内蒙古呼伦贝尔2012年中考数学试题(含解析)
内蒙古包头市2012年中考数学试题答案及解析
2012年中考数学试题(内蒙古包头)(本试卷满分150分,考试时间120分钟)第I 卷(选择题 共36 分)一、选择题(本大题共12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 9 的算术平方根是【 】A .土3 B.3 C..一【答案】B 。
解析:本题考察的是算数平方根的概念。
要与平方根相区分。
2.联合国人口基金会的报告显示,世界人口总数在2011 年10 月31 日达到70 亿.将70 亿用科学记数法表示为【 】A .7×109B . 7×108C . 70×108D . 0.7×1010【答案】A 。
解析:本题考察的是将大于10的用科学记数法的方法表示。
3.下列运算中,正确的是【 】A .32x x =x -B . 623x x =x ÷C 2+3=523=【答案】D 。
解析:本题考察的是同底数的除法、合并同类项、二次根式的加法、乘法。
4.在Rt △ ABC 中,∠C=900,若AB =2AC ,则sinA 的值是【 】12【答案】C 。
解析:本题考察的是锐角三角函数中的正弦及特殊角的正弦值。
5.下列调查中,调查方式选择正确的是【 】A .为了了解1000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量,选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查【答案】B 。
解析:本题考察的是实际问题中如何选择是使用全面调查还是抽样调查。
6.如图,过口ABCD的对角线BD 上一点M 分别作平行四边形两边的平行线EF与GH ,那么图中的口AEMG的面积S1与口HCFG的面积S2的大小关系是【】A .S1 > S2 B.S1 < S2 C .S1 = S2 D.2S1 = S2【答案】C。
解析:本题考察的是平行四边形的对角线的性质即平行四边形的对角线把平行四边形分成面积相等的两部分。
2012年内蒙古呼市卷中考数学试卷+答案
2012年呼和浩特市中考试卷数学31A(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的倒数是()A.2B.-2C.D.-2.如图,已知a∥b,∠1=65°,则∠2的度数为()A.65°B.125°C.115°D.25°3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随机从口袋中摸出一个球为红色的概率是()A. B. C. D.4.下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)2C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)5.已知:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=-3,b=1B.a=3,b=1C.a=-,b=-1D.a=-,b=16.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是()A.落在菱形内B.落在圆内C.落在正六边形内D.一样大7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是()8.已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25B.50C.25D.9.已知:M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A.有最大值,最大值为-B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为-10.下列命题中,真命题的个数有()①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行②函数y=x2+图象上的点P(x,y)一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|x|-y=3和y+x2=0同时成立的x的取值为-A.3个B.1个C.4个D.2个第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6个小题,每小题3分,共18分)11.函数y=中自变量x的取值范围是.-12.太阳的半径约为696000千米,用科学记数法表示为千米.13.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=°.14.实数a、b在数轴上的位置如图所示,则+a的化简结果为.15.一组数据-1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是.16.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为cm2.三、解答题(本大题包括9个小题,共72分.解答应写出必要的演算步骤、证明过程或文字说明)17.(1)(5分)计算:-|1-|+2-1.(2)(5分)先化简,再求值:(x+1)÷,其中x=-.18.(6分)(1)解不等式:5(x-2)+8<6(x-1)+7;(2)若(1)中的不等式的最小整数解是方程2x-ax=3的解,求a的值.19.(6分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6)、B(n,3)两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b->0时x的取值范围.20.(7分)如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.(1)求证:AF-BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F'.若正方形边长为3,求点F'与旋转前的图中点E之间的距离.31B21.(9分)如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.22.(6分)如图,线段AB、DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B处测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.23.(8分)如图,某化工厂与A、B两地有公路和铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列方程组,请你分别指出未知数x、y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示,y表示;乙:x表示,y表示;(2)甲同学根据他所列方程组解得x=300.请你帮他解出y的值,并解决该实际问题.24.(8分)如图,已知AB为☉O的直径,PA与☉O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连结BC.(1)求证:∠PAC=∠B,且PA·BC=AB·CD;(2)若PA=10,sin P=,求PE的长.25.(12分)如图,抛物线y=ax2+bx+c(a<0)与双曲线y=相交于点A、B,且抛物线经过坐标原点,点A的坐标为(-2,2),点B在第四象限内.过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍.记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D 的坐标;若不存在,请说明理由.2012年呼和浩特市中考试卷一、选择题1.D a(a≠0)的倒数是,所以-2的倒数是-,故选D.评析本题考查倒数的定义,注意和相反数区别,属容易题.2.C如图,∠3=180°-∠1=115°,由a∥b可得∠2=∠3=115°,故选C.评析本题考查邻补角的定义,以及平行线的性质,属容易题.3.A5个球中有3个红球,所以从口袋中随机摸出一个球为红球的概率是,故选A.评析本题考查用列举法求概率,属容易题.4.C4x2-4x+1=(2x)2-2×2x+1=(2x-1)2,故选C.评析本题考查因式分解的方法,属容易题.5.D由一元二次方程根与系数的关系得x1+x2=-2a,x1x2=b,所以由题意得a=-,b=1.评析本题考查一元二次方程根与系数之间的关系,属容易题.6.B可求得菱形、正六边形和圆的面积分别为3、和π,圆的面积最大,所以一点随机落在圆内的概率最大,故选B.评析本题考查几何概率,属容易题.7.C直线x-2y=2在直角坐标系内要经过点(0,-1),(2,0),对应图象为C.评析本题考查一次函数与二元一次方程之间的关系,属容易题.8.A如图,作DE∥AC交BC延长线于点E,易得△DCE≌△BAD,所以CE=AD=3,∴BE=10,∵AC⊥BD,∴∠BDE=90°,∴BD=DE==5,所以S梯形=S△BDE=BD·DE=25,故选A.ABCD评析本题考查全等三角形的判定和性质,勾股定理,以及梯形的性质,关键在于能够通过推理得出S梯形ABCD=S△BDE,属中等难度题.9.B点M、N关于y轴对称,有N(-a,b).因为点M在双曲线y=上,所以ab=.点N在直线y=x+3上,所以a+b=3.二次函数为y=-x2+3x=-(x-3)2+,有最大值,故选B.评析本题综合考查了轴对称,函数的图象与性质,属中等难度题.10.D旋转变换后对应线段有夹角,即旋转角,所以①错误;易知x<0,y>0,所以点P(x,y)一定在第二象限,所以②正确;根据正投影的定义可知③正确;画出函数y=-x2和y=|x|-3的图象,两个图象的交点关于y轴对称,即横坐标互为相反数,所以④错误.故选D.评析本题综合考查了图形的变换、函数、正投影的性质以及命题的相关概念,综合性较强,属难题.二、填空题11.答案x≠2解析因为分式的分母不能为0,所以x≠2.评析本题考查函数中自变量的取值范围,若是分式,则分母不为0,属容易题.12.答案 6.96×105解析696000=6.96×105.评析本题考查科学记数法的概念,属容易题.13.答案66.5解析连结BE,不难看出∠DAE=∠DBE+∠AEB,∠ECF=∠EBF+∠BEC,所以∠DAE+∠ECF=∠ABC+∠AEC.又因为AE、CE分别平分∠DAC和∠FCA,所以∠CAE+∠ACE=∠ABC+∠AEC,所以180°-∠AEC=∠ABC+∠AEC,即∠AEC=90°-∠ABC=66.5°.评析本题考查三角形角平分线的性质,题目常见,属中等难度题.14.答案-b解析从数轴上看,a>0,b<0,|a|<|b|,所以+a=-a-b+a=-b.评析本题考查了二次根式的化简,数轴,整式的运算等知识,属容易题.15.答案 1.6或0.4解析由极差是5可知x=-2或x=4,当x=-2时,=0.4;当x=4时,=1.6.所以平均数为1.6或0.4.评析本题考查极差、平均数等概念,注意思考要全面,属容易题.16.答案2π解析从三视图可看出该几何体是圆锥,其母线长为2,底面圆直径为2,侧面积为×2π×2=2π.评析本题考查由三视图来判断几何体的形状,进而求其侧面积,属中档题.三、解答题17.解析(1)原式=-(-1)+(3分)=.(5分)(2)原式=.(9分)当x=-时,原式=3,(10分)评析(1)题以实数的运算为载体,考查了特殊角的三角函数值,绝对值,整数幂等概念,属容易题.(2)题考查了分式的四则运算,属容易题.18.解析(1)5(x-2)+8<6(x-1)+7,5x-10+8<6x-6+7,(1分)5x-2<6x+1,(2分)-x<3,(3分)x>-3.(4分)(2)由(1)得,最小整数解为x=-2,(5分)∴2×(-2)-a×(-2)=3,∴a=.(6分)评析本题考查一元一次不等式和一元一次方程的解法,属容易题.19.解析(1)∵点A(m,6)、B(n,3)在函数y=的图象上,∴m=1,n=2,∴A(1,6)、B(2,3).(2分)∴-∴∴一次函数的解析式为y=-3x+9.(4分)(2)由图象知:1<x<2.(6分)评析本题考查了反比例函数、一次函数的性质,待定系数法求函数解析式,利用函数图象判断不等式的解集等知识点,属容易题.20.解析(1)证明:如图,正方形ABCD中,AB=AD,∠2+∠3=90°.∵DE⊥AG,∴∠AED=90°,∴∠1+∠3=90°,∴∠1=∠2.又∵BF∥DE,∴∠AFB=∠AED=90°.在△AED和△BFA中,∴△AED≌△BFA.(3分)∴BF=AE.∵AF-AE=EF,∴AF-BF=EF.(4分)(2)如图,根据题意知:∠FAF'=90°,DE=AF'=AF,∴可判断四边形AEDF'为矩形,(6分)∴EF'=AD=3.(7分)评析本题考查了正方形的性质,并让学生探索在图形的旋转变换过程中的一些量的变化情况,属容易题.21.解析(1)该样本数据的众数为52,中位数为52.(2分)(2)≈52.4千米/时.(6分)(3)不能.(7分)因为由(1)知该样本的中位数为52,所以可以估计该路段的车辆大约有一半的车速度要快于52千米/时,有一半的车速度要慢于52千米/时,该车的速度是50.5千米/时,小于52千米/时,所以不能说该车的速度要比一半以上车的速度快.(9分)评析本题考查了众数、中位数、平均数等概念,并让学生利用统计知识解决生活中的问题,了解学生的应用意识,属容易题.22.解析过点A作AM⊥CD,垂足为M.(1分)在Rt△BCD中,tanα=,∴CD=BC·tanα=mtanα.(3分)在Rt△AMD中,tanβ=,∴DM=AM·tanβ=mtanβ,(5分)∴AB=CD-DM=m(tanα-tanβ).(6分)评析本题考查三角函数在实际生活中的应用,没有具体的数据,对学生是个考验,属中等难度题.23.解析(1)甲:x表示产品的重量,y表示原料的重量;(1分)乙:x表示产品销售额,y表示原料费;(2分)甲方程组右边方框内的数分别为15000,97200,乙同甲.(4分)(2)将x=300代入原方程组解得y=400,(6分)∴产品销售额为300×8000=2400000(元),原料费为400×1000=400000(元).又∵运输费为15000+97200=112200(元),∴这批产品的销售款比原料费和运输费的和多2400000-(400000+112200)=1887800(元).(8分)评析本题给出问题的相应解法让学生判断,引导学生分析、解决问题,有新意,属中档题.24.解析(1)证明:∵PA是☉O的切线,AB是直径,∴∠PAO=90°,∠C=90°,∴∠PAC+∠BAC=90°且∠B+∠BAC=90°,∴∠PAC=∠B.(1分)又∵OP⊥AC,∴∠ADP=∠C=90°,∴△PAD∽△ABC,(2分)∴AP∶AB=AD∶BC.∵在☉O中,AC⊥OD,∴AD=CD,(3分)∴AP∶AB=CD∶BC,∴PA·BC=AB·CD.(4分)(2)∵sin P=,且PA=10,∴=.(5分)∴AD=6,∴AC=2AD=12.∵在Rt△ADP中,PD=-=8,又∵AP∶AB=PD∶AC,∴AB==15,∴AO=,(7分)∴OP=,∴PE=OP-OE=-=5.(8分)或者:在Rt△PAO中利用sin P==计算出半径OA=,PO=,从而得出PE=5评析本题以圆的性质为切入点,详细考查了相似三角形的判定和性质,特殊角的三角函数值,属中等偏难题.25.解析(1)∵点A(-2,2)在双曲线y=上,∴k=-4,∴双曲线的解析式为y=-.(1分)∵BC与x轴之间的距离是点B到y轴的距离的4倍,∴可设B点坐标为(m,-4m)(m>0),代入双曲线解析式得m=1,∴抛物线y=ax2+bx+c(a<0)过点A(-2,2)、B(1,-4)、O(0,0),∴--∴--∴抛物线的解析式为y=-x2-3x.(4分)(2)∵抛物线的解析式为y=-x2-3x,∴顶点E-,对称轴为x=-.∵B(1,-4),∴-x2-3x=-4,∴x1=1,x2=-4,∴C(-4,-4),∴S△ABC=5×6×=15.(5分)由A、B两点坐标为(-2,2)、(1,-4)可求得直线AB的解析式为y=-2x-2.设抛物线对称轴与AB交于点F,则F点坐标为-,∴EF=-1=,∴S△ABE=S△AEF+S△BEF=××3=.(8分)(3)∵S△ABE=,∴8S△ABE=15,∴当点D与点C重合时,显然满足条件.(9分)当点D与点C不重合时,过点C作AB的平行线CD,其对应的一次函数解析式为y=-2x-12.令-2x-12=-x2-3x,解得x1=3,x2=-4(舍去).当x=3时,y=-18,∴存在另一点D(3,-18)满足条件.(12分)评析本题考查了待定系数法求函数解析式,二次函数、一次函数的性质,第(3)问重点考查分类讨论思想,要求学生有较强的分析问题能力,属难题.。
内蒙古自治区呼伦贝尔中考数学试题含答案
2012年内蒙古呼伦贝尔市中考数学试卷一、选择题(下列各题地四个选项中只有一个正确.共12小题,每小题3分,共36分)1.地绝对值是().3.一个几何体地三视图如下图所示,这个几何体是()4.如图,四边形OABC是边长为2地正方形,反比例函数地图象过点B,则k地值为()5.如图①~④是四种正多边形地瓷砖图案.其中,是轴对称图形但不是中心对称地图形为()6.如图,A 、B 、C 三点在⊙O 上,若∠BOC=76°,则∠BAC 地度数是( ),则做地游戏一定会中奖8.不等式组地解集在数轴上表示正确地是( ).C 9.在数据中,随机选取一个数,选中无理数地概率为( ).11.如图,在Rt △ABC 中,∠ABC=90°,∠BAC=30°,AB=,将△ABC 绕顶点C 顺时针旋转至△A ′B ′C ′地位置,且A 、C 、B ′三点在同一条直线上,则点A 经过地路线地长度是( )12.如图,△ABD中,EF∥BD交AB于点E、交AD于点F,AC交EF于点G、交BD于点C,S△AEG=S,则地值为()四边形EBCG.二、填空题(共5小题,每小题3分,共15分)13.函数中自变量x地取值范围是_________.14.一组数据1,a,4,4,9地平均数是4,则a=_________.15.分解因式:27x2﹣18x+3=_________.16.第二象限内地点P(x,y)满足|x|=5,y2=4,则点P地坐标是_________.17.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现地规律确定215地个位数字是_________.三、解答题(共4小题,每小题6分,共24分)18.计算:.19.解方程:.20.在一个口袋中有4个完全相同地小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件地概率:(1)两次取出地小球标号相同;(2)两次取出地小球地标号和是5地倍数.21.在图中求作一点P,使点P到∠AOB两边地距离相等,并且使OP等于MN,保留作图痕迹并写出作法.(要求:用尺规作图)四、(本题7分)22.某校为了了解九年级学生体育测试成绩情况,抽取九年级部分学生地体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如图①,其中A等级人数为50人.请你结合图①中所给信息解答下列问题:(1)样本容量是_________;B级学生地人数为_________人;(2)根据已有信息在图②中绘制条形统计图;(3)若该校九年级学生共有1500人,请你求出这次测试中C级地学生约有多少人?五、(本题7分)23.如图,在△ABC中,点D是边BC地中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:DE=DF;(2)当∠A=90°时,试判断四边形AFDE是怎样地四边形,并证明你地结论.六、(本题8分)24.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O地半径;(2)求图中阴影部分地面积.七、(本题10分)25.甲乙两件服装地进价共500元,商场决定将甲服装按30%地利润定价,乙服装按20%地利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装地进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件地进价达到242元,求每件乙服装进价地平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).八、(本题13分)26.如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=.△FED不动,△AB C沿直线BE以每秒1个单位地速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分地面积为s.(1)求出图①中点B地坐标;(2)如图②,当x=4秒时,点M坐标为(2,),求出过F、M、A三点地抛物线地解析式;此抛物线上有一动点P,以点P为圆心,以2为半径地⊙P在运动过程中是否存在与y轴相切地情况?若存在,直接写出P点地坐标;若不存在,请说明理由.(3)求出整个运动过程中s与x地函数关系式.2012年内蒙古呼伦贝尔市中考数学试卷参考答案与试题解析一、选择题(下列各题地四个选项中只有一个正确.共12小题,每小题3分,共36分)1.地绝对值是().地绝对值是.﹣3.一个几何体地三视图如下图所示,这个几何体是()4.如图,四边形OABC是边长为2地正方形,反比例函数地图象过点B,则k地值为()y=5.如图①~④是四种正多边形地瓷砖图案.其中,是轴对称图形但不是中心对称地图形为()6.如图,A、B、C三点在⊙O上,若∠BOC=76°,则∠BAC地度数是()解:∵×=38,则做、一个游戏中奖地概率是8.不等式组地解集在数轴上表示正确地是().C9.在数据中,随机选取一个数,选中无理数地概率为().个数据:,,5=.11.如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,AB=,将△ABC绕顶点C顺时针旋转至△A′B′C′地位置,且A、C、B′三点在同一条直线上,则点A经过地路线地长度是()AB==.12.如图,△ABD中,EF∥BD交AB于点E、交AD于点F,AC交EF于点G、交BD于点C,S△AEG=S,则地值为()四边形EBCG.===.SS=(平行线截线段成比例)=(相似三角形面积地比等于相似比地平方)=;==二、填空题(共5小题,每小题3分,共15分)13.函数中自变量x地取值范围是x≤5.)当函数表达式是分式时,考虑分式地分14.一组数据1,a,4,4,9地平均数是4,则a=2.15.分解因式:27x2﹣18x+3=3(3x﹣1)2.16.第二象限内地点P(x,y)满足|x|=5,y2=4,则点P地坐标是(﹣5,2).17.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现地规律确定215地个位数字是8..首先观察可得规律:.三、解答题(共4小题,每小题6分,共24分)18.计算:.﹣×﹣+1﹣+.19.解方程:..代入(不是原分式方程地解.20.在一个口袋中有4个完全相同地小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件地概率:(1)两次取出地小球标号相同;(2)两次取出地小球地标号和是5地倍数.∴两次取出地小球标号相同地概率为:=;地倍数地概率为:.21.在图中求作一点P,使点P到∠AOB两边地距离相等,并且使OP等于MN,保留作图痕迹并写出作法.(要求:用尺规作图)四、(本题7分)22.某校为了了解九年级学生体育测试成绩情况,抽取九年级部分学生地体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如图①,其中A等级人数为50人.请你结合图①中所给信息解答下列问题:(1)样本容量是200;B级学生地人数为70人;(2)根据已有信息在图②中绘制条形统计图;(3)若该校九年级学生共有1500人,请你求出这次测试中C级地学生约有多少人?五、(本题7分)23.如图,在△ABC中,点D是边BC地中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:DE=DF;(2)当∠A=90°时,试判断四边形AFDE是怎样地四边形,并证明你地结论.正方形地判定;全等三角形地判定与性质;勾股定理,六、(本题8分)24.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O地半径;(2)求图中阴影部分地面积.,在直角OCAB==3.=3,=πOCπ﹣七、(本题10分)25.甲乙两件服装地进价共500元,商场决定将甲服装按30%地利润定价,乙服装按20%地利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装地进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件地进价达到242元,求每件乙服装进价地平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).元,经过两次上调价格后,使乙服装每件地进价达到.八、(本题13分)26.如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=.△FED不动,△ABC沿直线BE以每秒1个单位地速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分地面积为s.(1)求出图①中点B地坐标;(2)如图②,当x=4秒时,点M坐标为(2,),求出过F、M、A三点地抛物线地解析式;此抛物线上有一动点P,以点P为圆心,以2为半径地⊙P在运动过程中是否存在与y轴相切地情况?若存在,直接写出P点地坐标;若不存在,请说明理由.(3)求出整个运动过程中s与x地函数关系式.地高为×BEAC=3,x x+x x+;y=﹣=3,且坐标为()或(﹣OG=CH=BO=(﹣=×+﹣××x x×(×)x x+3s=版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.1nowf。
2012年内蒙古呼伦贝尔市初中毕业生学业考试
2012年内蒙古呼伦贝尔市初中毕业生学业考试汉语模拟试卷(一卷)温馨提示:1、本试卷满分120分,分为一卷,二卷。
一卷为选择题,考生不许在上面答题,把答案用2B铅笔涂在答题卡相应的位置上。
二卷0.5毫米字迹签字笔在答题卡上答题。
2、答题前请将密封线左边的项目填写清楚。
一、选择题、(共15小题,每小题2分,共30分),1、下列加点字的注音完全正确的一项是A 窜动(chu…n)彻底(chˆ)恐怖(b”)酷爱(k”)B 黎明(lŠ)气氛(fˆn)敞开(chƒng)俊俏( qi…o )C 榜样(bƒng) 罕(hƒn)见掩盖(yƒn) 笼罩( zh…o)D 地址(zh‹) 搜集(s•u) 针灸(ji“) 病症(zh…ng)2、下列词语中没有错别字的一项是A 相依为命迫不急待豁然开朗纹丝不动B 手忙脚乱五彩缤纷不假思索安然无恙C 不知所错千真万确举世无双养尊处忧D 安居乐业铺天盖地花团紧簇水泻不通3、下列词语不能构成近义词的一项是A 热情——热忱寂静——冷静B 穷苦——贫穷守卫——保卫C 格外——分外关心——关怀D 视察——考察顽强——坚强4、下列次元感情色彩分类完全相同的一项是A 文质彬彬顽固不化一文不值半信半疑B 怒气冲天抱头鼠窜失魂落魄无穷无尽C 循规蹈矩目光短浅横七竖八鬼斧神工D 炯炯有神富丽堂皇昂首挺胸举世无双5、下列词语搭配不完全恰当的一项是A 阳光灿烂物产丰富大雨倾盆闪闪发光B 静静沉思慷慨激昂风花雪月不能自已C 缓缓移动感受生活增长知识培养能力D 修理电脑改善生活改进错误训练技能6、下列词语依次填入横线处恰当的一项是⑪()的卧室里,摆着几件古式家具,显得特别高雅。
⑫你要主动坦白,争取()处理。
⑬他倚在爸爸()的肩膀上,就好像有了安全感。
⑭学会()别人,你会快乐的。
A 宽敞宽大宽阔宽容B 宽大宽阔宽容宽敞C 宽阔宽容宽敞宽大D 宽容宽敞宽大宽阔7、下列量词使用完全正确的一项是A 一位作家一湾海峡一棵种子一口竖井B 一枚邮票一个文化一叶扁舟一具骨架C 一株幼苗一名使者一方蓝天一缕轻烟D 一束阳光一所学校一位铜像一扇大门8、下列句中加点的词与运用不恰当的一项是A 老师朗读课文时,语调抑扬顿挫,非常悦耳。
内蒙古呼伦贝尔市中考数学试卷
内蒙古呼伦贝尔市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2012·湛江) 2的倒数是()A . 2B . ﹣2C .D . ﹣2. (2分) (2019七上·平遥月考) 下列图形中能折叠成棱柱的是()A .B .C .D .3. (2分) (2018七上·新洲期末) 若单项式3xm+1y4与﹣ x2y4﹣3n是同类项,则m n的值为()A . 2B . 1C . ﹣1D . 04. (2分)(2019·许昌模拟) 如图,在中,,点在上,,若,则的度数为()A .B .C .D .5. (2分) (2019九上·天河期末) 下列说法正确的是()A . 13名同学中,至少有两人的出生月份相同是必然事件B . “抛一枚硬币正面朝上概率是0.5”表示每抛硬币2次有1次出现正面朝上C . 如果一件事发生的机会只有十万分之一,那么它就不可能发生D . 从1、2、3、4、5、6中任取一个数是奇数的可能性要大于偶数的可能性6. (2分)(2019·荆门模拟) 若整数k满足k<<k+1,则k的值是()A . 6B . 7C . 8D . 97. (2分)(2017·蒙阴模拟) 如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y= +bx+c的顶点,则抛物线y= +bx+c与直线y=1交点的个数是()A . 0个或1个B . 0个或2个C . 1个或2个D . 0个、1个或2个8. (2分) (2016八下·大石桥期中) 矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为()A . 12cmB . 10cmC . 7.5cmD . 5cm9. (2分)(2017·襄州模拟) 下列计算正确的是()A . 3a+4b=7abB . (ab3)3=ab6C . x12÷x6=x6D . (a+2)2=a2+410. (2分)已知二次函数的图像与x轴交于点(-2,0)、(),且,与y轴的正半轴的交点在(0,2)的下方,则下列结论中:①ab>0;②4a-2b+c=0;③2a-b+1<0;④a<b<c,其中正确的结论有().A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2018·抚顺) 第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为________.12. (1分) (2019八上·法库期末) 数据:9,8,9,7,8,9,7的众数和中位数分别是________.13. (1分) (2019八上·玉泉期中) 如图,在四边形ABCD中,∠A=450 ,直线l与边AB、AD分别相交于点M、N。
2013-2020年内蒙古呼伦贝尔市中考数学试题汇编(含参考答案与解析)
一、选择题(本大题共12小题,每小题3分,共36分)
1.-5的相反数是( )
A.5B.-5C. D.
2.下列各式计算正确的是( )
A.(a-b)2=a2-b2B.(-a4)3=a7C.2a•(-3b)=6abD.a5÷a4=a(a≠0)
3.下列几何体中,俯视图为矩形的是( )
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
三、解答题(本大题共9小题,共69分)
18.(6分)计算: .
19.(6分)解不等式组 .
20.(6分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分时,小刚获胜(若指针恰好指在等分线上时重新转动转盘).
(1)分别求出小明和小刚获胜的概率(用列表法或树形图);
1号
2号
3号
4号
5号
总数
甲班
100
98
102
97
103
500
乙班
99
100
95
109
97
500
经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.
请你回答下列问题:
(1)甲乙两班的优秀率分别为、;
(2)甲乙两班比赛数据的中位数分别为、;
(3)计算两班比赛数据的方差;
(2)这个游戏规则是否公平?说明理由.
21.(6分)如图,线段AB、DC分别表示甲乙两座建筑物的高,AB⊥BC,DC⊥BC,两建筑物的水平距离BC为30米,若甲建筑物的高AB=28米,在点A处观察乙建筑物顶部D的仰角为60°,求乙建筑物的高度(结果保留1位小数, ≈1.73).
2012年内蒙古包头市中考数学试卷-答案
数学答案解析
第Ⅰ卷
一、选择题
1.【答案】B
【解析】∵ ,∴9的算术平方根是3.故选B.
【提示】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.
【考点】算术平方根.
2.【答案】A
【解析】 .故选:A.
【提示】先将括号里面的分式的分子分母分解因式,再通分进行分式加减计算后,最后进行分式的除法计算就可以得出结论.
【考点】分式的混合运算.
15.【答案】12
【解析】∵数据10,11,12,13,8,x的平均数是11,∴ ,
∵数据12出现的次数最多,∴众数为12.故答案为12
【提示】首先根据平均数的定义求得x的值,然后利用众数的定义求得答案即可.
【提示】根据矩形性质求出 ,可证 ,求出 ,求出 ,即可求出答案.
【考点】矩形的性质,全等三角形的判定与性质,等腰直角三角形
12.【答案】B
【解析】根据题意得 , ,则 ,∵ ,∴ ,
即 ,∴ ,∴ ,整理得 , ,解得 ,∵ ,∴ .故选B.
【提示】根据一元二次方程 ( )的根与系数的关系和两根都为正根得到 ,
【提示】根据合并同类项法则对A进行判断;根据同底数幂的除法法则对B进行判断;根据同类二次根式的定义对C进行判断;根据二次根式的乘法法则对D进行判断.
【解析】A. 与 不是同类项,不能合并,所以A选项错误;
B. ,,所以B选项错误;
C. 与 不是同类二次根式,不能合并,所以C选项错误;
D. ,所以D选项正确.故选D.
【考点】众数,算术平均数
16.【答案】4
【解析】 , , 或 , , ,∵ ,∴ ,把 代入 中得: ,解得: ,故答案为:4.
内蒙古呼和浩特市2012年中考数学试卷(解析版)
2012年内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.如图,已知a∥b,∠1=65°,则∠2的度数为()3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随5.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分,b=﹣1 ,b=16.如图,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是()7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()B9.已知:M ,N 两点关于y 轴对称,且点M 在双曲线上,点N 在直线y=x+3上,设2有最大值,最大值为有最小值,最小值为10.下列命题中,真命题的个数有( )①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行 ②函数图象上的点P (x ,y )一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|x|﹣y=3和y+x 2=0同时成立的x 的取值为.二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.函数y=中,自变量x 的取值范围是 _________ .12.太阳的半径约为696 000千米,用科学记数法表示为 _________ 千米.13.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC= _________ .14.实数a,b在数轴上的位置如图所示,则的化简结果为_________.15.一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是_________.16.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为_________cm.三、解答题(本大题包括9个小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(1)计算:.(2)先化简,再求值:,其中.18.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.19.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.(1)求一次函数的解析式;(2)根据图象直接写出时x的取值范围.20.如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.(1)求证:AF﹣BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.21.如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.22.如图,线段AB,DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B外测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.23.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_________,y表示_________乙:x表示_________,y表示_________(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.24.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:∠PAC=∠B,且PA•BC=AB•CD;(2)若PA=10,sinP=,求PE的长.25.如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.2012年内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的))2.(3分)如图,已知a∥b,∠1=65°,则∠2的度数为()3.(3分)在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,5.(3分)已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b,b=﹣1 ,b=16.(3分)如图,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是()×=>B8.(3分)已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面9.(3分)已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+32有最大值,最大值为有最小值,最小值为在反比例函数的图象上,点,y=10.(3分)下列命题中,真命题的个数有()①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行②函数图象上的点P(x,y)一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|x|﹣y=3和y+x2=0同时成立的x的取值为.,故函数图象上的点的取值为:二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.(3分)函数y=中,自变量x的取值范围是x≠2.12.(3分)太阳的半径约为696 000千米,用科学记数法表示为 6.96×105千米.13.(3分)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=66.5°.;最后在= 14.(3分)实数a,b在数轴上的位置如图所示,则的化简结果为﹣b.15.(3分)一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是 1.6或0.4.16.(3分)如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为2πcm.三、解答题(本大题包括9个小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(10分)(1)计算:.(2)先化简,再求值:,其中.+﹣+=2÷=﹣18.(6分)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.19.(6分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.(1)求一次函数的解析式;(2)根据图象直接写出时x的取值范围.,20.(7分)如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.(1)求证:AF﹣BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.21.(9分)如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.≈22.(6分)如图,线段AB,DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B外测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.=23.(8分)如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示产品的重量,y表示原料的重量乙:x表示产品销售额,y表示原料费(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.24.(8分)如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:∠PAC=∠B,且PA•BC=AB•CD;(2)若PA=10,sinP=,求PE的长.=PD==15A0=OP==﹣25.(12分)如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.,=。
内蒙古呼伦贝尔市中考数学真题及答案
内蒙古呼伦贝尔市中考数学真题及答案一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.( 3分)﹣2020的绝对值是()A.﹣2020 B.2020 C.﹣D.2.( 3分)下列计算正确的是()A.a2•a3=a6B.( x+y)2=x2+y2C.( a5÷a2)2=a6D.(﹣3xy)2=9xy23.( 3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.( 3分)由5个相同的小正方体组成的几何体如图所示,该几何体的俯视图是()A.B.C.D.5.( 3分)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的D.太阳从西方升起6.( 3分)如图,直线AB∥CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是()A.120°B.100°C.150°D.160°7.( 3分)已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣38.( 3分)不等式组的非负整数解有()A.4个B.5个C.6个D.7个9.( 3分)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=10.( 3分)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°11.( 3分)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14 B.20 C.22 D.2812.( 3分)已知二次函数y=ax2+bx+c( a≠0)的图象如图所示,则反比例函数y=与一次函数y=﹣cx+b 在同一平面直角坐标系内的图象可能是()A.B.C.D.二、填空题(本题5个小题,每小题3分,共15分)13.( 3分)中国的领水面积约为370000km2,将370000科学记数法表示为.14.( 3分)分解因式:a2b﹣4b3=.15.( 3分)若一个扇形的弧长是2πcm,面积是6πcm2,则扇形的圆心角是度.16.( 3分)已知关于x的一元二次方程(m﹣1)x2﹣x+1=0有实数根,则m的取值范围是.17.( 3分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为( 0,3),点A在x轴的正半轴上.直线y=x﹣1分别与边AB,OA相交于D,M两点,反比例函数y=( x>0)的图象经过点D并与边BC相交于点N,连接MN.点P是直线DM上的动点,当CP=MN时,点P的坐标是.三、解答题(本题4个小题,每小题6分,共24分)18.( 6分)计算:(﹣)﹣1++2cos60°﹣(π﹣1)0.19.( 6分)先化简,再求值:÷+3,其中x=﹣4.20.( 6分)A,B两地间有一段笔直的高速铁路,长度为100km.某时发生的地震对地面上以点C为圆心,30km 为半径的圆形区域内的建筑物有影响.分别从A,B两地处测得点C的方位角如图所示,tanα=1.776,tanβ=1.224.高速铁路是否会受到地震的影响?请通过计算说明理由.21.( 6分)一个不透明的口袋中装有三个完全相同的小球,上面分别标有数字,,5.( 1)从口袋中随机摸出一个小球,求摸出小球上的数字是无理数的概率(直接写出结果);( 2)先从口袋中随机摸出一个小球,将小球上的数字记为x,把小球放回口袋中并搅匀,再从口袋中随机摸出一个小球,将小球上的数字记为y.请用列表法或画树状图法求出x与y的乘积是有理数的概率.四、(本题7分)22.( 7分)已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.五、(本题7分)23.( 7分)某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:( 1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n =;( 2)所调查的初中学生每天睡眠时间的众数是,方差是;( 3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.六、(本题8分)24.( 8分)如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG∥BC,连接AE交BC于点D.( 1)求证:AE平分∠BAC;( 2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.七、(本题10分)25.( 10分)某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件x元( x≥50),月销量为y件,月销售利润为w元.( 1)写出y与x的函数解析式和w与x的函数解析式;( 2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元?( 3)当销售价定为每件多少元时会获得最大利润?求出最大利润.八、(本题13分)26.( 13分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B( 4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.( 1)求抛物线的解析式和点C的坐标;( 2)当△BCQ的面积等于2时,求m的值;( 3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.答案一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.参考答案:解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.参考答案:解:A、a2•a3=a5,故选项错误;B、( x+y)2=x2+y2+2xy,故选项错误;C、( a5÷a2)2=a6,故选项正确;D、(﹣3xy)2=9x2y2,故选项错误;故选:C.3.参考答案:解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.4.参考答案:解:从上边看第一列是一个小正方形,第二列是两个小正方形且第一个小正方形位于第一层,第三列是一个小正方形,且位于第二层,故B选项符合题意,故选:B.5.参考答案:解:A.任意一个五边形的外角和等于540°,属于不可能事件,不合题意;B.投掷一枚均匀的硬币100次,正面朝上的次数为50次是随机事件,不合题意;C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的,属于必然事件,符合题意;D.太阳从西方升起,属于不可能事件,不合题意;故选:C.6.参考答案:解:延长AE,与DC的延长线交于点F,∵AB∥CD,∴∠A+∠AFC=180°,∵∠EAB=120°,∴∠AFC=60°,∵AE⊥CE,∴∠AEC=90°,而∠AEC=∠AFC+∠ECF,∴∠ECF=∠AEC﹣∠F=30°,∴∠ECD=180°﹣30°=150°,故选:C.7.参考答案:解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=原式=a﹣1﹣[﹣( a﹣2)]=a﹣1+( a﹣2)=2a﹣3.故选:D.8.参考答案:解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,共5个,故选:B.9.参考答案:解:设甲每天做x个零件,根据题意得:,故选:A.10.参考答案:解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.11.参考答案:解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.12.参考答案:解:根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,则反比例函数的图象在第二、四象限,一次函数y=﹣cx+b经过第一、二、四象限,故选:C.二、填空题(本题5个小题,每小题3分,共15分)13.参考答案:解:370000=3.7×105,故答案为:3.7×105.14.参考答案:解:a2b﹣4b3=b( a2﹣4b2)=b( a+2b)( a﹣2b).故答案为b( a+2b)( a﹣2b).15.参考答案:解:扇形的面积==6π,解得:r=6,又∵=2π,∴n=60.故答案为:60.16.参考答案:解:∵一元二次方程有实数根, ∴△=≥0且≠0,解得:m≤5且m≠4,故答案为:m≤5且m≠4.17.参考答案:解:∵点C的坐标为( 0,3), ∴B( 3,3),A( 3,0),∵直线y=x﹣1分别与边AB,OA相交于D,M两点, ∴可得:D( 3,2),M( 1,0),∵反比例函数经过点D,∴k=3×2=6,∴反比例函数的表达式为,令y=3,解得:x=2,∴点N的坐标为( 2,3),∴MN==,∵点P在直线DM上,设点P的坐标为( m,m﹣1),∴CP=,解得:m=1或3,∴点P的坐标为( 1,0)或( 3,2).故答案为:( 1,0)或( 3,2).三、解答题(本题4个小题,每小题6分,共24分)18.参考答案:解:原式==0,故答案为:0.19.参考答案:解:原式==x+3,将x=﹣4代入得:原式=﹣4+3=﹣1.20.参考答案:解:如图,过C作CD⊥AB于D,∴∠ACD=α,∠BCD=β,∴tan∠ACD=tanα=,tan∠BCD=tanβ=,∴AD=CD•tanα,BD=CD•tanβ,由AD+BD=AB,得CD•tanα+CD•tanβ=AB=100,则CD=>30,∴高速公路不会受到地震影响.21.参考答案:解:( 1)摸出小球上的数字是无理数的概率=;( 2)画树状图如下:可知:共有9种等可能的结果,其中两个数字的乘积为有理数的有3种, ∴两次摸出的小球所标数字乘积是有理数的概率为=.四、(本题7分)22.参考答案:解:∵四边形ABCD为正方形,∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF,∴△COE≌△DOF( ASA),∴CE=DF.五、(本题7分)23.参考答案:解:( 1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,n=40×37.5%=15,故答案为:40,25,15;( 2)由条形统计图可得,众数是7h,×( 5×4+6×8+7×15+8×10+9×3)=7,s2=[( 5﹣7)2×4+( 6﹣7)2×8+( 7﹣7)2×15+( 8﹣7)2×10+( 9﹣7)2×3]=1.15, 故答案为:7h,1.15;( 3)1600×=1080(人),即该校初中学生每天睡眠时间不足8小时的有1080人.六、(本题8分)24.参考答案:解:( 1)连接OE.∵直线l与⊙O相切于E,∴OE⊥l,∵l∥BC,∴OE⊥BC,∴,∴∠BAE=∠CAE.∴AE平分∠BAC;( 2)如图,∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF,∵DE=3,DF=2,∴BE=EF=DE+DF=5,∵∠5=∠4,∠BED=∠AEB,∴△EBD∽△EAB,∴,即,∴AE=,∴AF=AE﹣EF=.七、(本题10分)25.参考答案:解:( 1)由题意得:y=500﹣10( x﹣50)=1000﹣10x,w=( x﹣40)( 1000﹣10x)=﹣10x2+1400x﹣40000;( 2)由题意得:﹣10x2+1400x﹣40000=8000,解得:x1=60,x2=80,当x=60时,成本=40×[500﹣10( 60﹣50)]=16000>10000不符合要求,舍去, 当x=80时,成本=40×[500﹣10( 80﹣50)]=8000<10000符合要求,∴销售价应定为每件80元;( 3)w=﹣10x2+1400x﹣40000,当x=70时,w取最大值9000,故销售价定为每件70元时会获得最大利润9000元.八、(本题13分)26.参考答案:解:( 1)∵抛物线经过A(﹣1,0),B( 4,0),可得:,解得:,∴抛物线的解析式为:,令x=0,则y=2,∴点C的坐标为( 0,2);( 2)连接OQ,∵点Q的横坐标为m,∴Q( m,),∴S=S△OCQ+S△OBQ﹣S△OBC=﹣=﹣m2+4m,令S=2,解得:m=或,( 3)如图,过点Q作QH⊥BC于H,∵AC=,BC=,AB=5, 满足AC2+BC2=AB2,∴∠ACB=90°,又∠QHP=90°,∠APC=∠QPH,∴△APC∽△QPH,∴,∵S△BCQ=BC•QH=QH,∴QH=,∴=, ∴当m=2时,存在最大值.。
2012年内蒙古呼和浩特市中考数学试题(一组)
2012年江西省南昌市中考数学试题 (1)2012年内蒙古呼和浩特市中考数学试题 (17)2012年贵州省贵阳市中考数学试题 (29)2012年甘肃省兰州市中考数学试题 (44)2012年青海省西宁市中考数学试题 (56)2012年云南省昆明市中考数学试题 (62)2012年内蒙古包头市中考数学试题 (73)2012年吉林省长春市中考数学试题 (85)2012年江西省南昌市中考数学试题一、选择题(共12小题)1.-1的绝对值是()A.1 B.0 C.-1 D.±12.在下列表述中,不能表示代数式“4a”的意义的是()A.4的a倍B.a的4倍C.4个a相加D.4个a相乘3.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°4.下列运算正确的是()A.a3+a3=2a6B.a6÷a-3=a3C.a3a3=2a3D.(-2a2)3=-8a65.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是()6.如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长7.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°8.已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.39.有甲、乙、丙和丁四位同班同学在近两次月考的班级名次如表:A.甲B.乙C.丙D.丁10.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.1 B.-1 C.D.-11.已知一次函数y=kx+b(k≠0)经过(2,-1)、(-3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()二、填空题(共4小题)13.一个正方体有个面.14.当x=-4时,的值是.15.如图是小明用条形统计图记录的某地一星期的降雨量.如果日降雨量在25mm及以上为大雨,那么这个星期下大雨的天数有天.16.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.三、解答题(共12小题)17.计算:sin30°+cos30°•tan60°.18.化简:.19.解不等式组:20.如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.21.有两双大小、质地相同、仅有颜色不同的拖鞋(分左右脚,可用A1、A2表示一双,用B1、B2表示另一双)放置在卧室地板上.若从这四只拖鞋中随即取出两只,利用列表法(树形图或列表格)表示所有可能出现的结果,并写出恰好配成形同颜色的一双拖鞋的概率.22.如图,已知两个菱形ABCD.CEFG,其中点A.C.F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.23.如图,等腰梯形ABCD放置在平面坐标系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C的坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?24.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普遍身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:(1)计算这组数据的三个统计量:平均数、中位数、众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普遍身高”是哪几位男生?并说明理由.26.如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB.CD 相交于点O,B.D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学记算器)27.如图,已知二次函数L1:y=x2-4x+3与x轴交于A.B两点(点A在点B左边),与y 轴交于点C.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2-4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.28.已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;②如图2,当折叠后的经过圆心为O时,求的长度;③如图3,当弦AB=2时,求圆心O到弦AB的距离;(2)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.2012年江西省南昌市中考数学试题2012年江西省南昌市中考数学试卷一、选择题(共12小题)1.A.2.D.3.B.4.D.5.C.6.D.7.A.8.C.9.D.10.B.11.C12.C.13.6.14.3.15.5.16.15°或165°.三、解答题(共12小题)17.解答:解:原式=+×=+=2.18.解答:解:原式=÷=×=-1.19.解答:解:在中解第一个不等式得:x<-1解第二个不等式得:x≤2则不等式组的解集是x<-1.20.解答:解:如图所示,只要是符合图形即可.21.解答:解:方法一:树形图如图:则所有可能的结果A1A2;A1B1;A1B2;A2A1;A2B1;A2B2;B1A1;B1A2;B1B2;B2A1;B2A2;B2B1;∵从这四只拖鞋中随机抽出两只,共有12种不同的情况;其中恰好配对的有4种,分别是A1A2;A2A1;B1B2;B2B1;∴P(恰好配对)==.22.解答:(1)解:△ADC≌△ABC,△GFC≌△EFC;(2)证明:∵四边形ABCD.CEFG是菱形,∴DC=BC,CG=CE,∠DCA=∠BCA,∠GCF=∠ECF,∵∠ACF=180°,∴∠DCG=∠BCE,在△DCG和△BCE中∵,∴△DCG≌△BCE,∴BE=DG.23.解答:解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∴△AOD≌△BEC,∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3);设反比例函数的解析式y=(k≠0),根据题意得:3=,解得k=12;∴反比例函数的解析式y=;(2)将等腰梯形ABCD向上平移2个单位后得到梯形A′B′C′D′得点B′(6,2),故当x=6时,y==2,即点B′恰好落在双曲线上.24.解答:解:解法一:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据题意得:.解得:.这天萝卜的单价是(1+50%)x=(1+50%)×2=3,这天排骨的单价是(1+20%)y=(1+20%)×15=18,答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤;解法二:这天萝卜的单价是x元/斤,排骨的单价是y元/斤,根据题意得:解得:.答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.25.解答:解:(1)平均数为:=166.6(cm);10名同学身高从小到大排列如下:159、161、163、164、164、166、169、171、173、174,中位数:=165(cm);众数:164(cm);(2)选平均数作为标准:身高x满足166.4×(1-2%)≤x≤166.4×(1+2%)即163.072≤x≤169.728时为普遍身高,此时⑦⑧⑨⑩男生的身高具有“普遍身高”.选中位数作为标准:身高x满足165×(1-2%)≤x≤165×(1+2%)即161.7≤x≤168.3时为普遍身高,此时①⑦⑧⑩男生的身高具有“普遍身高”.选众数作为标准:身高x满足164×(1-2%)≤x≤164×(1+2%)即160.72≤x≤167.28时为普遍身高,此时①⑤⑦⑧⑩男生的身高具有“普遍身高”.26.解答:(1)证明:证法一:∵AB.CD相交于点O,∴∠AOC=∠BOD…1分∵OA=OC,∴∠OAC=∠OCA=(180°-∠BOD),同理可证:∠OBD=∠ODB=(180°-∠BOD),∴∠OAC=∠OBD,…2分∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴…1分又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;…2分∴AC∥BD…3分;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;作OM⊥EF于点M,则EM=16cm;…4分∴cos∠OEF=0.471,…5分用科学记算器求得∠OEF=61.9°…6分;(3)解法一:小红的连衣裙会拖落到地面;… 7分在Rt△OEM中,=30cm…8分,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴…9分所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.解法二:小红的连衣裙会拖落到地面;…7分同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;…8分过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm…9分所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.27.解答:解:(1)抛物线y=x2-4x+3中,a=1、b=-4、c=3;∴-=-=2,==-1;∴二次函数L1的开口向上,对称轴是直线x=2,顶点坐标(2,-1).(2)①二次函数L2与L1有关图象的两条相同的性质:对称轴为x=2或定点的横坐标为2,都经过A(1,0),B(3,0)两点;②线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E、F两点,∴kx2-4kx+3k=8k,∵k≠0,∴x2-4x+3=8,解得:x1=-1,x2=5,∴EF=x2-x1=6,∴线段EF的长度不会发生变化.28.解答:解:(1)①折叠后的所在圆O′与⊙O是等圆,∴O′A=OA=2;②当经过圆O时,折叠后的所在圆O′在⊙O上,如图2所示,连接O′A.OA.O′B,OB,OO′∵△OO′A△OO′B为等边三角形,∴∠AO′B=∠AO′O+∠BO′O=60°+60°=120°∴==;③如图3所示,连接OA,OB,∵OA=OB=AB=2,∴△AOB为等边三角形,过点O作OE⊥AB于点E,∴OE=OA•sin60°=.(2)①如图4,当折叠后的与所在圆外切于点P时,过点O作EF⊥AB交AB于点H、交于点E,交CD于点G、交于点F,即点E、H、P、O、G、F在直径EF上,∵AB∥CD,∴EF垂直平分AB和CD,根据垂径定理及折叠,可知PH=PE,PG=PF,又∵EF=4,∴点O到AB.CD的距离之和d为:d=PH+PG=PE+PF=(PE+PF)=2,②如图5,当与不平行时,四边形是平行四边形.证明如下:设O′O″为和所在圆的圆心,∵点O′与点O关于AB对称,点O″于点O关于CD对称,∴点M为的OO′中点,点N为OO″的中点∵折叠后的与所在圆外切,∴连心线O′O″必过切点P,∵折叠后的与所在圆与⊙O是等圆,∴O′P=O″P=2,∴PM=OO″=ON,PM=ON,∴四边形OMPN是平行四边形.2012年内蒙古呼和浩特市中考数学试题(本试卷满分120分,考试时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的倒数是【】A.2 B.﹣2 C.12D.﹣122.如图,已知a∥b,∠1=65°,则∠2的度数为【】A .65°B .125°C .115°D .45°3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随机从口袋中摸出一个球为红色的概率是【 】A .35 B .25 C .15 D .134.下列各因式分解正确的是【 】A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 2﹣4x=x (x+2)(x ﹣2)5.已知:x 1,x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( )A .a=﹣3,b=1B .a=3,b=1C .,b=﹣1 D .,b=16.如图,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是【 】A .落在菱形内B .落在圆内C .落在正六边形内D .一样大7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x ﹣2y=2的解是【 】8.已知:在等腰梯形ABCD 中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是【 】A .25B .50C .D 9.已知:M ,N 两点关于y 轴对称,且点M 在双曲线1y=2x上,点N 在直线y=x+3上,设点M 的坐标为(a ,b ),则二次函数y=﹣abx 2+(a+b )x 【 】A .有最大值,最大值为92-B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为92-10.下列命题中,真命题的个数有【 】①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行 ②函数2y=xP (x ,y )一定在第二象限 ③正投影的投影线彼此平行且垂直于投影面④使得|x|﹣y=3和y+x 2=0同时成立的x A .3个B .1个C .4个D .2个二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程) 11.函数y=中,自变量x 的取值范围是 _________ .12.太阳的半径约为696 000千米,用科学记数法表示为 _________ 千米. 13.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF的平分线交于点E ,则∠AEC= ▲ .14.实数a ,b 在数轴上的位置如图所示,的化简结果为 ▲ .15.一组数据﹣1,0,2,3,x ,其中这组数据的极差是5,那么这组数据的平均数是 ▲ .16.如图是某几何体的三视图及相关数据(单位:cm ),则该几何体的侧面积为 ▲ cm .三、解答题(本大题包括9个小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明) 17.(1)计算:101+1sin 45--.(2)先化简,再求值:()1+x x+12+x ⎛⎫÷ ⎪⎝⎭,其中3x=2-.18.(1)解不等式:5(x ﹣2)+8<6(x ﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x ﹣ax=3的解,求a 的值. 19.如图,一次函数y=kx+b 与反比例函数()6y=x 0x>的图象交于A (m ,6),B (n ,3)两点.(1)求一次函数的解析式; (2)根据图象直接写出6kx 0x>-时x 的取值范围.20.如图,四边形ABCD 是正方形,点G 是BC 边上任意一点,DE⊥AG 于E ,BF∥DE,交AG 于F .(1)求证:AF ﹣BF=EF ;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.21.(如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.22.如图,线段AB,DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B外测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.23.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:()() 1520x+10y 12110x+150y ⎧=⎪⎨=⎪⎩..乙:x y1520+1080001000x y 12110+15080001000⎧⎛⎫⋅⋅= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅⋅= ⎪⎪⎝⎭⎩..根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示▲ ,y表示▲乙:x表示▲ ,y表示▲(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.24.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:∠PAC=∠B,且PA•BC=AB•CD;(2)若PA=10,sinP=35,求PE的长.25.如图,抛物线y=ax2+bx+c(a<0)与双曲线ky=x相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.2012年内蒙古呼和浩特市中考数学试题1.D。
内蒙古包头市2012年中考数学试题
2012年中考数学试题(内蒙古包头) (本试卷满分150分,考试时间120分钟)第I 卷(选择题 共36 分)一、选择题(本大题共12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 9 的算术平方根是【 】A .土3 B.3 C..一 【答案】B 。
2.联合国人口基金会的报告显示,世界人口总数在2011 年10 月31 日达到70 亿.将70 亿用科学记数法表示为【 】A .7×109B . 7×108C . 70×108D . 0.7×1010【答案】A 。
3.下列运算中,正确的是【 】A .32x x =x -B . 623x x =x ÷CD 【答案】D 。
4.在Rt △ ABC 中,∠C=900,若AB =2AC ,则sinA 的值是【 】1223【答案】C 。
5.下列调查中,调查方式选择正确的是【 】A .为了了解1000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量,选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 【答案】B 。
6.如图,过口ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的口AEMG 的面积S 1 与口HCFG 的面积S 2的大小关系是【 】A .S 1 > S 2 B.S 1 < S 2 C .S 1 = S 2 D.2S 1 = S 2 【答案】C 。
7.不等式组()5x 13x+113x 7x22>⎧-⎪⎨-≤-⎪⎩的解集是【 】 A .x > 2 B .x ≤4 C.x < 2 或x ≥4 D .2 < x ≤4 【答案】D 。
8.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是【 】 A .3200 B.400 C .1600 D.800 【答案】C 。
2012内蒙古包头中考数学
2012年高中招生考试试题卷数 学一、选择题:本大题共有12小题,每小题3分,共36分。
每小题只有一个正确选项。
1.9的算术平方根是( )A.士3B. 3C. -3D.3【答案】B2.联合国人口基金会的报告显示,世界入口总数在2011年10月31日达到70亿.将70亿用科学记数法表示为( ) A.7×109 B.7×l08 C.70×108 D.0.7×1010【答案】B3.下列运算中,正确的是( )A .x x x =-23&B .326x x x =÷ C .532=+ D .632=⨯【答案】D4.在Rt △ABC 中,∠C=90°,若AB=2AC ,则sinA 的值是( ) A .3 B .21C.23 D .33【答案】C5.下列调查中,调查方式选择正确韵是( )A 为了了解1000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量,选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 【答案】B6.如图,过□ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与 GH ,那么图中的□AEMG 的面积S 1与□HCFM 的面积S 2的大小关系是( ) A.s 1>S 2 B.S 1<S 2 C. S 1=S 2 D. 2S 1=S 2【答案】C7.不等式组⎪⎩⎪⎨⎧-≤-+>-x.237121),1(315x x x 的解集是( )A.x>2B. x≤4C.x <2或x≥4D.2<x≤4【答案】D8.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是( ) A. 320° B. 40° C. 160° D .80° 【答案】C9.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( )A .61 B.91 C.181 D.152【答案】B10.已知下列命题:①若a≤0,则|a |=-a ②若ma 2>na 2,则m>n; ③两组对角分别相等的四边形是平行四边形; ④垂直予弦的直径平分弦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年内蒙古呼伦贝尔市中考数学试卷一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.的绝对值是()2.下列各式计算正确的是()3.一个几何体的三视图如下图所示,这个几何体是()4.如图,四边形OABC是边长为2的正方形,反比例函数的图象过点B,则k的值为()5.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()6.如图,A、B、C三点在⊙O上,若∠BOC=76°,则∠BAC的度数是()7.下列说法正确的是()一个游戏中奖的概率是8.不等式组的解集在数轴上表示正确的是()....9.在数据中,随机选取一个数,选中无理数的概率为()10.一次函数y=﹣5x﹣3的图象不经过的象限是()11.如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,AB=,将△ABC绕顶点C顺时针旋转至△A′B′C′的位置,且A、C、B′三点在同一条直线上,则点A经过的路线的长度是()12.如图,△ABD中,EF∥BD交AB于点E、交AD于点F,AC交EF于点G、交BD于点C,S△AEG=S四边形EBCG,则的值为()二、填空题(共5小题,每小题3分,共15分)13.函数中自变量x的取值范围是_________ .14.一组数据1,a,4,4,9的平均数是4,则a= _________ .15.分解因式:27x2﹣18x+3= _________ .16.第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是_________ .17.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是_________ .三、解答题(共4小题,每小题6分,共24分)18.计算:.19.解方程:.20.在一个口袋中有4个完全相同的小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球的标号和是5的倍数.21.在图中求作一点P,使点P到∠AOB两边的距离相等,并且使OP等于MN,保留作图痕迹并写出作法.(要求:用尺规作图)四、(本题7分)22.某校为了了解九年级学生体育测试成绩情况,抽取九年级部分学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如图①,其中A等级人数为50人.请你结合图①中所给信息解答下列问题:(1)样本容量是_________ ; B级学生的人数为_________ 人;(2)根据已有信息在图②中绘制条形统计图;(3)若该校九年级学生共有1500人,请你求出这次测试中C级的学生约有多少人?五、(本题7分)23.如图,在△ABC中,点D是边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:DE=DF;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,并证明你的结论.六、(本题8分)24.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.七、(本题10分)25.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).八、(本题13分)26.如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=.△FED不动,△ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.(1)求出图①中点B的坐标;(2)如图②,当x=4秒时,点M坐标为(2,),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.(3)求出整个运动过程中s与x的函数关系式.2012年内蒙古呼伦贝尔市中考数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.的绝对值是()的绝对值是.2.下列各式计算正确的是()3.一个几何体的三视图如下图所示,这个几何体是()4.如图,四边形OABC是边长为2的正方形,反比例函数的图象过点B,则k的值为()y=5.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()6.如图,A、B、C三点在⊙O上,若∠BOC=76°,则∠BAC的度数是()所对的圆心角是∠BOC,圆周角是∠BAC,=38°.7.下列说法正确的是()一个游戏中奖的概率是、一个游戏中奖的概率是,做8.不等式组的解集在数轴上表示正确的是()....9.在数据中,随机选取一个数,选中无理数的概率为()个数据:,..10.一次函数y=﹣5x﹣3的图象不经过的象限是()11.如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,AB=,将△ABC绕顶点C顺时针旋转至△A′B′C′的位置,且A、C、B′三点在同一条直线上,则点A经过的路线的长度是(),=.12.如图,△ABD中,EF∥BD交AB于点E、交AD于点F,AC交EF于点G、交BD于点C,S△AEG=S 四边形EBCG,则的值为()=;然后根据平行线截==.S======二、填空题(共5小题,每小题3分,共15分)13.函数中自变量x的取值范围是x≤5.14.一组数据1,a,4,4,9的平均数是4,则a= 2 .15.分解因式:27x2﹣18x+3= 3(3x﹣1)2.16.第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是(﹣5,2).17.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8 .三、解答题(共4小题,每小题6分,共24分)18.计算:.﹣4×﹣19.解方程:.x=代入(不是原分式方程的解.20.在一个口袋中有4个完全相同的小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球的标号和是5的倍数.∴两次取出的小球标号相同的概率为:=的倍数的概率为:.21.在图中求作一点P,使点P到∠AOB两边的距离相等,并且使OP等于MN,保留作图痕迹并写出作法.(要求:用尺规作图)四、(本题7分)22.某校为了了解九年级学生体育测试成绩情况,抽取九年级部分学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如图①,其中A等级人数为50人.请你结合图①中所给信息解答下列问题:(1)样本容量是200 ; B级学生的人数为70 人;(2)根据已有信息在图②中绘制条形统计图;(3)若该校九年级学生共有1500人,请你求出这次测试中C级的学生约有多少人?五、(本题7分)23.如图,在△ABC中,点D是边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:DE=DF;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,并证明你的结论.六、(本题8分)24.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.,∴AC=BC=AB=×6=3OC=)∵OC==π=OC•CB﹣π﹣七、(本题10分)25.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).>八、(本题13分)26.如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=.△FED不动,△ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.(1)求出图①中点B的坐标;(2)如图②,当x=4秒时,点M坐标为(2,),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.(3)求出整个运动过程中s与x的函数关系式.边上的高为BEAC= AC=3),x.x=;x x+;OG=CH=BO=(﹣=×(+x)×x﹣×x×x=)×(×=﹣;s=。