信号与系统 图解法求卷积和例
信号与系统第二章习题
rt et ht
sin tut ut 1ut ut 1
t
0
sin
d
τ
u
t
ut
2
1
t 1
sin
τ
d
τut
u
t
2
1 1 costut ut 2
X
20
第
例2-4 计算卷积 f1(t) f2(t),并画出波形。
页
f1 t
f2 t
2
1
1 e t1u t 1
则得
A1 A2 3 3A1 2A2 2
解得
A1 A2
4 7
代入(1)得
ht 4e2t 7e3t ut X
18
例2-3
第
页
已知线性时不变系统的一对激励和响应波形如下图所示,
求该系统对激励的 et sin tut ut 1零状态响应。
et
r t
1
1
O 12
t
对激励和响应分别微分一次,得
t0
因为特解为3,所以 强迫响应是3,自由响应是 4 et e2t
X
12
方法二
第
页
零状态响应rzs t是方程
d2 r dt
t
2
3
dr d
t
t
2r
t
2
t
6ut
且满足rzs 0 rzs0 0的解
(5)
由于上式等号右边有 t项 ,故rzst应含有冲激函数,
从而rzs t 将发生跳变,即 rzs 0 rzs 0
d2 rt 3 d rt 2rt 0
dt2
dt
《信号与系统》第三章 离散系统的时域分析
h(k) = h1(k) – h1(k – 2) =[(1/3)(– 1)k + (2/3)(2)k]ε(k) – [(1/3)(– 1)k –2 + (2/3)(2)k–2]ε(k – 2)
f (i)h(k i) ai (i)bki (k i)
i
i
当i < 0,ε(i) = 0;当i > k时,ε(k - i) = 0
1
a
k
1
yzs
(k
)
k i0
aibk
i
(k
)
bk
k i0
a b
i
(k
)
bk
bk
b 1 a
b (k 1)
注:ε(k)*ε(k) = (k+1)ε(k)
当ik时ki0???????????????iikiiikbiaikhif?????????????????????????????????????????????????bakbbabababkbabkbakykkkkiikkiikizs111100??注
《信号与系统》 第三章 离散系统的时域分析
λ n + an-1λn– 1 + … + a0 = 0 其根λi( i = 1,2,…,n)称为差分方程的特征根。 齐次解的形式取决于特征根。
参看教材第87页 表3-1。
2. 特解yp(k): 特解的函数形式与激励的函数形式有关
§7.6 离散卷积(卷积和)
第
y(n)的元素个数 的元素个数? 的元素个数
x(n) nA
d
6 页
h(n)
y(n)
nB
nC = nA + nB − 1
若:
x(n)序列
h(n)序列
n1 ≤ n ≤ n2,
n3 ≤ n ≤ n4
则y(n)序列
(n1 + n3 ) ≤ n ≤ (n2 + n4 )
4个元素 5个元素 8 个元素
X
例如: 例如:
x(n): 0 ≤ n ≤ 3 h(n): 0 ≤ n ≤ 4 y(n): 0 ≤ n < 7
§7.6 卷积(卷积和) 卷积(卷积和)
卷积和定义 离散卷积的性质 卷积计算
第
一.卷积和的定义
状态响应: 回顾连续时间系统的零 状态响应: r(t ) = ∫ e(τ ) ⋅ h(t −τ )dτ
−∞ ∞
2 页
推导
= e(t ) ∗ h(t )
离散时间信号的分解: 离散时间信号的分解:
x : 任意序列 (n)表示为 (n)的加权移位之线性组合 δ
x(n) =
m=−∞
∑x(m)δ (n − m)
x(n) δ (n) h(n) y(n) h(n)
X
∞
问题:输出y(n)=? 问题:输出 ?
第 3 页
时不变 均匀性 可加性 则输出: 则输出:
δ (n − m) →h(n − m)
x(m)δ (n − m) → x(m)h(n − m)
x(n) = y(n) =
X
第
三.卷积计算
x(n) ∗ h(n) =
∞ m=−∞
d
5 页
∑x(m)h(n − m)
数字信号处理复习总结-最终版
绪论:本章介绍数字信号处理课程的基本概念。
0.1信号、系统与信号处理1.信号及其分类信号是信息的载体,以某种函数的形式传递信息.这个函数可以是时间域、频率域或其它域,但最基础的域是时域。
分类:周期信号/非周期信号确定信号/随机信号能量信号/功率信号连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:2.系统系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。
3。
信号处理信号处理即是用系统对信号进行某种加工。
包括:滤波、分析、变换、综合、压缩、估计、识别等等。
所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理.0.2 数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理。
不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。
以下讨论模拟信号数字化处理系统框图。
(1)前置滤波器将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。
(2)A/D变换器在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。
在A/D 变换器中的保持电路中进一步变换为若干位码。
(3)数字信号处理器(DSP)(4)D/A变换器按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。
由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步.(5)模拟滤波器把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t).0.3 数字信号处理的特点(1)灵活性.(2)高精度和高稳定性。
(3)便于大规模集成。
(4)对数字信号可以存储、运算、系统可以获得高性能指标。
0。
4 数字信号处理基本学科分支数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术-—DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器—-DigitalSignalProcessor.0。
信号与系统2.6卷积-2.7汇编
•起始状态 •初始状态 •冲激函数匹配法确定初始条件
§2.4 零输入响应和零状态响应
•零输入响应 •零状态响应 •对系统线性的进一步认识
§2.5 冲激响应和阶跃响应
•冲激响应 •阶跃响应
§2.6卷积
•卷积 •利用卷积积分求系统的零状态响应 •卷积图解说明 •卷积积分的几点认识
2、主要性质:
–微分性质: f (t ) f1(t ) f2(t ) f1(t ) f2(t )
–积分性质: f
(1) (t)
f1(t)
f
(1) 2
(t
)
f (1)
1
(t
)
f2 (t)
–微积分性质:
f (t)
f1(1) (t)
f2(t)
f1(t)
f
( 1) 2
(t
)
若f ( t ) f1 ( t ) f2( t )
-1 t 1
f2 t 向右移
f2 t 1 f1
t3
1 O t 1
t 1时两波形有公共部分,积分开始不为0,
积分下限-1,上限t ,t 为移动时间;
t
g(t) 1 f1( ) f2(t )d
t 1t d
1 2
t
2
2
4
t 1
t2
4
t 1 24
1 t 2
f
2
t
1
f1
t 3 1 O
利用图解说明确定积分限
例2-6-1
1.列写KVL方程 2.冲激响应为
例2-6-2
已知 ht et ut,
e( t
)
陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)
图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出
和
的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:
和
可化简为
故
,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航
信号与系统卷积和及几类常见题目
⏹卷积☐卷积的定义☐卷积的物理意义☐卷积的性质☐卷积的计算⏹信号的分解☐信号分解为基本信号之和☐…δ(t )是卷积的单位元δ(t-t 0)是卷积的延迟器u (t )是卷积的积分器δ’(t )是卷积的微分器温故知新,上讲回顾第二章信号的时域分析§2.1常用信号及其基本特性§2.2信号的时域运算Array§2.3信号的时域分解§2.4卷积积分§2.5卷积和信号分类;基本信号特性;信号分解与运算;卷积/卷积和周期/非周期判断;奇异函数运算;信号展缩平移;卷积/卷积和1. 掌握卷积和的定义/性质并进行计算(解析法、图解法、竖式法、性质求解)2. 习题课(信号时域分析几类常见题目)§2.5卷积和一、卷积和的定义及物理意义二、卷积和的性质三、卷积和的计算设x 1(n ) 和x 2(n )是两个序列,则1212()()()()k k k x n x n x x n ∞=−∞∗=−∑如果x 1(n ) 和x 2(n )都是因果序列,则11202()()()()nk x n x n x k x n k =∗=−∑1212()()()()d f t f t f f t τττ∞−∞∗=−⎰卷积和:卷积积分:1. 定义任意序列x (n ) 可以表示为单位样值信号δ(n ) 的移位加权和。
{}()=+(1)(1)+(0)()+(1)(1)+(2)(2)+()()()()k x n x n x n x n x n x k n k x k n k δδδδδδ∞=−∞−+−−+−+=− LTI 系统δ(n )h (n )x (n )?2. 物理意义输入δ(n-k )h (n-k )输出时不变x (k )δ(n-k )x (k )h (n-k )齐次性()=()()k x n x k n k δ∞=−∞−∑zs =()()()*(())k y n x k h n k h x n n ∞=−∞−∑ 可加性系统特性LTI 系统δ(n )h (n )卷积和卷积和的物理意义:揭示了LTI离散系统零状态响应与输入信号和系统单位样值响应之间的关系。
信号与系统课后习题答案
t
ε(t) *ε(t) = tε(t)
第2-8页
■
信号与系统 电子教案
4. 卷积的时移特性
若 f(t) = f1(t)* f2(t), 则 f1(t –t1)* f2(t –t2) = f(t –t1 –t2)
f1(2-τ)
2 f 2( τt )
τ t
-2 1 -1 -1 1
3
τ t
(1)换元 (2) f1(τ)得f1(–τ) (3) f1(–τ)右移2得f1(2–τ) (4) f1(2–τ)乘f2(τ) (5)积分,得f(2) = 0(面积为0)
第2-6页
■
f 1(2-τ ) f 2(τ ) 2 2 τ
第2-1页
■
信号与系统 电子教案 2. 信号的时域分解与卷积积分
f (t)
LTI系统 零状态
2.3
卷积积分
yZS (t)
根据h(t)的Байду номын сангаас义: δ(t) 由时不变性: δ(t -τ)
h(t) h(t -τ) f (τ) h(t -τ)
由齐次性: f (τ)δ(t -τ)
由叠加性:
f ( ) (t ) d
第2-5页
■
信号与系统 电子教案
2.3
卷积积分
2 f 1( τt )
f1(-τ) 图解法一般比较繁琐,但 若只求某一时刻卷积值时 还是比较方便的。确定积 分的上下限是关键。 例:f1(t)、 f2(t)如图所示,已知 f(t) = f2(t)* f1(t),求f(2) =? 解: f (2) f 2 ( ) f1 (2 ) d
信号与系统信号的时域分解与卷积积分
28
三、卷积的性质及卷积计算
(2) (t-t0 ) 是卷积的延迟器
y(t) f (t) (t t0 )=f (t t0 )
物理意义
f (t)
有用推论
(t t0 )
f (t t0 )
f (t t1) (t t2 ) f (t t1 t2 )
若:f1(t) f2 (t) y(t) 则: f1(t t1) f2(t t2) y(t t1 t2)
s 平面和z平面的对应关系
×
衰减振荡信号
j
×虚指数信号 ×
增长振荡信号
指数×衰减信号
×
直流信号
×
指数增长信号
jIm[z]
z esT rej r eT , T
× 虚指数信号
衰减振荡信号
×
×
× 指×数增长
指数衰减信号 直流 Re[z]
增长振荡信号
× 2
温故知新,上讲回顾
信号波形的翻转、展缩与平移
)
f3 (t
)]d
f1( )
f2 (t
)d
f1 (
)
f3 (t
)d
f1(t) f2 (t) f1(t) f3 (t)
物理意义:两个LTI系统并联,其总的单位冲激响应等
于各个子系统的单位冲激响应之和。也可通过交换律/
线性系统性质证明
f1 (t )
f2 (t) f3 (t)
f1(t) [ f2 (t) f3 (t)]
f1(t) f2 (t ) f3 (t) yzs (t) f1 (t) [ f2 (t) f3 (t)]
表明:两个LTI系统级联时,系统总的单位冲激响 应等于各个子系统单位冲激响应的卷积。
第二章第3讲 卷积
[ f () * f ()]d f (t) * f ()d f (t) * f ()d
1 2 1 2 2 1
t
t
t
证明:
[ f ( ) * f
1 t 1
t
2
( )]d [ f1 ( ) f 2 ( )d ]d
[ f1 (t )u(t t1 )] [ f 2 (t )u(t t2 )]
信号与系统 同济大学汽车学院 魏学哲 weixzh@
g (t ) f1 ( )u( t1 ) f 2 (t )u(t t2 )d
结合律应用于系统分析,相当于串联系统的冲激响 应,等于串联的各子系统冲激响应的卷积
信号与系统 同济大学汽车学院 魏学哲 weixzh@
卷积的微分与积分
df2 (t ) df1 (t ) d [ f1 (t ) * f 2 (t )] f1 (t ) * f 2 (t ) * dt dt dt
t t2
t1
f1 ( ) f 2 (t )d
t1 t t2
t
积分限是: 例:
f1(t ) 2e u(t )
g (t )
f 2 (t ) u(t ) u(t 2)
求
f1 ( ) f 2 (t )d
信号与系统 同济大学汽车学院 魏学哲 weixzh@
f1( ) 1 f2(1-) 2
f1( ) 1 f2(2-) 2
f1( )
f2(3-)
2
c
c
c
c
-1
0
f1() f2(-)
信号与系统连续时间LTI系统的几种响应求解方法及例题
谢谢您的聆听
THANKS
优点
能够直接得到系统在任意 时刻的响应值。
缺点
计算量大,需要逐个时间 点进行计算。
拉普拉斯变换法
定义
拉普拉斯变换法是一种将时域函 数转换为复频域函数的数学工具。
01
描述ห้องสมุดไป่ตู้
02 通过拉普拉斯变换,将系统的微 分方程转化为代数方程,然后求 解得到系统在复频域的响应。
优点
能够方便地求解高阶微分方程, 适用于具有复杂特性的系统。 03
拉普拉斯变换法
能够求解系统的零状态响应,但需要 已知系统传递函数,且变换过程可能 较为复杂。
05
结论
总结
本文介绍了求解连续时间LTI系统响应的几种方法,包括时域法和频域法。 通过具体实例,展示了这些方法在求解系统响应中的应用和优势。
时域法通过建立和求解微分方程来获取系统输出,具有直观和物理意义 明确的优点。而频域法则通过分析系统函数的频域特性来求解响应,具
信号与系统连续时间LTI系统的 几种响应求解方法及例
CONTENTS
• 引言 • 几种响应求解方法 • 例题解析 • 方法比较与选择 • 结论
01
引言
背景介绍
01
信号与系统是电子工程和通信工 程的重要基础学科,主要研究信 号和系统在时域和频域的行为和 特性。
02
在信号与系统中,线性时不变 (LTI)系统是最基本、最重要的 系统之一,其响应求解是研究的重 要内容。
LTI系统的基本概念
LTI系统是指系统的输出仅与输入和系统 的状态有关,而与时间无关。
LTI系统具有线性、时不变和因果性等基 本特性。
《信号与系统》课程讲义3-4
t 2
1
§3.4卷积定理和相关定理
二、相关定理
1.能量信号与功率信号
①能量与能量信号
∫ i)能量 E =
+∞
|
f
(t) |2dt
−∞
ii)能量信号E<+ ∞,例 f (t) = EGτ (t)
∫ ②iii功))功功率率率与P信功=号率Tl→iPm信+<∞+号T1∞−T22T
f (t 例f
) 2 dt (t) =
) )
f f
2 2
(t (τ
−τ −t
)dt )dτ
③ ⇒ f1(t) * f2 (−t) = R12 (t)
§3.4卷积定理和相关定理
[例3]:已知 f1(t) = G2 (t),f2 (t) = (−t + 2)R2 (t) 求① f1(t) * f2 (t)
② R12 (t) = f1(t) * f2 (−t)
t+2 -1
1τ
§3.4卷积定理和相关定理
⎧0
∫⎪
⎪
t+2 2dτ
−1
∫ f1 (t )
*
f2 (t)
=
⎪ ⎨
⎪
∫⎪
⎪⎩
+21dτ
−1
12dτ
t−2
0
t < −3 ⎧ 0
− 3 ≤ t < −1 −1≤ t <1
=
⎪⎪⎪⎨2(t 4+
3)
1 ≤ t < 3 ⎪⎪2(3 − t)
t>3
⎪⎩ 0
t < −3 − 3 ≤ t < −1 −1≤ t <1
§3.4卷积定理和相关定理
信号与线性系统 第四版 管致中 第2章4
第K个脉冲函数: 个脉冲函数: 个脉冲函数
f (k∆t )[ε (t − k∆t ) − ε (t − (k + 1)∆t )] ∆t越小,f(t)、fb(t)越接近。当∆t无限趋 越小, 、 越接近。 越小 越接近 无限趋 ∆ε (t − k∆t ) = f (k∆t) ∆t 小 dτ时,则不连续变量 ∆t变为τ 。即 则不连续变量k 变为 ∆t
h(t = ) e (t )h(t e() rzs(τ)−τ∫ −ττ )h(t −τ )dτ
−∞
4
∞
卷积积分
rzs (t) = ∫ e(τ )h(t −τ )dτ
−∞
∞
= e(t) ∗h(t)
e(t)
h(t)
r(t)
• 结论 结论——只要知道了系统的单位冲激响应 只要知道了系统的单位冲激响应h(t),就 只要知道了系统的单位冲激响应 , 可以求得系统对任何e(t)所产生的响应 。 可以求得系统对任何 所产生的响应r(t)。 所产生的响应 • 表明:系统的单位冲激响应 表明:系统的单位冲激响应h(t)可以完全表征一 可以完全表征一 系统。 个LTI系统。 系统 注意: 观察响应的时刻,是积分的参变量; 注意:t :观察响应的时刻,是积分的参变量; τ :信号作用的时刻,积分变量 信号作用的时刻, 从因果关系看, 从因果关系看,必定有 t ≥ τ
13
f 2 (t −τ ) f1(τ)
1
0
1 +t −3
−1+ t
τ
卷积积分的计算
• 运算过程的实质: 运算过程的实质 实质 参与卷积的两个信号中,一个不动, 参与卷积的两个信号中,一个不动,另一个反转后 随参变量t移动。对每一个t值,将e(τ)和h(t-τ) 对应 随参变量 移动。对每一个 值 移动 和 相乘,再计算相乘后曲线所包围的面积。 相乘,再计算相乘后曲线所包围的面积。 • 图解法一般比较繁琐,但若只求某一时刻卷积值时 图解法一般比较繁琐, 还是比较方便的。确定积分的上下限是关键。 还是比较方便的。确定积分的上下限是关键。
3-4卷积定理和相关定理
1 2π
哈尔滨工业大学自动化测试与控制系
信号与系统— 信号与系统—signals and systems
3.利用频域卷积定理求傅立叶变换 . [例1]: f (t ) = G2 (t ) cos( t ) 的傅立叶变换 例 : 2 1 π 解:ℱ[ f (t )] = ℱ[cos t ] ∗ ℱ[G2 (t )] 2π 2 1 π π = π [δ (ω − ) + δ (ω + )] ∗ 2Sa(ω ) 2π 2 2
t < −2 0 −2 ≤ t < 0 t + 2 −2 ≤ t < 0 = 0 ≤ t < 2 2 − t 0 ≤ t < 2 0 t>2 t>2
2
f1 (t ) ∗ f 2 (t )
t < −2
F (ω ) = Sa(ω )Sa(ω ) = Sa 2 (ω )
-2 0 2
t
R12 (τ ) = ∫ f 1 (t ) f 2 (t − τ )dt = ∫ f 1 (t + τ ) f 2 (t )dt
−∞ −∞ +∞ +∞ +∞ +∞
R21 (τ ) = ∫ f 1 (t − τ ) f 2 (t )dt = ∫ f 1 (t ) f 2 (t + τ )dt
−∞ −∞
④复能量信号的相关函数: 复能量信号的相关函数:
R12 (τ ) = ∫
+∞ −∞
f1 (t ) f 2* (t − τ ) dt
⑤复功率信号的相关函数: 复功率信号的相关函数:
1 T R12 (τ ) = lim ∫ 2T f1 (t ) f 2* (t − τ )dt T →∞ T − 2
信号基本运算(尺度变换,卷积等)
o 123
n
hn
1
o 123 n
hn m
a m um
hn m
a m um
o 123
m
n0
o 123
m
n 1
y(n) u(n) n αm 1 αn1 un 1 yn
m0
1α
11
当n 时,yn 1
1α
o 1234
g(t )
1 1t
1 2
d
t
2 T4
1 f1 f2t
1 O t 3 1
t
t 3 1
t
3
1
即2 t 4
g(t) 1 1(t )d t 2 t 2
t3 2
42
T4
1 f1
f2t
(A)1
(B)-1
(C)1.5 f1(t)
(D) -0.5
f t f1 t f2 t
f2(t)
-1
t
1
-1
tt
图1
2、卷积积分f (t-t1)* δ(t-t2)的结果为
A.f (t-t1-t2)
B. δ(t-t1-t2)
C.f (t+t1+t2)
D. δ(t+t1+t2)
3、已知f1 (t),f2(t)的波形如题图所示,试 画出f1(t)*f2(t)的波形。
当 f1或t 为f2非t 连续函数时,卷积需分段,积分限分段定。
卷积的性质
•代数性质 •微分积分性质 •与冲激函数或阶跃函数的卷积
一.代数性质
计算卷积的方法
.某复合系统如图所示 ,两个子系统的冲激响应 分别为 h1 (t ) u (t ), h2 (t ) u (t 1) u (t 2) 1. 求该系统的冲激响应 h(t). 2. 当系统的输入 f(t) ' (t )时,求该复合系统的零状态 响应y zs (t ).
f(t)
tj0tj1f1f21快速定限表若参与卷积的两个函数fst和flt都是只有一个定义段它们的时限长度分别为ts和tl并且tstl长函数flt的左右时限分别为ll和rl而短函数fst的的左右时限分别为lsrs并规定积分号内括号统一只表示即只反转时限长的函数
*计算卷积的方法
1.用图解法计算卷积
分段时限
2.用函数式计算卷积 3.利用性质计算卷积
b
* 0 -1 1 1 b f 2 (t 1)[ u (t 1) u (t 1)] f1 a[u(t ) u(t 1)] t t j 2 2 2 f 2 f1 f 2 ( ) f1 (t ) du (t ti t j )
i 1 j 1 ti
t
b
0
f2(t)
解:1. t 0
0
2
t-2 0 1 t a t-2 0 1
重合面积为零:f1(t)*f2(t)=0
2.if 0 t 1
f1 f 2 f1 ( ) f 2 (t )d
0 t-2 1
t
3.if 1 t 2
1
b ab a (t )d (t ) 2 0 2 4
e(t )
h2 (t )
h1 (t )
h3 (t )
r (t )
南京邮电学院《信号与系统》信号3.6
例:求 cos 0t的频谱密度函数
解:cos 0 t
1 (e j0t 2
e j0t )
F ()
( )
1 F1 F1 2
0
0
频谱密度为位于
和
0
处的冲激,冲激强度为
0
1 2
2
cos0t [ ( 0 ) ( 0 )]
4单位冲激序列T (t)
n
1e T
jn0t
1 T
e jn0t
n
T
(t)
2
T
(
n
n0 )
0 0
( )
f (t)
F ( )
(1)
( 0 )
0 T 2T t
0 020
2 傅里叶系数与傅里叶变换 非周期信号的频谱密度F ( )与相应的周期信号的 傅里叶复系数Fn之间的关系
F ( ) TlimTFn n0 F ( )
T (t)是以T为周期的单位冲激信号,T (t) (t nT ) n
展开为指数形式傅氏级数
T (t) Fne jn0t n
式中,Fn
1 T
T
2 T
T
(t
)e
jn0t
dt
2
T
(t)在( T 2
,
T 2
)之间为(t
),
Fn
1 T
T
2
T 2
(t)e jn0t dt
1 T
T
(t)
解: (t) () 1 j
由对称性
( )
求 ()
1
[(t)
1]
2
j(t)
() 1 (t) 1