林长波5.基于多体系统传递矩阵法的舵系统振动特性分析 [J], 陈东阳; 肖清; 谢俊超; 朱卫军; 芮筱亭因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Collisions of multibody systems Chau-Chin Chang,Ronald L.HustonAbstract This paper presents a computational procedure for studying collisions of multibody systems.It combines the procedures of impact analysis and the methods of modern multibody dynamics(including the use of Kane's equations,lower body arrays,generalized speeds,and differentiation algorithms).By assuming the duration of impact to be very short and that the con®gurations of the systems have only small changes during the colliding process,we can automatically generate the governing dy-namical equations.By using Newton's impact law,the partial velocities of the contact points determine impulse force components.Then by back substituting into the governing equations,the changes of velocities during the collision,the components of internal impulses,and the subsequent motions of the systems after collision may be determined.List of symbolsa k acceleration of G k in R k 1;...;Na`p generalized mass matrix coef®cients`;p 1;...;nB j body j of multibody systemc;d contact pointse coef®cient of restitutione ijk permutation coef®cients i;j;k 1;2;3F k equivalent applied(active)force acting onB k k 1;...;NFÃk equivalent inertia(passive)force acting onB k k 1;...;N^F k impulse due to F k k 1;...;NF`generalized applied(active)force acting on the system for y` ` 1;...;nFÃ`generalized inertia(passive)force acting onB k ` 1;...;nf`generalized force matrix coef®cients` 1;...;nG k mass center of Body B k k 1;...;N I k central inertia dyadic of B k for G k k 1;...;N I`generalized momentum of the multibody system for y` ` 1;...;nM k torque of couple of equivalent applied(active) force system acting on B k k 1;...;NMÃk torque of couple of equivalent inertia(passive) force system acting on B k k 1;...;N^M k angular impulse due to M k k 1;...;Nm k mass of B k k 1;...;NN number of bodies in a multibody systemn number of degrees of freedom of a multibody systemn jm mutually perpendicular unit vectors®xed inB j m 1;2;3n c k unit vector normal to B k at c k 1;...;Nn km mutually perpendicular unit vectors®xed inB k m 1;2;3n om mutually perpendicular unit vectors®xed in R m 1;2;3P`generalized momentum of the multibody system for y` ` 1;...;nR inertial reference framet timev k velocity of G k in R k 1;...;Nv k`m n om components of partial angular velocity of B k for y` k 1;...;N;` 1;...;n;m 1;2;3 X;Y;Z Cartesian coordinate axesx`generalized coordinates ` 1;...;ny`generalized speeds ` 1;...;na k angular acceleration of B k in R k 1;...;ND y`change in y` ` 1;...;nq c k position vector locating G k relative to Cx k angular velocity of B k in R k 1;...;Nx k`m n om components of partial angular velocity of B k for y` k 1;...;N;` 1;...;n;m 1;2;3IntroductionThe study of impact in multibody systems is an important branch of dynamics.Wittenburg(1977)used graph theory and Newton±Euler's method,Haug et al.(1986)used variational principles,Khulief and Shabana(1987)used continuous force model and effective mass,Lankarani and Nikravesh(1990)used continuous contact force model and Hertz contact law,while Batlle and Condomines (1991)used Lagrangian formulation and impulsive drivers to maintain the continuity of a set of generalized velocities during the impact time interval to study impact of multi-body systems.Computational Mechanics27(2001)436±444ÓSpringer-Verlag2001436Received24January2001Chau-Chin ChangAutomotive Division of Mechanical Engineering,Southern Taiwan University of Technology,Tainan,Taiwan710ROCRonald L.Huston(&)Department of Mechanical,Industrial and Nuclear Engineering,University of Cincinnati,Cincinnati,Ohio45221-0072USAColliding bodies are effectively rigid during collision if there is negligible deformation outside the contact region and if the contact region remains small in comparison with the size of the bodies.With the additional assumptions of collision occurring over a short time interval and no changes in con®gurations during the collision process,we can predict the velocity changes during collision and post collision ing these assumptions we present a procedure for making ef®cient computational analyses of collisions of multibody systems.In developing the procedure we employ an impulse form of Kane's equations(1985)obtained by integrating the equations over the impact time interval to obtain a balance of generalized momenta and generalized impulses. These equations in turn lead to a set of linear algebraic equations for velocity changes.The solution of these equations then forms the basis for studying the movement of the system during the post-impact period.In the analysis,the collisions may occur between dif-ferent multibody systems or within the same multibody system.During the collision process,there is an impulse generated at each contact point.By neglecting friction at colliding points,the unknown impulse generated by the collision may be obtained by using Newton's impact law. Substituting the impulse back into the algebraic equations, the changes of velocities during colliding process,and thereby,the initial conditions for the analysis of the sub-sequent motions of the system are determined.The pro-cedure also provides for the computation of the components of internal impulses at the joints of the sys-tems during the collision process.The balance of the paper is divided into®ve parts with the®rst of these providing a summary of multibody dy-namics analysis useful in the sequel.The next part presents the impact analysis itself.The third part studies the col-lision of multibody systems.The®nal two parts contain an example and concluding remarks.Preliminary considerations1.KinematicsConsider a system with N bodies having n degrees of freedom,described by n generalized coordinates x`` 1;...;n .These coordinates will in general include both translation and rotation variables.Let n variables y` ` 1;...;n ,called`generalized speeds'be introduced such that the y`are independent linear combinations of the derivatives of the generalized coordinates.For exam-ple,the individual y`could be set equal to the time de-rivatives of individual generalized coordinates, respectively.It is often convenient however to let the y` associated with rotational degrees of freedom be compo-nents of the relative angular velocities of the bodies.It has been shown that the angular velocity x k and the mass center velocity v k of a typical body B k of the system may then be expressed as(Huston,1990):x k x k`m y`n om ` 1;...;n;m 1;2;3 1 andv k v k`m y`n om ` 1;...;n;m 1;2;3 2 where the n om m 1;2;3 are mutually perpendicularunit vectors®xed in an inertia frame R.The coef®cientsx k`m and v k`m ` 1;...;n called`partial angular veloc-ity components'and`partial velocity components'(Hu-ston,1990),form arrays which depend only upon the geometrical parameters of the systems.[Regarding nota-tion,repeated indices,such as`and m in Eqs.(1)and(2), indicate a sum over the range of the index.]By differentiating Eqs.(1)and(2),the angular accel-eration of B k and the acceleration of the mass center G kmay be expressed asa k x k`m_y` _x k`m y` n omk 1;...;N;` 1;...;n;m 1;2;3 3anda k v k`m_y` _v k`m y` n omk 1;...;N;` 1;...;n;m 1;2;3 4 Observe that the x k`m and v k`m are the coef®cients of y`.That is,x k`m n omo x ko y`o a ko_y`x k` 5andv k`m n omo v ko y`o a ko_y`v k` 6where x k`and v k`are called`partial angular velocity'(Kaneet al.,1985)of body B k and`partial velocity'(Kane et al., 1985)of G k with respect to generalized speeds y`,respec-tively.2.KineticsLet the multibody system be subjected to a force®eldwhich may be represented on a typical body B k by a single force F k passing through mass center G k together with a couple with torque M k.This force®eld may arise from externally applied forces such as gravity or contact forcesor from constraint forces due to either holonomic or non-holonomic constraints.Then the contribution of F k andM k to the generalized active force F`associated with y`is (Kane et al.,1985)F`o v ko y`ÁF ko x ko y`ÁM k v k`ÁF k x k`ÁM k7By using Eqs.(5)and(6),F`may be written asF` v k`m F km x k`m M km` 1;...;n;m 1;2;3;no sum on k 8 where F km and M km are the n om components of F k and M k. Regarding the index notation,if there is a sum over k,Eq.(8)represents the contribution from all the bodies. Hence,the generalized active force F`associated with generalized speed y`of the whole system may be written asF` v k`ÁF k x k`ÁM k k 1;...;N;` 1;...;n9437orF` v k`m F km x k`m M kmk 1;...;N;` 1;...;n;m 1;2;3 10 Similarly,let the inertia forces on B k be represented by asingle force FÃk passing through G k together with a couple with torque MÃk.Then FÃk and MÃk may be expressed as (Kane et al.,1985)FÃk Àm k a k no sum on k 11 andMÃk ÀI kÁa kÀx k I kÁx k no sum on k 12 where m k is the mass of B k and I k is its central inertia dyadic.The generalized inertia force FÃ`associated with generalized speed y`of the system can then be written as (Kane et al.,1985)FÃ` v k`ÁFÃk x k`ÁMÃk k 1;...;N;` 1;...;n13 orFÃ` v k`m FÃkm x k`m MÃkmk 1;...;N;` 1;...;n;m 1;2;3 14 where FÃkm and MÃkm are the n om components of FÃk and MÃk.3.DynamicsKane's equations state that the equations of motion may be expressed asF` FÃ` 0 ` 1;...;n 15 By using Eqs.(1)±(14),the dynamic equation(15)may be written asa`p_y p f` `;p 1;...;n 16 wherea`p m k v k`m v kpm I kmz x k`m x kpzk 1;...;N;`;p 1;...;n;m;z 1;2;317 andf` F`À m k v k`m_v kpm y p I kmz x k`m_x kpz y pe rms I ksz x k`m x kqr x kpz y q y pk 1;...;N;`;p;q 1;...;n;m;r;s;z 1;2;3 18 where I kmz are n om and n oz components of central dyadic I k and where e rms is the standard permutation symbol,and where there is now a sum over the triply repeated index k. The a`p are sometimes referred to as`generalized mass elements'.Impact analysis1.Generalized impulsesAn`impulsive force'is de®ned as a large force acting over a short time interval.The term`large'means that an im-pulsive force is signi®cantly larger than other forces(for example,gravity)exerted on a given body or system during the impact time interval.An`impulse'is de®ned as the time integral of the impulsive force over the impact time interval.Consider a multibody system with N bodies pos-sessing n degrees of freedom,characterized by n generalized coordinates x` ` 1;...;n .Let the gene-ralized speeds y`be de®ned as relative angular velocity components and relative displacement velocity com-ponents between adjoining bodies.Let the impulsive forces and moments on a typical body B k be equivalent to an impulsive force F k passing through mass center G k together with an impulsive couple with torque M k.Then the generalized impulse I`of the system associated with the generalized speed y`isde®ned asI` v k`ÁZ t2t1F k d t x k`ÁZ t2t1M k d t@1Av k`Á^F k x k`Á^M k k 1;...;N;` 1;...;n19 orI` v k`m^F km x k`m^M kmk 1;...;N;` 1;...;n;m 1;2;3 20 where t1;t2 is the impact time interval,^F k is the impulse of F k,^M k is the angular impulse of M k.The quantities^Fkm and^Mkm are n om components of^F k and^M k, respectively.2.Generalized momentumThe generalized momentum P`of the system associated with generalized speed y`is de®ned asP` v k`Ám k v k x k`ÁI kÁx kk 1;...;N;` 1;...;n 21Substituting from Eqs.(1),(2),(5)and(6)into(21),the generalized momentum may be expressed asP` m k v k`m v kpm I kmz x k`m x kpz y pk 1;...;N;`;p 1;...;n;m;z 1;2;3a`p y p `;p 1;...;n 22where the a`p are the same as the generalized mass ele-ments of Eq.(17).3.Dynamical analysisIntegrating Eq.(15)through the time interval t1;t2 yields Z t2t1F`d tZ t2t1FÃ`d t 0 ` 1;...;n 23By using Eq.(9),the®rst term of Eq.(23)may be written as438Z t2t1F`d tZ t2t1v k`ÁF k x k`ÁM k d tZ t2t1v k`ÁF k d tZ t2t1x k`ÁM k d tk 1;...;N;` 1;...;n 24In general,the partial velocity vectors v k`and partial angular velocity vectors x k`are functions of time and the con®guration of the system.Our assumption is that the impact duration is short and thus during the impact the con®guration of the system remains essen-tially the same.This means that the partial velocity and partial angular velocity vectors are nearly constant during the impact time interval.Hence,Eq.(24)can be written asZ t2t1F`d t%v k`ÁZ t2t1F k d t x k`ÁZ t2t1M k d t@1A I`k 1;...;N;` 1;...;n 25By using Eqs.(11)±(13),the second term of Eq.(23)may be written asZ t2t1FÃ`d tZ t2t1v k`Á Àm k a kx k`Á ÀI kÁa kÀx kÂI kÁx k d tk 1;...;N;` 1;...;n 26The®rst term in the parenthesis on the right hand side of Eq.(26)may be expressed asZ t2t1v k`Á Àm k a k d t Àm k v k`ÁZ t2t1a k d tÀm k v k`Á v k t2 Àv k t1k 1;...;N;` 1;...;n27where v k t1 and v k t2 are the mass center velocities of body B k at beginning and end of the impact.Similarly,the second term in the parenthesis can be expressed asZ t2t1x k`Á ÀI kÁa k d t Àx k`ÁI kÁZ t2t1a k d tÀx k`ÁI kÁ x k t2 Àx k t1k 1;...;N;` 1;...;n28where x k t1 and x k t2 are the angular velocities of body B k at the beginning and end of the impact.By using Eqs.(1)and(5),the third term in the paren-thesis on the right side of Eq.(26)may be written as Z t2t1x k`Á Àx kÂI kÁx k d tÀZ t2t1e rms I ksz x k`m x kpr x kqz y p y q d t 29Although the generalized speeds y p and y q in Eq.(29)are not constant during the impact time interval,theyare nevertheless bounded.By using the mean value theorem of integration,the value of this term is equalto the mean value of the integrand multiplied by the impact time interval.Since the impact duration is short,this term can be neglected,when compared with the®rst two terms of Eq.(26).Hence,Eq.(26)may bewritten asZ t2t1FÃ`d t Àm k v k`Á v k t2 Àv k t1Àx k`ÁI kÁ x k t2 Àx k t1À v k`Ám k v k t2 x k`ÁI kÁx k t2v k`Ám k v k t1 x k`ÁI kÁx k t1ÀP` t2 P` t1k 1;...;N;` 1;...;n 30 where P` t1 and P` t2 are the generalized momentum ofthe system with respect to the generalized speeds y`at the beginning and end of the impact.erning equationsSubstituting Eqs.(25)and(30)into Eq.(23)yieldsP` t2 ÀP` t1 I` ` 1;...;n 31This expression shows that the changes of generalized momentum of the system during the impact interval isequal to the generalized impulse acting on the system.Using Eq.(22),we®nd from Eq.(31)that the governing dynamical equations may be written asa`p y p t2 Àa`p y p t1 I` `;p 1;...;n 32ora`p D y p I` `;p 1;...;n 33 resulting inD y p aÀ1`p I` 34 where the D y p are the changes of the generalized speeds during the impact interval,and where aÀ1`p are the elementsof the inverse of the generalized mass matrix.Equation(33)[or(34)]forms a system of linear algebraic equations for the D y p.These equations form the basis for the analysis of the effects of impulses on a multibody system.That is,by knowing the D y p,we can determine velocity and angular velocity changes experi-enced by the system.We can then use these values to set initial conditions for the subsequent motion of the system.4395.Internal impulses at the jointsA feature and bene®t of Eq.(33)is that there are exactly the same number of equations as there are degrees-of-freedom of the system.Hence,the unknown generalized speeds of the constrained system are uniquely determined. Sometimes,however,it is of interest to determine in-ternal impulsive forces and moments at the joints of the system where the movement is restrained.We may de-termine these forces and moments as follows:let the constraints at the joint be temporarily released.Then let the internal impulsive forces and moments be considered as though they were externally applied.The system will then have additional degrees of freedom corresponding to the removed constraints leading to additional dynamical equations containing the desired components of internal impulses.It also happens that,if relative angular velocity components and relative velocity components between the bodies are used as the generalized speeds,then these im-pulsive force and moment components appear singly(that is,uncoupled)in these additional equations.Finally,by specifying the incremental values of the generalized speeds corresponding to the removed constraints,we can deter-mine the values of these force and moment components. (The incremental values of these generalized speeds are often zero.)Collisions of multirigid body systems1.Collisions of two multibody systemsConsider a multibody system S1having N1bodies with n1 degrees of freedom colliding with a second multibody system S2having N2bodies with n2degrees of freedom as depicted in Fig.1.Consider speci®cally the two colliding bodies,B k in S1and B j in S2.Let q c k and q d j be position vectors from G k and G j,mass centers of B k and B j,re-spectively,to the contact points c and d,of B k and B j and let n c k be a unit vector along the normal of the colliding surfaces at c and d as shown in Fig.1.Then q c k and q d j may be expressed asq c k q c ki n ki SOK mi q c ki n omi;m 1;2;3;k 1;...;N1;no sum on k35 andq d j q d ji n ji SOJ mi q d ji n omi;m 1;2;3;j 1;...;N2;no sum on j 36 where q c ki(i 1;2;3)are the components of q c k relative tobody®xed unit vectors,SOK mi and SOJ mi are the trans-formation matrices between the body®xed and inertial reference frames.The unit vector along normal to the colliding surfaces of B k and B j may be expressed asn c k u c om n om m 1;2;3;no sum on o 37 where u c om are the components of n c k in the n om directions. Newton's impact law may then be written asc v k t1 D c v k Àd v j t1 D d v j Án c kÀe c v k t1 Àd v j t1 Án c k 38 where c v k t1 and d v j t1 are the velocity of contact points c and d at the beginning of the collision,D c v k and D d v j are the velocity changes of contact points c and d during the collision process,and e is the coef®cient of restitution between the colliding bodies.By using Eq.(1),(2)and(35),the velocity of c may be written asc v k v k x kÂq ckv kpm y p n om x kpn y p n onÂSOK hi q c ki n ohv kpm e nhm x kpn SOK hi q c ki y p n omc v kpm y p n om h;i;m;n 1;2;3;p 1;...;n1;k 1;...;N1;no sum on k39 where v k and x k are the mass center velocity and the angular velocity of body B k in R,and wherec v kpm v kpm e nhm x kpn SOK hi q ckih;i;m;n 1;2;3;p 1;...;n1;k 1;...;N1;no sum on k 40 The c v kpm are the partial velocity components of c with respect to the generalized speeds y p.During theshort 440collision time interval,the c v kpm which depend only on the generalized coordinates are essentially constant.There-fore,the velocity changes at point c during the collision time interval may be expressed asD c v k c v k t2 Àc v k t1c v kpm y p t2 Ày p t1 n om c v kpm D y p n omk 1;...;N1;p 1;...;n1;m 1;2;3 41 Similarly,the velocity at contact point d of body B j and the velocity change may be written asd v j v j x jÂq djv jqm e nhm x jqn SOJ hi q d ji y q n om d v jqm y q n om j 1;...;N2;h;i;m;n 1;2;3;q 1;...;n2;no sum on j 42 andD d v j d v j t2 Àd v j t1d v jqm y q t2 n omÀd v jqm y q t1 n omd v jqm D y q n om j 1;...;N2;q 1;...;n2;m 1;2;3 43 Neglecting friction,the impulse on B k may be represented by an impulse force^F c k acting at contact point c normal to the surface of B k at c.Similarly,the impulse on B j may be represented by an impulse force^F d j having equal magni-tude but opposite direction.^F c k and^F d j may be expressed as ^F ck^F c k n c k ^F c k u c om n om k 1;...;N1;m 1;2;3;no sum on k 44 and^F djÀ^F d j n c k À^F j d u c om n omj 1;...;N1;m 1;2;3 45^F c k is the only external impulse acting on S1.The general-ized impulse for S1is thus projection of^F c k along the partial velocities of c.Hence,the governing dynamical equations for S1during the collision may be written as a`p D y p I` ^F c kÁc v k` c v k`m u c om^F c kk 1;...;N1;m 1;2;3;`;p 1;...;n1;no sum on k 46 where c v k`is the partial velocity of point c with respect to the generalized speed y`.Similarly,the governing dynamical equations for S2 during the collision may be expressed asa sq D y q I s ^F d jÁd v j s Àd v jsm u c om^F d jm 1;2;3;s;q 1;...;n2;j 1;...;N2;no sum on jÀd v jsm u c om^F c k 47 where d v j s is the partial velocity of point d with respect tothe generalized speed y s.By using Eqs.(46)and(47),the changes of generalized speeds of S1and S2may be written asD y p aÀ1`p c v k`m u c om^F c kk 1;...;N1;`;p 1;...;n1;m 1;2;3;no sum on k 48andD y q ÀaÀ1sq d v jsm u c om^F c k s;q 1;...;n2;m 1;2;349From Eq.(41)we obtainD c v k c v kpm aÀ1`p c v k`m u c om^F c k n om 50andD d v j Àd v jqm aÀ1sq d v jsm u c om^F c k n om 51 Substituting from Eqs.(37),(39),(42),(50),and(51)intoEq.(38),we obtainc v kpm y pÀd v jqm y q aÀ1`p c v k`m c v kpm u c omaÀ1sq d v jsm d v jqm u c om ^F c k n omÁu c on n onÀe c v kpm y pÀd v jqm y q n omÁu c on n onno sum on j;k 52From this expression,the magnitude of the impulse generated by the collision may be written as^F ckÀ 1 e c v kpm y pÀd v jqm y q u c omaÀ1`p c v k`m c v kpm u c om aÀ1sq d v jsm d v jqm u c om u c om53where y p y p t1 and y q y q t1 are the generalizedspeeds of system S1and S2at the beginning of the colli-sion,respectively.Equation(53)may be expressed in matrix form as:^F À 1 e f Y T v À Yà T và g u =f u T v T A À1 v À u T và T Aà À1 và g u 54 where ^F is a1Â1matrix with element^F c k, Y is an n1Â1 matrix with elements y p, Yà is an n2Â1matrix with elements y q,[v]is an n1Â3matrix with elements c v k`m,và is an n2Â3matrix with elements d v jsm,[u]is a3Â1 matrix with elements u c om,[A]is an n1Ân1matrix with elements a`p,and Aà is an n2Ân2matrix with elementsa sq.Note that there is no sum on the k of c v k`m nor on the jof d v jsm of Eq.(52).Therefore,the v and và in Eq.(54)are two dimensional matrices.If system S2is®xed,such as a ground or wall,then D d v j,d v j and thus d v jqm are zero,and Eq.(53)reduces to^F ckÀ 1 e c v kpm y p u c omaÀ1`p c v k`m c v kpm u c om u c om55or in matrix form as^F À 1 e f Y T v u g=f u T v T A À1 v u g 56441By substituting from Eq.(53)into Eqs.(46)and(47),the changes of generalized speeds can be determined.Then by using the generalized speeds after collision as initial con-ditions,the subsequent motions of the systems may be determined.2.Collision within the same multibody system Consider collisions within a single multibody system S1. Speci®cally,suppose a collision occurs at point c of body B k with point d of body B j of the same system.Then an impulse^F c k at point c and an impulse^F d j at point d occur. Again,both impulses have the same magnitude but op-posite directions.The governing equations for the system may then be expressed asa`p D y p I`^F c kÁc v k` ^F d jÁd v j`^F c k u c om n omÁc v k`n n onÀ^F d j u c om n omÁd v j`n n on^F c k u c om n omÁc v k`n n onÀ^F c k u c om n omÁd v j`n n onc v k`mÀd v j`m u c om^F c kj;k 1;...;N1;` 1;...;n1;m 1;2;3;j k;no sum on k 57 where as before c v k`and d v j`are the partial velocities of points c and d with respect to the generalized speed y`,and u c om are components of the normal unit vector at points c and d.From Eq.(57),the changes of generalized speeds may then be found asD y p aÀ1`p c v k`mÀd v j`m u c om^F c k 58 Substituting Eq.(58)into Eqs.(41)and(42),and replacing the index q with p,we obtain D c v k c v kpm aÀ1`p c v k`mÀd v j`m u c om^F c k n omk 1;...N1;`;p 1;...;n1;m 1;2;3;no sum on k 59 andD d v j d v jpm aÀ1`p c v k`mÀd v j`m u c om^F c k n omj;k 1;...N1;`;p 1;...;n1;m 1;2;3;no sum on j;k 60 From Eq.(38),we then obtain the magnitude of theimpulse asor in matrix form aswhere và is n1Â3matrix,not n2Â3matrix. ExampleTo illustrate the procedure consider the collision of two identical open-chain systems consisting of nine identical pin-connected links where each link has a mass of1kg and a length of1m.The systems move on a smooth horizontal surface.Initially,let the links of one of the systems be con®g-ured as a straight line and let the entire system be rotating at an angular rate of0.2rad/s about one of its ends as though it were a single rigid body.Let the links of the other system be initially con®gured into a semicircular arc moving in translation at a speed of1m/s in the Y-direc-tion,as though it were also a single rigid body.Figure2 depicts the two systems.Let the two systems,called S1and S2,move such that their ends d and c will collide,as depicted in Fig.3.Let the coef®cient of restitution between the colliding links be0.8. The objective is then to determine the motions of S1and S2 after collision.Let the links be numbered or labeled as shown in Figs.2 and3.Then S1has9degrees of freedom and S2has11 degrees of freedom which can be described bygeneralized ^FÀ 1 e f Y T v À Y T và g uf u T v T A À1f v À và gÀ u T và T A À1f v À và gg u62^F ckÀ 1 e c v kpm y pÀd v jpm y p u c omaÀ1`p c v kpm c v k`mÀd v j`m u c omÀaÀ1`p d v jpm c v k`mÀd v j`m u c om u c om61 442coordinates x 1p p 1;...;9 and x 2q q 1;...;11 de®ned as follows:x 11is the angle between link 1of S 1and the negative X axis;the x 1p p 2;...;9 are the relative angles between the successive adjoining links of S 1;x 21is the angle between link 1of S 2and the X axis;the x 2q q 2;...;9 are the relative angles between the successive adjoining links of S 2;and x 2;10and x 2;11are the X and Y coordinates of the open end of link 1of S 2.The generalized speeds y 1p p 1;...;9 andy 2q q 1;...;11 are de®ned simply as time derivatives of the generalized coordinates:y 1p _x1p p 1;...;9 and y 2q _x2q q 1;...;11 63The values of the generalized coordinates and the gener-alized speeds just before impact are:x 11 x 12 x 13 ÁÁÁ x 19 0 64 y 11 0:2rad/s ;y 12 y 13 ÁÁÁ y 19 065andx 21 À4p =10rad ;x 22 x 23 ÁÁÁ x 29 p =10radx 2;10 x 0and x 2;11 y 066y 21 y 22 y 23 ÁÁÁ y 2;10 0andy 2;11 1m/s67where x 0and y 0are constants.By using the foregoing procedures we may readily ob-tain the components of the partial velocities of the contact points c and d as well as the elements of the generalized mass matrices.Then by using Eq.(53)the generated impulses at the contact points are^F c k 1:2714n o 2N Ás ;^F d j À1:2714n o 2N Ás68where n o 2is a unit vector in the Y direction.By using Eqs.(46)and (47)the changes in the generalized speeds during the impact are found to be:D y 11 À0:0001rad/s ;D y 12 0:0007rad/s ;D y 13 À0:0026rad/s ;D y 14 0:0098rad/s ;D y 15 À0:0365rad/s ;D y 16 0:1362rad/s D y 17 À0:5084rad/s ;D y 18 1:8973rad/s ;D y 19 À7:0807rad/s69and D y 21 À0:0366rad/s ;D y 22 0:0040rad/s ;D y 23 À0:0085rad/s ;D y 24 À0:0081rad/s ;D y 25 À0:0210rad/s ;D y 26 0:0003rad/s D y 27 À0:1105rad/s ;D y 28 0:2602rad/s ;D y 29 À1:1798rad/s ;D y 2;10 À0:0036m/s ;D y 2;11 0:0506m/s70The components of internal impulse force at each joint inthe inertia frame due to the collisions of systems S 1and S 2are shown in Table 1.Finally,using the generalized speeds after impact as initial conditions for Eq.(16)the subsequent motionofFig.3.Collision of linear chain systemsTable ponents of internal impulse force at each joint in the inertia frameSystem S 1System S 2XY X Y Joint 100.000020Joint 20)0.000030.0210)0.0450Joint 300.000170.0726)0.0747Joint 40)0.000430.1495)0.0782Joint 500.001970.2461)0.0417Joint 60)0.006330.35030.0534Joint 700.024670.44370.2168Joint 80)0.091330.47320.4865Joint 900.340670.48200.8057Fig.4.Con®gurations of the multibody systems after impact443。

相关文档
最新文档