储油罐的变位识别与罐容表标定
储油罐变位识别与罐容表标定
储油罐的变位识别与罐容表标定摘要本文为了解决储油罐的变位识别与罐容表标定的问题,通过分析储油罐纵向倾斜和横向偏转对罐容表影响,建立罐体变位后实际储油量与显示油位高度的数学模型。
对于问题一,有变位情况用定积分方法直接对横截面面积沿罐体底面方向进行积分,建立储油量v 和油位高度h 的初始模型,对模型进行检验,并根据绝对误差与油位高度进行拟合得到补偿函数f(x),与初始模型进行组合,得到罐容表修正后的标定模型,即()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥--+-≤≤-≤≤-=⎰⎰⎰-+-+ααπααααααααααtan 2),(tan 2tan 1tan 2tan ,)(tan 1tan 0,)(tan 112tan 12tan tan 2tan 02121L b h x f hb abdy y S L b h L x f dy y S L h x f dy y S V bL h L h L h hL因无变位是有变位的特殊情况,即标定模型1.3如下:()02.121349.0arcsin 12)('2+-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=-=h b b h b b h b b h abL T L h S h V π 经过修正后,修正值与实测值之间的差值很小。
球冠内油量的体积分别用蒙特卡罗(样本量N=100000)、近似积分法两种方法来求解,得到球冠内油量的体积与油位高度及变位参数的关系。
根据模型1.1和()βcos 0h r r h --=建立圆柱体内油量的体积与油位高度及变位参数的函数关系,即模型2.1。
根据表达式(1)建立储油量与油位高度和变位参数之间的数学模型2.2和2.3。
在0,0==βα的条件下结合附件2的数据对模型进行检验,模型2.2、2.3的平均相对误差分别为0.08%和0.05%,故模型2.3更优。
根据模型2.3,结合本题给出的数据建立以预测值与真实值之间的误差和最小为目标的优化函数,确定最优︒=︒=32.4,97.1βα,代入模型所得罐容表的部分结果为:显示油高(米) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 储油量(立方米) -0.9 -0.3 0.11 1.38 2.94 4.15 6.39 9.13 11.8 15.1 显示油高(米) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 储油量(立方米) 17.3 19.9 22.6 25.4 28.2 31 33.8 36.6 39.4 42.1 显示油高(米) 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 储油量(立方米)44.847.449.952.354.656.858.760.56263.3关键字:储油量、油位高度、蒙特卡洛算法、定积分、MATLAB 编程1.问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
储油罐的变位标识与罐容表的标定
摘要为解决加油站的地下储油罐在使用一段时间后,由于地基的变形会导致无法根据预先标定的罐容表计算储油罐内油量容积的问题,研究如何识别储油罐变位以及对罐容表的重新标定的问题.得到储油罐的总油量与油标高度、纵向偏转角、横向偏转角之间的关系模型.利用该模型可根据加油站的出油量以及对应的油标高度来识别储油罐的变位,通过建立优化模型, 搜索算法和MATLAB软件求解出了所识别的变位的变位角度, 并利用实验数据对求解结果进行了检验; 最后利用得到的油量表达式给出了两个储油罐的罐容表.为了得到变位参数的有效估计,对进出油实测数据建立非线性的最小二乘回归模型,在数值求解中,采用截面积的微元方法,有效减少了复杂的体积积分计算,从而完成罐容表的修正标定。
关键词:MATLAB 变位标识罐容表标定储油罐ABSTRACTIn order to solve the problem that the calculation of oil tank volume must be calibrated periodically because an oil tank shift for the foundation deformation,the fuction relation between oil volume,altitude,direction deflection angle,transverse direction deflection angle is given out.The shift parameter Can be found with the model and data of oil volume.The new calculation of oil tank volume can be finned after tank shift.a1.Further more,we have gained the displacement angle by developing a optimization model, gradually decrease interval search algorithm and Matlab software, and then apply the experimental data to verify our solved results.We develop the non—linear of least squared regression model to estimate the parameters of position change.In particular,the differential element method of the sectional area is proposed to effectively reduce the complex numerical computation of integral.Therefore,the volume table is readjusted by the estimation of parameters of position change.Keywords:MATLAB;shift confirm ;calibration calculation of volume;oil tank第一章绪论1.1 储油罐问题的背景由来储油罐是储存油品的容器,在我们周边加油站是普遍存在的,一般加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,先通过流量计和油位计来测量进/出油量与罐内油位高度等数据,再通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,使地面上的人很容易了解罐内油位高度和储油量的变化情况。
储油罐的变位识别与罐容表标定
H 3 h' H 2 和 h' H 3 .
我们以第三种情况为例,来建立变位椭圆罐体模型. 首先,我们给出变位后的椭圆罐体纵向截面图,如下所示:
B
Q
P
h2 A
h1
M
l2
h
D
l1
N
图 3 椭圆罐体倾斜 角度时的横向截面图
在图 3 中, 我们以 D 点为端点作平行于 MN 的直线 DB ,B 点位于直线 AM 上. h1 表
y
b
O dx
a x
h
f(y)
图 2 小椭圆油罐体在无变位时的纵向截面图
图 2 中的 h 为小椭圆界面油量的高度,阴影部分就是罐体内部储油量的截面面积. 我们以椭圆圆心为圆点 O ,椭圆的长半轴为 x 轴,短半轴为 y 轴建立直角坐标系. 设椭 圆的长半轴为 a ,短半轴为 b ,根据这些变量我们可以容易得到椭圆的方程: x2 y 2 1 a 2 b2 由于截面面积的边界是和椭圆相连接的,不能够用 / 360 S 椭圆来求,所以我们 运用了数学上的积分来对此部分面积进行求解. 首先,我们先将面积分为左右两部分进行计算. 以右半部分为例,由于曲边梯形
4
度最高的 、 的值,并据此给出油位高度间隔 10 cm 的罐容表标定值,验证所建立的 模型的正确性与方法的可靠性.
五、模型的建立与求解
5.1 问题一模型的建立与求解 5.1.1 椭圆罐体模型的建立 在对问题一进行分析时, 我们分别对罐体无变位和纵向倾斜的变位情况进行了分析. 因此,我们针对这两种情况建立无变位椭圆罐体模型和变位椭圆罐体模型. 无变位椭圆罐体模型的建立 在椭圆罐体未发生纵向倾斜,即在无变位的情况下,油罐体与地面没有夹角,此时 0, 罐体内部的油量在液面各处都是平稳的. 下图为椭圆罐体在无变位时的纵向截面 图.
储油罐的变位识别与罐容表标定模型
2. 对问题二的分析:因为两个变位参数都是未知的,要直接求得油量与油位高度及两
个参数的总的关系式是较困难的。故我们可以求出油量分别随两个参数的变化关系式 y(h, α)和 y(h, β ),并且这两个函数是建立在问题一的基础上,然后研究两个关系式的关 系,求出油量与油位高度及两个参变量的综合关系式 y(h, α, β),这样问题二便能求解出 来。这当中较难部分是如何把两个函数关系式综合到一起。
2
8、假设储油罐的管壁所占的体积忽略不计; 9、假设注油口,检查口的的严谨性是很强的;
§4 名词解释与符号说明
4.1 名词解释 1、罐容表——罐容表是在油罐制作安装完成后由专业部门通过实测标定的油高与
体积的关系表,油高以厘米为单位,体积以立方分米为单位。由于罐容标定一般是每间 隔 1cm 确定一个容积值,这样罐容表中只有整厘米数油高具有对应的容积值。
§3 模型的假设
1.假设罐体位置横向不发生变位(对于问题一); 2.假设罐内油的体积不会随温度的变化而变化(即忽略热胀冷缩对油体积的影响); 3.假设油罐在检测过程中完好无损,不会出现漏油、汽化等现象; 4.纵向偏转角度 a 不大,可近似认为两端球缺中含油量相同;
5 假设题目所给的数据真实可靠; 6、假设固定油浮子的油位探针始终垂直于油罐底部; 7、假设深入油罐内的管子体积忽略不计;
+
储油罐的变为识别与罐容表的标定
储油罐的变位识别与罐容表标定摘要罐容表是用于实时精确测定罐存油品的重要依照之一,地基的变化造成储油罐位使得罐内的油位探测装置无法正确的测量出油量所对应的油位高度。
为了掌握实际罐体变位后对罐容表的影响,本文先分析无变位和纵向倾斜α=4.10时,小椭圆型储油罐油位高度与部分容积的关系,由于储油罐在发生纵向和横向变位后,计算罐容表的方法已经发生变化,建立实际储油罐体变位后标定罐容表的数学模型。
首先,对于理想的小椭圆型油罐,根据已知的示意图,建立油罐无变位模型和油罐纵向倾斜模型,用二重积分思想,求得任意油位高度时油平面的面积,将此面积对高度积分,得到储油量计算值与油位高度的对应关系,计算出无变位以及纵向倾角为α时罐容表,比较储油量计算值与真实值的大小,无变位时得到平均相对误差为0.0337,纵向发生倾斜时为0.0223。
分析变位前后的罐容表,发现在相同高度下,变位后的储油量总是小于变位前的储油量,对罐容表进行重新标定具有实际意义。
接着,由小椭圆型油罐数学模型推广到实际储油罐的数学模型,同样用二重积分的数学思想。
由于实际的储油罐的两端是球冠体,所求的油量体积是两端的球冠体内油量体积与中间柱体的油量体积之和。
变位分为纵向倾斜和横向倾斜,而横向倾斜不改变油在储油罐中的形状,只改变了测量高度。
但纵向倾斜会改变油在储油罐中的形状,使测量高度不能再真实的反应储油量。
根据不同的油位高度,本文分析了5种可能的情况,得出不同情况下的油位高度与油量,变位参数α的关系式。
再考虑横向偏转对模型的影响,利用几何关系,得到考虑横向偏转前后油位高度之间的转化关系,将只存在纵向倾斜变位时的油位高度代换为考虑横向偏转后的油位高度,得到综合得到油位高度与油量,变位参数α、β的关系式。
代入实测数据,借助MATLAB,得到该模型的变位参数纵向倾斜角1.442度和横向倾斜角5.8643度。
然后得出罐体变位后油位高度间隔为10cm的罐容表标定值。
(推荐)数学建模A题--储油罐的变位识别与罐容表标定的论
储油罐的变位识别与罐容表标定摘要本文主要探讨了储油罐的变位识别与罐容表标定的问题。
本文通过建立合适的坐标系,使用二重积分的方法和近似积分、坐标变换等技巧,求解了小椭圆储油罐和实际储油罐在发生变位时储油量与油高变化的函数关系,从而分析了罐体变位后对罐容表的影响,并对数据结果和误差进行了详实的分析。
本文在模型的建立与求解的过程中始终遵循化繁为简的原则,最先考虑简化的基本模型,再通过变换推导出实际的模型。
在第一问中,我们首先假设油罐壁的厚度为零,并通过二重积分的计算了小椭圆储油罐在无变位情况下的理论储油量。
其次我们通过运用几何原理通过坐标变换利用现有模型计算了小椭圆储油罐在纵向倾斜后的理论储油量。
在进行误差分析时,我们发现误差非线性,且误差数量级较大,得出油罐壁的厚度应不为零的结论,且经过理论分析油量3()V O d =,故我们用三次多项式拟合误差曲线()f H ,并通过'()()()V H V H f H =-修正了油量的计算公式。
经检验,修正后模型的计算值与实际值十分吻合,模型准确度很高。
并且,我们用修正后的模型V'(H)对油罐进行了标定。
在第二问中,我们利用了问题一中的模型求解罐身中的油量体积,并通过二重积分给出了油罐凸头部分油量的计算公式,其中,在油罐发生纵向倾斜时,我们队凸头部分的油量进行了合理的近似计算。
并且,我们通过坐标变换,给出了211()((,,((),))V H f f H f H αββα==))的变位参数修正形式。
在求解变为参数α、β时,我们通过最小二乘法拟合()V H ,求出了 2.1258, 4.6814αβ︒︒==。
将此变位参数代入模型中进行检验,得出理论计算值与实际值的相对误差限为5.006%,平均相对误差为0.029%,模型准确可靠。
最后我们用所得模型对油罐进行了标定。
关键词:储油罐 油量 倾斜 标定问题的重述与分析1、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
2010数学建模A题答案论文 储油罐的变位识别与罐容表标定
摘要
储油罐作为加油站常用的贮存设施,对油品在不同液面高度时的贮油量进行精确的 计量变得尤为重要,本文讨论了,加油站卧式储油罐的变位识别与罐容表标定问题。其 主要方法是参考卧式储油罐罐内油品体积标定测量技术,结合几何关系及积分计算,建 立储油罐内储油量,油位高度及变位参数(纵向倾斜角 与横向倾斜角 )之间的关系 模型。然后分析模型,在油位高度一定时,由储油量确定变位参数 与 的值,即为对 储油罐进行变位识别;在变位参数 与 一定时,根据油位高度可确定储油量,即为对 罐容表(罐内油位高度与储油量之间对应的函数关系表达式)进行标定。
地平线
油位探针
油位探测装置
注检 油查 口口
出油管
油浮子
3m
油位
油
高度
1m 2m
6m
1m
图 1 储油罐正面示意图
-2-
地平线 油位探测装置
油位探针
油浮子
注检 油查 口口
出油管
油
α
图 2 储油罐纵向倾斜变位后示意图
水平线
地平线
油位探针
油位探测装置
地平线 油位探针
油 油
β
3m
地平线垂直线
(a)无偏转倾斜的正截面图
-6-
S ' a2 / 2 (a h' )a sin( / 2)
公式(2)
从而求得所求截面面积: S ( a2 / 2 (a h')a sin( / 2)) cos
公式(3)
将式(3)带入式(1)求得: V ( a2 / 2 (a h' )a sin( / 2))l cos
首先,结合上述因素及汽油热膨胀系数,建立模型并对模型进行修正,修正热膨胀 所带来的计算误差。代入附表实际测量数据验证模型。
储油罐的变位识别与罐容表标定
当 2b l2 tan h 2b 时, 油面所截几何体体积可以视为整个椭圆柱体体 积减去上方的空隙,此时,
V ab(l2 (2b h) cot ) f (2b) f (h l1 tan )
关键词:卧式储油罐;体积计算;微积分;误差分析.
一、问题重述
加油站的核心便是储油罐的设置, 通常加油站都有若干个储存燃油的地下储 油罐,并且配有“油位计量管理系统”,采用流量计和油位计来测量进/出油量 与罐内油位高度等数据,通过罐内油位高度与储油量的对应关系进行实时计算, 以得到罐内油位高度和储油量的变化情况。 针对实际储油罐, 本题涉及到的是主体为圆柱体,两端为球冠体的封头式椭 圆柱型卧式油罐。但由于许多储油罐在使用一段时间后,由于地基变形等原因, 使罐体的位置会发生纵向倾斜和横向偏转变化,即变位,从而导致罐容表发生改 变。 问题一: 主要讨论两端平头的小椭圆型柱体储油罐,其它装置和油位计量管 理系统与实际储油罐相同。现在分别对罐体无变位和倾斜角为=4.1°的纵向变 位两种情况做了实验, 实验数据如附件一所示。要求建立数学模型研究罐体变位 后储油体积与油浮子所示数据之间的关系,用附件一数据进行检验,并分析其对 罐容表的影响,再给出罐体变位后油位高度间隔为1cm的罐容表标定值。 问题二:针对实际储油罐,当储油罐发生纵向倾斜角度 ,横向偏转角度 后,要求建立罐内储油量与油位高度及变位参数 、 之间的一般关系。并利用 罐体变位后在进/出油过程中的实际检测数据,根据所建立的数学模型确定变位 参数,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。
储油罐的变位识别与罐容表标定
摘 要
加油站中储油罐的油量有专门的“油位计量管理系统”进行测定,但在实际 生活中,由于罐体材料以及周围环境的影响,导致装置测定值产生误差,需要对 其重新标定。本文主要通过分段积分法,建立了储油罐无变位、横向偏转、纵向 倾斜变位条件下油量与油位高度之间的数学模型。 问题一仅涉及两端平头的椭圆柱体,首先根据积分公式分五种情况,精确推 导出平放和纵向变位时, 罐体内油的体积计算公式的解析表达式。其次利用此模 型计算出累加进油量的理论值, 并与实际实验数据进行比较分析,进一步考虑到 油位探针、 进油管和出油管的体积对油位高度的影响,我们对原始数据进行了补 偿拟合。在此基础上利用 Matlab 软件编程得出罐体变位后油位高度间隔为 1cm 的罐容表标定值。 问题二涉及对带球冠的实际储油罐体积的推导与参数估计。 其中罐身在考虑 到横向偏角的情况下做类似问题一的精确推算。而对于左右球缺部分,采用微元 积分的思想, 确定了球缺顶储油罐内油量与油位高度及横纵向倾斜角的函数关系 模型,利用 Matlab 软件编程对罐容表在不同变位角度下进行了标定,估计出实 际储油罐的参数值为 1.5 , 1 ,并给出储油罐的罐容表。 本文在数值分析基础上给出了各种情况下储油罐实际油量与液面高度的具 体计算模型,同时又应用相关数据对参数进行了估计,在模型的改进中,提出了 运用辛普森公式计算球缺体积的想法,指出了合理的改进方向。
2010数学建模A题-储油罐的变位识别与罐容表标定
2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。
请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。
进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据油油浮子出油管油位探测装置 注油口 检查口 地平线 2m6m 1m 1m3 m油位高度 图1 储油罐正面示意图油位探针油位探针α地平线 图2 储油罐纵向倾斜变位后示意图油油浮子出油管油位探测装置注油口 检查口水平线图3 储油罐截面示意图(b )横向偏转倾斜后正截面图地平线β地平线垂直线油位探针(a )无偏转倾斜的正截面图油位探针油位探测装置地平线 油3m油摘 要通常,在加油站都有预先标定的罐容表,并且都有与之配套的“油量计位管理系统”。
储油罐的变位识别与罐容表标定
储油罐的变位识别与罐容表标定
|
储油罐的罐容是一个必不可少的参数,其变位识别和罐容表标定是油罐检测中的一个重要环节。
在实际的设备维护工作中,如果罐容被操纵,不仅会影响油罐的消耗量,还会影响油罐作业的效率,甚至会造成安全事故而给企业带来巨大经济损失。
因此,油罐容表标定和变位识别在设备维护过程中起着至关重要的作用。
储油罐的变位识别是检测油罐水位特征参数,包括水位上下限及法兰距离和罐容之间的变化特征以及空罐时的罐容特征。
在变位识别过程中,应充分考虑连续液位变化的机械结构及操作条件的影响因素。
储油罐罐容表标定是指根据油罐按照一定罐容值进行实际操作,据此提取油液容积和储油罐容积之比系数。
在实施罐容表标定时,应特别注意水位和流速等参数的实时变化,以确保测量准确、精确。
储油罐的变位识别和罐容表标定,对保障罐容的精准不仅需要有良好的技术,更需要有严格的管理体系,以确保油罐的正常作业。
首先,在实施变位识别和罐容表标定前,应先检查油罐各部件的损坏程度和疏漏情况,以及油罐内部清理情况,以保证油罐可以安全运行。
其次,标定与变位识别工程人员要建立规范、科学和有效的工作流程,确保操作流程准确有效。
最后,检查人员应定期实施油罐检查,以确保储油罐能够安全按照设定的罐容标定运行。
储油罐的变位识别和罐容表标定,是检测油罐容量的关键环节,对保障设备安全可靠的运行发挥着重要的作用,因此,在操作变位识别和罐容表标定时,应当特别注意实施管理,落实安全操作,以确保油罐的正常运行。
2010年A题储油罐的变位识别与罐容表标定解析
论文2小组成员储油罐的变位识别与罐容表标定摘要:关键词:整体拟合重积分1.问题的重述。
1.1问题的重述。
通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
现利用数学建立相应的模型研究解决储油罐的变为识别与罐容表标定的问题。
1.2待解决的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,得到实验数据。
接着建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。
(2)对于实际储油罐,建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。
利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。
进一步利用实际检测数据来分析检验你们模型的正确性与方法的可靠性。
1.3问题的分析。
针对问题1:对于储油罐有无纵向变位情况,运用微分知识,分别建立罐体无变位油量体积V与油位高度的关系式和罐体变位油量体积与油位高度的关系式,用MATLAB软件积分求解得出其表达式,结合附件一所给的数据,绘制含有油量体积的理论值、实际值、修正值(理论值与实际值的差值)的表格。
最后,根据罐容表正常的对应值和变位后的修正值,在MATLAB中建立直角坐标系,绘制储油量与油位高度的关系曲线图,分析比较在纵向倾斜α时,对罐容表的影响。
储油罐的变位识别与罐容表标定
储油罐的变位识别与罐容表标定
油罐变位识别与罐容表标定是石油行业中重要的技术,它可以对油罐
状态进行实时监测,有助于提升油库管理精度,同时减少能耗、资源
消耗和费用开支。
一、油罐变位识别
1.原理:油罐变位识别主要是通过识别油罐的介质及容积的变化情况来识别出罐容的变化,从而达到对罐体变位状态的监测。
2.实施方式:该方法可以通过如下实施方式实施:
(1)测量油罐容积变化:采用物理量测技术(如液位计、超声波法等)测量油罐容积变化,据此来推测油罐变位。
(2)控制容积变化:采用介质的特性来控制油罐容积的变化。
3.适用范围:油罐变位识别主要适用于储存火油、汽油和柴油的油罐,但也可以适用于储存其它介质或材料。
二、罐容表标定
1.原理:罐容表标定即通过实际检测罐容来与预设值进行比较,从而建立一个罐容表,用以记录每个油罐的容量,从而达到精准管理油库的
目的。
2.实施方式:罐容表标定通过下列实施方式进行:
(1)根据罐容实际测量结果绘制罐容表:把每个油罐的实际容量填写
到罐容表中,运用测量结果来绘制出罐容表,以此记录每个油罐的容
量。
(2)通过容积测量和总介质计算获取罐容表数据:首先进行容积测量,再根据总介质运用蒙特卡洛方法等手段计算出每个油罐的容量。
3.适用范围:罐容表标定适用于储存各类石油产品和石油分类产品的油罐,包括但不限于柴油罐、汽油罐、液化气罐等。
储油罐的变位识别与罐容表标定
油量(L )
3000
2000
1000
200
400
600 800 油 位 高 度 ( mm)
1000
1200
图 3 无变位时油量高度与储油量的关系
第二步: 问题一我们先考虑建立小椭圆油罐无变位时罐内油位高度与储油量的函数关系式. 下面我们通过小椭圆油罐截面示意图推导小椭圆油罐无变位时罐内油位高度与储油量 的函数关系式. 油罐的一个端面是椭圆面,所以现在要计算的是任意液面高度对应的储 油量,如图 4:
二、问题假设
假设实验采集到的数据准确无误,油罐始终不变形,且不考虑油罐罐体厚度. 不考虑温度、气压等因素对测量值的影响. 油罐的变位只考虑纵向倾斜(靠近油位探针单侧地质塌陷)和横向偏转,不考虑其 他复杂变化. 假设罐体发生变位的纵向倾斜角度 和横向偏转角度 都有一个安全限度,并且在 安全限度内油位计量系统正常工作. 不考虑油罐体中部分油管对油容积的影响.
储油罐的变位识别与罐容表标定
摘要
加油站卧式储油罐都有配套的预先标定罐容表来反映罐内油位高度和储油量的变 化情况. 但是由于地基变形等原因,会使显示油位高度与真实储油量的关系发生改变. 本文就储油罐的变位识别与罐容表标定问题展开探讨与研究. 对于问题一,我们首先综合分析在无变位情况下的出油量和进油量,通过出油量对 进油量进行修正,得到高度间隔为 1cm 的预先标定罐容表. 然后,在显示油位高度一定 的情况下, 我们用积分求解得出罐体无变位储油量 v1 与 h 的关系式 v1 h 和变位储油量 v2 与 h 的关系式 v2 h ,从而建立差值模型即 v v1 h v2 h . 在 4.1 时,将通过模型求得的油量差值与实测数据进行对比,并借助 MATLAB 画出 v 和 v 的相对误差曲线, 发现相对误差控制在允许范围内, 验证了模型的准确性, 从而给出罐体纵向倾斜 4.1 后新的罐容表. 对于问题二, 在考虑纵向偏转对罐容表的影响时, 我们直接套用差值模型进行分析. 而在考虑横向偏转对罐容表的影响时, 我们假定罐体在发生纵向倾斜后再发生横向偏移. 我们根据所提供的数据给出了实际储油罐高度间隔为 10cm 的预先标定罐容表,并 得出横向倾斜角度 、纵向倾斜角度 、油面高度与储油量差值之间的关系式. 同时, 将实际检测数据代入新建立的一般化差值模型得出 4.15 , 1 .9 2 . 借助 MATLAB 画出实际值与模型求解值的相对误差曲线,发现相对误差控制在允 许范围内,验证了模型的正确性. 最后根据模型结果给出罐体变位后对应的新罐容表. 最后, 我们对所建的模型进行了综合评价. 同时又对模型进行了改进, 在问题一中, 为了使构建的模型更加的完善和合理,在从实际角度出发论证方案的可行性时,可以考 虑更多的因素,使可行性分析更加符合真实情况. 在模型的推广中,我们将模型推广到 池塘蓄水量、潜水艇排水量等领域.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本题主要研究解决储油罐的变位识别与罐容表标定的问题。
通过对小椭圆型储油罐和典型实际储油罐无变位、变位(罐体位置发生纵向倾斜和横向偏转等变化)等情况进行分析,运用高等数学中微积分的相关知识建立模型,并通过matlab 编程求解。
问题一:研究小椭圆型储油罐罐体纵向变位后对罐容表的影响。
运用高等数学中微积分的知识分别求解罐体无变位和倾斜角为0α 4.1=纵向变位时的罐内储油量,建立反应罐内油位高度与储油量关系的数学模型。
通过matlab 求解出无变位和变位时油位高度和油量的理论值,然后通过三阶多项式拟合消除系统误差,从而得到修正后的数学模型,并求出修正后的理论值。
与给出的实际值进行比较,分析得出罐体变位后对罐容表的影响。
并通过修正后的模型较精确的计算出罐体变位后油位高度间隔为1cm 的罐容表标定值(见表1)。
问题二:要求建立罐体变位后标定罐容表的数学模型。
将实际储油罐近似看为一个主体为圆柱体,两端为球冠体的模型,对于变位后的油罐,通过分析α、β角与各边长之间的关系运用球体,柱体的基本数学知识及微积分相关知识求解出储油量和罐内油位高度及变位参数(纵向倾角α和横向偏转角β)的分段函数,建立数学模型,然后根据给出的实际检测数据用最小二乘法找出最接近实际数据的变位参数。
关键词:一、问题重述对于加油站储存燃油的地下储油罐,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
需要定期对罐容表进行重新标定。
本题主要研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。
请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。
请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。
进一步利用附件2中的实际检测数据对模型的正确性与方法的可靠性分析检验。
二、模型假设假设一:数据是储油罐的内壁参数。
假设二:计算结果在误差允许范围内假设三:忽略温度、压力对汽油的密度的影响。
假设四:储油罐在偏移的过程中,油位探针始终与油罐底面垂直。
假设五:对卧式储油罐来说,不考虑其长期埋在地下所发生的蠕变。
假设六:累加进出油量数据是准确可靠的。
假设七:纵向倾斜角α、β小于9°。
三、符号说明四、问题分析问题一:本题主要研究小椭圆型储油罐罐体纵向变位后对罐容表的影响。
将小椭圆型储油罐近似看为圆柱体,对于无变位的罐体,运用高等数学中椭圆方程的基本知识和微积分的知识求解出储油量和油罐内油位高度的函数关系表达式,运用matlab 求解得出理论值。
对于倾斜角为0α 4.1=纵向变位后的油罐,根据罐内油位范围不同分为三个部分(见图2),通过分析α角与各边长之间的关系根据微积分的知识求出储油量和罐内油位高度的分段函数,建立模型,通过matlab 求解出理论值,将理论值与所给的实际值相比较,得出其相对误差。
然后通过三阶多项式拟合消除系统误差,从而得到修正后的模型,分析得出罐体变位后对罐容表的影响。
然后通过修正后的模型较精确的计算出罐体变位后油位高度间隔为1cm 的罐容表标定值。
问题二:本题主要要求建立罐体变位后标定罐容表的数学模型(即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系),然后根据给出的实际检测数据确定变位参数。
将实际储油罐近似看为一个主体为圆柱体,两端为球冠体的模型,对于变位后的油罐,根据管内油位范围不同分为五个部分(见图3),通过分析α,β角与各边长之间的关系根据微积分的知识求出储油量和罐内油位高度及变位参数的分段函数,建立数学模型,五、模型建立与求解5.1.1求解油罐内油位高度与储油量的对应关系 (1)无变位油罐内油位高度与储油量对应关系无变位时,罐内储油量所占空间为柱体,设柱体底面面积为S,柱体长度为L,则其体积V = SL (1)以椭圆的下顶点为原点,建立坐标系,则底面椭圆公式为()2222 1y b x a b -+=(2) 如图1所示设罐内油位高度为h ,则底面面积S 为0h S =ò (3)储油量体积0hV L =ò (4)(2)倾斜角为α纵向变位油罐内油位高度与储油量对应关系油罐发生纵向偏转时,油罐中油所占空间为一倾斜柱体,根据罐内油位高度不同分为三个部分(见图2),设油位高度为h ,对于一个给定的0h ,其在空间坐标系中的坐标为000(,,)x y z 。
第一部分:当0 2.05tan h a #时(分为2个小部分)1.当0h = 时0.40.4tan tan 002z V xdydz a a -=蝌 (5)2.当0 2.05tan h a < 时0tan tan 02y y z V xdydz a a -=蝌(6)由数学关系可得00.4tan y h a=+ (7)将(7)代入(6)可得()0.40.4tan tan 02hh z V xdydz a a ++-=蝌(8)第二部分:当2.05tan 1.20.4tan h a a <?时02.45tan 02y z V xdydz a -=蝌 (9)此时h 和0y 仍满足(7),将(7)代入(9)可得()2.450.4tan 02h z V xdydz a +-=蝌 (10)第三部分:当1.20.4tan 1.2h a -< 时002.45002y zV abz xdydz p =+蝌 (11)根据数学关系可得0 1.20.4tan hz a-=- (12) ()00.4tan y h z a=-- (13)将(12)、(13)代入(11)可得()2.450.4tan 1.20.40tan 1.20.42tan h z hhV ab xdydza ap a ----骣-=-+琪桫蝌 (14)由于油位探针可测得的最大高度为1.2,所以当油位高度达到1.2后罐内油量继续增加时,油位高度不再发生改变。
由上述公式知,油罐的变位会对罐容表(罐内油高与储油量的对应关系),产生较大的影响。
5.1.2应用试验数据对理论关系式进行修正(1)无变位时,根据储油量与油位高度的关系公式(4)0h V L =ò可以计算出储油量的理论值,由于理论储油量和实测数据之间存在一定的系统误差,所以我们用线性回归方式得到修正系数 β = 1.0349。
因此,无变位储油量理论值的修正计算公式为0/hV L =òβ(15) 用式(15)计算出修正后的油量体积和油位高度,然后和实测值进行比对,计算出误差,得到平均误差为0.0016%,达到了较好的计算精度,用matlab 画出无变位时的油量与油位高度的关系对比图。
参考数据见附表1。
(2)倾斜角为α 4.1=°纵向变位时,因为存在由于仪表不准确、罐体变形或者进油出油管道和仪表占据一定的容积等问题导致原始读数不准确而产生的系统误差。
为了提高计算精度,使理论值更加接近实际值,我们把给出的实际储油量与理论储油量进行比较,用三阶多项式拟合储油量差值和油高。
在一定程度上消除了系统误差。
三阶多项式为321.0258 1.02250.2221-+-dv=0.2881h(16)h h利用公式(16)对系统误差进行修正。
误差曲线拟合图如下变位后由于只涉及模型中第二种情况,故其它两种情况不予考虑。
修正后的储油量体积与油位高度的关系式为()2.450.4tan 02h z V xdydz dv a +-=-蝌 (17)=4.1a °,用式(17)计算出修正后的油量体积和油位高度,然后和实测值进行比对,计算出误差,得到平均误差为 0.0919%,达到了较好的计算精度,用matlab 画出变位后的油量与油位高度的关系对比图。
参考数据见附表2。
由所建模型可以得出罐体变位后对罐容表有很大影响,根据所建模型求解出罐体变位后油位高度间隔为1cm 的罐容表标定值如下表所示。
变位后小椭圆型储油罐罐容表油高/cm 油量/L 油高/cm 油量/L 油高/cm 油量/L 0.00 1.67 41.00 960.41 82.00 2660.04 1.00 3.53 42.00 996.84 83.00 2702.59 2.00 6.26 43.00 1033.72 84.00 2744.99 3.00 9.97 44.00 1071.04 85.00 2787.21 4.00 14.76 45.00 1108.78 86.00 2829.24 5.00 20.69 46.00 1146.92 87.00 2871.07 6.00 27.85 47.00 1185.45 88.00 2912.67 7.00 36.32 48.00 1224.34 89.00 2954.04 8.00 46.14 49.00 1263.59 90.00 2995.15 9.00 57.39 50.00 1303.17 91.00 3035.99 10.00 70.13 51.00 1343.07 92.00 3076.53 11.00 84.40 52.00 1383.28 93.00 3116.76 12.00 100.25 53.00 1423.78 94.00 3156.67 13.00 117.75 54.00 1464.56 95.00 3196.22 14.00 136.92 55.00 1505.60 96.00 3235.41 15.00 248.65 56.00 1546.88 97.00 3274.20 16.00263.8457.001588.3998.003312.5817.00 280.50 58.00 1630.13 99.00 3350.5318.00 298.51 59.00 1672.06 100.00 3388.0219.00 317.77 60.00 1714.18 101.00 3425.0320.00 338.18 61.00 1756.48 102.00 3461.5321.00 359.71 62.00 1798.94 103.00 3497.5022.00 382.27 63.00 1841.54 104.00 3532.9023.00 405.83 64.00 1884.27 105.00 3567.7224.00 430.33 65.00 1927.13 106.00 3601.9125.00 455.74 66.00 1970.08 107.00 3635.4426.00 482.02 67.00 2013.13 108.00 3668.2927.00 509.13 68.00 2056.26 109.00 3700.4028.00 537.04 69.00 2099.44 110.00 3731.7429.00 565.72 70.00 2142.67 111.00 3762.2730.00 595.14 71.00 2185.94 112.00 3791.9231.00 625.27 72.00 2229.23 113.00 3820.6432.00 656.08 73.00 2272.52 114.00 3848.3733.00 687.56 74.00 2315.81 115.00 3875.0134.00 719.67 75.00 2359.07 116.00 3900.4835.00 752.39 76.00 2402.29 117.00 3924.6236.00 785.71 77.00 2445.46 118.00 3976.6637.00 819.59 78.00 2488.57 119.00 3995.5438.00 854.02 79.00 2531.60 120.00 4012.7439.00 888.98 80.00 2574.5340.00 924.45 81.00 2617.355.2.1求解罐内储油量与油位高度及纵向倾角 及横向偏转角β之间的函数关系。