2009中考试题分类整理(三)----- 一次函数

合集下载

中考数学专题复习5一次函数及其运用(解析版)

中考数学专题复习5一次函数及其运用(解析版)

一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。

特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213x-C.y=34x D.y=12(x-1)【答案】C【解析】A.分母中含有自变量x.不是正比例函数.故A错误;B.y=213x-是一次函数.故B错误;C.y=34x是正比例函数.故C正确;D.y=12(x-1)可变形为y=12x-12是一次函数.故D错误.故选C.【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4【答案】B【解析】解:(1)y=﹣x是正比例函数.是特殊的一次函数.故正确;(2)y=x﹣1符合一次函数的定义.故正确;(3)y=1x属于反比例函数.故错误;(4)y=x2属于二次函数.故错误.综上所述.一次函数的个数是2个.故选:B.考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0.b)和(-bk.0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0.向上平移b个单位长度;b<0.向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0)k>0.b>0 一、二、三y随x的增大而增大k>0.b<0 一、三、四y=kx+b (k≠0)k<0.b>0一、二、四y随x的增大而减小k<0.b<0 二、三、四(3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2.b1≠b2.两直线平行;②当k1=k2.b1=b2.两直线重合;③当k1≠k2.b1=b2.两直线交于y轴上一点;④当k1·k2=–1时.两直线垂直.【例3】已知正比例函数y=x的图象如图所示.则一次函数y=mx+n图象大致是A.B.C. D.【答案】C【解析】利用正比例函数的性质得出>0.根据m、n同正.同负进行判断.由正比例函数图象可得:>0.mn同正时.y=mx+n经过第一、二、三象限;mn同负时.经过第二、三、四象限.故选C.【例4】已知一次函数的图象经过点.且y随x的增大而减小.则点的坐标可以是()A.()1,2-B.()1,2-C.()2,3D.()3,4【答案】Bmnmnmn【解析】∵一次函数3y kx =+的函数值y 随x 的增大而减小.∴k ﹤0.A .当x=-1.y=2时.-k+3=2.解得k=1﹥0.此选项不符合题意;B .当x=1.y=-2时.k+3=-2,解得k=-5﹤0.此选项符合题意;C .当x=2.y=3时.2k+3=3.解得k=0.此选项不符合题意;D .当x=3.y=4时.3k+3=4.解得k=13﹥0.此选项不符合题意.故选:B .考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值. 【答案】y =x –2;4【解析】(1)设一次函数解析式为y =kx +b .把(3.1).(2.0)代入得.解得. 所以这个一次函数的解析式为y =x –2; (2)当x =6时.y =x –2=6–2=4.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区一般形式y =kx +b (k 是常数.且k ≠0) y =kx +b (k .b 是常数.且k ≠0)3120k b k b +=+=⎧⎨⎩12k b ==-⎧⎨⎩别图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)【答案】A【解析】解:∵将函数y=2x的图象向上平移3个单位.∴所得图象的函数表达式为:y=2x+3.故选:A.考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标.【例7】已知直线y=mx+n(m.n为常数)经过点(0.–2)和(3.0).则关于x的方程mx+n=0的解为A.x=0 B.x=1C.x=–2 D.x=3【答案】D【解析】直线y=mx+n与x轴的交点横坐标的值即为方程mx+n=0的解.∵直线y=mx+n(m.n为常数)经过点(3.0).∴当y=0时.x=3.∴关于x的方程mx+n=0的解为x=3.故选D.【例8】如图为y=kx+b的图象.则kx+b=0的解为x= ()A.2 B.–2C.0 D.–1【答案】D【解析】从图象上可知.一次函数y=kx+b与x轴交点的横坐标为–1.所以关于x的方程kx+b=0的解为x=–1.故选D.【例9】如图.正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m.2).一次函数的图象经过点B(−2.−1).(1)求一次函数的解析式;(2)请直接写出不等式组−1<kx+b<2x的解集.【答案】(1)y =x +1;(2)x >1【解析】(1)∵点A (m.2)在正比例函数y =2x 的图象上.∴2=2m .解得:m =1. ∴点A 的坐标为(1.2)将A (1.2)、B (−2.−1)代入y =kx +b .221k b k b +=⎧⎨-+=-⎩解得:k =b =1∴一次函数的解析式为y =x +1 (2))∵在y =x +1中.1>0. ∴y 值随x 值的增大而增大. ∴不等式–1<x +1的解集为x >–2.观察函数图象可知.当x >1时.一次函数y =x +1的图象在正比例函数y =2x 的图象的下方. ∴不等式组–1<x +1<2x 的解集为x >1.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是A .B .C .D . 【答案】A【解析】方程组的解就是两个相应的一次函数图象的交点坐标.所以方程组的解是.故选A .y kx by mx n =+=+⎧⎨⎩12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩y kx by mx n =+=+⎧⎨⎩12x y ==⎧⎨⎩考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x 交于点A、B.则△AOB的面积为()A.2B.3C.4D.6【答案】B【解析】解:在y=x+3中.令y=0.得x=﹣3.解32y xy x=+⎧⎨=-⎩得.12xy=-⎧⎨=⎩.∴A(﹣3.0).B(﹣1.2).∴△AOB的面积=12⨯3×2=3.故选:B.考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等.(2)用一次函数解决实际问题的一般步骤为:①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤检验所求解是否符合实际意义;⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类 食品 药品 生活用品每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨)120160100(1)设装运食品的车辆数为x .装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费. 【解析】(1)由题意可得.6x +5y +4(20-x -y )=100.化简.得y =20-2x .即y 与x 的函数关系式是y =-2x +20;(2)由题意可得..解得5≤x ≤8.即车辆的安排有四种方案. 方案一:运食品的5辆车.装运药品的10辆车.装运生活用品的5辆车; 方案二:运食品的6辆车.装运药品的8辆车.装运生活用品的6辆车; 方案三:运食品的7辆车.装运药品的6辆车.装运生活用品的7辆车; 方案四:运食品的8辆车.装运药品的4辆车.装运生活用品的8辆车; (3)由题意可得.w =120×6x +160×5y +100×4(20-x -y )=-480x +16000.∵5≤x ≤8.∴当x =8时.w 最小.此时w =-480×8+16000=12160(元). 即在(2)的条件下.若要求总运费最少.应安排运食品的8辆车.装运药品的4辆车.装运生活用品的8辆车.最少总运费是12160元.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)52204x x ≥-+≥⎧⎨⎩1.下列函数①y =﹣2x +1.②y =ax ﹣b .③y =﹣6x.④y =x 2+2中.是一次函数的有 A .①② B .①C .②③D .①④【答案】B【解析】①y =﹣2x +1符合一次函数定义.故正确; ②y =ax ﹣b 中当a =0时.它不是一次函数.故错误; ③y =﹣6x属于反比例函数.故错误; ④y =x 2+2属于二次函数.故错误; 综上所述.是一次函数的有1个. 故选B .2.一次函数y =–2x +b .b <0.则其大致图象正确的是A .B .C .D .【答案】B【解析】因为k =–2.b <0.所以图象在第二、三、四象限.故选B . 3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–2【答案】C【解析】∵一次函数y =kx +b 的图象过点(.–1).∴关于x 的方程kx +b =–1的解是x =.故选C4. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是1212A .x >﹣2B .x >0C .x >1D .x <1【答案】C【解析】当x >1时.x +b >kx +4.即不等式x +b >kx +4的解集为x >1.故选C .5. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >【答案】A【解析】解:由题意将(1,1)P 代入(0)y kx b k =+<.可得1k b +=.即1k b -=-. 整理kx b x +≥得.()10k x b -+≥.∴0bx b -+≥.由图像可知0b >.∴10x -≤.∴1x ≤.故选:A .6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .【答案】C【解析】对于乌龟.其运动过程可分为两段:从起点到终点乌龟没有停歇.其路程不断增加;最后同时到达终点.可排除B .D 选项 对于兔子.其运动过程可分为三段:据此可排除A 选项.开始跑得快.所以路程增加快;中间睡觉时路程不变;醒来时追赶乌龟路程增加快.故选:C7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0 B .b <0C .a +b >0D .a ﹣b <0【答案】D【解析】∵一次函数y =ax +b 的图象经过一、二、四象限. ∴a <0.b >0. ∴a ﹣b <0.即选项A 、B 、C 都错误.只有选项D 正确; 故选:D .8.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <2【答案】C【解析】如图所示.直线y =kx +b 交直线y =mx +n 于点P (1.2). 所以.不等式kx +b >mx +n 的解集为x <1. 故选:C .9.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2【答案】B【解析】如图所示.延长AC 交x 轴于点D .设()0,C c∵这束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.∴由反射定律可知.1OCB ∠=∠.∵∠1=∠OCD .∴OCB OCD ∠=∠.∵CO DB ⊥于O .∴COD COB ∠=∠=90°.在COD ∆和COB ∆中OCD OCBOC OC COD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩.∴()COD COB ASA ∆≅∆.∴1OD OB ==.∴()1,0D -.设直线AD 的解析式为y kx b =+.∴将点()4,4A .点()1,0D -代入得:440k bk b =+⎧⎨=-+⎩.解得:4545k b ⎧=⎪⎪⎨⎪=⎪⎩. ∴直线AD 的解析式为:4455y x =+.∴点C 坐标为40,5⎛⎫⎪⎝⎭.故选B . 10.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5【答案】C【解析】如图.过点D作DE⊥BC于点E..由图象可知.点F由点A到点D用时为a s.△FBC的面积为a cm2.∴AD=a.∴DE•AD=a.∴DE=2.当点F从D到B时.∴BD.Rt△DBE中.BE.∵四边形ABCD是菱形.∴EC=a–1.DC=a.Rt△DEC中.a2=22+(a–1)2.解得a=.故选C.第二部分填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y=(m+2)是正比例函数.则m的值是__________.【答案】2【解析】∵函数y=(m+2)x m2−3是正比例函数.∴m2–3=1.m+2≠0.解得:m=2.故答案为:2.12.把直线y=2x﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____.【答案】y=2x+3【解析】解:把直线y=2x﹣1向左平移1个单位长度.得到y=2(x+1)﹣1=2x+1.再向上平移2个单位长度.得到y=2x+3.故答案为:y=2x+3.13.如图.直线542y x=+与x轴、y轴分别交于A、B两点.把AOB绕点B逆时针旋转90°1255()2222=521BD DE--=5223mx-后得到11AO B .则点1A 的坐标是_____.【答案】(4.125) 【解析】解:在542y x =+中.令x=0得.y=4.令y=0.得5042x =+.解得x=8-5. ∴A (8-5.0).B (0.4).由旋转可得△AOB ≌△A 1O 1B .∠ABA 1=90°. ∴∠ABO=∠A 1BO 1.∠BO 1A 1=∠AOB=90°.OA=O 1A 1=85.OB=O 1B=4. ∴∠OBO 1=90°.∴O 1B ∥x 轴.∴点A 1的纵坐标为OB -OA 的长.即为48-5=125; 横坐标为O 1B=OB=4.故点A 1的坐标是(4.125).故答案为:(4.125). 14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.【答案】x <4【解析】解:∵直线y =kx +b 与直线y =2交于点A (4.2).∴x <4时.y <2. ∴关于x 的不等式kx +b <2的解集为:x <4.故答案为:x <4.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 【答案】<【解析】根据直线2y x =+经过()11,M y .()23,N y 两点.可分别将M 、N 的坐标代入得.1123y =+=.2325y =+=.则12y y <.故答案为:<16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C ..则点2020B 的坐标______.【答案】()20202020231,3⨯-【解析】解:∵AM 的解析式为1y x =+.∴M (-1.0).A (0.1).即AO=MO=1.∠AMO=45°. 由题意得:MO=OC=CO 1=1.O 1A 1=MO 1=3.∵四边形1111O A B C 是正方形.∴O 1C 1=C 1O 2=MO 1=3.∴OC 1=2×3-1=5.B 1C 1=O 1C 1=3.B 1(5.3). ∴A 2O 2=3C 1O 2=9.B 2C 2=9.OO 2=OC 2-MO=9-1=8.综上.MC n =2×3n .OC n =2×3n -1.B n C n =A n O n =3n . 当n=2020时.OC 2020=2×32020-1.B 2020C 2020 =32020.点B()20202020231,3⨯-.故答案为:()20202020231,3⨯-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6. (1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.【答案】(1)51k b =⎧⎨=-⎩ (2)14 【解析】(1)∵当x =3时.y =14.当x =–1时.y =–6.∴3146k b k b +=⎧⎨-+=-⎩.∴51k b =⎧⎨=-⎩;(2)∵51k b =⎧⎨=-⎩.∴y =5x –1. 当y 与x 相等时.则x =5x –1. ∴x =14. 18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数; (2)若点(a .2)在这个函数的图象上.求a 的值. 【答案】(1)一次函数。

历年初三数学中考一次函数试题分类汇编及答案

历年初三数学中考一次函数试题分类汇编及答案

中考数学一次函数试题分类汇编一、选择题1、已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( )A A .1a >B .1a <C .0a >D .0a <2、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )BA .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <3、如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--4、将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

C A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2)5、如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )C (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-16、已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )CA.20y -<< B.40y -<<C.2y <-D.4y <-7、一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B A .0B .1C .2D .3二、填空题1、若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

x 2-2、随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强xyO32y x a =+1y kx b =+第7题图1Oxy图(6)2-4 xy Oxy A B1- y x =-2图2(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式3y x =3、如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x <24、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

2009中考试题分类整理(三)一次函数

2009中考试题分类整理(三)一次函数

2009中考试题分类整理(三)----- 一次函数一、变量与函数(一)选择题1、(2009·北京) 如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( ) 【答】A2、(2009·兰州)函数y =x -2+31-x 中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠3 【答】D3、(2009·绵阳)点P (-2,1)关于原点对称的点的坐标为( ) A .(2,1) B .(1,-2) C .(2,-1) D .(-2,1) 【答】C4、(2009·陕西)如果点(12)P m m -,在第四象限,那么m 的取值范围是( ).A .102m <<B .102m -<<C .0m <D .12m > 【答】D5、(2009·天津)在平面直角坐标系中,已知线段AB 的两个端点分别为()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--, 【答】B6、(2009·河南)如图5所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A '的坐标为( ) A.(2,2) B.(2,4) C.(4,2) D.(1,2) 【答】B7、(2009·日照)如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.(22,22-)C.(-21,-21) D.(-22,-22)【答】C8、(2009·青岛)一艘轮船从港口O 出发,以15海里小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )A .5030),B .(3050),C .D .(30,【答】A(二)填空题9、(2009·天津)某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:【答】56,80,156.8 10、(2009·哈尔滨)函数y =2x 2x +-的自变量x 的取值范围是 【答】x ≠-211、(2009·青海)第二象限内的点()P x y ,满足||9x =,24y =,则点P 的坐标是 . 【答】(-9,2)12、(2009·包头)线段CD 是由线段AB 平移得到的,点(14)A -,的对应点为(47)C ,,则点(41)B --,的对应点D 的坐标是 . 【答】(7,4)13、(2009·厦门)在平面直角坐标系中,已知点O (0,0)、A (1,n )、B (2,0),其中n >0,△OAB 是等边三角形.点P 是线段OB 的中点,将△OAB 绕点O 逆时针旋转30º,记点P 的对应点为点Q ,则n = ,点Q 的坐标是 .【答】3;(32,12). 14、(2009·泰安)如图所示,△A ’B ’C ’是由△ABC 向右平移5个单位,然后绕B 点逆时针旋转90°得到的(其中A ’、B ’、C ’的对应点分别是A 、B 、C ),点A ’的坐标是(4,4)点B ’的坐标是(1,1),则点A 的坐标是 。

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

历年初三数学中考复习一次函数练习及答案

历年初三数学中考复习一次函数练习及答案

一次函数【回顾与思考】一次函数0,0,y y x k y x ⎧≠⎧⎪⎨≠⎩⎪⎪>⎧⎪⎨⎨<⎩⎪⎪⎪⎪⎩一般式y=kx+b(k 0)概念正比例函数y=kx(k 0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k【例题经典】理解一次函数的概念和性质例1 若一次函数y=2x 222m m --+m-2的图象经过第一、第二、三象限,求m 的值.【分析】这是一道一次函数概念和性质的综合题.一次函数的一般式为y=kx+b (k ≠0).首先要考虑m 2-2m-2=1.函数图象经过第一、二、三象限的条件是k>0,b>0,而k=2,只需考虑m-2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值.用待定系数法确定一次函数表达式及其应用例2 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值:(1)分析上表, (2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式; (3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【评析】本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.建立函数模型解决实际问题例3某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?【评析】本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.【考点精练】 基础训练1.下列各点中,在函数y=2x-7的图象上的是( ) A .(2,3) B .(3,1) C .(0,-7) D .(-1,9)2.如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( )A .x>0B .x>2C .x>-3D .-3<x<2(第2题) (第4题) (第7题) 3.已知两个一次函数y 1=-2b x-4和y 2=-1a x+1a的图象重合,则一次函数y=ax+b 的图象所经过的象限为( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限 4.如图,直线y=kx+b 与x 轴交于点(-4,0),则y>0时,x 的取值范围是( ) A .x>-4 B .x>0 C .x<-4 D .x<05.已知一次函数y=kx-k ,若y 随x 的增大而减小,则该函数的图像经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 6.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y=-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 27.如图,一次函数y=x+5的图象经过点P (a ,b )和点Q (c ,d ),•则a (c-d )-b (c-d )的值为________.8.函数y 1=x+1与y 2=ax+b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_______.9.如图,已知函数y=ax+b 和y=kx 的图象交于点P , 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是________.(第8题) (第9题)10.一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________.能力提升11.经过点(2,0)且与坐标轴围成的三角形面积为2•的直线解析式是_________.12.地表以下岩层的温度t(℃)随着所处的深度h(千米)•的变化而变化.t与h之间在一定范围内近似地成一次函数关系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;(2温度t(℃)…90 160 300 …深度h(km)… 2 4 8 …13.甲、乙两车从A地出发,沿同一条高速公路行驶至距A•地400千米的B地.L1、L2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x的取值范围);(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?14.某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程;加工过程中,当油箱中油量为10升时,•机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?15.小明受《乌鸦喝水》故事的启发,•利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?应用与探究16.宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列,1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP为y(亿元)•与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)答案:例题经典例1:m=3 例2:(1)一次函数, (2)设y=kx+b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得 , ∴y=•2x-10,(3)x=26时,y=2×26-10=42.答:应该买42码的鞋. 例3:解:(1)当x ≤40时,设y=kx+b . 根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x•≤40时,y 与x 之间的关系式是y=50x+1500,∴当x=40时,y=50×40+1500=3500,当x ≥40•时,根据题意得,y=100(x-40)+3500,即y=100x-500. ∴当x ≥40时,y 与x 之间的关系式是y=100x-500. (2)当y ≥4000时,y 与x 之间的关系式是y=100x-500, 解不等式100x-50≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 考点精练1.C 2.C 3.D 4.A 5.B 6.A 7.25 8.1<x<2 9.42x y =-⎧⎨=-⎩ 10.答案不唯一.例如:y=-x-1 11.y=x-2或y=-x+212.(1)t 与h 的函数关系式为t=35h+20.(2)当t=1770时,有1770=35h+20,解得:h=50千米.13.解:(1)设L 2的函数表达式是y=k 2x+b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b=-75,∴L 2的函数表达式为y=100x-75. (2)乙车先到达B 地,∵300=100x-75,∴x=154. 设L 1的函数表达式是y=k 1x ,∵图象过点(154,300),∴k 1=80.即y=80x .当y=400时,400=80x ,∴x=5,∴5-194=14(小时), ∴乙车比甲车早14小时到达B 地.14.解:(1)设所求函数关系式为y=kx+b ,由图象可知过(10,100),(30,80)两点,•得1010013080,110k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得:,∴y=-x+110. (2)当y=10时,-x+110=10,x=100,机器运行100分钟时,•第一个加过程停止.。

2009年中考一次函数荟萃

2009年中考一次函数荟萃

2009年中考一次函数荟萃
发表时间:2010-10-08T11:45:46.107Z 来源:《中学课程辅导.教学研究》2010年第17期供稿作者:雷莉[导读] 点评:观察图象,可以根据两点坐标确定直线解析式为 ,要求旅客可携带的免费行李的最大质量,可令,得20
雷莉
摘要:一次函数是初中数学的重要内容,同样在现实生活中的应用也非常广泛。

它不仅是方程和函数的联系纽带,而且也是数形结合题目的典型应用。

关键词:一次函数;解析式;图像
作者简介:雷莉,任教于河南省洛阳市东方第二中学。

近年来中招考题中一次函数的题目越来越接近生活,同时也越来越灵活,结合多年教毕业班的经验,笔者特对2009年中考一次函数的各种类型做以归类,以便和大家共勉。

;。

中考数学复习:专题3-4 一次函数考点分析及典型试题

中考数学复习:专题3-4 一次函数考点分析及典型试题

一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。

类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。

2. 一次函数的图像:是不经过原点的一条直线。

3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。

专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。

09年全国各地中考试题分类汇编——反比例函数

09年全国各地中考试题分类汇编——反比例函数

09年各地中考数学试题汇编——反比例函数1、(09福建漳州)矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( )2、(09甘肃兰州)如图,在直角坐标系中,点A 是x轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小3、(09湖北恩施)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是: ( )4、(09广东深圳)如图,反比例函数4y x =-的图象与直线13y x=-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) C .4 D .25、(09广西南宁)在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .26、(09广西贵港)如图,点A 是y 轴正半轴上的一个定点,点B 是反比例函数y =2x(x >0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( )A .逐渐增大B .逐渐减小C .不变D .先增大后减小7、(09广西梧州)已知点A (11x y ,)、B (22x y ,)是反比例函数x k y =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y8、(09浙江丽水)如图,点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .)0(5>-=x x yB .)0(5>=x xyC . )0(6>-=x x yD .)0(6>=x xy9、(09山东青岛)一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8ΩC .不小于14ΩD .不大于14Ω10、(09山东泰安)如图,双曲线)0(>k xky =经过矩形QABC的边BC 的中点E ,交AB 于点D 。

一次函数(中考常考点分类)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(中考常考点分类)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.31一次函数(中考常考点分类专题)(基础练)一、单选题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值1.(2023秋·全国·八年级专题练习)下列图像中,不能表示y 是x 的函数的是()A .B .C .D .2.(2022秋·广东深圳·八年级校联考开学考试)一支签字笔的单价为2.5元,小涵同学拿了100元钱去购买了()40x x ≤支该型号的签字笔,写出所剩余的钱y 与x 间的关系式是()A . 2.5y x=B .100 2.5y x=-C . 2.5100y x =-D .100 2.5y x=+【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式3.(2023秋·全国·八年级专题练习)若函数()124a y a x -=-+是一次函数,则a 的值为()A .2-B .2±C .2D .04.(2020·江苏泰州·统考中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于()A .5B .3C .3-D .1-【考点3】正比例函数➼➻正比例函数的图象与性质5.(2023秋·安徽蚌埠·八年级统考阶段练习)关于正比例函数14y x =-,下列结论不正确的是()A .图象经过原点B .y 随x 的增大而减小C .点12,2⎛⎫⎪⎝⎭在函数14y x =-的图象上D .图象经过二、四象限6.(2023春·重庆九龙坡·八年级重庆实验外国语学校统考阶段练习)已知正比例函数(21)y m x =+的图象上两点()11,A x y ,()22,B x y ,当12x x <时,有12y y >,那么m 的取值范围是()A .12m >-B .12m <-C .1m >-D .1m <-【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象7.(2022春·贵州安顺·八年级统考期末)已知一次函数22022y x m =-++的图象一定不经过的象限是()A .第四象限B .第三象限C .第二象限D .第一象限8.(2022秋·陕西榆林·八年级校考期中)已知一次函数()34y a x a =+++的图象如图所示,那么a 的取值范围是()A .3a >-B .3a <-C .43a -<<-D .a<0【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点9.(2022秋·陕西西安·八年级校考期中)如图,在同一平面直角坐标系中,一次函数()11110y k x b k =+≠与()22220y k x b k =+≠的图象分别为直线1l 和直线2l ,下列结论正确的是()A .120k k > B .120k k ->C .120b b +<D .12·0b b >10.(2023秋·安徽合肥·八年级校考阶段练习)已知一次函数4y ax =-与2y bx =+图象在x 轴上相交于同一点,则ba的值是()A .4B .2-C .12D .12-【考点6】一次函数图象和性质➼➻一次函数图象平移问题11.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)将直线22y x =-+平移后,所得到的直线为23y x =--,则原直线()A .向上平移5个单位B .向下平移5个单位C .向左平移5个单位D .向右平移5个单位12.(2022春·陕西渭南·八年级统考期末)如图,A 为x 轴负半轴上一点,过点A 作AB x ⊥轴,与直线y x =交于点B ,将ABO 沿直线y x =向上平移'A'B'O △,若点A 的坐标为(3,0)-,则点B'的坐标是()A .()1,1B .()2,2C .()3,3D .()5,5【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小13.(2023秋·黑龙江齐齐哈尔·九年级克东县第三中学校考开学考试)对于函数 1y x =-+,下列结论正确的是()A .它的图象必经过点(1,0)-B .它的图象经过第一、二、三象限C .当1x >时,0y <D .y 的值随x 值的增大而增大14.(2023春·山东聊城·八年级统考期末)已知11 A x y (,),22 Bx y (,)为直线23y x =-上不相同的两个点,以下判断正确的是()A .()()12120x x y y -->B .()()12120x x y y --<C .()()12120x x y y --≥D .()()12120x x y y --≤【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解15.(2023春·天津·八年级统考期末)已知方程0ax b +=的解为x =-32,则一次函数y ax b =+的图象与x 轴交点的坐标为()A .()3,0B .(-23,0)C .()2,0-D .(-32,0)16.(2023春·河南洛阳·八年级偃师市实验中学校考期末)一次函数y kx b =+的图象与x 轴交于点()30A -,,则关于x 的方程0kx b -+=的解为()A .3x =B .3x =-C .0x =D .2x =【考点9】一次函数图象和性质➼➻规律问题★★最值问题17.(2019·福建厦门·校考二模)关于x 的一次函数1(2)(1)(01)=-+-<<y x k x k k,当2≤x≤3时,y 的最大值是()A .2-+kkB .12-k kC .kD .-k18.(2023春·八年级课时练习)正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点7B 的坐标是()A .(31,16)B .(63,32)C .(64,32)D .(127,64)二、填空题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值19.(2023·辽宁辽阳·辽阳市第一中学校联考一模)函数1y x=+x 的取值范围是.20.(2023秋·上海杨浦·八年级统考期末)已知()6=f x x,那么f=.【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式21.(2022秋·浙江·八年级期末)一次函数y =10-2x 的比例系数是.22.(2023秋·全国·八年级专题练习)如图,点(0,4)A ,(2,4)B ,点P 在直线112y x =+上,当PA PB =时,点P 的坐标是.【考点3】正比例函数➼➻正比例函数的图象与性质23.(2023春·贵州黔西·八年级校考阶段练习)如图,正比例函数11223344y k x y k xy k x y k x ====,,,在同一平面直角坐标系中的图象如图所示.则比例系数1k ,2k ,3k ,4k 从小到大排列并用“<”连接为.24.(2022秋·上海·八年级校考期中)已知正比例函数()0y kx k =≠的图象经过一、三象限,且经过点()2,21P k k ++,则k =.【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象25.(2023春·黑龙江鹤岗·八年级统考期末)直线y kx b =+经过一、二、四象限,则直线y bx k =-+不经过第象限.26.(2020春·湖北武汉·八年级校考阶段练习)在同一平面直角坐标系中,函数y =|3x -1|+2的图象记为l 1,y =x -7的图象记为l 2,把l 1、l 2组成的图形记为图形M .若直线y =kx -5与图形M 有且只有一个公共点,则k 应满足的条件是【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点27.(2022秋·四川达州·八年级校考阶段练习)函数42y x =-与x ,y 轴交点坐标分别为.28.(2023秋·山西运城·八年级统考期中)如图,已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴负半轴于点C ,则点C 坐标为.【考点6】一次函数图象和性质➼➻一次函数图象平移问题29.(2022春·贵州安顺·八年级统考期末)直接写出一个与直线21y x =+平行的一次函数的解析式:.30.(2020春·福建福州·九年级校考开学考试)将直线4y x =-向右平移3个单位后,所得直线的表达式是.【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小31.(2023春·河南新乡·八年级校考期末)请写出一个过点()11,A y -和点()25,B y 且函数值满足12y y >的一次函数解析式:.32.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)已知一次函数1y ax b =+,2y cx d =+(a ,b ,c ,d 均为常数,且0a c ⋅≠)在平面直角坐标系中的图象如图所示,比较a ,b ,c ,d 的大小关系用“<”连接【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解33.(2023春·广东汕尾·八年级统考期末)已知一次函数y kx b =+的图象与x 轴相交于点()2,0A ,与y 轴相交于点()0,3B ,则关于x 的方程0kx b +=的解是.34.(2023春·八年级课时练习)已知直线24y x =+与两坐标轴分别交于A ,B 两点,线段AB 的长为.【考点9】一次函数图象和性质➼➻规律问题★★最值问题35.(2023春·四川德阳·八年级四川省德阳市第二中学校校考阶段练习)对于函数123y x =+和21y x =-+,3122y x =-,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,则y 的最大值等于.36.(2023春·四川广安·八年级广安中学校考阶段练习)如图,在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C …、正方形1n n n n A B C C -,使得点123,,A A A …在直线l 上,点123,,C C C …在y 轴正半轴上,则点2020B 的坐标是.参考答案1.D【分析】根据函数的概念,对于自变量x 的每一个值,y 都有唯一的值和它对应,判断即可.解:A 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故A 不符合题意;B 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故B 不符合题意;C 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故C 不符合题意;D 、对于自变量x 的每一个值,y 不是有唯一的值和它对应,所以不能表示y 是x 的函数,故D 符合题意;故选:D .【点拨】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.2.B【分析】用100减去买签字笔花的钱,即可表示出剩余的钱.解:由题知,因为签字笔每支2.5元,且小涵买了x 支,所以用取2.5x 元.故余下()100 2.5x -元.所以剩余的钱y 与x 之间的关系式是100 2.5y x =-.故选:B .【点拨】本题考查函数关系式,准确表示出剩余的钱数是解题的关键.3.A【分析】根据一次函数y kx b =+的定义可知,k 、b 为常数,0k ≠,自变量的次数为1,即可求解.解:()124a y a x-=-+ 是关于x 的一次函数,11a ∴-=,且20a -≠,2a ∴=,且2a ≠,2a ∴=±且2a ≠,2a ∴=-.故选:A .【点拨】本题考查了一次函数的定义,熟练掌握一次函数的定义和性质是解题的关键.4.C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;解:把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点拨】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.C【分析】根据正比例函数的图象和性质,逐项判断即可求解.解:A 、图象经过原点,故本选项正确,不符合题意;B 、因为104-<,所以y 随x 的增大而减小,故本选项正确,不符合题意;C 、当2x =时,1112422y =-⨯=-≠,则点12,2⎛⎫⎪⎝⎭不在函数14y x =-的图象上,故本选项错误,符合题意;D 、因为104-<,所以图象经过二、四象限,故本选项正确,不符合题意;故选:C【点拨】本题主要考查了正比例函数的图象和性质,熟练掌握正比例函数的图象和性质是解题的关键.6.B【分析】根据一次函数的性质即可求出当12x x <时,12y y >时,列出不等式,进而求出m 的取值范围.解:∵正比例函数图象上两点11(,)A x y ,22(,)B x y ,当12x x <时,有12y y >,∴210m +<,∴12m <-.故选:B .【点拨】本题考查的是一次函数的性质.解答此题要熟知一次函数y kx b =+:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.7.B【分析】根据一次函数的性质,由0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,即可得出;解:根据一次函数的性质,10-<,220220m +>,故0k <,0b >,函数y kx b =+的图象经过第一、二、四象限,不经过第三象限.故选:B ;【点拨】本题考查了一次函数的性质.一次函数y kx b =+的图象经过的象限由k 、b 的值共同决定,有六种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限,y 的值随x 的值增大而减小;⑤当0k >,0b =时,函数y kx b =+的图象经过第一、三象限;⑥当0k <,0b =时,函数y kx b =+的图象经过第二、四象限.8.A【分析】根据一次函数图象经过一、二、三象限得出3040a a +>⎧⎨+>⎩,求出结果即可.解:∵一次函数图象经过一、二、三象限,∴3040a a +>⎧⎨+>⎩,解得:3a >-,故A 正确.故选:A .【点拨】本题主要考查了一次函数的图象和性质,解题的关键是熟练掌握一次函数的性质,一次函数()0y kx b k =+≠,当0k >直线经过一、三象限,当0k <直线经过二、四象限,当0b >直线与y 轴正半轴有交点,0b <直线与y 轴负半轴有交点.9.B【分析】根据图示,可得110,0k b >>,220,0k b <<,根据不等式的性质即可求解.解:根据图示,可知一次函数()11110y k x b k =+≠中,110,0k b >>;一次函数()22220y k x b k =+≠中,220,0k b <<,∴A 、12·0k k <,故原选项错误,不符合题意;B 、∵120,0k k ><,∴120k k ->,故原选项正确,符合题意;C 、∵120,0b b ><,且12b b >,∴120b b +>,故原选项错误,不符合题意;D 、∵120,0b b ><,∴120b b < ,故原选项错误,不符合题意;故选:B .【点拨】本题主要考查一次函数图象的性质,掌握一次函数图象的性质,不等式的性质是解题的关键.10.B【分析】由一次函数4y ax =-与2y bx =+的图象在x 轴上相交于同一点,即两个图象与x 轴的交点是同一个点.可用a 、b 分别表示出这个交点的横坐标,然后联立两式,可求出ba的值.解:在4y ax =-中,令0y =,得:4x a=;在2y bx =+中,令0y =,得:2=-x b;由于两个一次函数交于x 轴的同一点,因此42a b=-,则ab =422=--.故选:B .【点拨】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.11.B【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解:∵将直线22y x =-+平移后,得到直线23y x =--,设向上平移了a 个单位,∴2223x a x -++=--,解得:5a =-,所以沿y 轴向上平移了5-个单位,即向下平移5个单位,故选:B .【点拨】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.B【分析】求得B 的坐标,根据题意,将△ABO 向右平移5个单位,向上平移5个单位得到△A ′B ′O ′,从而得到B ′的坐标为(-3+5,-3+5),即B ′(2,2).解:∵点A 的坐标为(-3,0),AB ⊥x 轴,与直线y =x 交于点B ,∴B (-3,-3),将△ABO 沿直线y =x 向上平移A ′B ′O ′,实质上是将△ABO 向右平移5个单位,向上平移5个单位,∴B ′的坐标为(-3+5,-3+5),即B ′(2,2),故选:B .【点拨】本题主要考查了一次函数的图象与几何变换,点的平移问题,能根据题意得出平移的实质是本题的关键.13.C【分析】根据一次函数的性质及一次函数图象上点的坐标特点对各选项进行逐一分析即可.解:A 、把=1x -代入函数 1y x =-+得,() 1120y =--+=≠,故点(1,0)-不在此函数图象上,故本选项错误,不符合题意;B 、函数 1y x =-+中,10k =-<,10b =>,则该函数图象经过第一、二、四象限,故本选项错误,不符合题意;C 、当1x >时,110-+=,则0y <,故本选项正确,符合题意;D 、函数 1y x =-+中,10k =-<,则该函数图象y 值随着x 值增大而减小,故本选项错误,不符合题意.故选:C .【点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,掌握一次函数的性质是解题的关键.14.A【分析】将两个点代入直线方程整理判断即可.解:将A 、B 两点坐标分别代入直线方程,得1123y x =-,2223y x =-,则()12122y y x x -=-.()()()212121220x x y y x x --=-≥.∵A 、B 两点不相同,∴120x x -≠,∴()()12120x x y y -->.故选:A .【点拨】本题主要考查一次函数图象上点的坐标,比较简单,分别代入计算整理即可.15.D【分析】关于x 的一元一次方程0ax b +=的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y ax b =+的图象与x 轴交点的坐标.解:方程0ax b +=的解为x =32-,则一次函数y ax b =+的图象与x 轴交点的坐标为(-32,0),故选:D .【点拨】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为0ax b +=(a ,b 为常数,0)a ≠的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y ax b =+确定它与x 轴的交点的横坐标的值.16.A【分析】先根据一次函数y kx b =+的图象与x 轴交于点()30A -,,求出3b k =,然后解方程即可.解: 一次函数y kx b =+的图象与x 轴交于点()30A -,,30k b ∴-+=,3b k ∴=,0kx b -+= ,33b k x k k∴===.故选:A .【点拨】本题主要考查了一次函数与一元一次方程之间的关系,正确求出3b k =是解题的关键.17.B【分析】根据题目中的函数解析式和k 的取值范围,可以判断该函数一次项系数的正负,然后利用一次函数的性质即可解答本题.解:y=()()121x k x k-+-=12x k kx k k -+-=(1k -k )x 2k -+k ,∵0<k <1,∴1k k->0,∴该函数y 随x 的增大而增大,∴当2≤x≤3时,x=3时y 取得最大值,此时y=()()13213k k -+-=12-k k,故选:B .【点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.18.D【分析】先求出1B ,2B ,3B ,4B 的坐标,探究规律后即可解决问题.解:∵1111111OC OA B C A B ====,∴()11,1B ,∵2A 在直线1y x =+上,∴()21,2A ,∴12222C C B C ==,∴()23,2B ,同理可得()37,4B ,()415,8B …所以()121,2n n n B --,所以7B 的坐标为()127,64;故选:D .【点拨】此题考查一次函数图象上点的坐标特征,规律型:点的坐标,解题关键在于根据题意找到规律.19.1x ≥【分析】根据二次根式的被开方数是非负数、分式分母不为0列出不等式组,解不等式组得到答案.解:由题意得:0x ≠且10x -≥,解得:1x ≥,故答案为: 1.x ≥【点拨】本题考查的是函数自变量的取值范围的确定,熟记二次根式的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】将x ()6=f x x ,进行求解即可.解:f ==故答案为:【点拨】本题考查求函数值,分母有理化.正确的计算是解题的关键.21.2-【分析】先化为标准形式,再根据一次函数的定义解答.解:一次函数变形为:102210y x x =-=-+,故其比例系数k 是2-.故答案为:2-.【点拨】本题考查了一次函数的定义,解题的关键是掌握一次函数的定义:一般地,形如(0y kx b k =+≠,k 、b 是常数)的函数,叫做一次函数.22.3(1,)2【分析】设点P 的坐标为1(,1)2m m +,利用两点间的距离结合PA PB =,即可得出关于m 的一元一次方程,解之即可得出结论.解: 点P 在直线112y x =+上,∴设点P 的坐标为1(,1)2m m +.PA PB = ,222211(0)(14)(2)(14)22m m m m ∴-++-=-++-,即440m -=,解得:1m =,∴点P 的坐标为3(1,)2.故答案为:3(1,)2.【点拨】本题考查了一次函数图象上点的坐标特征、两点间的距离以及解一元一次方程,利用一次函数图象上点的坐标特征及两点间的距离,找出关于m 的方程是解题的关键.23.2143k k k k <<<【分析】首先根据直线经过的象限判断k 的符号,再根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个系数的大小.解:由直线经过的象限,知:12340000k k k k <>,,,,∵根据直线越陡,k 越大,∴21k k >,34k k >,∴2143k k k k <<<,故答案为:2143k k k k <<<.【点拨】本题考查正比例函数图象与性质,掌握正比例函数的性质是解题的关键.24.1【分析】先根据正比例函数的性质求出k 的取值范围,再把P 点坐标代入求解即可.解:∵正比例函数()0y kx k =≠的图象经过一、三象限,∴0k >.把()2,21P k k ++代入()0y kx k =≠,得()221k k k +=+,解得1k =或1k =-(舍去).故答案为:1.【点拨】本题考查了正比例函数图象与系数的关系:对于y kx =(k 为常数,0k ≠),当0k >时,y kx =的图象经过一、三象限,y 随x 的增大而增大;当0k <时,y kx =的图象经过二、四象限,y 随x 的增大而减小.25.一【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.解:由直线y kx b =+的图象经过第一、二、四象限,∴0k <,0b >,∴0k <,0b -<,∴直线y bx k =-+经过第二、三、四象限,∴直线y bx k =-+不经过第一象限,故答案为:一.【点拨】本题考查一次函数图象与系数的关系.解答本题注意理解:直线y kx b =+所在的位置与k 、b 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.26.-3≤k≤3且k≠1.【分析】根据图像即可求得k 的取值范围.解:根据题意当x≥13时,y =3x -1+2=3x+1;当x <13时,y =1-3x +2=3-3x ,由此画出图形M ,直线y =kx -5过定点(0,-5),交点在l 2上,如图可得:-3≤k≤3且k≠1,故答案为:-3≤k≤3且k≠1.【点拨】本题考查了一次函数图像上点的坐标特征,画出图像是本题关键.27.()2,0,()0,4【分析】根据坐标轴上点的坐标特点:横轴上的点,纵坐标为零;纵轴上的点,横坐标为零进行计算即可.解:∵当0x =时,4y =,∴与y 轴交点坐标为()0,4,∵当0y =时,2x =,∴与x 轴交点坐标为()2,0,故答案为:()2,0,()0,4.【点拨】此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.28.()2-/()2,0-【分析】先根据坐标轴上点的坐标特征得到()2,0A ,()0,4B ,再利用勾股定理计算出AB =根据圆的半径相等得到AC AB ==解:当0y =时,240x -+=,解得2x =,则()2,0A ;当0x =时,244y x =-+=,则()0,4B ,所以AB ===因为以点A 为圆心,AB 为半径画弧,交x 轴于点C ,所以AC AB ==所以2OC AC AO =-=.即可得点C 坐标为()2C -.故答案为:()2-.【点拨】本题主要考查了一次函数与坐标轴的交点坐标,勾股定理,正确求出一次函数与坐标轴的交点坐标是解题的关键.29.21y x =-(答案不唯一)【分析】根据平行得出一次函数的解析式2k =,1b ≠即可;解:设一次函数的解析式是y kx b =+,与直线21y x =+平行,2k ∴=,1b ≠,∴符合条件的一次函数的解析式可以是21y x =-,故答案为:21(y x =-答案不唯一;【点拨】本题考查了两直线相交或平行问题的应用,关键是根据题意求出2k =,1b ≠.30.7y x =-【分析】直接根据“左加右减,上加下减”的原则进行解答即可.解:将直线4y x =-向右平移3个单位后,所得直线的表达式是()34y x =--,即7y x =-.故答案为:7y x =-.【点拨】本题考查的是一次函数的图象的平移,熟知函数图象平移的法则“左加右减,上加下减”是解答此题的关键.31.21y x =-+【分析】根据题意可知所求的一次函数中,函数值随自变量的增大而减小,即所得函数中,自变量的系数为负,据此作答即可.解:一次函数过点()11,A y -和点()25,B y ,∵15-<,且12y y >,∴一次函数的函数值随自变量的增大而减小,∴一次函数中,自变量的系数为负,故答案为:21y x =-+(答案不唯一).【点拨】本题主要考查了一次函数的图象与性质,判断出一次函数的函数值随自变量的增大而减小,是解答本题的关键.32.d b a c<<<【分析】首先根据函数图像可知0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,即可求解.解:由图象可得,0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,由上可得,d b a c <<<,故答案为:d b a c <<<.【点拨】本题主要考查了一次函数图像的性质,解题的关键在于能够熟练掌握相关知识进行求解.33.2x =【分析】根据一次函数与一元一次方程的关系,一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,即可得出答案.解:∵一次函数y kx b =+的图象与x 轴相交于点()2,0A ,∴方程0kx b +=的解是2x =.故答案是2x =.【点拨】本题主要考查了图象法解一元一次方程,熟练掌握一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,利用数形结合的思想解决问题是解题的关键.34.【分析】根据表达式求出A 、B 两点坐标,再利用勾股定理求出AB 的长即可.解:把x =0代入y =2x +4得:y =4,∴直线与y 轴交点坐标为(0,4),把y =0代入y =2x +4得:0=2x +4,x =-2,∴直线与x 轴交点坐标为(-2,0),∴AB =故答案为:【点拨】本题考查一次函数及勾股定理,利用表达式求出点的坐标,再把坐标转化成线段长是解题的关键.35.1-【分析】利用两直线相交,分别求出三条直线两两相交的交点,观察函数图像,利用一次函数的性质解答.解:直线123y x =+和直线21y x =-+的交点21,33⎛⎫- ⎪⎝⎭,直线123y x =+和直线3122y x =-的交点1011,33骣琪--琪桫,直线21y x =-+和直线3122y x =-的交点()2,1-,结合图像,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,所以,当2x =时,y 有最大值,最大值为1-,故答案为:1-.【点拨】本题考查一次函数的性质,掌握一次函数的图像性质是解题的关键,学会运用数形结合的思想解答更容易方便,这里注意求两条一次函数图像的交点即为联立两个一次函数解析式,求解出来的x 与y 即为交点坐标的横纵坐标.36.20192020(2,21)-【分析】根据题意,直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,可算出点,A B 的规律,由此即可求解.解:直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,∴1(1,0)A ,∴1(1,1)B ,同理可得,2(2,1)A ,3(4,3)A ,4(8,7)A ,5(16,15)A ,┈2(2,3)B ,3(4,7)B ,4(8,15)B ,5(16,31)B ,┈∴1(2,21)n n n B --(n 为正正数),∴2020120202020(2,21)B --,即201920202020(2,21)B -,故答案为:20192020(2,21)-.【点拨】本题主要考查一次函数图像的几何变换规律,掌握一次函数图像的性质,点的规律是解题的关键.。

中考数学分类试题 一次函数

中考数学分类试题 一次函数

中考数学分类试题 一次函数考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.思路点拨:一次函数)0(≠+=k b kx y 的图象的位置由k 、b 确定,同时考虑k 、b 就确定了直线经过的象限1. ( 2011重庆江津, 4,4分)直线y=x -1的图像经过象限是( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 【答案】D2. (2011河北,5,2分)一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D3. (2011贵州贵阳,12,4分)一次函数y =2x -3的图象不经过第______象限. 【答案】二4. (2011湖南娄底,14,4分)一次函数y = -3 x + 2的图象不经过第 象限. 【答案】三5. (2011广东清远,9,3分)一次函数2y x =+的图象大致是( )【答案】A6. (2011张家界,8,3分)关于x 的一次函数y=kx+k 2+1的图像可能是( )【答案】C7. (2011江西南昌,5,3分)已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ).A.-2B.-1C.0D.2 【答案】D8. (2011江西b 卷,5,3分)已知一次函数y =-x +b 的图象经过第一、二、四象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 2 【答案】D9. (2011陕西,15,3分)若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 . 【答案】21<m 10. (2011山东泰安,13 ,3分)已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >2 【答案】D11.(2011内蒙古呼和浩特市,12,3分)已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为_________________.【答案】n12. (2011辽宁沈阳,13,4分)如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009中考试题分类整理(三)----- 一次函数一、变量与函数(一)选择题1、(2009·北京) 如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF 下列中图象中,能⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,表示y 与x 的函数关系式的图象大致是( ) 【答】A2、(2009·兰州)函数y =x -2+31-x 中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠3 【答】D3、(2009·绵阳)点P (-2,1)关于原点对称的点的坐标为( ) A .(2,1) B .(1,-2) C .(2,-1) D .(-2,1) 【答】C4、(2009·陕西)如果点(12)P m m -,在第四象限,那么m 的取值范围是( ).A .102m <<B .102m -<<C .0m <D .12m > 【答】D5、(2009·天津)在平面直角坐标系中,已知线段AB 的两个端点分别为()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43, B .()34, C .()12--, D .()21--, 【答】B6、(2009·河南)如图5所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A '的坐标为( ) A.(2,2) B.(2,4) C.(4,2) D.(1,2) 【答】B7、(2009·日照)如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.(22,22-)C.(-21,-21) D.(-22,-22)【答】C8、(2009·青岛)一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1)A .5030),B .(3050),C .D .(30,【答】A(二)填空题9、(2009·天津)某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:【答】56,80,156.8 10、(2009·哈尔滨)函数y =2x 2x +-的自变量x 的取值范围是 【答】x ≠-211、(2009·青海)第二象限内的点()P x y ,满足||9x =,24y =,则点P 的坐标是 . 【答】(-9,2)12、(2009·包头)线段CD 是由线段AB 平移得到的,点(14)A -,的对应点为(47)C ,,则点(41)B --,的对应点D 的坐标是 .【答】(7,4)13、(2009·厦门)在平面直角坐标系中,已知点O (0,0)、A (1,n )、B (2,0),其中n >0,△OAB 是等边三角形.点P 是线段OB 的中点,将△OAB 绕点O 逆时针旋转30º,记点P 的对应点为点Q ,则n = ,点Q 的坐标是 . 【答】3;(32,12). 14、(2009·泰安)如图所示,△A ’B ’C ’是由△ABC 向右平移5个单位,然后绕B 点逆时针旋转90°得到的(其中A ’、B ’、C ’的对应点分别是A 、B 、C ),点A ’的坐标是(4,4)点B ’的坐标是(1,1),则点A 的坐标是 。

【答】(-1,-2)15、(2009·云南)在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A -,. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,…,按此规律,电子蛙分别以1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落x第8题图点的坐标是2009P (_______ ,_______) 【答】(−2,2)(三)解答题16、(2009·海南)如图16所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答 下列问题:(1)分别写出点A 、B 两点的坐标; (2)作出△ABC 关于坐标原点成中心对称的 △A 1B 1C 1;(3)作出点C 关于是x 轴的对称点P . 若点P 向右平移....x 个单位长度后落在△A 1B 1C 1的 内部..,请直接写出x 的取值范围.【答】(1)A 、B 两点的坐标分别为(-1,0)、(-2,-2);(2)所作△A 1B 1C 1如图2所示; (3)所作点P 如图2所示, 5.5 < x <8 .二、一次函数(一)选择题1、(2009·海南)一次函数y=-x +2的图象是( ) 【答】D2、(2009·南宁)从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对B .6对C .5对D .3对【答】B3、(2009·河北)如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )4、(2009·陕西)若正比例函数的图象经过点(1-,2),则这个图象必经过点( ). A .(1,2) B .(1-,2-) C .(2,1-) D .(1,2-) 【答】D5、(2009·新疆)如图,直线(y kx b k =+<0b +>的解集是( )A .3x <B .3x >C .0x >D .0x <【答】A6、(2009m 是常数,且0m ≠)的图象可能..是( ) 【答】D 7、(2009·宁波)如图,点A 、B 、C 、D 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是 ( ) A .1 B .3 C .3(1)m - D .3(2)2m - 【答】BADCB图6 (第5题)8、(2009·厦门)药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x≤6时,y 的取值范围是( )A. 8 3≤y ≤ 6411 B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤16【答】C9、(2009·烟台)如图,直线y kx b =+经过点2)和点(2B -,,直线2y x =过点A ,则不等式20x kx b <+<A .2x <- B .21x -<<-C .20x -<<D .10x -<<【答】B10、(2009·烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数 ) 【答】D(二)填空题11、(2009·泰安)已知y 是x 的一次函数,又表给出了部分对应值,则m 的值是 。

【答】-712、(2009·天津)已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.【答】()01-,13、(2009·青海)已知一次函数y kx b =+的图象如图2,当0x <时,y 的取值范围是 .xxxxxx【答】2y <-14、(2009·江西)函数()()1240y x x y x x==>≥0,的图象如图所示,则结论: ①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小. 其中正确结论的序号是 .【答】①③④铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系如图12所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积()2m x 满足函数关系式:y kx =乙.y 甲(元)(1)根据图12写出甲工程队铺设广场砖的造价与铺设面积()2mx 的函数关系式;(2)如果狮山公园铺设广场砖的面积为21600m ,那么公园应选择哪个工程队施工更合算? 解:【答】(1)()()560500408000500x x y x x <⎧⎪∴=⎨+⎪⎩甲≤≥ (2)①当y y <乙甲时,45k > ②当y y >乙甲,045k << ③当y y =乙甲时,45k ∴=(第14题)第13题图1)2、(2009·河南)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由. 【答】(1)y =110-x +45 (2)当x =400时,y =110-×400+45=5>33、(2009·包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.【答】(1)120y x =-+ (2)当销售单价定为87元时,商场可获得最大利润,最大利润是891元 (3)由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤4、(2009·江苏)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)AB 所对应的函数关系式为 1.52(45)y x x =-≤≤y (万元)1日:有库存6万升,成本价4元/升,售价5元/升.13日:售价调整为5.5元/升. 15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.五月份销售记录线段BC 所对应的函数关系式为 1.1(510)y x x ≤≤ (3)线段AB5、(2009·沈阳)先阅读下列材料,再解答后面的问题.材料:密码学是一门很神秘、很有趣的学问.在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系—蜜钥,就可以破译它.密码学与数学是有关系的.为此,八年级一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种蜜钥的编制程序.他们首先设计了一个“字母—明码对照表”:例如:以y =3x +13为蜜钥,将“自信”二字进行加密转换后得到下表:因此,“自”字经加密转换后的结果是“9140”.(1)请你求出当蜜钥为y =3x +13时,“信”字经加密转换后的结果;(2)为了提高密码的保密程度,需要频繁地更换蜜钥.若“自信”二字用新的蜜钥进行加密转换后得到下表:请求出这个新的蜜钥,并直接写出“信”字用新的蜜钥加密转换后的结果. 【答】(1)854055 (2)663646。

相关文档
最新文档