初三数学期末试题答案
最新初三第一学期数学期末试卷(含答案解析)
初三第一学期数学期末试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)在下列函数中,y是x的反比例函数的是()A.y=3x B.y=C.y=D.y=【分析】根据反比例函数的定义回答即可.【解答】解:A、该函数是正比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、该函数是符合反比例函数的定义,故本选项正确;D、y是(x﹣1)反比例函数,故本选项错误;故选:C.【点评】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).2.(3分)下列几何体的左视图和俯视图相同的是()A.B.C.D.【分析】分别画出各种几何体的左视图和俯视图,进而进行判断即可.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.【点评】本题考查简单几何体的三视图,掌握三视图的画法是得出正确结论的前提.3.(3分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(1,﹣3)D.(1,3)【分析】根据二次函数的顶点式解析式写出即可.【解答】解:∵二次函数y=2(x﹣1)2+3,∴顶点坐标是(1,3).故选:D.【点评】本题主要考查了二次函数的性质,二次函数图象的顶点式解析式,如果y=a(x﹣h)2+k,那么函数图象的顶点坐标为(h,k),需要熟记并灵活运用.4.(3分)小明制作了5张卡片,上面分别写了一个条件:①AB=BC;②AB⊥BC;③AD=BC;④AC⊥BD;⑤AC=BD.从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为()A.B.C.D.【分析】根据菱形的判定方法确定能得到菱形的方法,然后利用概率公式求解即可.【解答】解:能判断▱ABCD是菱形的有:①AB=BC、④AC⊥BD,所以从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为,故选:B.【点评】考查了菱形的判定方法及概率公式,能够了解菱形的判定方法是解答本题的关键,难度不大.5.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)已知抛物线y=(x﹣1)2+2上有三点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y2>y1>y3【分析】分别把(﹣2,y1),(﹣1,y2),(2,y3)代入解析式求解.【解答】解:把(﹣2,y1),(﹣1,y2),(2,y3)代入y=(x﹣1)2+2得y1=6.5,y2=4,y3=2.5,∴y1>y2>y3,故选:A.【点评】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数与方程的关系.7.(3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【分析】连接AD,先根据圆周角定理得出∠A及∠ADB的度数,再由直角三角形的性质即可得出结论.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣2,0),对称轴为直线x=1,下列结论:①abc<0;②2a﹣b=0;③b2﹣4ac>0;④无论m为何值时,总有am2+bm≤a+b;⑤9a+c>3b,其中正确的结论序号为()A.①②③B.①③④C.①③④⑤D.②③④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可得c>0,∵x=﹣=1,∴ab<0,∴abc<0,故①正确;②∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②错误;③∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,故③正确;④当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴am2+bm≤a+b,即无论m为何值时,总有am2+bm≤a+b.故④正确;⑤∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,故⑤错误;故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x 轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)如图,AB是⊙O的直径,线段BC与⊙O的交点D是BC的中点,DE⊥AC于点E,连接AD,①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线,则上述结论中正确的个数是()A.1B.2C.3D.4【分析】根据圆周角定理和切线的判定,采用排除法,逐条分析判断.【解答】解:∵AB是直径,∴∠ADB=90°,∴AD⊥BC,故①正确;连接DO,∵点D是BC的中点,∴CD=BD,又∵∠ADC=∠ADB=90°,AD=AD,∴△ACD≌△ABD(SAS),∴AC=AB,∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是圆O的切线,故④正确;∵AB为圆O的直径,∴∠ADB=90°,∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,∴∠EDA=∠ODB,∵∠ODB=∠B,∴∠EDA=∠B,选项②正确;由D为BC中点,且AD⊥BC,∴AD垂直平分BC,∴AC=AB,又OA=AB,∴OA=AC,选项③正确;故选:D.【点评】此题考查了切线的判定,证明切线时连接OD是解这类题经常连接的辅助线.10.(3分)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A →D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.【分析】根据题意结合图形,分情况讨论:①0≤x≤2时,根据S△APQ=AQ•AP,列出函数关系式,从而得到函数图象;②2≤x≤4时,根据S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【解答】解:①当0≤x≤2时,∵正方形的边长为2cm,∴y=S△APQ=AQ•AP=x2;②当2<x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选:A.【点评】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.二、填空题(每小题3分,共15分)11.(3分)在函数y=中,自变量x的取值范围是x≠2.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.12.(3分)请写出一个函数表达式,使其图象在第一、三象限且关于原点对称:y=.【分析】根据正比例函数和反比例函数的性质可得,所有k>0的正比例函数y=kx和反比例函数y=的图象都符合题意.【解答】解:由题意得,所有k>0的正比例函数y=kx和反比例函数y=的图象都在第一、三象限且关于原点对称,故答案为:y=(答案不唯一).【点评】此题考查了正比例函数和反比例函数图象性质的应用能力,关键是能准确理解以上知识.13.(3分)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.【分析】如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.【解答】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.(3分)如图,以BC为直径作⊙O,A,D为圆周上的点,AD∥BC,AB=CD=AD=2.若点P为BC 垂直平分线MN上的一动点,则阴影部分周长的最小值为2+2.【分析】根据对称的性质可知阴影部分的周长的最小值为AC+CD,求出AC的长即可.【解答】解:连接AC,根据对称的意义可知,PD+PC的最小值为AC,∵AD∥BC,AB=CD=AD=2,∴==,∴∠ABC=2∠ACB,∵BC为直径,∴∠BAC=90°,∴∠ACB=30°,∠ABC=60°,∴AC=•AB=2,所以阴影部分周长的最小值为AC+CD=2+2,故答案为:2+2.【点评】本题考查轴对称的性质,圆周角定理,理解轴对称的性质是解决问题的关键.15.(3分)在矩形ABCD中,AB=2,BC=4,点E在边BC上,连接DE,将△CDE沿DE折叠,若点C的对称点C'到AD的距离为1,则CE的长为或2.【分析】当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,则C'G=1,由直角三角形的性质可得出答案.【解答】解:如图1,当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,∵将△CDE沿DE折叠,∴AB=DC=C'D=2,∠CDE=∠C'DE,∵C'M=1,∴,∴∠C'DM=30°,∴∠C'DC=60°,∴∠CDE=∠C'DC=30°,∴CE=CD×tan30°=2×=;如图2,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,C'E与AD交于点H,则C'G=1,同理CD=C'D=2,∴∠C'DG=30°,∴∠C'HD=60°,∵矩形ABCD中,AD∥BC,∴∠C'HD=∠HEC=60°,∴∠DEC=∠HEC=30°,∴CE=2.综上可得,CE的长为或2.故答案为:或2.【点评】本题考查了矩形的判定与性质、折叠的性质、三角函数、勾股定理、直角三角形的性质、角平分线的性质等知识,熟练掌握折叠的性质是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)计算:(1)2﹣2﹣2cos30°+tan60°+(π﹣3.14)0;(2)2cos245°+tan60°•tan30°﹣cos60°.【分析】(1)分别进行负整数指数幂、特殊角的三角函数值、零指数幂等运算,然后合并;(2)将特殊角的三角函数值代入求解.【解答】解:(1)原式=﹣2×++1==;(2)原式=2×()2+﹣=2×+1﹣=1+1﹣=.【点评】本题考查了实数的运算及特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.17.(9分)随着中央电视台《朗读者》节目的播出,“朗读”被越来越多的同学所喜爱,某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18aB2040%C m16%D48%合计b100%请你根据以上信息,解答下列问题:(1)a=36%,b=50;(2)请求出m的值并将条形统计图补充完整;(3)“朗读”活动中,七年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.【分析】(1)“一定参与”的有20人,占调查人数的40%,可求出调查人数b,进而求出“A积极参与”所占的百分比;(2)求出“C组可以参与”的人数,将条形统计图补充完整即可;(3)画树状图,共有12种等可能的结果,其中所选两人都是女生的结果有2种,再由概率公式求解即可.【解答】解:(1)b=20÷40%=50(人),则a=18÷50=36%,故答案为:36%,50;(2)m=50×16%=8,补全条形统计图如图所示;(3)画树状图如下:共有12种等可能的结果,其中所选两人都是女生的结果有2种,∴所选两人都是女生的概率为=.【点评】此题考查的是用树状图法求概率以及条形统计图和统计表.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.18.(9分)2021年“五一”期间,修复后的安阳老城东南城墙及魁星阁与市民见面,这一始建于北魏天兴元年(公元398年)的建筑,在1600多年后,以崭新的面貌向世人展示历史印记,古代安阳“魁星取水”景观即将重现.某数学学习小组利用卷尺和自制的测角仪测量魁星阁顶端距离地面的高度,如图所示,他们在地面一条水平步道FB上架设测角仪,先在点F处测得魁星阁顶端A的仰角是26°,朝魁星阁方向走20米到达G 处,在G处测得魁星阁顶端A的仰角是45°.若测角仪CF和DG的高度均为1.5米,求魁星阁顶端距离地面的高度(图中AB的值).(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,≈1.41,结果精确到0.1米)【分析】解直角三角形求出AG即可解决问题.【解答】解:由题意知,∠ADE=45°,∠ACE=26°,FG=CD=20米,CF=DG=1.5米,设AE=x米,在Rt△ADE中,∵AE=x米,∠ADE=45°,∴ED=AE=x米,∴CE=CD+ED=(20+x)米,在Rt△ACE中,∵tan26°==,∴tan26°(20+x)=x,即0.49×(20+x)≈x,解得x≈19.22(米),∴AB=AE+BE≈19.22+1.5=20.7(米).答:铁塔的高度AB约为20.7米.【点评】本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.(9分)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD 的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.【分析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴=,∴CD•BE=AD•DE.【点评】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.20.(9分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,4),点B的坐标为(n,2).(1)求反比例函数和一次函数的解析式;(2)点E为x轴上一个动点,若S△AEB=5,试求点E的坐标.【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,然后根据待定系数法求得直线AB的解析式;(2)设点E的坐标为(a,0),则点C(6,0),得出CE=|a﹣6|,根据S△AEB=S△AEC﹣S△BEC=5,求出a的值,从而得出点E的坐标.【解答】解:(1)把点A(2,4)代入y=得4=,解得m=8,∴反比例函数的表达式为y=,点B(n,2)代入y=得2=,解得n=4,∴点B的坐标为(4,2),∵直线y=kx+b过点A(2,4),B(4,2),∴,解得,∴一次函数的表达式为y=﹣x+6;(2)设点E的坐标为(a,0),在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=6,∴点C(6,0),∴CE=|a﹣6|,∵S△AEB=S△AEC﹣S△BEC=5,∴×|a﹣6|×(4﹣2)=5,∴|a﹣6|=5,解得a1=11,a2=1,∴点E的坐标为(11,0)或(1,0).【点评】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解此题的关键:(1)熟练掌握待定系数法;(2)得到关于a的方程.21.(10分)在平面直角坐标系xOy中,点A的坐标为(0,5),点B的坐标为(5,5),抛物线y=x2﹣4x+a ﹣1的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标.(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)将(5,5)代入解析式求出a,然后将抛物线解析式化为顶点式求解.(2)分别求出顶点落在AB上,抛物线经过点A,B时a的值,结合图象求解.【解答】解:(1)将(5,5)代入y=x2﹣4x+a﹣1得5=25﹣20+a﹣1,解得a=1,∴y=x2﹣4x+a﹣1=x2﹣4x=(x﹣2)2﹣4,∴点C坐标为(2,﹣4).(2)∵y=x2﹣4x+a﹣1=(x﹣2)2+a﹣5,∴抛物线开口向上,顶点坐标为(2,a﹣5),当抛物线顶点落在线段AB上时,a﹣5=5,解得a=10,当抛物线经过点A(0,5)时,5=a﹣1,解得a=4,当抛物线经过点B(5,5)时,a=1,∴1≤a<5或a=10满足题意.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系.22.(10分)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数y1=﹣(|x﹣2|﹣1)2+3的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.故答案为函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<a<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移2个单位,向上平移3个单位可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象,当2<y1≤3时,自变量x的取值范围是0<x<4且x≠2.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.23.(11分)已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:AM=BN;(2)将△MON绕点O顺时针旋转.①如图2,当点M恰好在AB边上时,求证:AM2+BM2=2OM2;②当点A,M,N在同一条直线上时,若OA=4,OM=3,请直接写出线段AM的长.【分析】(1)通过代换得对应角相等,再根据等腰直角三角形的性质得对应边相等,利用“SAS”证明△AOM≌△BON,即可得到AM=BN;(2)①连接BN,根据等腰直角三角形的性质,利用“SAS”证明△AOM≌△BON,得对应角相等,对应边相等,从而可证∠MBN=90°,再根据勾股定理,结合线段相等进行代换,即可证明结论成立;②分点N在线段AM上和点M在线段AN上两种情况讨论,连接BN,设BN=x,根据勾股定理列出方程,求出x的值,即可得到BN的长,BN的长就是AM的长.【解答】(1)证明:∵∠AOB=∠MON=90°,∴∠AOB+∠AON=∠MON+∠AON,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴AM=BN;(2)①证明:连接BN,∵∠AOB=∠MON=90°,∴∠AOB﹣∠BOM=∠MON﹣∠BOM,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴∠MAO=∠NBO=45°,AM=BN,∴∠MBN=90°,∴MB2+BN2=MN2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴AM2+BM2=2OM2;②解:如图3,当点N在线段AM上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x﹣6)2+x2=82,解得:x=3+(负根已经舍去),∴AM=BN=3+,如图4,当点M在线段AN上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x+6)2+x2=(8)2,解得:x=﹣3(负根已经舍去),∴AM=BN=﹣3,综上所述,线段AM的长为+3或﹣3.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定与性质,图形的旋转,勾股定理等知识点,抓住图形旋转中不变的量,巧妙构造直角三角形是解决问题的关键.。
2022-2023学年北京东城区初三第一学期数学期末试卷及答案
2022-2023学年北京东城区初三第一学期数学期末试卷及答案一、选择题(每题2分,共16分)1. 若关于的一元二次方程有一个根为,则的值为( ) x 220x x m -+=0m A. 2 B. 1C. 0D.1-【答案】C 【解析】【分析】将代入方程,即可求解.0x =220x x m -+=【详解】解:∵关于的一元二次方程有一个根为, x 220x x m -+=0∴, 0m =故选:C .【点睛】本题考查了一元二次方程的解的定义,将代入方程是解题的关键. 0x =2. 下列图形中是中心对称图形的是( ) A. 正方形 B. 等边三角形C. 直角三角形D. 正五边形 【答案】A 【解析】【分析】根据中心对称图形的概念求解即可. 【详解】解:A 、是中心对称图形,本选项正确; B 、不是中心对称图形,本选项错误; C 、不是中心对称图形,本选项错误; D 、不是中心对称图形,本选项错误. 故选A .【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,绕对称中心旋转180度后与原图形重合.3. 关于二次函数的最大值或最小值,下列说法正确的是( ) 22(4)6y x =-+A. 有最大值4 B. 有最小值4C. 有最大值6D. 有最小值6 【答案】D 【解析】【分析】根据二次函数的解析式,得到a 的值为2,图象开口向上,函数22(4)6y x =-+有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数中,a=2>0,顶点坐标为(4,6), 22(4)6y x =-+∴函数有最小值为6. 故选:D .【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a 的符号和根据顶点坐标求出最值.4. 一只不透明的袋子中装有3个黑球和2个白球,这些除颜色外无其他差别,从中任意摸出3个球,下列事件是确定事件的为( ) A. 至少有1个球是黑球 B. 至少有1个球是白球 C. 至少有2个球是黑球 D. 至少有2个球是白球【答案】A 【解析】【分析】列出摸出的三个球的颜色的所有可能情况即可.【详解】根据题意可得,摸出的三个球的颜色可能为:两个白球,一个黑球;一个白球,两个黑球;三个黑球,则可知摸出的三个球中,至少有一个黑球, 故必然事件是至少有一个黑球, 故选:A .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A. 180(1﹣x)2=461B. 180(1+x )2=461C. 368(1﹣x)2=442D. 368(1+x )2=442【答案】B 【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x ,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程. 【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461, 故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.6. 如图,在中,是直径,弦的长为5,点D 在圆上,且, 则O AB AC 30ADC ∠=︒O 的半径为( )A. B. 5C. D.2.57.510【答案】B 【解析】【分析】连接,由题意易得,在中解三角形求解. BC 30ABC ADC ∠=∠=︒Rt ACB 【详解】连接,BC30ABC ADC ∴∠=∠=︒在中,是直径, O AB ,90ACB ∴∠=︒在中,Rt ACB ,,90ACB ∠=︒30ABC ∠=︒5AC =210AB AC ==5OA =故选:B .【点睛】本题主要考查圆周角定理及含直角三角形的性质;熟练掌握圆周角定理及含30︒直角三角形的性质是解题的关键.30︒7. 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC ,BD 分别与⊙O 切于点C ,D ,延长AC ,BD 交于点P .若,⊙O 的半径为6cm ,则图中的120P ∠=︒ CD长为( )A. π cmB. 2π cmC. 3π cmD. 4π cm【答案】B 【解析】【分析】连接OC 、OD ,利用切线的性质得到,根据四边形的内角和90OCP ODP ∠=∠=︒求得,再利用弧长公式求得答案. 60COD ∠=︒【详解】连接OC 、OD ,分别与相切于点C ,D ,,AC BD Q O ∴,90OCP ODP ∠=∠=︒,120360P OCP ODP P COD ∠=︒∠+∠+∠+∠=︒, ∴,60COD ∠=︒的长, CD∴6062(cm)180ππ⨯==故选:B【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.8. 如图,正方形和的周长之和为,设圆的半径为,正方形的边长为ABCD O 20cm cm x ,阴影部分的面积为.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,cm y 2cm S 则y 与x ,S 与x 满足的函数关系分别是( )A. 一次函数关系,一次函数关系B. 一次函数关系,二次函数关系 C .二次函数关系,二次函数关系D. 二次函数关系,一次函数关系【答案】B 【解析】【分析】根据圆的周长公式和正方形的周长公式先得到,再根据152y x π=-+得到,由此即可得到答案.S S S =-阴影正方形圆2215254S x x πππ⎛⎫=--+ ⎪⎝⎭【详解】解:∵正方形和的周长之和为,圆的半径为,正方形的边ABCD O 20cm cm x 长为, cm y ∴, 4220y x π+=∴, 152y x π=-+∵,S S S =-阴影正方形圆∴,22222211552524S y x x x x x ππππππ⎛⎫⎛⎫=-=-+-=--+ ⎪ ⎪⎝⎭⎝⎭∴y 与x ,S 与x 满足的函数关系分别是一次函数关系,二次函数关系, 故选B .【点睛】本题考查二次函数与一次函数的识别、正方形的周长与面积公式,理清题中的数量关系,熟练掌握二次函数与一次函数的解析式是解答的关键. 二、填空题 (每题2分,共16分)9. 在平面直角坐标系中,抛物线与y 轴交于点C ,则点C 的坐标为xOy 245y x x =-+_________. 【答案】 (0,5)【解析】【分析】令,代入抛物线,得到点C 的纵坐标,即可得解. 0x =245y x x =-+【详解】解:依题意,令,得到,0x =5y =故抛物线与y 轴交于点C 的坐标为, 245y x x =-+(0,5)故答案为 :(0,5)【点睛】本题考查了二次函数与y 轴交点问题,令,即可得到抛物线与y 轴交点的纵0x =坐标. 10. 把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线2112y x =+的解析式为_______. 【答案】 21(1)22y x =+-【解析】【分析】直接根据“上加下减,左加右减”进行计算即可. 【详解】解:抛物线, 2112y x =+向左平移1个单位长度,再向下平移3个单位长度, 得到 ()211132y x =++-即 ()21122y x =+-故答案为:. ()21122y x =+-【点睛】本题主要考查函数图像的平移;熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.11. 请写出一个常数c 的值,使得关于x 的方程有两个不相等的实数根,则220x x c ++=c 的值可以是____________.【答案】0,(答案不唯一,即可). 1c <【解析】【分析】利用一元二次方程根的判别式求出c 的取值范围即可得到答案. 【详解】解:因为方程有两个不相等的实数根, 220x x c ++=所以 2Δ240c =->解得1c <故答案为:0,(答案不唯一,即可)1c <【点睛】本题主要考查了一元二次方程根的判别式;熟知一元二次方程根的判别式是解题的关键.12. 2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100 1000 5000 8000 10000 15000 20000 幼树移植成活数(棵)87 893 4485 7224 8983 13443 18044 幼树移植成活的频率0.870 0.893 0.897 0.903 0.898 0.896 0.902 估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)【答案】0.9【解析】【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】∵幼树移植数20000时,幼树移植成活的频率是0.902,∴估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,故答案为:0.9.【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.13. 以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.【答案】(2,﹣1)【解析】【分析】根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【详解】解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点睛】此题考查中心对称图形的顶点在坐标系中的表示.14. 如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D ,连接CD .若∠B=50°,则∠OCD 的度数等于___________.【答案】20°##20度 【解析】【分析】连接OA ,如图,根据切线的性质得到∠OAB=90°,则利用互余可计算出∠AOB=40°,再利用圆周角定理得到∠ADC=20°,然后根据平行线的性质得到∠OCD 的度数.【详解】解:连接OA ,如图,∵AB 切⊙O 于点A , ∴OA⊥AB, ∴∠OAB=90°, ∵∠B=50°,∴∠AOB=90°-50°=40°, ∴∠ADC=∠AOB=20°, 12∵AD∥OB,∴∠OCD=∠ADC=20°. 故答案为:20°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.15. 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×失+失²).弧田(图中阴影部分)由圆弧和其所对的弦所12=围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径等于4米的弧田,按照上述公式计算出弧田的面积约为______ 米120︒.)21.73≈【答案】 8.92【解析】【分析】由题意可知于D ,交圆弧于C ,由题意得米,解得OC AB ⊥4AO =120AOB ∠=︒米,再求出,最后由勾股定理得到,由垂径定理求出即可得122OD OA ==CD AD AB 出结果.【详解】解:如图,由题意可知,,,(米),120AOB ∠=︒AB CD ⊥4OA OB ==, 30,90DAO ADO ∴∠=︒∠=︒12AD BD AB ==(米)122OD OA ∴==(米)422CD OC OD ∴=-=-=AD ∴===(米)2AB AD ∴==弧田面积 ∴()212AB CD CD =⨯+()21222=⨯+2=+(平方米)8.92≈故答案为:8.92【点睛】本题考查了勾股定理以及垂径定理的应用;熟练掌握垂径定理是解答本题的关键.16. 我们给出如下定义:在平面内,点到图形的距离是指这个点到图形上所有点的距离的最小值.在平面内有一个矩形,中心为O ,在矩形外有一点P ,,,4,2ABCD AB AD ==3OP =当矩形绕着点O 旋转时,则点P 到矩形的距离d 的取值范围为__________.【答案】 32d ≤≤【解析】【分析】根据题意分别求出当过的中点E 时,此时点P 与矩形上所有点的OP AB ABCD 连线中,;当过顶点A 时,此时点P 与矩形上所有点的连线中,;d PE =OP ABCD d PA =当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,,即OP AD ABCD d PF =可求解.【详解】解:如图,当过的中点E 时,此时点P 与矩形上所有点的连线中,OP AB ABCD ,, d PE =112OE AD ==∴;2d PE OP OE ==-=如图,当过顶点A 时,此时点P 与矩形上所有点的连线中,,OP ABCD d PA =矩形,中心为O ,,4,2ABCD AB AD ==∴,2,90BC AD B ==∠=︒∴, AC ==∴ 12OA AC ==∴;3d AP OP OA ==-=-如图,当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,OP AD ABCD ,, d PF =122OF AB ==∴;1d PF OP OF ==-=综上所述,点P 到矩形的距离d 的取值范围为.32d ≤≤故答案为:32d ≤≤【点睛】本题考查矩形的性质,旋转的性质,根据题意得出临界点时点d 的值是解题的关键.三、解答题(共68分,17-22题,每题5分,23-26题,每题6分,27-28题,每题7分)17. 下面是小美设计的“过圆上一点作圆的切线”的尺规作图过程.已知:点A 在上.O 求作:的切线.O AB作法: ①作射线;OA ②以点A 为圆心,适当长为半径作弧,交射线于点C 和点D ;OA ③分别以点C ,D 为圆心,大于长为半径作弧,两弧交点B ; 12CD ④作直线.AB 则直线即为所求作的的切线.AB O 根据小美设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接,.BC BD 由作图可知,, .AC AD =BC =∴ .BA OA ∵ 点A 在上,O ∴直线是的切线( ) (填写推理依据) .AB O 【答案】(1)见解析;(2);;经过半径的外端并且垂直于这条半径的直线是圆的切线.BD ⊥【解析】【分析】(1)依据题意,按步骤正确尺规作图即可;(2)结合作图,完成证明过程即可.【小问1详解】补全图形如图所示,【小问2详解】证明:连接,.BC BD由作图可知,,.AC AD =BC BD =∴,BA OA ⊥∵ 点A 在上,O ∴直线是的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线,AB O 故答案为:;;经过半径的外端并且垂直于这条半径的直线是圆的切线BD ⊥【点睛】本题考查了尺规作图能力和切线的证明;能够按要求规范作图是解题的关键.18. 如图,是的直径,弦于点E ,,若,求的AB O CD AB ⊥2CD OE =4AB =CD 长.【答案】.CD =【解析】【分析】由垂径定理得到,推出,在中,利用勾股定理即CE DE =CE OE =Rt COE △可求解.【详解】解:如图,连接. OC∵是的直径,弦于点E ,AB O CD AB ⊥∴.CE DE =又∵,2CD OE =∴.CE OE =∵,4AB =∴.2OC =在中,,Rt COE △222CE OE OC +=∴CE =∴.CD =【点睛】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键.19. 下面是小聪同学用配方法解方程:的过程,请仔细阅读后,2240x x p --=()0p >解答下面的问题.2240x x p --=解:移项,得:.①224x x p -=二次项系数化为1,得:.② 222p x x -=配方,得.③ 2212p x x -+=即. 2(1)2p x -=∵,0p >∴ 1x -=∴ 11x =+11x =(1)第②步二次项系数化为1的依据是什么?(2)整个解答过程是否正确?若不正确,说出从第几步开始出现的错误,并直接写出此方程的解.【答案】(1)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等(2)不正确,解答从第③步开始出错, 1x =2x =【解析】【分析】(1)根据等式的性质2即可写出依据;(2)根据配方法解一元二次方程的步骤即可求解. 【小问1详解】等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;【小问2详解】不正确,解答从第③步开始出错,正确的步骤为:配方,得.③ 22112p x x -+=+即 22(1)2p x +-=∵,0p >∴.④ 1x -=∴.⑤ 1x =2x =此方程的解为. 1x =2x =【点睛】本题考查等式的性质和解一元二次方程,解题的关键是读懂材料,明确每一步的做题依据.20. 如图,已知抛物线L :y =x 2+bx+c 经过点A(0,﹣5),B(5,0).(1)求b ,c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .求点M 的坐标;【答案】(1),;(2)交点M 的坐标为(2,-3).4b =-5c =-【解析】【分析】(1)将点A 、点B 坐标代入函数解析式,求解方程组即可;(2)设直线AB 的解析式为:,将点A 、点B 坐标代入函数解析式求解确()0y kx b k =+≠定解析式,然后根据(1)中确定二次函数解析式,求出其对称轴,求两条之间交点即可确定点M 的坐标.【详解】解:(1)将点A 、点B 坐标代入函数解析式可得:, 50255c b c -=⎧⎨=++⎩解得:, 45b c =-⎧⎨=-⎩∴,;4b =-5c =-(2)设直线AB 的解析式为:,()0y kx b k =+≠将点A 、点B 坐标代入函数解析式可得:, 505b k b-=⎧⎨=+⎩解得:, 15k b =⎧⎨=-⎩∴一次函数解析式为:,5y x =-由(1)得二次函数解析式为:,245y x x =--对称轴为:, 22b x a=-=直线与的交点为M ,5y x =-2x =∴当时,,2x ==3y -∴交点M 的坐标为(2,-3).【点睛】题目主要考查利用待定系数法确定二次函数与一次函数解析式,两条直线的交点问题,二次函数的基本性质,理解题意,熟练运用待定系数法确定解析式是解题关键.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点,,均为格点(每A B O 个小正方形的顶点叫做格点).(1)作点关于点的对称点;A O 1A (2)连接,将线段绕点顺时针旋转得到线段,点的对应点为,1AB 1A B 1A 90︒11A B B 1B 画出旋转后的线段;11A B (3)连接,,求出的面积(直接写出结果即可).1AB 1BB 1ABB 【答案】(1)见解析 (2)见解析(3)8【解析】【分析】(1)根据网格的特点作出点关于点的对称点;A O 1A(2)根据题意,画出旋转后的线段,即可求解;11A B (3)根据网格的特点,以及三角形面积公式求得面积即可求解.【小问1详解】解:如图所示,点即为所求;1A 【小问2详解】解:如图所示,线段即为所求;11A B 【小问3详解】解:如图所示,. 118282ABB S =⨯⨯= 【点睛】本题考查了画中心对称图形,画旋转图形,网格中求三角形面积,数形结合是解题的关键.22. 2022年3月23日,“天宫课堂”第二课在中国空间站开讲,神舟十三号飞行乘组航天员翟志刚、王亚平、叶光富讲了又一堂精彩的太空科普课.这场充满奇思妙想的太空授课,让科学的种子在亿万青少年的心里生根发芽.小明和小亮对航天知识产生了极大兴趣,他们在中国载人航天网站了解到,航天知识分为“梦圆天路”、“飞天英雄”、“探秘太空”、“巡天飞船”等模块.他们决定先从“梦圆天路”、“飞天英雄”、“探秘太空”三个模块中随机选择一个进行学习,分别设这三个模块为A ,B ,C ,用画树状图或列表的方法求出小明和小亮选择相同模块的概率. 【答案】 13【解析】【分析】先画出树状图,从而可得所有等可能的结果,再找出小明和小亮选择相同模块的结果,然后利用概率公式计算即可得. 【详解】解:由题意,画树状图如下:由图可知,所有等可能的结果共有9种,其中,小明和小亮选择相同模块的结果有3种. 则小明和小亮选择相同模块的概率为, 3193P ==答:小明和小亮选择相同模块的概率为. 13【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.23. 已知关于x 的一元二次方程. ()22120x m x m +++-=(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m 的值,并求出此时方程的解.【答案】(1)见解析 (2),m =122,1x x =-=【解析】【分析】(1)判断判别式的符号,即可得证;(2)求出判别式的值最小时的m 的值,再解一元二次方程即可.【小问1详解】证明:∵,22(21)4(2)49m m m ∆=+-⨯-=+∵,20m ≥∴.2Δ490m =+>∴无论m 取何值,方程总有两个不相等的实数根.【小问2详解】解:由题意可知,当时,的值最小.0m =249m ∆=+将代入,得0m =2(21)20x m x m +++-=220x x +-=解得:.122,1x x =-=【点睛】本题考查一元二次方程的判别式与根的个数的关系,以及解一元二次方程.熟练掌握判别式与根的个数的关系,以及解一元二次方程的方法,是解题的关键.24. 掷实心球是中考体育考试项目之一,实心球投掷后的运动轨迹可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从投掷到着陆的过程中,实心球的竖直高度(单位:y m)与水平距离(单位:m)近似满足函数关系.某位同学进行了两x 2()y a x h k =-+(0)a <次投掷.(1)第一次投掷时,实心球的水平距离与竖直高度的几组数据如下:x y 水平距离x/m 0 2 4 6 8 10竖直距离y/m 1.67 2.632.95 2.63 1.670.07根据上述数据,直接写出实心球竖直高度的最大值,并求出满足的函数关系;2()y a x h k =-+(0)a <(2)第二次投掷时,实心球的竖直高度y 与水平距离近似满足函数关系x .记实心球第一次着地点到原点的距离为,第二次着地点到原点20.09( 3.8) 2.97y x =--+1d 的距离为,则_____ (填“>”“=”或“<”).2d 1d 2d 【答案】(1),2.9520.08(4) 2.95y x =--+(2)>【解析】【分析】(1)先根据表格中的数据找到顶点坐标,即可得出实心球竖直高度的最大值,并利用待定系数法得到抛物线解析式;(2)设着陆点的纵坐标为0,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标即为 和,然后进行比较即可.1d 2d 【小问1详解】解:由表格数据可知,抛物线的顶点坐标为, (42.95),所以实心球竖直高度的最大值为,2.95设抛物线的解析式为:,2(4) 2.95y a x =-+将点代入,得, (01.67),1.67162.95a =+解得,0.08a =-∴抛物线的解析式为:;20.08(4) 2.95y x =--+【小问2详解】解:第一次抛物线解析式为,20.08(4) 2.95y x =--+令,得到(负值舍去), 0y =4x =+第二次抛物线的解析式为,20.09( 3.8) 2.97y x =--+令,得到(负值舍去)0y = 3.8x =+, 4 3.8+>+ ,12d d ∴>故答案为:>【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,解题的关键是读懂题意,列出函数关系式.25. 如图,点在以为直径的上,平分交于点D ,交于点E ,C AB O CD ACB ∠O AB 过点D 作交F .DF AB CO(1)求证:直线是的切线;DF O(2)若°,DF 的长.30A ∠=AC =【答案】(1)见解析 (2) FD =【解析】【分析】(1)连接,证明可得结论;OD DF OD AB OD ⊥⊥,,(2)再中,,,得到,,再在Rt ACB △30A ∠=︒AC =4AB =2OD =Rt ODF △中,由,继而求得;60F ∠=︒FD 【小问1详解】证明:连接. OD∵ 是的直径,平分,AB O CD ACB ∠ AD DB∴=∴ .90AOD BOD ∠=∠=︒又∵ ,FD AB ∥∴ .90ODF BOD ∠=∠=︒即 .OD DF ⊥∴ 直线为的切线.DF O 【小问2详解】解:∵ 是的直径,AB O ∴.90ACB ∠=︒又∵,,30A ∠=︒AC =∴ .4AB =∴ .2OD =∵ ,AO CO =30ACO A ∴∠=∠=︒∴ .60COB A ACO ∠=∠+∠=︒∵ ,DF AB ∴ ,60F ∠=︒,30FOD ∴∠=︒设则,,FD x =22OF FD x ==又,2OD =在中,由勾股定理得:,Rt ODF △22224x x +=解得:, x =故 FD =【点睛】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,特殊角的直角三角形性质,等知识,解题的关键是学会添加常用辅助线解决问题.26. 已知二次函数. ()2430y ax ax a =-+≠(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点都在该二次函数图象上,()()()()12343,1,12,,,,,y y y y --①请判断与的大小关系: (用“”“”“”填空);1y 2y 1y 2y >=<②若,,,四个函数值中有且只有一个小于零,求a 的取值范围.1y 2y 3y 4y 【答案】(1)抛物线与y 轴交点的坐标为,对称轴()0,32x =(2)①; ② =3154a -≤<-【解析】【分析】(1),可得抛物线与y 轴交点的坐标,再根据抛物线对称轴公式解答,即可0x =求解;(2)①根据题意可得点关于直线对称,即可求解;②根据题意可得点()()12,3,1,y y 2x =在对称轴的左侧,点在对称轴的右侧,然后分两种情况:()()()2341,,,1,2,y y y --()13,y 当时,当时,即可求解.0a >a<0【小问1详解】解:令,则,0x =3y =∴抛物线与y 轴交点的坐标为 .()0,3对称轴. 422a x a-=-=【小问2详解】解:① ∵函数图象的对称轴为直线,2x =∴点关于直线对称,()()12,3,1,y y 2x =∴,12y y =故答案为:;=②∵函数图象的对称轴为直线,,2x =3112>>->-∴点在对称轴的左侧,点在对称轴的右侧.()()()2341,,,1,2,y y y --()13,y 当时,在对称轴的左侧,y 随x 的增大而减小,0a >∴,不合题意.1234y y y y =<<当时,在对称轴的左侧,y 随x 的增大而增大,则,a<01234y y y y =>>,,,四个函数值可以满足,1y 2y 3y 4y 12340y y y y >=≥>∴,340,0y y ≥<即当时,,当时,.=1x -3430y a a =++≥2x =-44830y a a =++<解得 . 3154a -≤<-【点睛】本题考查了二次函数图象与性质,掌握二次函数图象与性质是解题的关键.27.如图,是等腰直角三角形,,为延长线上一点,ABC 90ACB AC BC ∠=︒=,D AC 连接,将线段绕点逆时针旋转得到线段,过点作于点,BD BD D 90︒DE E EFAC ⊥F 连接. AE(1)依题意补全图形;(2)比较与的大小,并证明;AF CD (3)连接,为的中点,连接,用等式表示线段之间的数量BE G BE CG CD CG BC ,,关系,并证明.【答案】(1)见解析 (2),见解析AF CD =(3),见解析BC CD =【解析】【分析】(1)根据旋转的性质画图即可;(2)根据旋转的性质以及等腰直角三角形可以得到全等三角形,再根据全等三角形的性质即可求出结论;(3)根据题意画出已知图形,再根据图形得到全等三角形,利用全等三角形的性质和等腰直角三角形的性质即可求出结论.【小问1详解】解:补全图形如图所示【小问2详解】解:,理由如下:AF CD =∵EF AD ⊥∴90EFD ∠=︒∵90ACB ∠=︒∴EFD BCD ∠=∠∵90ACB ∠=︒∴90CBD CDB ∠∠=︒+由题意可知,90BDE ∠=︒∴90EDF BDC ∠∠=︒+∴EDF CBD ∠=∠在和中EFD △DCB △EDF CBD EFD DCB ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴≌EFD △()AAS DCB ∴EF CD DF BC ==,∵BC AC =∴AC DF =∴AF CD =【小问3详解】解: 理由如下:BC CD =连接,DGFG∵ ,为的中点,DE BD =G BE 90BDE ∠=︒∴EG BG DG ==,90DGB ∠=︒∵90EFD DGE ∠=∠=︒∴GEF CDG ∠=∠在和中EFG DCG △EF DC GEF CDG EG DG =⎧⎪∠=∠⎨⎪=⎩∴≌ EFG SAS DCG ()∴,FG CG =EGF DGC ∠=∠∴90EGF EGC DGC EGC ∠+∠=∠+∠=︒即90CGF ∠=︒∴为等腰直角三角形CGF △∴CF =∵ ,BC AC AF CF ==+AF CD =∴BC CD =+【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等相关知识点,掌握全等三角形的性质和旋转的性质是解题的关键.28. 在平面直角坐标系中,我们给出如下定义:将图形M 绕直线上某一点P 顺时xOy 3x =针旋转,再关于直线对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次90︒3x =关联图形.已知点.()0,1A (1)若点P 的坐标是,直接写出点A 关于点P 的二次关联图形的坐标________;()3,0(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知的半径为1,点A 关于点P 的二次关联图形在上且不与点A 重合. O O 若线段,其关于点P 的二次关联图形上的任意一点都在及其内部,求此时 P 点1AB =O 坐标及点B 的纵坐标的取值范围.B y 【答案】(1)()2,3(2)()3,2-(3),, ()3,3-12102B y ≤≤【解析】【分析】(1)根据二次关联图形的定义分别找到和,过点作轴于点D ,可A 'A ''A 'A D x '⊥证得,从而得到,即可求解;AOP PDA ' ≌1,3OA PD OP A D '====(2)根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,过点P 作轴于点PE y ⊥E ,过点作轴交延长线于点F ,坐标为m ,表达点的坐标,可得出结论;A 'A F x '⊥EP A '(3)由(2)可知,点的坐标,由A 关于点P 的二次关联图形在上且不与点A 重合A ''O 可得出点的坐标,由线段,其关于点P 的二次关联图形上的任意一点都在及A ''1AB =O 其内部,找到临界点,可得出的坐标,进而可得出点B 的坐标,即可得出的取值B ''B ''B y 范围.【小问1详解】如图1,根据二次关联图形的定义分别找到和,过点作轴于点D ,A 'A ''A 'A D x '⊥∴90A DP AOP '∠=∠=︒由旋转可知,,90,APA AP A P ''∠=︒=∴,90APO A PD A PD PA D '''∠+∠=∠+=︒∴,APO PA D '∠=∠∴,()AAS AOP PDA ' ≌∴,1,3OA PD OP A D '====∴,()4,3A '∵点和关于直线对称,A 'A ''3x =∴点,()2,3A ''即点A 关于点P 的二次关联图形的坐标为;()2,3故答案为:()2,3【小问2详解】解:根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,如图,过点P 作轴于点E ,过点作轴交延长线于点F ,PE y ⊥A 'A F x '⊥EP由(1)得: ,AEP PFA ' ≌∴,1,3AE PF m EP A F '==-==∴,()4,3A m m '-+根据题意得:点A 和点关于直线对称,A '3x =∴,46m -=解得:,2m =-∴点P 的坐标为,()3,2-【小问3详解】解:设点P 的纵坐标为n ,由(2)得:,()4,3A n n '-+∴,()2,3A n n ''++∵在上,A ''O ∴,()()22231n n +++=解得:(舍去)或,2n =-3-∴点P 的坐标为,()3,3-∵,其关于点P 的二次关联图形上的任意一点都在及其内部,1AB =AB O 此时点是一个临界点,连接,如图, B ''OB∵,1OA A B OB ''''''''===∴是等边三角形,OA B '''' 过点作轴于点M ,则, B ''B M x ''⊥12A M OM ''==∴ B M ''=∴, 1,2B ⎛''- ⎝∴, 13,2B ⎛' ⎝∴, 12B ⎫⎪⎭由对称性得:另一个点的坐标为, 12B ⎛⎫ ⎪ ⎪⎝⎭∴的取值范围为. B y 102B y ≤≤【点睛】本题属于新定义类问题,主要考查轴对称最值问题,等边三角形的性质与判定,圆的定义等相关知识,关键是理解给出新定义,画出对应的图形.。
2024年北京密云区初三九年级上学期期末数学试题和答案
北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
广东省东莞市东莞中学2023-2024学年九年级上学期期末数学试题[答案]
2023-2024学年第一学期初三期末教学质量自查数学试卷数 学一、选择题(本大题共10 小题,每小题3分,共30分)1.下列实数中,比3-小的数是( )A .2-B .4C .5-D .12.人体中红细胞的直径约为0.0000077m ,将0.0000077用科学记数法表示为( )A .57.710-´B .67.710-´C .77710-´D .80.7710-´3.下列正确的是( )A 23=´B 23=+C 3=±D 0.7=4.化简---a b a b a b 的结果是( )A .a b +B .a b -C .22a b -D .15.若ABC DEF ∽△△, 其相似比为2:3,则ABC V 与DEF V 的面积比为( )A .4:9B .2:3CD .16:816.如图,烧杯内液体表面AB 与烧杯下底部CD 平行,光线EF 从液体中射向空气时发生折射,光线变成FH ,点G 在射线EF 上.已知20HFB Ð=°,60FED Ð=°,则GFH Ð的度数为( )A .20°B .40°C .60°D .80°7.一个多边形的内角和是外角和的2倍,这个多边形是( )A .三角形B .四边形C .五边形D .六边形8.若关于x 的方程20x x m -+=没有实数根,则m 的值可以为( )A .1-B .14-C .0D .19.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <210.如图,在平面直角坐标系中,直线AB 经过点()6,0A 、()0,6B ,O e 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作O e 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B C .3D .二、填空题(本大题共5小题,每小题3分,共15分)11.不等式3x+1<-2的解集是 .12.因式分解:29ax a -= .13.将抛物线23y x =-向左平移2个单位,所得抛物线的解析式为 .14.如图,△ABC 绕点A 逆时针旋转得到△AB′C′,点C 在AB'上,点C 的对应点C′在BC 的延长线上,若∠BAC'=80°,则∠B = 度.15.如图,已知O e 的内接正六边形ABCDEF 的边长为4,H 为边AF 的中点,则图中阴影部分的面积是 .三、解答题(一)(本大题共3小题,第16题10分,第17、18题各7分,共24分)16.(1()1011 3.142p -æö-+--ç÷èø(2)化简∶22141121a a a a -æö-¸ç÷--+èø.17.如图,在ABC V 中,(1)尺规作图∶作ABC V 的高CD ,交AB 于点D (保留作图痕迹,不写作法) ;(2)若60A Ð=°,45B Ð=°,10AC =,求AB 的长.18.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ^轴于点B ,2AB =,4OB =.(1)求反比例函数的表达式;(2)若直线CD垂直平分线段AO,交AO于点D,交y轴于点C,交x轴于点E,求线段OE 的长.四、解答题(二) (本大题共3 小题,每小题9分,共27分)19.劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.学校为了解学生参加家务劳动的情况,对八年级学生参加家庭劳动情况开展调查研究,请将下面过程补全.(1)收集数据,在八年级随机抽取20名学生进行问卷调查,他们一周参加家庭劳动的次数分别为:3 1 2 2 4 3 3 2 3 4 3 4 0 5 7 2 6 4 6 6(2)整理数据,结果如下:分组频数£<2x02£<9x24x£<a46x£<468根据以上信息,解答下列问题:a______,补全频数分布直方图;(1)=(2)已知这组数据的平均数为3.5,该校八年级现有200名学生,请估计该校八年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数;(3)劳动时间为68x £<的4名学生中有2名男生,2名女生,从中任意抽取2名学生参加学校开展的以“劳动美”为主题的演讲活动,用树状图或列表法求抽取的2名学生恰好是一名男生和一名女生的概率.20.2023年第31届世界大学生夏季运动会将在成都举办,与吉祥物“蓉宝”有关的纪念品现已上市.某商店计划今年购进A ,B 两种“蓉宝”纪念品若干件,订购A 种“蓉宝”纪念品花费6000元,订购B 种“蓉宝”纪念品花费3200元,其中A 种纪念品的订购单价比B 种纪念品的订购单价多20元,并且订购A 种纪念品的数量是B 种纪念品数量的1.25倍.(1)求商店订购A 种纪念品和B 种纪念品分别是多少件?(2)若商店一次性购买A ,B 纪念品共60件,要使总费用不超过3000元,最少要购买多少件B 种纪念品?21.如图,AB 是O e 的直径,点C 在O e 上,BD 平分ABC Ð交O e 于点D , 过点D 作DE BC ^于E .(1)求证∶DE 是O e 的切线;(2)若10AB =,6AD =,求EC 的长.五、解答题(三) (本大题共2小题,每小题12分,共24分)22.如图,在平面直角坐标系中,已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0A -和点()6,0B 两点,与y 轴交于点()0,6C .点D 为线段BC 上的一动点.(1)求二次函数的表达式;(2)如图1,求AOD △周长的最小值;(3)如图2,过动点D 作DP AC ∥交抛物线第一象限部分于点P ,连接,PA PB ,记PAD V 与PBD △的面积和为S ,当S 取得最大值时,求点P 的坐标,并求出此时S 的最大值.23.实践操作:第一步:如图(1),正方形纸片ABCD 边AD 上有一点P ,将正方形纸片ABCD 沿BP 对折,点A 落在点E 处;第二步:如图(2),将正方形ABCD 沿AE 对折,得到折痕AF ,把纸片展平;第三步:如图(3),将图(1)中纸片沿PE 对折,得到折痕PG ,把纸片展平;第四步:如图(4),将图(3)中纸片对折,使AD 与BC 重合,得到折痕MN ,把纸片展平,发现点E 刚好在折痕MN 上.问题解决:(1)在图(2)中,判断BP 与AF 的数量关系,并证明你的结论;(2)在图(3)中,求证:PDG △的周长不变;(3)在图(4CG 的长.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【详解】解:∵53214-<-<-<<,∴比3-小的数是5-,故选C .【点睛】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,两个负数比较大小绝对值大的反而小.2.B【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为10n a ´的形式,其中1<10a £,n 为整数.解题关键是正确确定a 的值以及n 的值.【详解】0.0000077用科学记数法表示为67.710-´.故选:B .3.A【分析】根据二次根式的性质和算术平方根的定义,进行求解即可得出结果.【详解】解:A 23==´,选项正确,符合题意;B 23=¹+,选项错误,不符合题意;C 3=,选项错误,不符合题意;D =,选项错误,不符合题意;故选A .【点睛】本题考查二次根式的性质和算术平方根的定义.熟练掌握二次根式的性质和算术平方根的定义是解题的关键.4.D【分析】本题主要考查了分式的减法运算法则,灵活运用运算法则成为解答本题的关键.根据同分母分式的减法运算则计算即可.【详解】---a b a b a ba ba b -=-故选:D .5.A【分析】本题考查的是相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵ABC DEF ∽△△, 其相似比为2:3,∴ABC V 与DEF V 的面积比为4:9.故选:A .6.B【分析】由题意知,AB CD P ,则60GFB FED Ð=Ð=°,根据GFH GFB HFB Ð=Ð-Ð,计算求解即可.【详解】解:由题意知,AB CD P ,∴60GFB FED Ð=Ð=°,∴40GFH GFB HFB Ð=Ð-Ð=°,故选:B .【点睛】本题考查了平行线的性质.解题的关键在于明确角度之间的数量关系.7.D【分析】本题考查了多边形的内角和公式与外角和定理,根据多边形的内角和公式()2180n -×°与多边形的外角和定理列式进行计算即可解答.【详解】设这个多边形是n 边形,根据题意,得()21803602n -×°=°´,解得:6n =,∴这个多边形是六边形.故选:D8.D【分析】根据关于x 的方程20x x m --=没有实数根,判断出Δ0<,求出m 的取值范围,再找出符合条件的m 的值.【详解】解:∵关于x 的方程20x x m -+=没有实数根,∴()214114m m D =--´´=-0<,解得:14m >,故选项中只有D 选项满足,故选D.【点睛】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.9.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.10.A【分析】连接OP OQ 、,根据勾股定理知222PQ OP OQ =-,当OP AB ^时,线段OP 最短,即线段PQ 最短.【详解】连接OP OQ 、.∵PQ 是O 的切线,∴OQ PQ ^,根据勾股定理知222PQ OP OQ =-,∵当PO AB ^时,线段PQ 最短,又∵()6,0A 、()0,6B ,∴6O A O B ==,∴AB =∴12OP AB ==,∵2OQ =,∴PQ ==故选:A .【点睛】此题考查切线长定理,解题关键在于掌握切线长定理和勾股定理运算.11.1x <-.【详解】试题分析:3x+1<-2,3x <-3,x <-1.故答案为x <-1.考点:一元一次不等式的解法.12.(3)(3)a x x +-【分析】先提公因式然后再用平方差公式分解因式即可.【详解】解:29ax a-()29a x =-()()33a x x =+-故答案为:()()33a x x +-.【点睛】本题主要考查了分解因式,熟练掌握平方差公式()()22a b a b a b -=+-是解题的关键.13.()232y x =-+【分析】根据图象平移的规则,“上加下减,左加右减”,即可求解,本题考查了图象的平移,解题的关键是:熟记图象平移规则.【详解】解:根据题意,将抛物线23y x =-向左平移2个单位,得:()232y x =-+,故答案为:()232y x =-+.14.30【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵△ABC 绕点A 逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB ,AC′=AC ,∵∠BAC'=80°,∴∠C′AB′=∠CAB =12ÐC′AB =40°,∴∠ACC′=70°,∴∠B =∠ACC′﹣∠CAB =30°,故答案为:30.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.15.8π3+【分析】本题考查等边三角形性质,正六边形性质,扇形面积公式等.根据题意先计算出CDH S △的面积,再计算扇形COD 面积及COD S △面积,即可得到本题答案.【详解】解:过点H 作HE CD ^交CD 于点E ,连接,OC OD ,,∵O e 的内接正六边形ABCDEF 的边长为4,H 为边AF 的中点,∴60COD Ð=°,60ECO Ð=°,4CO OD ==,E 为边CD 的中点,∴2CE DE ==,∴OE =∴=EH∴142CDH S =´´=V ∴扇形COD 面积:260π48π3603°=°,∵142COD S =´´=V∴阴影部分的面积:888(πππ333-=-=,故答案为:8π3.16.(13;(2)12a a -+【分析】(1)首先计算绝对值,负整数指数幂,零指数幂和算术平方根,然后计算加减;(2)根据分式的混合运算法则求解即可.【详解】(1()1011 3.142p -æö-+--ç÷èø1213=+-+3=;(2)22141121a a a a -æö-¸ç÷--+èø()()()22211111a a a a a a +--æö=-¸ç÷--èø-()()()212122a a a a a --=×-+-12a a -=+.【点睛】本题考查了实数的运算、异分母分式的加减运算,涉及了算术平方根、负指数幂、零指数幂的运算等,熟练掌握各运算的运算法则是解题的关键.17.(1)见解析(2)5【分析】(1)以点C 为圆心,适当长度为半径画弧,交AB 于点E ,F ,然后分别以点E ,F 为圆心,以适当长度为半径画弧,两弧交于点M ,连接CM 交AB 于点D ,线段CD 即为所求;(2)首先根据含30°角直角三角形的性质求出152AD AC ==,然后利用勾股定理求出CD ==BD CD ==【详解】(1)如图所示,CD 即为所求;(2)∵CD 是ABC V 的高∴CD AB ^,即90ADC Ð=°∵60A Ð=°∴906030ACD Ð=°-°=°∴152AD AC ==∴CD ==∵45B Ð=°∴45BCD Ð=°∴BD CD ==∴5AB BD AD =+=.【点睛】此题考查了尺规作三角形的高,含30°角直角三角形的性质,勾股定理,等腰直角三角形三角形的性质等知识,解题的关键是掌握以上知识点.18.(1)8y x=(2)5【分析】(1)由题意可得点A 的坐标为()24,,代入k y x=,求出k 的值即可;(2)连接AE ,过点A 作AF OE ^于点F ,由直线CD 为线段OA 的垂直平分线可得AE OE =,设线段OE 的长为m ,则AE m =,2EF m =-,由勾股定理得222AE AF EF =+,即()22242m m =+-,求出m 的值即可.【详解】(1)解:AB y ^Q 轴,90ABO \Ð=°,∵2AB =,4OB =,\点A 的坐标为()24,,将()24A ,代入k y x=,得8k =,\反比例函数的表达式为8y x=.(2)解:连接AE ,过点A 作AF OE ^于点F ,如图所示:∵直线CD 为线段OA 的垂直平分线,AE OE \=,设线段OE 的长为m ,则AE m =,Q 点A 的坐标为()24,,4AF \=,2OF =,∴2EF m =-,在Rt V AEF 中,由勾股定理得,222AE AF EF =+,即()22242m m =+-,解得:5m =,\线段OE 的长为5.【点睛】本题考查反比例函数图象上点的坐标特征、待定系数法求反比例函数解析式、线段垂直平分线的性质,勾股定理,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)5,补图见解析(2)90人(3)23【分析】(1)根据收集到的数据找出46x £<有几个即可.(2)由图表信息先求出达到平均水平及以上的概率,然后再求解八年级学生达到平均水平及以上的人数即可.(3)列出树状图,利用概率计算公式计算即可.【详解】(1)解:由收集到的数据可知,46x £<分别有4,4,4,5,4共有5个∴5a =,如图所示;(2)解:542009020+´=(人)答:该校八年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数为90人.(3)画树状图如下:∵所有等可能出现的结果总数为12个,其中抽到一男一女的情况数有8个,∴恰好抽到一男一女概率为82123=.【点睛】本题主要考查数据统计与概率的计算,熟练掌握概率的计算是解决本题的关键.20.(1)商店订购A 种纪念品100件,B 种纪念品80件;(2)30【分析】(1)设商店订购B 种纪念品x 件,则订购A 种纪念品1.25x 件,根据“A 种纪念品的订购单价比B 种纪念品的订购单价多20元”列分式方程,求解即可;(2)设购买m 件B 种纪念品,则购买(60-m )件A 种纪念品,根据总费用不超过3000元列一元一次不等式,求解即可,【详解】(1)解:设商店订购B 种纪念品x 件,则A 种纪念品分别是1.25件,根据题意得:60003200201.25x x-=,解得:x =80,经检验,x =80是原方程的根,且符合题意,∴1.25×80=100件,答:商店订购A 种纪念品100件,B 种纪念品80件;(2)解:由(1)得:A 种商品的单价为6000÷100=60元,B 种商品的单价为60-20=40元,设购买m 件B 种纪念品,则购买(60-m )件A 种纪念品,根据题意得:60(60-m )+40m ≤3000,解得m ≥30,答:最少购买30件B 种纪念品.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,理解题意并根据题意建立等量关系或不等关系是解题的关键.21.(1)见解析(2)185CE =【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD Ð=Ð,再由OB OD =,利用等边对等角得到ODB OBD Ð=Ð,从而得出ODB CBD Ð=Ð,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ^于H ,根据HL 得出Rt Rt ADH CDE V V ≌,得出AH CE =,再根据勾股定理得出8BD ==,再利用等积法即可得出DE 的长,然后证明出ABD CDE V V ∽,利用相似三角形的性质求解即可.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD Ð=Ð.∵BD 平分ABC Ð,∴OBD CBD Ð=Ð.∴ODB CBD Ð=Ð,∴OD BE ∥.∴180BED ODE Ð+Ð=°.∵BE DE ^,∴90BED Ð=°.∴90ODE Ð=°.∴OD DE ^.∴DE 与O e 相切;(2)过D 作DH AB ^于H .∵BD 平分ABC Ð,DE BE ^,∴DH DE =.∵ AD CD=,∴AD CD =.∴()Rt Rt HL ADH CDE V V ≌,∴AH CE =.∵AB 是O e 的直径,∴90ADB Ð=°.∵10AB =,6AD =,∴8BD ===.∵1122AB DH AD BD ×=×,∴245DH =.∴245DE =.∵90Ð=Ð=°E ADB ,DCE AÐ=Ð∴ABD CDEV V ∽∴AD BD CE DE =,即68245CE =解得185CE =.【点睛】此题考查了切线的判定,角平分线的性质、圆周角定理、相似三角形的性质和判定,勾股定理等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.(1)21262y x x =-++(2)12(3)153,2æöç÷èø,272S =最大值【分析】(1)根据题意设抛物线的表达式为()()26y a x x =+-,将()0,6代入求解即可;(2)作点O 关于直线BC 的对称点E ,连接EC EB 、,根据点坐特点及正方形的判定得出四边形OBEC 为正方形,()6,6E ,连接AE ,交BC 于点D ,由对称性DE DO =,此时DO DA +有最小值为AE 的长,再由勾股定理求解即可;(3)由待定系数法确定直线BC 的表达式为6y x =-+,直线AC 的表达式为36y x =+,设21,262P m m m æö-++ç÷èø,然后结合图形及面积之间的关系求解即可.【详解】(1)解:由题意可知,设抛物线的表达式为()()26y a x x =+-,将()0,6代入上式得:()()60206a =+-,12a =-所以抛物线的表达式为21262y x x =-++;(2)作点O 关于直线BC 的对称点E ,连接EC EB 、,∵()6,0B ,()0,6C ,90BOC Ð=°,∴6OB OC ==,∵O 、E 关于直线BC 对称,∴四边形OBEC 为正方形,∴()6,6E ,连接AE ,交BC 于点D ,由对称性DE DO =,此时DO DA +有最小值为AE的长,10AE ===∵AOD △的周长为DA DO AO ++,2AO =,DA DO +的最小值为10,∴AOD △的周长的最小值为10212+=;(3)由已知点()2,0A -,()6,0B ,()0,6C ,设直线BC 的表达式为y kx n =+,将()6,0B ,()0,6C 代入y kx n =+中,600k n n +=ìí=î,解得16k n =-ìí=î,∴直线BC 的表达式为6y x =-+,同理可得:直线AC 的表达式为36y x =+,∵PD AC ∥,∴设直线PD 表达式为3y x h =+,由(1)设21,262P m m m æö-++ç÷èø,代入直线PD 的表达式得:2162h m m =--+,∴直线PD 的表达式为:21362y x m m =--+,由261362y x y x m m =-+ìïí=--+ïî,得22118411684x m m y m m ì=+ïïíï=--+ïî,∴221111,68484D m m m m æö+--+ç÷èø,∵P ,D 都在第一象限,∴PAD PBD PAB DABS S S S S =+=-△△△△2211112662284AB m m m m éùæöæö=-++---+ç÷ç÷êúèøèøëû21398284m m æö=´-+ç÷èø()22339622m m m m =-+=--2327(3)22m =--+,∴当3m =时,此时P 点为153,2æöç÷èø.272S =最大值.【点睛】题目主要考查二次函数的综合应用,包括待定系数法确定函数解析式,周长最短问题及面积问题,理解题意,熟练掌握运用二次函数的综合性质是解题关键.23.(1)BP AF =,见解析(2)见解析(3)3-【分析】(1)根据折叠可得AE BP ^,即可得到ABP DAF Ð=Ð ,易证ABP DAF ≌△△即可得到答案;(2)连接BG ,由折叠的性质知AB BE =,AP PE =,A BEP Ð=Ð,结合AB BC =,90A C Ð=Ð=°易得BEG BCG △≌△得到=EG CG ,即可得到证明;(3)根据折叠可得AB BE =,ABP EBP Ð=Ð,12AM BM AB ==,即可得到30MEB Ð=°,从而得到30ABP EBP Ð=Ð=°,即可得到AP ,从而得到PD ,由(2)得90BEG Ð=°,即可得到60NEG Ð=°,从而得到30EGN Ð=°,即可得到DG ,即可得到答案;【详解】(1)解: BP AF =,理由如下,证明:由折叠的性质知AE BP ^,∴90ABP DAF BAF Ð=Ð=°-Ð,在ABP V 和DAF △中,ABP DAF AB DABAP D Ð=Ðìï=íïÐ=Ðî,∴(ASA)ABP DAF V V ≌,∴BP AF =;(2)解:如图,连接BG ,由折叠的性质知AB BE =,AP PE =,A BEP Ð=Ð,又∵AB BC =,90A C Ð=Ð=°,∴BE BC =,90C BEP BEG Ð=Ð=Ð=°,在BEG V 和BCG V 中,BE BC BG BG=ìí=î∴HL BEG BCG V V ≌(),∴=EG CG ,∴()()2PDG C PE DP EG DG AP DP GC DG AD CD AD =+=++==V ++++,又∵AD 为正方形ABCD 的边长,∴PDG △的周长不变;(3)解:如图,连接AE,由折叠性质可得,AB BE =,ABP EBP Ð=Ð,12AM BM AB ==,EM AB ^,MN BC ∥,∴AE BE =,∴AE BE AB ==,∴ABE V 为等边三角形,∴60AEB ABE Ð=Ð=°,而EM AB ^,∴30MEB Ð=°,∴30EBC Ð=°,∴30ABP EBP Ð=Ð=°,2222(2)33AP AP AP AB -===,解得:1AP =,∴1DP ,由(2)得90BEG Ð=°,∴60NEG Ð=°,∴30EGN Ð=°,∴2PG =,∴1)3DG ===,∴(33CG ==-;【点睛】本题主要考查正方形的性质,勾股定理,直角三角形30°角所对直角边等于斜边一半,二次根式混合运算,折叠的性质及三角形全等的性质与判定,解题的关键是根据折叠得到三角形全等条件及角度关系.。
2024年北京东城区初三上学期期末考数学试卷和答案
东城区2023—2024学年第一学期期末统一检测初三数学2024.1一、选择题(每题2分,共16分)1.下列四个交通标志图案中,是中心对称图形的是2.若3x =是关于x 的方程22=0x x m --的一个根,则m 的值是A .-15B .-3C .3D .153.关于二次函数22(1)2y x =-+,下列说法正确的是A .当x =1时,有最小值为2B .当x =1时,有最大值为2C .当x =-1时,有最小值为2D .当x =-1时,有最大值为24.在下列事件中,随机事件是A .投掷一枚质地均匀的骰子,向上一面的点数不超过6B .从装满红球的袋子中随机摸出一个球,是白球C .通常情况下,自来水在10℃结冰D .投掷一枚质地均匀的骰子,向上一面的点数为25.如图,正方形ABCD 的边长为6,且顶点A ,B ,C ,D 都在⊙O 上,则⊙O 的半径为A.3B.6C.32D.626.北京2022年冬奥会以后,冰雪运动的热度持续.某地雪场第一周接待游客7000人,第三周接待游客8470人.设该地雪场游客人数的周平均增长率为x ,根据题意,下面所列方程正确的是A .27000(1)8470x +=B .270008470x =C .7000(1+2)8470x =D .37000(1)8470x +=7.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72°.若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是A .2πm 10B .2πm5C .22πm5D .24πm58.⊙O 是△ABC 的内切圆,与AB ,BC ,AC 分别相切于点D ,E ,F .若⊙O 的半径为2,△ABC 的周长为26,则△ABC 的面积为A.3B.24C.26D.52二、填空题(每题2分,共16分)9.把抛物线22y x =向下平移3个单位长度,所得到的抛物线的解析式为.10.若一元二次方程261=0x x +-经过配方,变形为()23x n +=的形式,则n 的值为.11.为了解某小麦品种的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550100200500100020003000发芽种子个数m 4449218947695118982851发芽种子频率m n0.8000.8800.9200.9450.9520.9510.9490.950(1)估计该品种小麦在相同条件下发芽的概率为(结果保留两位小数);(2)若在相同条件下播种该品种小麦种子10000个,则约有个能发芽.12.在平面直角坐标系xOy 中,已知点A 的坐标为(1,2),点B 与点A 关于原点对称,则点B 的坐标为_____________.13.已知二次函数2+8+3y x x =-,当x >m 时,y 随x 的增大而减小,则m 的值可以是____________(写出一个即可).14.如图,A ,B ,C 是⊙O 上的三个点,若∠ACB=40°,则∠OBA 的大小是_____________°.15.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分.铅球出手位置的高度为35m,当铅球行进的水平距离为4m 时,高度达到最大值3m.铅球的行进高度y (单位:m)与水平距离x (单位:m)之间的关系满足二次函数.若以最高点为原点,过原点的水平直线为x 轴,建立如图2所示的平面直角坐标系xOy ,则该二次函数的解析式为2121x y -=.若以过出手点且与地面垂直的直线为y 轴,y 轴与地面的交点为原点,建立如图3所示的平面直角坐标系xOy ,则该二次函数的解析式为.16.某单位承担了一项施工任务,完成该任务共需A ,B ,C ,D ,E ,F ,G 七道工序.施工要求如下:①先完成工序A ,B ,C ,再完成工序D ,E ,F ,最后完成工序G ;②完成工序A 后方可进行工序B ;工序C 可与工序A ,B 同时进行;③完成工序D 后方可进行工序E ;工序F 可与工序D ,E 同时进行;④完成各道工序所需时间如下表所示:工序A B C D E F G 所需时间/天11152817163125(1)在不考虑其它因素的前提下,该施工任务最少_____________天完成.(2)现因情况有变,需将工期缩短到80天.工序A ,C ,D 每缩短1天需增加的投入分别为5万元,4万元,6万元,其余工序所需时间不可缩短,则所增加的投入最少是_____________万元.三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解方程:()()3121x x x +=+.18.如图,在Rt △ACB 中,∠C =90°.求作:⊙O ,使得△ACB 的三个顶点都在⊙O 上.作法:①作边AB 的垂直平分线,交AB 于点O ;②以点O 为圆心,OA 长为半径作圆.则⊙O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC .由作图可知,OB =OA=12AB .∴点B 在⊙O 上.在Rt △ACB 中,∠ACB =90°,∴OC =12________()(填推理依据).∴OC =OA .∴点C 在⊙O 上.∴△ACB 的三个顶点都在⊙O 上.19.在平面直角坐标系xOy 中,二次函数2y x bx =+的图象过点A (3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0x <<3时,对于x 的每一个值,都有2kx x bx +>,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A,B,C,D,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是⊙O 的弦,半径OD ⊥AB 于点C .若AB =16,CD =2,求⊙O 的半径的长.22.已知关于x 的一元二次方程()222120x m x m -++-=(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为O A ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段O A ',OB ';(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ',连接A C ''.若=5A C '',求∠B OC ''的度数.24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,22BC =,求CD 的长.25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t分钟,农药的去除率为y1%,部分实验数据记录如下:方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x%,农药的去除率为y2%,部分实验数据记录如下:结合实验数据和结果,解决下列问题:(1)通过分析以上实验数据,发现可以用函数刻画方式一中农药的去除率y1(%)与浸泡时间t(分)之间的关系,方式二中农药的去除率y2(%)与食用碱溶液的浓度x(%)之间的关系,请分别在下面的平面直角坐标系中画出这两个函数的图象:(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为__________分钟.(3)方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度x %中,x 的取值范围可以是_____________.26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在△ABC 中,AB =AC ,∠BAC =120°,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60°得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE ⊥BC ;(2)当BD ≠CD 时(图2中BD <CD ,图3中BD >CD ),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE 的大小,并证明.28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y +6的“和距离”d 的取值范围.东城区2023—2024学年度第一学期期末统一检测初三数学参考答案及评分标准2024.1一、选择题(每题2分,共16分)题号12345678答案BCADCABC二、填空题(每题2分,共16分)9.223y x =-10.1011.0.95950012.(-1,-2)13.答案不唯一,m ≥4即可14.5015.21251233y x x =-++16.86,38三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解:移项,得()()31210.x x x +-+=因式分解,得()()1320.x x +-=……………………………..1分于是得10x +=,或320.x -=……………………………..3分所以方程的两个根分别为1=-1x ,22.3x =……………………………..5分18.解:(1)作图如下,------------------------3分(2)AB直角三角形斜边上的中线等于斜边的一半.------------------------5分19.解:(1)∵点A (3,3)在抛物线二次函数2y x bx =+的图象上,∴2333b =+.解得2b =-.∴二次函数的解析式为22y x x =-.------------------------2分(2)列表:x …-10123…y…3-13…描点,连线------------------------4分(3)当k ≥1.------------------------5分20.解:(1)所有可能出现的结果共6种:AB ,AC ,AD ,BC ,BD ,CD .…………3分(2)记抽到的2张卡片中恰好有数学家华罗庚邮票图案为事件M ,M 包含的结果有3种,即AC ,BC ,CD ,且6种可能的结果出现的可能性相等,所以()31==62P M …………5分21.解:连接OA .∵半径OD ⊥AB 于点C ,AB =16,∴∠ACO =90°,AC =12AB =8,………2分设OA =r ,则OC =2r -.在Rt △AOC 中,根据勾股定理,得222OA AC OC =+,即2228(2)r r =+-.………4分解得17r =.∴⊙O 的半径的长17.………5分22.解:(1)∵关于x 的一元二次方程22(21)20x m x m -++-=有两个不相等的实数根,∴[]()2222=(21)4244148490m m m m m m ∆-+--=++-+=+> (2)分解得94m >-.∴m 的取值范围是94m >-.………..3分(2)由(1)可知,49m ∆=+.由求根公式,得()1212m x +=,()2212m x +=.………..5分∵该方程的两个实数根互为相反数,∴12+0x x =.∴()()2121+21022m m m +++=+=.解得1=2m -,符合题意.∴当方程的两个实数根互为相反数时,1=2m -.………..6分23.解:(1)如图.……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+.∴△A OC ''是直角三角形.∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称,∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''-=︒-︒=︒∠∠∠.………………..5分24.(1)证明:如图1,连接OD .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD=45°.---------------1分∴∠ABD =∠ACD=45°.∵OD =OB ,∴∠ODB =∠OBD =45°.--------------2分∵DE ∥AB ,∴∠BDE =∠OBD =45°.∴∠ODE =∠ODB+∠BDE=90°.∴OD ⊥DE .∵OD 为⊙O 的半径,∴直线DE 是⊙O 的切线.------------------3分(3)如图2,过点B 作BF ⊥CD 于点F .∴∠BFC =∠BFD =90°.∵∠BCD =45°.∴∠CBF =45°.图1∴BF CF =.------------------4分在Rt △BFC 中,BC =根据勾股定理,得=2BF CF =.∵ BCBC =,∴∠CDB =∠BAC =30°.------------------5分∴2=4.BD BF =在Rt △BFD 中,根据勾股定理,得DF∴CD CF DF =+------------------6分25.解:(1)画图如下,---------------------------------------------------------------------2分(2)10-------------------------------------------4分(3)答案不唯一,如7x ≤≤12.---------------------------6分26.解:(1)由题意可知,42a b c c ++=,∴2b a =-.∴12bt a=-=.---------------------------2分(2)∵0a >,1t =,∴当1x >时,y 随x 的增大而增大,当1x <,时y 随x 的增大而减小.---------------------------3分①当1m ≥时,∵11m x m <<+,212m x m +<<+,∴121x x <<.∴12y y <,符合题意.---------------------------4分②当112m <≤时,有3122m +<,(i )当111x m <+≤时,∵212m x m +<<+,∴121x x <≤.∴12y y <.(ii )当11m x <<时,设11()M x y ,关于抛物线对称轴1x =的对称点为01()M 'x y ,,则01x >,011=1x x --.∴012x x =-.∵112m <≤,∴0312x <<.∵3122m +≤<,212m x m ++<<∴232x >.∴02312x x <<<.∴12y y <.∴当112m <≤时,符合题意.---------------------------5分③当102m <≤时,3112m +<≤,令11=2x ,23=2x ,则12=y y ,不符合题意.④当102m -<≤时,有1112m +<≤,令1=0x ,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑤当112m -<-≤时,1012m +<≤,令11=2x -,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑥当1m <-时,1221x x m <<+<,∴.12>y y ,不符合题意.综上所述,m的取值范围是12m ≥.---------------------------6分27.(1)证明:∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =30°.将线段DA 绕点D 顺时针旋转60°得到线段DE ,∴DE =DA ,∠ADE =60°.∴△ADE 是等边三角形.∴∠BAE =60°.∴∠AHB =90°.∴BC ⊥AE.………..3分(2)解:选择图2:①补全图形如图所示:………..4分②猜想∠AFE =90°.………..5分证明:如图,过点A 作AH ⊥BC 于H ,连接AE .则∠AHB =∠AHC =90°.∵AB =AC ,∠BAC =120°,∴∠CAH =12∠BAC =60°,∠C =30°.∴AH =12AC .∵F 为线段AC 中点,∴AF =12AC .∴AH =AF .由(1)可知△ADE 是等边三角形.∴∠DAE =60°=∠CAH ,AD=AE.∴∠DAH =∠EAF.在△ADH 和△AEF 中,.DAH EA AD AE AH AF F ∠==⎧∠⎪⎨⎪=⎩,,∴△ADH ≌△AEF (SAS ).∴∠AFE =∠AHD =90°.………7分选择图3:①补全图形如图所示:②(选择图3的答案与选择图2的答案一致)28.解:(1)P 1,P 2.………2分(2)3.………4分(3)71122d ≤≤.………7分。
山东初三初中数学期末考试带答案解析
山东初三初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°4.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限5.已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.6.如图,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=,则t 的值是( )A .1B .1.5C .2D .37.如图,铁道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高( )A .5mB .6mC .7mD .8m8.如图,在Rt △ABC 中,∠BAC=90°.如果将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于( )A .55°B .60°C .65°D .80°9.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为( ) A .cmB .cmC .3cmD .cm10.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为( ) A .10% B .31% C .13% D .11%11.如图,在菱形ABCD 中,DE ⊥AB ,cosA=,BE=2,则BD 的值( )A .2B .C .D .512.已知函数y=的图象如图,以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点A (﹣1,a )、点B (2,b )在图象上,则a <b ;④若点P (x ,y )在图象上,则点P 1(﹣x ,﹣y )也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个13.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)二、解答题1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率2.已知x=﹣2是关于x的方程2x2+ax﹣a2=0的一个根,求a的值.3.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.4.为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)5.在平面直角坐标系中,已知反比例函数y=的图象经过点A,点O是坐标原点,OA=2且OA与x轴的夹角是60°.(1)试确定此反比例函数的解析式;(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.6.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)7.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.8.如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.三、填空题1.计算:sin30°+cos30°•tan60°=.2.从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t﹣5t2,那么小球抛出秒后达到最高点.3.边长为1的正六边形的边心距是.4.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为.5.如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为.山东初三初中数学期末考试答案及解析一、选择题1.如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.【答案】B【解析】根据从正面看得到的图形是主视图,可得答案.解;从正面看是矩形,看不见的棱用虚线表示,故选:B.2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球【答案】B【解析】必然事件就是一定发生的事件,依据定义即可作出判断.解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选:B.3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°【答案】B【解析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.4.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限【答案】D【解析】先把点代入函数解析式,求出k值,再根据反比例函数的性质求解即可.解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.5.已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.【答案】C【解析】△ABC是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,B、三角形各角的度数都是60°,C、三角形各角的度数分别为75°,30°,75°,D、三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5C.2D.3【解析】根据正切的定义即可求解. 解:∵点A (t ,3)在第一象限, ∴AB=3,OB=t , 又∵tanα==,∴t=2.故选:C .7.如图,铁道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高( )A .5mB .6mC .7mD .8m【答案】D【解析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题. 解:设长臂端点升高x 米, 则,∴x=8. 故选D .8.如图,在Rt △ABC 中,∠BAC=90°.如果将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于( )A .55°B .60°C .65°D .80°【答案】B【解析】利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB 1是等边三角形,即可得出旋转角度. 解:∵在Rt △ABC 中,∠BAC=90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,∴AB 1=BC ,BB 1=B 1C ,AB=AB 1,∴BB 1=AB=AB 1,∴△ABB 1是等边三角形, ∴∠BAB 1=60°,∴旋转的角度等于60°. 故选:B .9.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为( ) A .cmB .cmC .3cmD .cm【解析】利用弧长公式和圆的周长公式求解. 解:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得: 2πr=,r=cm .故选:A .10.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为( ) A .10% B .31% C .13% D .11%【答案】A【解析】设11、12月的月平均增长率为x ,则11月份的产量为100(1+x ),12月份的产量为100(1+x )2,根据两月的为231吨,建立方程求出其解即可.解:设11、12月的月平均增长率为x ,由题意,得 100(1+x )+100(1+x )2=231, 解得:x 1=﹣3.1(舍去),x 2=0.1. 故选A .11.如图,在菱形ABCD 中,DE ⊥AB ,cosA=,BE=2,则BD 的值( )A .2B .C .D .5【答案】C【解析】直接利用菱形的性质结合锐角三角函数关系得出AD ,AE 的长,进而利用勾股定理得出BD 的长. 解:∵四边形ABCD 是菱形, ∴AD=AB ,∵DE ⊥AB ,cosA=,∴设AE=3x ,则AD=5x ,故BE=2x , ∵BE=2,∴x=1,故AB=AD=5, 则DE=4, 故BD==2. 故选:C .12.已知函数y=的图象如图,以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点A (﹣1,a )、点B (2,b )在图象上,则a <b ;④若点P (x ,y )在图象上,则点P 1(﹣x ,﹣y )也在图象上.其中正确的个数是( )A .4个B .3个C .2个D .1个【解析】利用反比例函数的性质及反比例函数的图象上的点的坐标特征对每个小题逐一判断后即可确定正确的选项.解:①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故正确;②在每个分支上y随x的增大而增大,正确;③若点A(﹣1,a)、点B(2,b)在图象上,则a>b,错误;④若点P(x,y)在图象上,则点P(﹣x,﹣y)也在图象上,正确,1故选:B.13.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)【答案】C【解析】首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.二、解答题1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率【答案】B【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B 、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:=≈0.33;故此选项正确;C 、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D 、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B .2.已知x=﹣2是关于x 的方程2x 2+ax ﹣a 2=0的一个根,求a 的值. 【答案】a 1=2,a 2=﹣4【解析】根据一元二次方程解的定义,将x=﹣2代入关于x 的方程2x 2+ax ﹣a 2=0,列出关于a 的一元二次方程,然后利用公式法解方程求得a 的值即可. 解:当x=﹣2 时,8﹣2a ﹣a 2=0,即:a 2+2a ﹣8=0,(a+4)(a ﹣2)=0, 解得:a 1=2,a 2=﹣43.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果; (2)求这两辆汽车都向左转的概率. 【答案】(1)见解析;(2).【解析】(1)利用树形图”或“列表法”即可求出两辆汽车行驶方向所有可能的结果; (2)根据(1)中的列表情况即可求出这两辆汽车都向左转的概率. 解:(1)两辆汽车所有9种可能的行驶方向如下:(2)由上表知:两辆汽车都向左转的概率是:.4.为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形. 活动中测得的数据如下: ①小明的身高DC=1.5m ②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm ④旗杆的影长BF=7.6m⑤从D 点看A 点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)【答案】6.7m .【解析】分①②④和①③⑤两种情况,在第一种情况下证明△ABF ∽△DCE ,根据相似三角形的对应边的比相等即可求解;在第二种情况下,过点D 作DG ⊥AB 于点G ,在直角△AGD 中利用三角函数求得AG 的长,则AB 即可求解. 解:情况一,选用①②④, ∵AB ⊥FC ,CD ⊥FC , ∴∠ABF=∠DCE=90°,又∵AF∥DE,∴∠AFB=∠DEC,∴△ABF∽△DCE,∴,又∵DC=1.5m,FB=7.6m,EC=1.7m,∴AB=6.7m.即旗杆高度是6.7m;情况二,选①③⑤.过点D作DG⊥AB于点G.∵AB⊥FC,DC⊥FC,∴四边形BCDG是矩形,∴CD=BG=1.5m,DG=BC=9m,在直角△AGD中,∠ADG=30°,∴tan30°=,∴AG=3,又∵AB=AG+GB,∴AB=3+1.5≈6.7m.即旗杆高度是6.7m.5.在平面直角坐标系中,已知反比例函数y=的图象经过点A,点O是坐标原点,OA=2且OA与x轴的夹角是60°.(1)试确定此反比例函数的解析式;(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.【答案】(1)y=;(2)点B(,1)在反比例函数y=的图象上.【解析】(1)作AC⊥x轴于点C,在Rt△AOC中,解直角三角形求得A点坐标为(1,),把A(1,)分别代入代入y=,根据待定系数法即可求得;(2)作BD⊥x轴于点D,在Rt△BOD中,解直角三角形求得B点坐标为(,1),把x=代入代入y=,即可判断.解:(1)作AC⊥x轴于点C,如图,在Rt△AOC中,∵OA=2,∠AOC=60°,∴∠OAC=30°,∴OC=OA=1,AC=OC=,∴A点坐标为(1,),把A(1,)代入y=,得k=1×=,∴反比例函数的解析式为y=;(2)点B在此反比例函数的图象上,理由如下:过点B作x轴的垂线交x轴于点D,∵线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOD=30°,在Rt△BOD中,BD=OB=1,OD=BD=,∴B点坐标为(,1),∵当x=时,y==1,∴点B(,1)在反比例函数y=的图象上.6.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)【答案】3.28(m)【解析】通过解Rt△BAD求得BD=AB•tan∠BAE,通过解Rt△CED求得CE=CD•cos∠BAE.然后把相关角度所对应的函数值和相关的线段长度代入进行求值即可.解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°,∴∠DCE=22°,又∵tan∠BAE=,∴BD=AB•tan∠BAE,又∵cos∠BAE=cos∠DCE=,∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=(AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m).7.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.【答案】(1)见解析;(2)AB=.(3)直线FA与⊙O相切.【解析】(1)根据AB=AC,可得∠ABC=∠C,利用等量代换可得∠ABC=∠D然后即可证明△ABE∽△ADB.(2)根据△ABE∽△ADB,利用其对应边成比例,将已知数值代入即可求得AB的长.(3)连接OA,根据BD为⊙O的直径可得∠BAD=90°,利用勾股定理求得BD,然后再求证∠OAF=90°即可.(1)证明:∵AB=AC,∴∠ABC=∠C(等边对等角),∵∠C=∠D(同弧所对的圆周角相等),∴∠ABC=∠D(等量代换),又∵∠BAE=∠DAB,∴△ABE∽△ADB,(2)解:∵△ABE∽△ADB,∴,∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,∴AB=.(3)解:直线FA与⊙O相切,理由如下:连接OA,∵BD为⊙O的直径,∴∠BAD=90°,∴=4BF=BO=,∵AB=,∴BF=BO=AB,∴∠OAF=90°,∴OA⊥AF,∵AO是圆的半径,∴直线FA与⊙O相切.8.如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=x2﹣4x+3;(2)Q点的坐标为(0,0)或(,0).【解析】(1)先确定出点B,C坐标,再用待定系数法求函数解析式;(2)先求出BA=2,BC=3,BP=,然后分两种情况①由△ABC∽△PBQ,得到,求出BQ,②由△ABC∽△QBP得,求出BQ,即可.解:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,令x=0,得y=3,∴C(0,3),令y=0,得x=3,∴B(3,0),∵经过B、C两点的抛物线y=x2+bx+c∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)由(1),得A(1,0),连接BP,∵∠CBA=∠ABP=45°,∵抛物线解析式为y=x2﹣4x+3;∴P(2,﹣1),∵A(1,0),B(3,0),C(0,3),∴BA=2,BC=3,BP=,当△ABC∽△PBQ时,∴,∴,∴BQ=3,∴Q(0,0),当△ABC∽△QBP时,∴,∴,∴BQ=,∴Q(,0),∴Q点的坐标为(0,0)或(,0).三、填空题1.计算:sin30°+cos30°•tan60°=.【答案】2【解析】分别把特殊角的三角函数值代入,然后再计算即可.解:原式=+•==2,故答案为:2.2.从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t﹣5t2,那么小球抛出秒后达到最高点.【答案】3【解析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=30t﹣5t2的顶点坐标即可.解:h=﹣5t2+30t,=﹣5(t2﹣6t+9)+45,=﹣5(t﹣3)2+45,∵a=﹣5<0,∴图象的开口向下,有最大值,当t=3时,h=45;最大值即小球抛出3秒后达到最高点.故答案为:3.3.边长为1的正六边形的边心距是.【答案】.【解析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.解:连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=360°÷6=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=1,∵OM⊥AB,∴AM=BM=,在△OAM中,由勾股定理得:OM==.故答案为:.4.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为.【答案】﹣6.【解析】先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.5.如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为.【答案】9【解析】由∠ADE=60°,可证得△ABD∽△DCE;可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长.解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=AB﹣3;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE;∴,即;解得AB=9.故答案为:9.。
2024年北京朝阳区初三九年级上学期期末数学试题和答案
张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。
初三期末数学试题及答案
初三期末数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -85. 以下哪个方程的解是x = 2?A. x + 2 = 4B. x - 2 = 4C. 2x = 4D. 3x = 6答案:1. B 2. A 3. A 4. A 5. A二、填空题(每题1分,共5分)6. 一个数的绝对值是5,这个数是______。
7. 一个正比例函数y = kx,当x = 2时,y = 4,k的值是______。
8. 一个二次方程ax² + bx + c = 0的判别式是b² - 4ac,当判别式小于0时,方程______实数解。
9. 一个圆的半径是r,它的面积是______。
10. 一个数的立方根是2,这个数是______。
答案:6. ±5 7. 2 8. 没有9. πr² 10. 8三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2)² - 4(x - 3)²,当x = 1。
12. 解下列方程:2x - 5 = 3x + 1。
13. 化简下列分数:\(\frac{2x}{3} + \frac{5}{x - 2}\)。
答案:11. 712. x = -613. \(\frac{2x^2 - 4x + 15}{3(x - 2)}\)四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是2x,3x和4x,求它的体积。
15. 一个圆的半径是5厘米,求它的周长和面积。
答案:14. 体积是 \(24x^3\)。
九年级期末考试(数学)试题含答案
九年级期末考试(数学)(考试总分:120 分)一、单选题(本题共计8小题,总分24分)1.(3分)下列成语描述的事件是随机事件的是( )A.海枯石烂B.画饼充饥C.瓜熟蒂落D.守株待兔2.(3分)窗花剪纸是我国传统民间艺术。
在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)已知关于x的一元二次方程(a+3)x2-2x+a2-9=0有一个根为x=0,则a的值为( )A.0B.±3C.3D.-3x2+1先向左平移2个单位,再向下平移3个单位,得到的抛物线4.(3分)把抛物线y=25的解析式为( )(x−2)2+4A.y=25(x+2)2−2B.y=25(x+2)2−4C.y=25(x−2)2+2D.y=255.(3分)如图,在⊙O中,AE是直径,半径OC⊙弦AB于点D,连接BE,若AB=2√7,CD=1,则BE的长是( )A.5B.6C.7D.86.(3分)如图,将⊙ABC绕点C顺时针方向旋转40°,得⊙A′B′C.若AC⊙A′B′,则⊙A等于( )A.50°B.60°C.70°D.80°的图象过矩形OABC的顶点B,OA,OC分别在x轴、y 7.(3分)如图,反比例函数y=kx轴的正半轴上,矩形OABC的对角线OB,AC交于点E(1,2),则k的值为( )A.4B.8C.-4D.-88.(3分)如图,在四边形ABCD中,AD∥BC,⊙A=45°,⊙C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以√2cm/s的速度沿AB向终点B运动,点N以2cm/s 的速度沿折线AD—DC向终点C运动.设点N的运动时间为t(s),⊙AMN的面积为S(cm2),则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.二、填空题(本题共计8小题,总分24分)9.(3分)方程2x2-5=-6x化一般式为______.10.(3分)在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为______.11.(3分)已知抛物线y=x2-2x-3,则它的顶点坐标是______.12.(3分)在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a+b=______.13.(3分)一个圆锥的侧面积是底面积的4倍,则这个圆锥的侧面展开图的中心角的度数为______.14.(3分)若a,b是一元二次方程x2-2020x-2021=0的两根,则a2-2021a-b=______.15.(3分)如图,半径为2的⊙O中有弦AB,以AB为折痕对折,劣弧恰好经过圆心O,则弦AB的长度为______.16.(3分)如图,在Rt⊙ABC中,⊙C=90°,AC=8,BC=6,将⊙ABC绕点C旋转,得到⊙A′B′C,点A的对应点为A′,P为A'B'的中点,连接BP.在旋转的过程中,线段BP长度的最大值为______.三、解答题(本题共计9小题,总分72分)17.(8分)解一元二次方程(1).2(x+1)2=3(x+1);(2).2x2-9x+8=0.18.(6分)如图,⊙ABC是⊙O的内接三角形,⊙BAC的外角平分线AP交⊙O于点P,连接PB,PC.求证:PB=PC.19.(6分)如图,⊙ABC是直角三角形,⊙C=90°,将⊙ABC绕点B逆时针旋转60°至⊙DEB,点E落在AB上.DE延长线交AC所在直线于点F.(1).求⊙AFE的度数;(2).求证:AF+EF=DE.20.(6分)“黄冈名师课堂”'是集黄冈众多名师的网络课堂,自上线以来受到了广大师生,家长和社会各界的好评.经统计,2020年10月在线听课的学生为66250人次,12月在线听课学生增加至95400人次。
2023年人教版九年级数学(下册)期末试题(附答案)
2023年人教版九年级数学(下册)期末试题(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.已知12a b +=,则代数式223a b +﹣的值是( ) A .2 B .-2 C .-4 D .132- 7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:a 3-a =___________3.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________.4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_________(只添一个即可),使四边形ABCD 是平行四边形.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、B7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(1)(1)a a a -+3、-12或14、3x <-或1x >.5、BO=DO .6、 1三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、3x3、详略.4、(1)略;(2)45°;(3)略.5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。
2024年北京海淀区初三九年级上学期期末数学试题和答案
海淀九年级数学2024.1第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.我国古代典籍《周易》用“卦”描述万物的变化.下图为部分“卦”的符号,其中是中心对称图形的是()A.B. C. D.2.抛物线2(1)2y x =--+的顶点坐标是()A.()1,2- B.()1,2 C.()1,2-- D.()1,2-3.若关于x 的一元二次方程220x x m +-=有一个根为1,则m 的值为()A.3B.0C.2-D.3-4.在平面直角坐标系xOy 中,抛物线2y ax bx c =++如图所示,则关于x 的方程20ax bx c ++=的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.没有实数根5.如图,在O 中,AB 为直径,C ,D 为圆上的点,若51CDB ∠=,则CBA ∠的大小为()A.51B.49C.40D.396.如图,O 的半径为2,将O 的内接正六边形ABCDEF 绕点O 顺时针旋转,第一次与自身重合时,点A 经过的路径长为()A.2B.3π C.23π D.4π7.林业部门考察某种幼树在一定条件下的移植成活率,统计数据如下:移植总数m 1027075015003500700014000成活数n 823566213353180629212628成活的频率n m(结果保留小数点后三位)0.8000.8700.8830.8900.9090.8990.902下列说法正确的是()A.若移植10棵幼树,成活数将为8棵B.若移植270棵幼树,成活数不会超过235棵C.移植的幼树越多,成活率越高D.随着移植总数的增加,幼树移植成活的频率总在0.900左右摆动,显示出一定的稳定性,可以估计该幼树在同等条件下移植成活的概率为0.9008.如果一个圆的内接三角形有一边的长度等于半径,那么称其为该圆的“半径三角形”.给出下面四个结论:①一个圆的“半径三角形”有无数个;②一个圆的“半径三角形”可能是锐角三角形、直角三角形或钝角三角形;③当一个圆的“半径三角形”为等腰三角形时,它的顶角可能是30,120或150;④若一个圆的半径为2,则它的“半径三角形”面积最大值为上述结论中,所有正确结论的序号是()A.①②B.②③C.①②③D.①②④第二部分非选择题二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向下平移1个单位,得到的抛物线表达式为________.10.如图,由5个相同的正方形组成的十字形纸片沿直线AB 和EF 前开后重组可得到矩形ABCD ,那么②可看作①通过一次________得到(填“平移”“旋转”或“轴对称”).11.若关于x 的一元二次方程216ax =有整数根,则整数a 的值可以是________(写出一个即可).12.已知y 是x 的二次函数,表中列出了部分y 与x 的对应值:x 012y1-113.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度是________cm .图1图214.如图,PA ,PB 是O 的两条切线,切点分别为A ,B ,60P ∠=.若O 的半径为3,则图中阴影部分的面积为________(结果保留π).15.如图,将面积为25的正方形ABCD 的边AD 的长度增加a ,变为面积为22的矩形AEGF .若正方形ABCD 和矩形AEGF 的周长相等,则a 的值是________.16.小云将9张点数分别为19~的扑克牌以某种分配方式全部放入A ,B 两个不透明的袋子中(每个袋子至少放一张扑克牌),从两个袋子中各随机抽取一张扑克牌,将两张扑克牌的点数之和为k 这一事件的概率记为k P .(1)若将点数为1和2的扑克牌放入A 袋,其余扑克牌放入B 袋,则8P =________;(2)对于所有可能的分配方式以及所有的k ,k P 的最大值是________.三、解答题(共68分,第17-19题,每题5分,20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答写出文字说明、演算步骤或证明过程.17.解方程:21x x +=.18.已知22310a a -+=,求代数式()2(3)3a a a -++的值.19.如图,在ABC △中,45B ∠=,将ABC △绕点A 逆时针旋转得到AB C ''△,使点B '在BC 的延长线上.求证:BB C B '⊥''.20.已知关于x 的方程2220x mx m n -+-=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为符合条件的最小整数,且该方程的较大根是较小根的2倍,求m 的值.21.如图,P 是O 外一点,PA 与O 相切,切点为A .画出O 的另一条切线PB ,切点为B .小云的画法是:①连接PO ,过点A 画出PO 的垂线交O 于点B ;②画出直线PB .直线PB 即为所求.(1)根据小云的画法,补全图形;(2)补全下面的证明.证明:连接OA ,OB .OA OB = ,AB PO ⊥,PO ∴垂直平分AB ,OAB OBA ∠∠=.PA ∴=①.PAB ∠∴=②.PAO PBO ∠∠∴=.PA 是O 的切线,A 为切点,OA AP ∴⊥.90PAO ∠∴= .90PBO ∠∴= .OB PB ∴⊥于点B .OB 是O 的半径,PB ∴是O 的切线(③)(填推理的依据)。
2023北京西城区初三(上)期末数学试题及参考答案
2023北京西城初三(上)期末数 学满分100分,考试时间120分钟.第一部分选择题一、选择题(共16分,每题2分)1.二次函数y =(x -2)2+3的最小值是() A.3 B.2 C.-2 D.-32.中国传统扇文化有着深厚的文化底蕴,是中华民族文化的一个组成部分,在中国传统社会中,扇面形状的设计与日常生活中的图案息息相关,下列扇面图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.下列事件中是随机事件的是( )A.明天太阳从东方升起B.经过有交通信号灯的路口时遇到红灯C.平面内不共线的三点确定一个圆D.任意画一个三角形,其内角和是540︒4.如图,在O 中,弦AB ,CD 相交于点P ,45A ∠=︒,80APD ∠=︒,则B ∠的大小是( )A.35°B.45°C.60°D.70°5.抛物线221y x =−+通过变换可以得到抛物线()2213y x =−++,以下变换过程正确的是( )A.先向右平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向下平移2个单位D.先向左平移1个单位,再向上平移2个单位6.要组织一次篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排15场比赛,如果设邀请x 个球队参加比赛,那么根据题意可以列方程为( )A.215x =B.()115x x +=C.()115x x −=D. ()1152x x −=7. 如图,在等腰ABC 中,120A ∠=︒,将ABC 绕点C 逆时针旋转()090αα︒<<︒得到CDE ,当点A 的对应点D 落在BC 上时,连接BE ,则BED ∠的度数是( )A.30°B.45°C.55°D.75°8.下表记录了二次函数()220y ax bx a =++≠中两个变量x 与y 的5组对应值,其中121x x <<.根据表中信息,当02x −<<时,直线y k =与该二次函数图象有两个公共点,则k 的取值范围是( ). A. 726k << B. 726k <≤ C. 823k << D. 823k <≤第二部分非选择题二、填空题(共16分,每题2分)9.一元二次方程x 2﹣16=0的解是_____.10.已知O 的半径为5,点P 到圆心O 的距离为8,则点P 在O ______(填“内”“上”或“外”).11.若关于x一元二次方程230x x c ++=有两个相等的实数根,则c 的值为__________.12.圆心角是60°的扇形的半径为6,则这个扇形的面积是_____.13.点()3,M m 是抛物线2yx x 上一点,则m 的值是______,点M 关于原点对称的点的坐标是______.14.已知二次函数满足条件:①图像象过原点;②当1x >时,y 随x 的增大而增大,请你写出一个满足上述条件的二次函数的解析式:______.15.如图,在平面直角坐标系xOy 中,以点)A 为圆心,1为半径画圆,将A 绕点O 逆时针旋转的()0180αα︒<<︒得到A ',使得A '与y 轴相切,则α的度数是____.16.如图,AB 是O 的直径,C 为O 上一点,且AB OC ⊥,P 为圆上一动点,M 为AP 的中点,连接CM ,若O 的半径为2,则CM 长的最大值是_____.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题5分,第24-26题,每题6分,第27-28题,每题7分)17. 解方程:2420x x −+=18. 已知:点A ,B ,C 在O 上,且45BAC ∠=︒.求作:直线l ,使其过点C ,并与O 相切.作法:①连接OC ;②分别以点B ,点C 为圆心,OC 长为半径作弧,两弧交于O 外一点D ;③作直线CD .直线CD 就是所求作直线l .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面证明.证明:连接OB ,BD ,∵OB OC BD CD ===,∴四边形OBDC 菱形,∵点A ,B ,C 在O 上,且45BAC ∠=︒, ∴BOC ∠=______°(_________________)(填推理的依据).∴四边形OBDC 是正方形,∴90OCD ∠=︒,即OC CD ⊥,∵OC 为O 半径,∴直线CD 为O 的切线(_________________)(填推理的依据).19.已知二次函数2=23y x x −−.(1)将2=23y x x −−化成()2y a x h k =−+的形式,并写出它的顶点坐标; (2)在所给的平面直角坐标系中画出此函数的图象;(3)当12x −<<时,结合图象,直接写出函数值y 的取值范围.20.如图,AB 是O 的一条弦,点C 是AB 的中点,连接OC 并延长交劣弧AB 于点D ,连接OB ,DB ,若4AB =,1CD =,求BOD 的面积.21.在学习《用频率估计概率》时,小明和他的伙伴们设计了一个摸球试验:在一个不透明帆布袋中装有白球和红球共4个,这4个球除颜色外无其他差别,每次摸球前先将袋中的球搅匀,然后从袋中随机摸出1个球,观察该球的颜色并记录,再把它放回,在老师的帮助下,小明和他的伙伴们用计算机模拟这个摸球试验,下图显示的是这个试验中摸出一个球是红球的结果.(1)根据所学的频率与概率关系的知识,估计从这个不透明的帆布袋中随机摸出一个球是红球的概率是的是______,其中红球的个数是______;(2)如果从这个不透明的帆布袋中同时摸出两个球,用列举法求摸出的两个球刚好一个是红球和一个是白球的概率.22.如图,在四边形ABCD 中,AC ,BD 是对角线,将点B 绕点C 逆时针旋转60°得到点E ,连接AE ,BE ,CE .(1)求CBE ∠的度数;(2)若ACD 是等边三角形,且30ABC ∠=︒,3AB =,5BD =,求BE 的长.23. 已知关于x 的方程22x 2mx m 90−+−=.(1)求证:方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,且12x x >,若1225x x =+,求m 的值.24. 如图,在ABC 中,AB AC =,90BAC ∠=︒,点O 是AC 上一点,以O 为圆心,OA 长为半径作圆,使O 与BC 相切于点D ,与AC 相交于点E .过点B 作BF AC ∥,交ED 的延长线于点F .(1)若4AB =,求O 的半径;(2)连接BO ,求证:四边形BFEO 是平行四边形.25.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =−++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______;(2)求满足的函数关系2116y x bx c =−++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.26.在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++≠的对称轴为直线x t =,且320a b c ++=.(1)当0c 时,求t 的值;(2)点()12,y −,()21,y ,()33,y 在抛物线上,若0a c ,判断1y ,2y 与3y 的大小关系,并说明理由.27.如图,在ABC 中,AC BC =,90ACB ∠=︒,45APB ∠=︒,连接CP ,将线段CP 绕点C 顺时针旋转90°得到线段CQ ,连接AQ .(1)依题意,补全图形,并证明:AQ BP =;(2)求QAP ∠度数;(3)若N 为线段AB 的中点,连接NP ,请用等式表示线段NP 与CP 之间的数量关系,并证明. 28.给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点()1,2−−A ,()5,2B −,()1,4C −.(1)在点()4,0D −,()2,2E ,()6,0F 中,与点O 关于线段AB 双对合的点是______;(2)点K 是x 轴上一动点,K 的直径为1. ①若点A 与点()0,T t 关于K 双对合,求t 的取值范围;②当点K 运动时,若ABC 上存在一点与K 上任意一点关于K 双对合,直接写出点K 横坐标k 的取值范围.的参考答案第一部分选择题一、选择题(共16分,每题2分)1.【答案】A【解析】【分析】根据二次函数的性质解答即可.【详解】二次函数y=(x-2)2+3,当x=2时,最小值是3,故选A.【点睛】本题考查的是二次函数的最值,掌握二次函数的性质是解题的关键.2.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故A选项不合题意;B.是轴对称图形,不是中心对称图形,故B选项不符合题意;C.既是轴对称图形,又是中心对称图形,故C选项合题意;D.是轴对称图形,不是中心对称图形,故D选项不合题意.故选:C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.3.【答案】B【解析】【分析】根据随机事件的定义,逐项判断即可求解.【详解】解:A.明天太阳从东方升起,是必然事件,故本选项不符合题意;B.经过有交通信号灯的路口时遇到红灯,是随机事件,故本选项符合题意;C.平面内不共线的三点确定一个圆,是必然事件,故本选项不符合题意;D.任意画一个三角形,其内角和是540︒,是不可能事件,故本选项不符合题意;故选:B.【点睛】本题主要考查的是必然事件、不可能事件、随机事件的概念,熟练掌握必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.4.【答案】A【解析】【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得C ∠,再根据同弧所对的圆周角相等,即可得到答案.【详解】解:C A APD ∠+∠=∠,45A ∠=︒,80APD ∠=︒,804535C APD A ∴∠=∠−∠=︒−︒=︒,35B C ∴∠=∠=︒,故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.5.【答案】D【解析】【分析】由平移前后的解析式,结合平移法则即可得解;【详解】解:抛物线221y x =−+通过先向左平移1个单位,再向上平移2个单位可以得到抛物线()2213y x =−++,故选择:D【点睛】本题考查抛物线的平移.熟练掌握二次函数平移规律是解题的关键.6.【答案】D【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数()112x x =−,由此可得出方程.【详解】解:设邀请x 个队,每个队都要赛()1x −场,但两队之间只有一场比赛, 由题意得(1)152x x −=. 故选:D .【点睛】本题考查了由实际问题抽象一元二次方程的知识,解决本题的关键是读懂题意,得到总场数与球队之间的关系.7.【答案】B【解析】【分析】由等腰三角形的性质和三角形内角和定理,得30ABC ACB ∠=∠=︒,根据旋转的性质,得BC CE =,30DCE DEC ABC ACB ∠=∠=∠=∠=︒,再由等腰三角形和三角形内角和定理得()118030752CBE CEB ∠=∠=︒−︒=︒,即可求得BED BEC CED ∠=∠−∠. 【详解】解:AB AC =,120A ∠=︒,30ABC ACB ∴∠=∠=︒,由旋转得,BC CE =,30DCE DEC ABC ACB ∠=∠=∠=∠=︒,()118030752CBE CEB ∴∠=∠=︒−︒=︒, 753045BED BEC CED ∴∠=∠−∠=︒−︒=︒,故选:B .【点睛】本题考查了旋转的性质,等腰三角形的性质和三角形内角和定理,熟练掌握知识点是解题的关键.8.【答案】C【解析】【分析】根据表中数据得出对称轴=1x −,进而得到抛物线与x 轴的交点,利用交点式得到()()31y a x x =+−,从而得到二次函数表达式为224233y x x =−−+,根据当502x −<<时,直线y k =与该二次函数图像有两个公共点,可得823k <<. 【详解】解:由()()53m m −,、,可得抛物线对称轴5312x −+==−, 又由()()1,01,0x 、以及对称轴=1x −可得13x =−,()()3,01,0∴−、,则设抛物线交点式为()()31y a x x =+−,()()()22312323y a x x a x x ax ax a =+−=+−=+−与()220y ax bx a =++≠对比可得32a −=,解得23a =−, ∴二次函数表达式为224233y x x =−−+, ∴当52x =−时,2557313226y ⎛⎫⎛⎫=−−+−−= ⎪⎪⎝⎭⎝⎭; 当0x =时,2y =; 当=1x −时,()()28131133y =−−+−−=, 78263<<,当502x −<<时,直线y k =与该二次函数图像有两个公共点, ∴823k <<, 故选:C【点睛】本题考查二次函数图像与性质,掌握二次函数表达式的求法是解决问题的关键. 第二部分非选择题二、填空题(共16分,每题2分)9.【答案】x 1=﹣4,x 2=4【解析】【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x 2=16,开方得:x =±4,解得:x 1=﹣4,x 2=4.故答案为:x 1=﹣4,x 2=4【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键. 10.【答案】外【解析】【分析】点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外⇔d r ;②点P 在圆上⇔d r =;③点P 在圆内⇔d r <,由此即可判断; 【详解】解:=5r ,8d =, d r ∴>,∴点P 在O 外,故答案为:外.【点睛】本题考查点与圆的位置关系,记住:①点P 在圆外⇔d r ;②点P 在圆上⇔d r =;③点P 在圆内⇔d r <是解题的关键.11.【答案】94【解析】【分析】根据判别式0∆=求解即可.【详解】解:∵一元二次方程230x x c ++=有两个相等的实数根,∴2340c ∆=−=,解得94c =. 故答案为:94. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 12.【答案】6π【解析】【分析】根据扇形的面积公式S =2π360n r 计算,即可得出结果.【详解】解:该扇形的面积S =2606360π⨯=6π. 故答案为6π.【点睛】本题考查了扇形面积的计算,熟记扇形的面积公式是解题的关键.13.【答案】①.6②.(3,6)−−【解析】 【分析】将()3,M m 代入二次函数解析式,得出()36M ,,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:∵点()3,M m 是抛物线2yx x 上一点,∴2336m =−=, ∴()36M ,,∴点M 关于原点对称的点的坐标是(3,6)−−,故答案为:6,(3,6)−−.【点睛】本题考查了二次函数的性质,关于原点对称的点的坐标特征,求得点()36M ,是解题的关键.14. 【答案】22y x x =−(答案不唯一)【解析】【分析】根据二次函数的图像与性质可以得出各系数的取值范围,举一例即可.【详解】解:图像过原点,∴可以设解析式为:()1y ax x x =−,当1x >时,y 随x 的增大而增大,∴0a >,开口向上,且对称轴112x x =≤, 即12x ≤, ∴可以设二次函数为()1y ax x x =−,满足102a x >≤,均可.故答案不唯一,如:22y x x =−.【点睛】本题考查二次函数的图像与性质,掌握二次函数的图像与各系数间的关系是解题的关键. 15.【答案】45︒或135︒【解析】【分析】分析可知:A 在以O 为半径的圆上运动,分情况讨论,当A 转到A '时,OA '=,作A B y '⊥轴与点B ,利用勾股定理可知1OB =,进一步可求出旋转角度为45︒;当A 转到A ''时,OA ''=A C x '⊥轴与点C ,利用勾股定理可知1OC =,进一步可求出旋转角度为135︒.【详解】解:∵)A ,将A 绕点O 逆时针旋转()0180αα︒<<︒得到A '∴A 在以O 为半径的圆上运动,当A 转到A '时,OA '=,作A B y '⊥轴于点B ,∵A '半径为1,A '与y 轴相切,∴1BA '=,由勾股定理可得:1OB ===, ∴OBA '为等腰直角三角形,∴45BOA '∠=︒,45AOA '∠=︒,即旋转角度为45︒;当A 转到A ''时,OA ''=A C x '⊥轴于点C ,∵A ''半径为1,A ''与y 轴相切,∴1CA ''=,由勾股定理可得:1OC ===, ∴OCA ''△为等腰直角三角形,∴45COA ''∠=︒,18045135AOA ''∠=︒−︒=︒,即旋转角度为135︒;故答案为:45︒,135︒【点睛】本题考查圆与切线,旋转,等腰直角三角形,勾股定理,解题的关键是掌握切线的性质,旋转,理解A 在以O16.1##1+【解析】【分析】连接OM ,PB ,取AO 中点D ,连接CD DM 、、PB ,AB 是⊙O 的直径,可推出90APB ∠=︒和AMO APB ~,由此可知90APB AMO ∠=∠=︒,则M 在以AO 为直径的圆上,当CM 与D 点重合时,CM 最大,根据AB OC ⊥求出CD 长代入即可.【详解】解:连接OM ,PB ,∵AB 是⊙O 的直径,∴90APB ∠=︒,∵M 为AP 的中点,O 为AB 的中点,∴AMO APB ~,∴90APB AMO ∠=∠=︒,取AO 中点D ,连接CD DM 、,∴M 在以AO 为直径的圆上,∵三角形两边之和大于第三边,且O 的半径为2,∴1DM =,∴当CM 与D 点重合时,CM 最大,∴CM CD DM =+,∵AB OC ⊥,∴CD ==,∴1CM =,1+.【点睛】本题考查了直径所对的圆周角是90︒及三角形的中位线的性质,熟练掌握数形结合思想是解题关键. 三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题5分,第24-26题,每题6分,第27-28题,每题7分)17.【答案】12x =+22x =;【解析】【分析】选用配方法可解此方程.【详解】解:x 2-4x+2=0x 2-4x+4-2=0(x-2)2=2∴x-2=解得:12x =+22x =故答案为12x =,22x =【点睛】本题考查了选用适当的方法解一元二次方程.18.【答案】(1)见解析;(2)90°;一条弧所对的圆周角等于它所对的圆心角的一半;经过半径的外端并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)按照题中作法步骤作图即可;(2)根据圆周角定理和切线的判定定理填空.【小问1详解】解:补全图形,如图所示;【小问2详解】90°;一条弧所对的圆周角等于它所对的圆心角的一半;经过半径的外端并且垂直于这条半径的直线是圆的切线.【点睛】本题考查作图-复杂作图,圆周角定理,切线的判断和性质,熟练掌握知识点是解题的关键.19.【答案】(1)2(1)4y x =−−,()1,4−(2)见解析(3)40y −≤<【解析】 【分析】(1)运用配方法将原解析式化为顶点式即可;(2)根据(1)所得的顶点式解析式,利用五点作图法直接画出图像即可;(3)根据函数图像确定当12x −<<时对应的y 的取值范围即可.【小问1详解】2=23y x x −−22113x x =−+−−2(1)4x =−−.【小问2详解】列表如下:【小问3详解】由图象可得,当12x −<<时,4<0y −≤.【点睛】本题主要考查了二次函数的顶点式、二次函数的图象、二次函数的性质等知识点,准确画出二次函数的图象成为解答本题的关键.20.【答案】52【解析】【分析】设O 的半径为x ,由垂径定理得出BC ,用含x 的式子表示OC ,再根据勾股定理列方程解得半径的长,即可求解.【详解】解:设OD x =,则OB x =.点C 是AB 的中点,OC 过圆心O ,OC AB ∴⊥.4AB =,1CD =,122BC AB ∴==,1OC OD CD x =−=−. 在Rt BCO △中,222OB OC BC =+,222(1)2x x ∴=−+.解得,52x =.52OD ∴=. 1522BOD S OD BC =⋅⋅=∴. 【点睛】本题考查了垂径定理,勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解题的关键. 21.【答案】(1)0.75,3(2)12【解析】【分析】(1)根据图表中的频率分布可估计概率,再利用总数乘以概率可得红球个数;(2)列出表格,利用概率公式计算.【小问1详解】解:由图表可知:摸出红球的频率分布在0.75上下,则可估计随机摸出一个球是红球的概率是0.75,红球的个数是:40.753⨯=,故答案为:0.75,3;小问2详解】 由(1)可知帆布袋中有3个红球和1个白球. 列表如下:(白,红1),(白,红2),(白,红3),(红1,红2),(红1,红3),(红2,红3),且这些结果出现的可能性相等,其中摸出的两个球刚好一个是红球和一个是白球(记为事件A )共有3种结果,即(白,红1),(白,红2),(白,红3), 所以31()62P A ==. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了利用频率估计概率.22.【答案】(1)60︒(2)4【解析】【分析】(1)根据旋转的性质得到CB CE =,60BCE ∠=︒,进而证明BCE 为等边三角形,即可得到答案;(2)首先证明ACE DCB ≅,之后在Rt ABE 中根据勾股定理得到BE 的长.【小问1详解】 解:将点B 绕点C 逆时针旋转60︒得到点E ,CB CE ∴=,60BCE ∠=︒,BCE ∴△是等边三角形,60CBE ∴∠=︒.【小问2详解】解:ACD 是等边三角形,AC DC ∴=,60ACD ∠=︒ ,ACE DCB ∴∠=∠,又CB CE =,ACE DCB ∴≅ ,AE BD ∴=,5BD =,5AE ∴=.60CBE ∠=︒,30ABC ∠=︒,90ABE ∴∠=︒,∴在Rt ABE 中,B E3AB =,4BE ∴=.【点睛】本题主要考查旋转的性质,等边三角形的判定性质,全等三角形的判定与性质,勾股定理,掌握相关定理是解题的关键.23.【答案】(1)见解析;(2)4−.【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出0∆>,由此可证出此方程有两个不相等的实数根; (2)解方程,再由12x x >,1225x x =+,即可得到关于m 的一元一次方程,解之即可得出结论.【小问1详解】证明:()()222419m m ∆=−−⨯⨯−224436m m =−+360=>.∴方程有两个不相等的实数根.【小问2详解】解:解方程,得22622m m x ±±==,12x x >,13x m ∴=+,23x m =−.1225x x =+,()2335m m ∴+=−+.4m ∴=−.【点睛】本题考查了根的判别式、根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系的表达式,并会熟练计算.24.【答案】(1)4;(2)见解析.【解析】【分析】(1)连接OD ,由⊙O 与AB 相切于点A ,与BC 相切于点D ,得到90ODC OD DC ∠=︒=,,由切线长定理得:4BD AB ==,由勾股定理求出BC =O 的半径.(2)连接AD ,交OB 于点H ,由AE 是⊙O 的直径,得到90ADE ∠=︒.根据AB BC ,与⊙O 分别相切于点A ,D ,证得90AHO ∠=︒.得到OB EF ∥.即可证得四边形BFEO 是平行四边形.【小问1详解】解:连接OD ,如图.∵在ABC 中,90AB AC BAC =∠=︒,,∴⊙O 与AB 相切于点A ,45ACB ∠=︒.∵OD 是⊙O 的半径,⊙O 与BC 相切于点D ,∴OD BC ⊥.∴90ODC OD DC ∠=︒=,.∵4AB =,∴由切线长定理得:4BD AB ==,由勾股定理得:BC =.∴ 4OD DC ==−.∴⊙O的半径是4.【小问2详解】证明:连接AD ,交OB 于点H ,如图.∵AE 是⊙O 的直径,∴90ADE ∠=︒.∵AB BC ,与⊙O 分别相切于点A ,D ,∴BD AB ABO DBO =∠=∠,.∴OB AD ⊥.∴90AHO ∠=︒.∴AHO ADE ∠=∠.∴OB EF ∥.∵BF AC ∥,∴ 四边形BFEO 是平行四边形.【点睛】此题考查了圆的切线的性质定理,切线长定理,直径所对的圆周角是直角,平行四边形的判定定理,熟记各定理是解题的关键.25.【答案】(1)()0,70A ,()40,30P ;(2)21370162y x x =−++; (3)18m【解析】【分析】(1)70m OA =,落点P 的水平距离是40m ,竖直高度是30m ,即可得到点A 、P 的坐标; (2)用待定系数法求解即可;(3)由60m OC =,先求出直线BC 的表达式,作MN y ∥轴交抛物线和直线BC 于点M 、N ,用含未知数m 的式子表示MN ,再根据二次函数的性质进行判断即可.小问1详解】 解:70m OA =,落点P 的水平距离是40m ,竖直高度是30m , ()0,70A ∴,()40,30P ;【小问2详解】 解:把()0,70A ,()40,30P 代入2116y x bx c =−++【得,270130404016c b c =⎧⎪⎨=−⨯++⎪⎩, 解得,3270b c ⎧=⎪⎨⎪=⎩,21370162y x x ∴=−++; 【小问3详解】解:60m OC =,∴设直线BC 的表达式为()600y kx k =+≠, 把()40,30P 代入,得304060k =+, 解得,34k =−, 3604y x ∴=−+,设213,70162M m m m ⎛⎫−++ ⎪⎝⎭到BC 竖直方向上的距离最大,作MN y ∥轴交抛物线和直线BC 于点M 、N , ∴3,604N m m ⎛⎫−+ ⎪⎝⎭, 213370601624MN m m m ⎛⎫∴=−++−−+ ⎪⎝⎭21910164m m =−++()22213618181016m m =−−+−+()21811810164m =−−++()2112118164m =−−+()2118016m −−≤, ∴当18m =时,MN 最大,即水平距离为18m 时,运动员与着陆坡BC 竖直方向上的距离达到最大.【点睛】本题考查了二次函数的实际应用,待定系数法求解析式,二次函数图象的性质,熟练掌握知识点是解题的关键.26.【答案】(1)34(2)231y y y <<【解析】【分析】(1)由320a b c ++=,0c ,可得320a b +=,根据对称轴为直线2b x a=−即可求解; (2)根据320a b c ++=,求得对称轴2b x t a ==−的范围,再将点()12,y −根据对称性转化到对称轴右侧,再根据0a c 得抛物线开口向上,y 随x 的增大而增大,即可得出答案.【小问1详解】当0c 时,得320a b +=, 32b a ∴=−, 332224a b t a a −∴=−==; 【小问2详解】320a b c ++=, 32a c b +∴=−, 333222444a cb ac c t a a a a +−+∴=−=−==+, 0a c >>, 1044c a ∴<<, 314t ∴<<, 点()12,y −关于直线x t =的对称点的坐标是()122,t y +,72242t ∴<+<. 1322t ∴<<+.0a >,∴当x t >时,y 随x 的增大而增大.231y y y ∴<<.【点睛】本题考查了二次函数的性质,主要涉及到二次函数的开口方向、对称性以及增减性,熟知二次函数的基本性质是解决函数问题的关键.27.【答案】(1)画图和证明见解析;(2)135°(3)CP =,证明见解析.【解析】【分析】(1)先根据题意画出对应的图形,只需要利用SAS 证明BCP ACQ ≌即可证明AQ BP =; (2)连接QP ,如图所示.先由等腰直角三角形的性质得到45CQP CPQ ∠=∠=︒.再证明APQ CPB ∠=∠.由全等三角形的性质得到CQA CPB ∠=∠.则可以推出45APQ PQA ∠+∠=︒,利用三角形内角和定理即可得到180135QAP APQ PQA ∠=︒−−=︒∠∠;(3)如图所示,延长PN 至K ,使得NK PN =,连接AK .证明ANK BNP ≌.得到KAN PBN ∠=∠,AK BP =,则AK BP ∥.进一步证明135KAP ∠=︒.得到KAP QAP ∠=∠.由此证明KAP QAP ≌,得到KP QP =.在等腰直角PCQ △中,CP CQ =,则KP QP ==,即可证明CP =.【小问1详解】补全图形,如图所示.证明:∵ 线段CP 绕点C 顺时针旋转90°得到线段CQ ,∴90CP CQ PCQ =∠=︒,∵90ACB ∠=︒,∴BCP ACQ ∠=∠,∵AC BC =,∴()SAS BCP ACQ ≌∴AQ BP =;【小问2详解】解:连接QP ,如图所示.由(1)可得PCQ △是等腰直角三角形,∴45CQP CPQ ∠=∠=︒.∴45CQA PQA ∠∠=︒+.∵45APB ∠=︒,∴APQ CPB ∠=∠.由BCP ACQ ≌可得CQA CPB ∠=∠.∴45APQ PQA ∠+∠=︒.∴180135QAP APQ PQA ∠=︒−−=︒∠∠;【小问3详解】解;CP =,理由如下:如图所示,延长PN 至K ,使得NK PN =,连接AK .∵N 为线段AB 的中点,∴AN BN =.∵ANK BNP ∠=∠,∴()SAS ANK BNP ≌.∴KAN PBN ∠=∠,AK BP =.∴AK BP ∥,AK AQ =.∴180KAP APB ∠+∠=︒.∵45APB ∠=︒,∴135KAP ∠=︒.∵135QAP ∠=︒,∴KAP QAP ∠=∠.由BCP ACQ ≌可得AQ BP =,∴AK AQ =,∵AP AP =,∴()SAS KAP QAP ≌.∴KP QP =.∵在等腰直角PCQ △中,CP CQ =,∴KP QP ==.∵2KP NP =,∴CP =.【点睛】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定,三角形内角和定理,勾股定理等,正确作出辅助线构造全等三角形是解题的关键.28.【答案】(1)D ,F ;(2)①2−−t ≤≤2−+52−k ≤≤12或3k ≤≤3+ 【解析】【分析】(1)根据双对合的定义逐一判断即可得到答案;(2)①由双对合定义可知随着直径GH 的端点G ,H 在K 上运动,点1A 在以点A 为圆心,2为半径的圆上及其内部(不含点A ),由此求出取值范围;②找出临界图形,计算可以求出取值范围.【小问1详解】 由双对合定义可知:12MN PQ MN PQ =,, ()1,2−−A ,()5,2B −,6AB AB x ∴=,轴,()4,0D −,()6,0F ,46OD OF OD AB OF AB ∴==,,,,∴O 关于线段AB 的双对合点是D ,F ;故答案为D ,F ;【小问2详解】①设GH 是K 上任意一条直径,则1GH =.设点1A 是与点A 关于K 双对合的点,将点A 和点1A 分别关于点G ,H 对称后重合的点记为2A ,所以点G ,H 分别是2AA 和12A A 的中点.由三角形中位线的知识,可知1AA 22GH ==.随着点G ,H 在K 上运动,点1A 在以点A 为圆心,2为半径的圆上及其内部(不含点A ),将它记为S .因为点A 与点()0T t ,关于K 双对合,所以当S 与y 轴相交时,可求得t 的值为2−−2−+所以t 的取值范围是2−t ≤≤2−②当ABC 上的一点在AC 上时,如图,则K 上离AC 最近的点到AC 的距离为:1112k ⎛⎫−−+≤ ⎪⎝⎭时存在,解得5122k −≤≤;当ABC 上的一点在BC 上时,则K 上的点离BC 最近的点到BC 的距离不大于1, 即K 到BC 的距离不大于32, AC AB 6==,B C 45∠∠∴==︒,即BC 与x 轴的的夹角为45°,∴交点()30M ,,这时MK ≤,即33k ≤≤;当ABC 上的一点在BC 上时,则K 上的点离AB 最近的点到AB 的距离大于1,不存在;综上所述:52−k ≤≤12或3k ≤≤3+【点睛】本题考查新定义,能正确理解新定义并转化为所学知识解决问题是解题的关键.。
2022-2023学年人教版九年级数学第一学期期末测试题含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。
(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。
数学期末测试卷及答案初三
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -3/42. 已知a,b是方程x^2 - 4x + 3 = 0的两个实数根,则a + b的值是()A. 3B. 4C. 5D. 63. 下列函数中,一次函数是()A. y = x^2 - 2x + 1B. y = 2x + 3C. y = √xD. y = log2x4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°5. 已知正方体的体积为64立方厘米,则其棱长是()A. 2厘米B. 4厘米C. 8厘米D. 16厘米6. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + 2abB. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab + b^27. 下列命题中,正确的是()A. 平行四边形的对角线相等B. 矩形的对角线互相垂直C. 等腰三角形的底角相等D. 直角三角形的两条直角边相等8. 已知等差数列{an}的首项为a1,公差为d,则第n项an可以表示为()A. an = a1 + (n - 1)dB. an = a1 - (n - 1)dC. an = a1 + (n + 1)dD. an = a1 - (n + 1)d9. 下列各式中,正确的是()A. (x + y)^2 = x^2 + y^2B. (x - y)^2 = x^2 - y^2C. (x + y)^2 = x^2 + 2xy + y^2D. (x - y)^2 = x^2 - 2xy + y^210. 下列各数中,无理数是()A. √9B. 3.1415926…C. -√16D. 2/3二、填空题(每题5分,共50分)11. 若a = 3,b = -2,则a^2 + b^2 = ________。
2024年北京燕山区初三上学期期末考数学试卷和答案
燕山地区2023—2024学年第一学期九年级期末考试数学试卷2024.1一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.....1.下列图案是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D .2.已知点P 在半径为r 的⊙O 内,且OP =3,则r 的值可能为A .1B .2C .3D .43.下列函数中,当0x >时,y 随x 的增大而减小的是A .y =xB .y =1x +C .y =2x D .y =2x -4.一个小球在如图所示的地板上自由滚动,并随机停留在某块方砖上.如果每一块方砖除颜色外完全相同,则小球最终停留在白砖上的概率是A .13B .49C .59D .235.如图,点A ,B 在⊙O 上,点C 是劣弧AB ︵的中点,∠AOC =80°,则∠CDB 的大小为A .40°B .45°C .60°D .80°6.电影《志愿军:雄兵出击》于国庆档上映,首周累计票房约3.5亿元,第三周累计票房约6.8亿元.若每周累计票房的增长率相同,设增长率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1 6.8)x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x -=7.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点都在格点上,则△ABC 外接圆的圆心坐标为A .(3,2)B .(2,3)C .(2,2)D .(3,3)8.平面直角坐标系xOy 中,已知二次函数y =ax 2+bx (a ≠0)的部分图象如图所示,给出下面三个结论:①a •b >0;②二次函数y =ax 2+bx (a ≠0)有最大值4;③关于x 的方程ax 2+bx =0有两个实数根14=-x ,20=x .上述结论中,所有正确结论的序号是A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.平面直角坐标系xOy 中,与点P (-4,1)关于原点对称的点的坐标是.10.一元二次方程(3)3x x x -=-的解是.11.将抛物线212y x =向左平移1个单位长度,得到抛物线的解析式为.12.已知某二次函数的图象开口向上,且顶点坐标为(1,3),则这个二次函数解析式可以是.13.如图,P A ,PB 是⊙O 的两条切线,切点为A ,B ,若∠AOB =90°,P A =3,则⊙O 的半径为.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AD ,若OE =3,CD =8,则AD 的长为.15.在一个不透明的盒子中共装有40个球,其中有a 个红球,这些球除颜色外无其他差别.为估计a 的值,小颖做摸球试验,她将盒子里面的球充分搅匀,任意摸出1个球记下颜色再放回,不断重复上述过程,记录实验数据如下:摸球的次数n 2050100200300400500摸到红球的次数m133262117181238301摸到红球的频率mn0.650.640.620.5850.6030.5950.602根据以上数据,估计a 的值约为.16.2023年第19届杭州亚运会的举办带热了吉祥物“宸宸、琮琮和莲莲”的销售.某网店经营亚运会吉祥物玩偶礼盒装,每盒进价为30元.当地物价部门规定,该礼盒销售单价最高不能超过50元/盒.在销售过程中发现该礼盒每周的销量y (件)与销售单价x (元)之间近似满足函数关系:2180-y x =+(30≤x ≤50).(1)设该网店每周销售该礼盒所获利润为w (元),则w 与x 的函数关系式为;(2)该网店每周销售该礼盒所获最大利润为元.(第14题)(第13题)宸宸琮琮莲莲三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.解方程:220+-=.41x x18.已知250-,求代数式22=x x-x x x-+-的值.3(2)(1)19.2023年7月31日,北京遭遇140年以来最大的暴雨,房山地区受灾严重.为了做好防汛救灾工作,某社区特招募志愿工作者,小东和小北积极报名参加,根据社区安排,志愿者被随机分到A组(信息登记),B组(物资发放),C组(垃圾清运)的其中一组.(1)小东被分配到A组是事件(填“必然”,“随机”或“不可能”);小东被分配到A组的概率是.(2)请用列表或画树状图的方法,求出小东和小北被分配到同一组的概率.20.如图,将△ABC绕点B逆时针旋转得到△DBE,点C的对应点E恰好落在AB上.(1)若BC=6,BD=9,求线段AE的长.(2)连接AD,若∠C=110°,∠BAC=40°,求∠BDA的度数.21.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以x2+10x=39为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+)2,另一方面它又等于图中各部分面积之和,因为x2+10x=39,可得方程(x+)2=39+,则方程的正数解是x =.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程x 2-6x =7的正数解的正确构图是(填序号).22.已知关于x 的一元二次方程22(2)0x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,请你写出一个满足条件的m 值,并求出此时方程的根.23.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.24.如图,在△ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径作⊙O 与BC 相切于点E ,连接DE 并延长交AC 的延长线于点F .(1)求证:AF =AD ;(2)若CE =4,CF =2,求⊙O 的半径.图1①②25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A 和场景B 下做对比实验,设实验过程中,该试剂挥发时间为x 分钟时,在场景A ,B 中的剩余质量分别为y 1,y 2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y 1,y 2与x 的几组对应值如下:x (分钟)05101520…y 1(克)2523.52014.57…y 2(克)252015105…(1)在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)进一步探究发现,场景A 的图象是抛物线的一部分,y 1与x 之间近似满足函数关系210.04+y x bx c =-+.场景B 的图象是直线的一部分,y 2与x 之间近似满足函数关系2y ax c =+(a ≠0).请分别求出场景A ,B 满足的函数关系式;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用.在上述实验中,记该化学试剂在场景A ,B 中发挥作用的时间分别为x A ,x B ,则x A x B (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.27.如图,△ABC 为等边三角形,点M 为AB 边上一点(不与点A ,B 重合),连接CM ,过点A 作AD ⊥CM 于点D ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接BE .(1)依题意补全图形,直接写出∠AEB 的大小,并证明;(2)连接ED 并延长交BC 于点F ,用等式表示BF 与FC 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于⊙C 和⊙C 外一点P 给出如下定义:连接CP 交⊙C 于点Q ,作点P 关于点Q 的对称点P′,若点P′在线段CQ 上,则称点P 是⊙C 的“关联点”.例如,图中P 为⊙C 的一个“关联点”.(1)⊙O 的半径为1.①如图1,在点A (2-,0),B (2,2),D (0,3)中,⊙O 的“关联点”是;②已知点M 在直线323y x =-上,且点M 是⊙O 的“关联点”,求点M 的横坐标m 的取值范围.(2)直线31()y x =--与x 轴,y 轴分别交于点E ,点F ,⊙T 的圆心为T (t ,0),半径为2,若线段..EF ..上所有点....都是⊙T 的“关联点”,直接写出t 的取值范围.图1备用图燕山地区2023—2024学年第一学期九年级期末考试数学试卷答案及评分参考2024年1月阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
初三数学期末考试练习试题及答案
初三数学期末考试练习试题及答案初三数学期末考试练习试题及答案初三数学期末考试练习试题一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×1062.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.54.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.55.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>47.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是 .12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 .13.分解因式:3ax2﹣3ay2= .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .三、解答题(共60分)20.(﹣1)0+()﹣2﹣.21.先化简,再求值:,其中.22.解不等式组:,并把解集在数轴上表示出来.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.参考答案与试题解析一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于43万有6位,所以可以确定n=6﹣1=5.解答:解:43万=430000=4.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n 值是关键.2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选:C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:数形结合.分析:根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.解答:解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.点评:本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:首先根据抛物线y=x2与直线y=x交于A点,即可得出A 点坐标,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.解答:解:∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.点评:此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是x≥2 .考点:二次根式有意义的条件.专题:计算题.分析:让二次根式的被开方数为非负数列式求解即可.解答:解:由题意得:3x﹣6≥0,解得x≥2,故答案为:x≥2.点评:考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 k<0 .考点:一次函数图象与系数的关系.分析:根据一次函数经过的象限确定其图象的增减性,然后确定k 的取值范围即可.解答:解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故答案为:k<0.点评:本题考查了一次函数的图象与系数的关系,解题的关键是根据图象的位置确定其增减性.13.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.解答:解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .考点:概率公式.分析:由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.解答:解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .考点:根与系数的关系;一元二次方程的解.分析:根据题意可知,x1+x2=,然后根据方程解的定义得到3x12=x1+1,然后整体代入3x12﹣2x1﹣x2计算即可.解答:解:∵x1,x2是方程3x2﹣x﹣1=0的两个实数根,∴x1+x2=,∵x1是方程x2﹣5x﹣1=0的实数根,∴3x12﹣x1﹣1=0,∴x12=x1+1,∴3x12﹣2x1+x2=x1+1﹣2x1﹣x2=1﹣(x1+x2)=1﹣=.故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系x1+x2=﹣,x1x2=,以及一元二次方程的解.16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.解答:解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣3=0,a﹣b=0,解得a=b=3,所以,ab=33=27,所以,ab的倒数是.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 4+2 .考点:解一元二次方程-因式分解法;平行四边形的性质.专题:计算题.分析:先解方程求得a,再根据勾股定理求得AB,从而计算出?ABCD的周长即可.解答:解:∵a是一元二次方程x2+2x﹣3=0的根,∴(x﹣1)(x+3)=0,即x=1或﹣3,∵AE=EB=EC=a,∴a=1,在Rt△ABE中,AB==a=,∴?ABCD的周长=4a+2a=4+2.故答案为:4+2.点评:本题考查了用因式分解法解一元二次方程,以及平行四边形的性质,是基础知识要熟练掌握.19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 y=﹣ .考点:待定系数法求反比例函数解析式;平行四边形的性质.专题:待定系数法.分析:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.解答:解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:本题主要考查了平行四边形的性质(对边平行且相等)、利用待定系数法求反比例函数的解析式.解答反比例函数的解析式时,还借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.三、解答题(共60分)20.(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,即可得到结果.解答:解:原式=1+4﹣=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.先化简,再求值:,其中.考点:分式的化简求值;约分;分式的乘除法;分式的加减法.专题:计算题.分析:先算括号里面的减法,再把除法变成乘法,进行约分即可.解答:解:原式=&pide;()=×=,当x=﹣3时,原式==.点评:本题主要考查对分式的加减、乘除,约分等知识点的理解和掌握,能熟练地运用法则进行化简是解此题的关键.22.解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x≥﹣2和x<1,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.解答:解:,由①得:x≥﹣2,由②得:x<1,∴不等式组的解集为:﹣2≤x<1,如图,在数轴上表示为:.点评:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?考点:扇形统计图;统计表.分析:(1)根据扇形统计图中的捐款81元以上的认识和其所占的百分比确定全班人数即可;(2)分别确定每个小组的人数,最后确定捐款数在21﹣40元的人数即可.解答:解:(1)4&pide;8%=50答:全班有50人捐款.(2)∵捐款0~20元的人数在扇形统计图中所占的圆心角为72°∴捐款0~20元的人数为50×=10∴50﹣10﹣50×32%﹣6﹣4=14答:捐款21~40元的有14人.点评:本题考查了扇形统计图及统计表的知识,解题的关键是确定总人数.24.四张扑克牌的'点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.考点:列表法与树状图法;概率公式.分析:(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.解答:解:(1)根据数字2,3,4,8中一共有3个偶数,故从中随机抽取一张牌,这张牌的点数偶数的概率为:;(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:根据树状图可知,一共有12种情况,两张牌的点数都是偶数的有6种,故连续抽取两张牌的点数都是偶数的概率是:=.点评:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)考点:反比例函数与一次函数的交点问题.分析:(1)先把先把(1,2)代入双曲线中,可求k,从而可得双曲线的解析式,再把y=﹣4代入双曲线的解析式中,可求m,最后把(1,2)、(﹣,﹣4)代入一次函数,可得关于a、b的二元一次方程组,解可求a、b的值,进而可求出一次函数解析式;(2)根据图象观察可得x>1或﹣<x<0.主要是观察交点的左右即可.<>解答:解:(1)先把(1,2)代入双曲线中,得k=2,∴双曲线的解析式是y=,当y=﹣4时,m=﹣,把(1,2)、(﹣,﹣4)代入一次函数,可得,解得,∴一次函数的解析式是y=4x﹣2;(2)根据图象可知,若ax+b>,那么x>1或﹣<x<0.<>点评:本题考查了一次函数与反比例函数交点问题,解题的关键是掌握待定系数法求函数解析式,并会根据图象求出不等式的解集.26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用.分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.考点:根与系数的关系;解一元二次方程-公式法;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型.分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,,.于是有,,综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根∴x1+x2=﹣(2k+1),x1x2=k2﹣2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2∴[﹣(2k+1)]2﹣2×(k2﹣2)=11整理得k2+2k﹣3=0,解得k=1或﹣3,又∵△=[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣,∴k=1.点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
初三数学期末测试题及答案
初三数学期末测试题全卷分A 卷和B 卷,A 卷满分86分,B 卷满分34分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
一、选择题(本题共有个小题,每小题4分,共32分)在每小题给出的四个选项中,只有一项是正确的,把正确的序号填在题后的括号内。
1.下列实数中是无理数的是( ) (A )38.0 (B )π (C )4 (D ) 722-2.在平面直角坐标系中,点A (1,-3)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列四组数据中,不能..作为直角三角形的三边长是( ) (A )3,4,6 (B )7,24,25 (C )6,8,10 (D )9,12,15 4.下列各组数值是二元一次方程43=-y x 的解的是( )(A )⎩⎨⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=21y x (D )⎩⎨⎧-==14y x5.已知一个多边形的内角各为720°,则这个多边形为( )(A )三角形 (B )四边形 (C )五边形 (D )六边形6.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) (A )-3 (B )3 (C )-1 (D )17.在平面直角坐标系中,已知一次函数b kx y +=下列结论正的是( )(A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, 8.下列说法正确的是( )(A )矩形的对角线互相垂直 (B )等腰梯形的对角线相等(C )有两个角为直角的四边形是矩形 (D )对角线互相垂直的四边形是菱形 二、填空题:(每小题4分,共16分)A B CDc9.如图,在Rt △ABC 中,已知a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果b =2a ,那么ca= 。
初三上册数学期末考试题及答案
初三上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是A. 7B. 10C. 11D. 14答案:C4. 已知一个数列的前三项为1, 2, 4,那么第四项是A. 8C. 6D. 5答案:A5. 函数y=2x+3的图像经过点A. (0, 3)B. (1, 5)C. (2, 4)D. (3, 9)答案:B6. 一个圆的直径是10厘米,那么它的半径是A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是A. 24立方厘米B. 12立方厘米C. 26立方厘米D. 36立方厘米答案:A8. 一个数的绝对值是5,这个数可能是B. -5C. 5或-5D. 0答案:C9. 一个角的补角是90°,那么这个角是A. 90°B. 45°C. 30°D. 60°答案:B10. 一个数的立方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。
答案:±52. 一个数的倒数是2,这个数是____。
答案:1/23. 一个数的相反数是-3,这个数是____。
答案:34. 一个数的绝对值是10,这个数是____。
答案:±105. 一个数的平方根是4,这个数是____。
答案:16三、解答题(共50分)1. 解方程:x² - 5x + 6 = 0(10分)答案:x₁ = 2,x₂ = 32. 已知等腰三角形的两边长分别为5cm和10cm,求第三边的长度。
(10分)答案:第三边的长度为10cm。
初三数学上册期末测试卷(含答案)
初三数学上册期末测试卷(含答案)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在-1、0、2这四个数中,最小的数是()A.-1 B.0C.-D.2【答案】C 【解析】【分析】先利用两个负数,绝对值大的反而小,及算术平方根的含义,比较两个负数的大小,再结合正数大于零,零大于负数,从而可得答案.【详解】解:11,-== 而1<2,1∴1∴->∴<1-<0<2,∴最小的数是故选:.C 【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.2.下列建筑物小图标中,其中是轴对称图形的是()A. B. C. D.【答案】D 【解析】【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,这样的图形是轴对称图形,这条直线是图形的对称轴,根据定义逐一判断即可得到答案.【详解】解:选项A 不是轴对称图形,故A 不符合题意;选项B 不是轴对称图形,故B 不符合题意;选项C 不是轴对称图形,故C 不符合题意;选项D 是轴对称图形,故D 符合题意;故选:.D 【点睛】本题考查的是轴对称图形的识别,掌握轴对称图形的定义是解题的关键.3.下列计算中,正确的是()A.336a a a += B.336a a a ⋅= C.()325a a = D.632a a a ÷=【答案】B 【解析】【分析】分别利用合并同类项、同底数幂相乘、幂的乘方、同底数幂相除逐一分析即可.【详解】解:A .3332a a a +=,原选项计算不正确;B .336a a a ⋅=,原选项计算正确;C .()326a a =,原选项计算不正确;D .633a a a ÷=,原选项计算不正确;故选:B .【点睛】本题考查整式的运算,掌握合并同类项、同底数幂相乘、幂的乘方、同底数幂相除的法则是解题的关键.4.如图,△ABC 与△DEF 位似,点O 为位似中心,已知OA :OD=1:3,且△ABC 的周长为4,则△DEF 的周长为()A.8B.12C.16D.36【答案】B 【解析】【分析】根据OA :OD=1:3可得相似比为1:3,即可求解.【详解】解:∵△ABC 与△DEF 位似,OA :OD=1:3,∴△ABC 与△DEF 位似比为1:3,∴△ABC 与△DEF 相似比为1:3,∴△ABC 与△DEF 周长比为1:3,∴△DEF 的周长为12,故选:B.【点睛】本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.5.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,若∠C=63º,则∠DAB 等于()A.27ºB.31.5ºC.37ºD.63º【答案】A 【解析】【分析】根据直径所对的圆周角是直角可得90ABD ∠=︒,根据同弧所对的圆周角相等可得∠D=63º,利用直角三角形两锐角互余即可求解.【详解】解:∵AD 是⊙O 的直径,∴90ABD ∠=︒,∵∠C=63º,∴∠D=63º,∴9027DAB D ∠=︒-∠=︒,故选:A.【点睛】本题考查圆周角定理,掌握直径所对的圆周角是直角以及同弧所对的圆周角相等是解题的关键.6.把黑色三角形按如图所示的规律拼成下列图案,其中第①个图案中有4个黑色三角形,第②图案有7个黑色三角形,第③个图案有10个黑色三角形,…,按此规律排列下去,则第⑥图案中黑色三角形的个数为()A.16B.19C.31D.36【答案】B 【解析】【分析】观察图案发现第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;即可求解.【详解】解:第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;……第⑥个图案中黑色三角形的个数为13619+⨯=,故答案为:B .【点睛】本题考查图形的规律,观察图案找出规律是解题的关键.7.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x 元,一头牛价钱为y 元,则符合题意的方程组是()A.2+10000210000(2)2x x y y x y ⎧-=⎪⎪⎨⎪-+=⎪⎩ B.2+1000022100002x x y y x y ⎧-=⎪⎪⎨⎪+-=⎪⎩C.2++1000022100002x x y y x y ⎧=⎪⎪⎨⎪+-=⎪⎩D.210000210000(2)2x x y y x y ⎧++=⎪⎪⎨⎪-+=⎪⎩【答案】A 【解析】【分析】设一匹马价钱为x 元,一头牛价钱为y 元,则利用两匹马加一头牛价钱超过一万,超过的部分正好是半匹马的价钱,可列方程210000,2xx y +-=由一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,可列方程()100002,2yx y -+=从而可得答案.【详解】解:设一匹马价钱为x 元,一头牛价钱为y 元,则2+10000210000(2)2x x y y x y ⎧-=⎪⎪⎨⎪-+=⎪⎩故选:.A 【点睛】本题考查的是二元一次方程组的应用,掌握利用二元一次方程组解决实际问题,理解超过与不足的含义是解题的关键.8.根据如图所示的程序计算函数y 的值,若输入的x 的值为3或-4时,输出的y 值互为相反数,则b 等于()A.-30B.-23C.23D.30【答案】D 【解析】【分析】先分别求解当3x =时,9,y b =-当4x =-时,16,2y b =+再利用相反数的含义列方程,再解方程可得答案.【详解】解:当3x =时,9,y b =-当4x =-时,1216,22b y b +==+结合题意可得:1960,2b b -++=115,2b ∴=30.b ∴=故选:.D 【点睛】本题考查的是求解一次函数值与二次函数值,相反数的含义,掌握以上知识是解题的关键.9.尚本步同学家住“3D魔幻城市”——重庆,他决定用所学知识测量自己居住的单元楼的高度.如图,小尚同学从单元楼CD的底端D点出发,沿直线步行42米到达E点,在沿坡度i=1:0.75的斜坡EF行走20米到达F点,最后沿直线步行30米到达隔壁大厦的底端B 点,小尚从B点乘直行电梯上行到顶端A点,从A点观测到单元顶楼C的仰角为28º,从点A观测到单元楼底端的俯角为37º,若A、B、C、D、E、F在同一平面内,且D、E和F、B分别在通一水平线上,则单元楼CD的高度约为()(结果精确到0.1米,参考数据:sin28º≈0.47,cos28º≈0.88,tan28º≈0.53,sin37º≈0.6,cos37º≈0.8,tan37º≈0.75)A.79.0米B.107.5米C.112.6米D.123.5米【答案】B【解析】【分析】作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,解直角三角形求出CK、AH即可解决问题.【详解】解:作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,如图,则四边形AKDH 是矩形,∴AK=DH ,KD=AH ,∵140.753EG GF ==∴设EG=4x ,则FG=3x ,由勾股定理得,222EG FG EF +=∵EF=20m∴22169400x x +=解得,=4x (负值舍去)∴EG=16m ,FG=12m ∵DE=42m ,BF=30m ∴DH=DE+FG+BF=84m ,∴AK=84m ;在Rt △ADH 中,∠ADH=37°∴tan37°=AHDH,∴AH=DH×tan37°=84×0.75=63(m )同理,在Rt △AKC 中,∠K AC=28°∴tan28°=CKAK,∴CK=AK×tan28°=84×0.53=44.52(m )∴CD=CK+DK=63+44.52=107.5≈107.5(m)故选:B【点睛】本题考查解直角三角形-仰角俯角问题,坡度坡角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.10.若关于x 的不等式组52+11{231x x a >-<()无解,且关于y 的分式方程34122y a y y++=--有非负整数解,则满足条件的所有整数a 的和为()A.8 B.10C.16D.18【答案】C 【解析】【分析】先由不等式组无解,求解8,a ≤再求解分式方程的解2,2a y +=由方程的解为非负整数,求解2a ≥-且2,a ≠再逐一确定a 的值,从而可得答案.【详解】解:52+11{231x x a >-<()①②由①得:25x +>11,x \>3,由②得:3x <1a +,x \<1,3a+ 关于x 的不等式组52+11{231x x a >-<()无解,1+3,3a∴≤19,a ∴+≤8,a ∴≤34122y a y y++=--,()342,y a y ∴-+=-2,2a y +∴=20,y -≠22,2a +∴≠2,a ∴≠ 关于y 的分式方程34122y a y y++=--有非负整数解,20,2a +∴≥2,a ∴≥-22a +为整数,2a ∴=-或0a =或4a =或6a =或8.a =2046816.∴-++++=故选:.C 【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,掌握以上知识是解题的关键.11.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是()A.①②③B.①②④C.②③④D.①③④【答案】D 【解析】【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=,DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米,∴乙车的速度为7506090km/h 5-=,故①正确;此时两车距A 地的距离为606360⨯=,故④正确;∴甲车到达B 地时对应时间为810=13.5h 60,乙车到达A 地时对应时间为81011090+=,∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .【点睛】本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.12.如图,在平面直角坐标系中,△ABO 的顶点O 在坐标原点,另外两个顶点A 、B 均在反比例函数(0)ky k x=≠的图像上,分别过点A 、点B 作y 轴、x 轴的平行线交于点C ,连接OC 并延长OC 交AB 于点D ,已知C (1,2),△BDC 的面积为3,则k 的值为()A.B. C.+2D.8【答案】C 【解析】【分析】过B 、C 分别做BE ⊥x 轴,CF ⊥x 轴,过D 作DG ⊥BC ,DH ⊥AB ,设BC =a ,由点C 的坐标即可表示点B 、C 的坐标,即可得出AC 与BC 的比值,由相似三角形的判定易证得△COF ∽△DCG ,得出DG 与DH 的比值,得出22ABC BCD ACD S S S == ,由三角形面积公式列出关于a 的等式,求得a 的值得出B 点坐标,即可求得k 值.【详解】解:过B 、C 分别做BE ⊥x 轴垂足为E,延长A C 交x 轴于F ,过D 作DG ⊥BC ,DH ⊥AB ,垂足为G 、H .∵C (1,2)∴OF =1,CF =2=BE ,则点A 的横坐标为1,点B 的纵坐标为2,设BC =a ,则B (a+1,2)∵B 在反比例函数k y x =的图像上,∴()21k a =+,∵A 在反比例函数k y x=的图像上,且点A 的横坐标为1,∴A 点的纵坐标为:22y a =+,即点A (1,2a+2),∴AC =AF -CF =2a+2-2=2a ,∴12AC BC =,∵BC//x 轴,CF ⊥x 轴,DG ⊥BC ,∠COF =∠DCG ,∠CFO =∠DGC =90°,∴△COF ∽△DCG ,∴21CF D CG OF G ==,即21DG DH =,∴3BCD ACD S S == ,∴6ABC S = ,∴162AC BC ⋅⋅=,即1262a a ⨯⨯=,∴a =,∴B (,2),∴k =2+,故选:C【点睛】本题考查了反比函数图像上点的坐标特征,相似三角形的性质和判定,注意准确作出辅助线,求得点B 的坐标是关键.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.2020年12月中旬出现疫情反复后,北京市立即启动了全市核酸检测信息统一平台,满足常态化核酸检测和短时间、大规模核酸检测要求.目前,通过平台累计采样超过2280000人,数据2280000用科学记数法可以表示为__________.【答案】62.2810⨯【解析】【分析】利用科学记数法表示数的方法即可求解.【详解】解:2280000用科学记数法可以表示为62.2810⨯,故答案为:62.2810⨯.【点睛】本题考查科学记数法表示数,掌握科学记数法表示数的方法是解题的关键.14.计算:()0221π-+-=__________.【答案】1-【解析】【分析】分别利用算术平方根、有理数的乘方、零指数幂计算各项,即可求解.()02212411π-+-=-+=-,故答案为:1-.【点睛】本题考查实数的运算,掌握实数的运算法则是解题的关键.15.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a ,放回后从卡片中再任意抽取一张,将上面的数字记为b ,则点(a ,b )在直线y=2x -1的概率为___________.【答案】18.【解析】【分析】利用列表法或画树状图法,确定点的坐标的总可能性,把坐标之一代入函数的解析式,确定在直线上的可能性,根据概率公式计算即可.【详解】根据题意,画树状图如下:∴一共有16种等可能性,∵点(-2,-5),(1,1)在直线y=2x -1上,∴有2种可能性,∴点(a ,b )在直线y=2x -1的概率为216=18,故答案为:18.【点睛】本题考查了用列表法或画树状图法求概率,熟练掌握两种求概率的基本方法是解题的关键.16.如图,在矩形ABCD 中,∠DBC=30º,DC=2,E 为AD 上一点,以点D 为圆心,以DE 为半径画弧,交BC 于点F ,若CF=CD ,则图中的阴影部分面积为______________.(结果保留π)【答案】2.π--【解析】【分析】连接DF ,由矩形ABCD ,30,2,DBC DC CF ∠=︒==分别求解,,,EDF DF BC ∠再求解,2DFC ABCD DEF S S S π=== 矩形扇形,从而可得答案.【详解】解:连接DF ,矩形ABCD ,30,2,DBC DC CF ∠=︒==90,4,45,ADC BD DFC FDC DF ∴∠=︒=∠=∠=︒=904545,BC EDF ∴==∠=︒-︒=︒(24512,2223602DFC ABCD DEF S S S ππ⨯∴=====⨯⨯= 矩形扇形,2.S π∴=-阴影故答案为:2.π--【点睛】本题考查的是矩形的性质,等腰直角三角形的性质,含30°的直角三角形的性质,勾股定理的应用,扇形的面积,掌握以上知识是解题的关键.17.如图,在△ABC 中,tan ∠ACB=12,D 为AC 的中点,点E 在BC 上,连接DE ,将△CDE 沿着DE 翻折,得到△FDE ,点C 的对应点是点F ,EF 交AC 于点G ,当EF ⊥EC 时,△DGF 的面积154,连接AF ,则AF 的长度为__________.【答案】【解析】【分析】根据翻折的性质,可得EDC EDF ≅ ,继而由全等三角形对应角相等,解得45FED CED ∠=∠=︒,作,DM EF AN EF ⊥⊥,设DM EM x ==,利用正切的定义解得2FM x =,2x GM =,继而解得FG 的长,再根据三角形面积公式解得x =证明G 是AD 中点,接着证明()ANG DMG AAS ≅ ,解得GN FN AN 、、的长,最后利用勾股定理解题即可.【详解】解:由翻折可知,EDC EDF≅ CED FED∴∠=∠EF EC⊥ 45FED CED ∴∠=∠=︒作,DM EF AN EF⊥⊥设DM EM x==EFD ACB∠=∠ 2tan DM FM x EFD∴==∠//DM BCQ GDM ACB∴∠=∠tan 2x GM GDM DM ∴=∠⋅=32x FG FM GM ∴=-=113152224DGF x S FG DM x ∴=⨯=⋅⋅= x ∴=555,,522FD GD x AD CD FD ∴=======G ∴是AD 中点,即,90AG DG ANG DMG =∠=∠=︒,且AGN DGM ∠=∠()ANG DMG AAS ∴≅ 5,22x GN GM FN FM NM AN DM ∴====-====AF ∴==.【点睛】本题考查翻折、全等三角形的判定与性质、正切、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.随着农历牛年脚步的临近,江北区街道两旁已挂满了各色灯饰,主要有随风舞动的“水母”、亭亭玉立的“麦穗”和绚烂夺目的“星球”三类主题灯饰,他们的数量比为3:4:2.每个灯饰均由A 、B 、C 三种灯管组成,每个灯饰的成本是组成灯饰中各种灯管的成本之和.已知1个“水母”灯饰由1个A 灯管、4个B 灯管、2个C 灯管组成;1个“麦穗”灯饰由2个A 灯管、2个B 灯管、1个C 灯管组成.1个“水母”灯饰的成本是1个A 灯管成本的5倍,1个“星球”灯饰的成本比1个“水母”灯饰的成本高出40%.三类主题灯饰安装后需一次性支付不同的安装费,各类主题灯饰的总费用由灯饰的成本费和安装费组成,其中“麦穗”灯饰的安装费占到了三种灯饰总安装费的15,而“麦穗”灯饰总费用是三类主题灯饰总费用的415,且“麦穗”灯饰、“星球”灯饰的总费用之比为8:7,则“星球”灯饰的安装费与三类主题灯饰总费用之比是_______.【答案】1:10.【解析】【分析】设“水母”灯饰的数量为3,x “麦穗”灯饰的数量为4x ,“星球”灯饰的数量为2x ;一个A 灯管的成本为a ,一个B 灯管的成本为b ,一个C 灯管的成本为c ,再分别表示所有“水母”灯饰的总成本为3515x a ax = ,所有“麦穗”灯饰的总成本为4416x a ax = ,所有“星球”灯饰的总成本为2714x a ax = ,设“麦穗”灯饰的安装费用为y ,则“水母”灯饰和“星球”灯饰的安装费用和为54y y y -=,设“水母”灯饰的安装费用为w ,则“星球”灯饰的安装费用为4y w -,再求解“麦穗”灯饰的总费用与“水母”灯饰的总费用与“星球”灯饰的总费用之比为417::8:15:715230=,再列方程组:()()15151687144168ax w ax y ax y w ax y ⎧+=+⎪⎪⎨⎪+-=+⎪⎩,求解,ax y ,再表示“星球”灯饰的安装费为7425y w w -=,三类主题灯饰总费用为:1415161455ax ax ax y w +++=,从而可得答案.【详解】解:设“水母”灯饰的数量为3,x “麦穗”灯饰的数量为4x ,“星球”灯饰的数量为2x ;一个A 灯管的成本为a ,一个B 灯管的成本为b ,一个C 灯管的成本为c ,则每个“水母”灯饰的成本为()42a b c ++,425,a b c a ++= 22,b c a ∴+=每个“麦穗”灯饰的成本为()22224a b c a a a ++=+=,每个“星球”灯饰的成本为()140%57,a a += 则所有“水母”灯饰的总成本为3515x a ax = ,所有“麦穗”灯饰的总成本为4416x a ax = ,所有“星球”灯饰的总成本为2714x a ax = ,设“麦穗”灯饰的安装费用为y ,则“水母”灯饰和“星球”灯饰的安装费用和为54y y y -=,设“水母”灯饰的安装费用为w ,则“星球”灯饰的安装费用为4y w -,“麦穗”灯饰的总费用是三类主题灯饰总费用的415,且“麦穗”灯饰与“星球”灯饰的总费用之比为8:7,4787,1530÷⨯= ∴“星球”灯饰的总费用是三类主题灯饰总费用的730,∴“水母”灯饰的总费用是三类主题灯饰总费用的471115302--=,∴“麦穗”灯饰的总费用与“水母”灯饰的总费用与“星球”灯饰的总费用之比为417::8:15:715230=,∴()()15151687144168ax w ax y ax y w ax y ⎧+=+⎪⎪⎨⎪+-=+⎪⎩,整理得1201580258ax y w y w +-=⎧⎨=⎩,解得825.275y w ax w ⎧=⎪⎪⎨⎪=⎪⎩∴“星球”灯饰的安装费为87442525y w w w w -=⨯-=,∴三类主题灯饰总费用为:2814151614545545575255ax ax ax y ax y w w w +++=+=⨯+⨯=,∴“星球”灯饰的安装费与三类主题灯饰总费用之比为714:1:10255w w =.故答案为1:10.【点睛】本题考查的是类二元一次方程组的应用,掌握把某些量看作是已知量,列方程组,解方程组是解题的关键.三、解答题:(本大题共7个小题,每小题10分,共70分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)x (x+4y )-(x -y )(x+2y );(2)294922m m m m m --⎛⎫+÷ ⎪--⎝⎭【答案】(1)232xy y +;(2)33-+m m 【解析】【分析】(1)利用单项式乘多项式、多项式乘多项式法则计算各项,即可求解;(2)利用分式的加法和除法法则计算即可.【详解】解:(1)()()()42x x y x y x y +--+22242x xy x xy y =+--+232xy y =+;(2)294922m m m m m --⎛⎫+÷ ⎪--⎝⎭()()229422233m m m m m m m m ⎛⎫---=+⨯ ⎪--+-⎝⎭()()()232233m m m m m --=⨯-+-33m m -=+.【点睛】本题考查整式的混合运算、分式的混合运算,掌握运算法则是解题的关键.20.如图,AC 是平行四边形ABCD 的对角线,满足AC ⊥AB .(1)尺规作图:按要求完成下列作图,不写做法,保留作图痕迹,并标明字母:①作线段AC 的垂直平分线l ,分别交AD 、BC 于点E 、F ;②连接CE ;(2)在(1)的条件下,已知∠ABC=64°,求∠DCE 的度数.【答案】(1)见解析;(2)64°.【解析】【分析】(1)根据题目要求作出图形即可;(2)根据平行四边形的性质可求得∠EAC=26°,∠DCA=90°,再由线段垂直平分线的性质可得∠ECA=26°,从而可得结论.【详解】解:(1)如图,(2)∵四边形ABCD是平行四边形,∴∠B+∠BAD=180°,∠BAD=∠BCD,又∠ABC=64°,∴∠BAD=180°-∠ABC=180°-64°=116°∴∠BCD=116°,∵AC⊥AB,∴∠BAC=90°,∴∠DAC=∠BAD-∠BAC=116°-90°=26°∵AB//CD,∴∠ACD=∠BAC=90°,∵EF是AC的垂直平分线,∴AE=CE,∴∠EAC=∠ACE=26°∴∠DCE=∠DCA-∠ECA=90°-26°=64°.【点睛】本题考查了作图-基本作图---垂线,同时还考查了平行四边形的性质和线段垂直平分线的性质,熟练掌握相关性质是解答此题的关键.21.玉米是一种重要的粮食作物,也是全世界总产量最高的农作物.玉米的容重是指每升玉米的重量,可以反映出玉米的饱满度以及整齐度.超市采购员小李准备进购一批玉米,小李对甲、乙两个乡镇的玉米进行实地考察,各随机采摘了20根玉米进行容重检测,这些玉米的容重记为x(单位:g/L),对数据进行整理后,将所得的数据分为5个等级:五等玉米:600≤x<630;四等玉米:630≤x<660;三等玉米:660≤x<690;二等玉米:690≤x<720;一等玉米:x≥720.其中二等玉米和一-等玉米,我们把它称为“优等玉米”.下面给出了小李整理、描述和分析数据的部分信息.a.甲乡镇被抽取的20根玉米的容重分别为(单位:g/L):610620635650655635670675680675 680680685690710705710660720730整理数据:容重等级600≤x<630630≤x<660660≤x<690690≤x<720x≥720甲乡镇24a b2 b.乙乡镇被抽取的玉米容重频数分布直方图乙乡镇被抽取的玉米容重在660≤x<690这一组的数据是:660670685680685685685c.分析数据:样本数据的平均数、众数、中位数、“优等玉米”所占的百分比如下表:乡镇平均数众数中位数“优等玉米”所占的百分比甲673.75680677.5d%乙673.75685c35%根据以_上信息:解答下列问题:(1)上述表中的a=________,b=________,c=________,d=________;(2)若小李只选择一个产地采购玉米,根据以上数据,你认为小李选择哪个乡镇采购玉米比较好?(写出一条理由即可)(3)小李最终决定在甲乡镇采购400根玉米,在乙乡镇采购600根玉米,估计本次小李采购的玉米中“优等玉米”的数量是多少?【答案】(1)8,4,685,30;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)330【解析】【分析】(1)通过对甲乡镇的计数可得a、b和d的值,利用中位数的定义可得c的值;(2)通过甲乡镇与乙乡镇平均数相同,但是乙乡镇中位数和优等玉米百分比高可得结论;(3)利用甲乡镇与乙乡镇的优等玉米百分比即可求解.【详解】解:(1)对甲乡镇的计数可得:8a =,4b =,610020d %=⨯%=30%,即30d =;乙乡镇的中位数为6856856852c +==;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)4003060035330⨯%+⨯%=(根).【点睛】本题考查统计图与统计表、中位数、样本估计总体等,从统计图和统计表中获取有用信息是解题的关键.22.在数的学习过程中,我们通过对其中一些具有某种特性的数进行研究探索,发现了数字的美和数学的灵动性.现在我们继续探索一类数.定义:一个各位数字均不为0的四位自然数t ,若t 的百位、十位数字之和的2倍比千位、个位数字之和大1,则我们称这个四位数t 是“四·二一数”例如:当t=6413时,∵2×(4+1)-(6+3)=1∴6413是“四·二一数”;当=4257时,:2×(2+5)-(4+7)=3≠1∴4257不是“四·二一数”.(1)判断7142和6312是不是“四二-数”,并说明理由;(2)已知t=4abc (1≤a≤9、1≤b≤9、1≤c≤9且均为正整数)是“四·二一数”,满足4a 与bc 的差能被7整除,求所有满足条件的数t .【答案】(1)7142是“四·二一数”,6312不是“四·二一数”;(2)4235【解析】【分析】(1)根据“四·二一数”的定义分别判断即可;(2)根据“四·二一数”的定义可得225a b c +-=,依次列举即可求解.【详解】解:(1)当t=7142时,∵()()412721+⨯-+=,∴7142是“四·二一数”;当t=6312时,∵()()312620+⨯-+=,∴6312不是“四·二一数”;(2)根据题意可得()241a b c +--=,即225a b c +-=,当1a =,2b =,1c =时,4a 与bc 的差为20,不符合题意;当2a =,1b =,1c =时,4a 与bc 的差为31,不符合题意;当2a =,2b =,3c =时,4a 与bc 的差为19,不符合题意;当2a =,3b =,5c =时,4a 与bc 的差为7,符合题意;当3a =,2b =,5c =时,4a 与bc 的差为18,不符合题意;当3a =,3b =,7c =时,4a 与bc 的差为6,不符合题意;当3a =,4b =,9c =时,4a 与bc 的差为-6,不符合题意;当4a =,3b =,9c =时,4a 与bc 的差为5,不符合题意;综上,满足条件的数t 为4235.【点睛】本题考查新定义问题,理解题干中“四·二一数”的定义是解题的关键.23.在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数51(32127()2ax x y b x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩的性质及其用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x 的取值范围是全体实数,下表列出了变量x 与y 的几组对应数值:x…52--1122314325234…y (012)8331762651332-…根据表格中的数据直接写出y 与x 的函数解析式及对应的自变量x 的取值范围:____________(2)描点、连线:在平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:__________________(3)已知函数12733y x =-+,并结合两函数图象,直接写出当y 1>y 时,x 的取值范围____________________【答案】(1)251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象见解析;当1x >时,y 随x 的增大而减小;(3)12x <或3x >【解析】【分析】(1)代入1x =-和12x =即可求解;(2)利用描点作图法画出图象,再根据图象写出性质即可;(3)联立函数解析式,求出交点,即可得出结论.【详解】解:(1)当1x =-时,513a -+=,解得23a =;当12x =时,1272b --+=,解得2b =;∴y 与x 的函数关系式为:251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象如下:函数性质:当1x >时,y 随x 的增大而减小;(3)当1x ≤时,25332733y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,可得122x y ⎧=⎪⎨⎪=⎩;当1x >时,2272733y x xy x ⎧=--+⎪⎪⎨⎪=-+⎪⎩,可得313x y =⎧⎪⎨=⎪⎩,∴当y 1>y 时,x 的取值范围为12x <或3x >.【点睛】本题考查函数图象,掌握待定系数法求解析式、描点作图等方法是解题的关键.24.为减少疫情对农产品销售的影响,年轻党员干部晓辉借助“学习强国”平台直播活动,向网友们大力推介自己乡镇的特色农产品,让原本面临滞销、亏损的农户迎来了新的转机.在帮助某农户推广滞销乳鸽的直播中,晓辉计划首月销售1000只乳鸽,每只乳鸽定价30元.(1)经过首月试销售,晓辉发现单只乳鸽售价每降低0.5元,销量将增加50只,若计划每月乳鸽的销售总量为1500只,则每只乳鸽售价应定为多少元?(2)随着疫情的好转和直播的推广作用,乳鸽的线下销售也终于迎来了复苏,在线上、线下销售单价一致的情况下,11月线上、线下的销售总额为37500元.受寒流影响,12月价格进行了一定调整,线下单价与(1)间中的售价保持一-致,线上单价在(1)问的售价基础上提高了2%5a ,但12月整体月销售总量仍比(1)问中的计划销售总量上涨%a ,其中线下销售量占到了12月总销售量的37,最终12月总销售额比11月增加了495a 元,求a 的值.【答案】(1)25元;(2)40【解析】【分析】(1)设应降低x 元,根据题意列出方程,求解即可;(2)根据题意可得2月份的销售总量为()15001a +%,12月份的线上单价为22515a ⎛⎫+% ⎪⎝⎭,线下单价为25元,根据“12月总销售额比11月增加了495a 元”列出方程,求解即可.【详解】解:(1)设应降低x 元,根据题意可得:10005015000.5x+⨯=,解得5x =,∴每只乳鸽售价应定为30525-=(元),答:每只乳鸽售价应定为25元;(2)12月份的销售总量为()15001a +%,12月份的线上单价为22515a ⎛⎫+% ⎪⎝⎭,线下单价为25元,根据题意可得:()()323150011251150012537500495757a a a a ⎛⎫⎛⎫+%-⨯+%++%⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,解得40a =或0a =(舍).【点睛】本题考查一元一次方程的应用,理解题意,找出等量关系是解题的关键.25.如图,在平面直角坐标系中,抛物线213222y x x =--+交x 轴于点A 、B ,交y 轴于点C .(1)求△ABC 的面积;(2)如图,过点C 作射线CM ,交x 轴的负半轴于点M ,且∠OCM =∠OAC ,点P 为线段AC 上方抛物线上的一点,过点P 作AC 的垂线交CM 于点G ,求线段PG 的最大值及点P 的坐标;(3)将该抛物线沿射线AC 2y ax bx c '=++,新抛物线y '与原抛物线的交点为E ,点F 为新抛物线y 对称轴上的一点,在平面直角坐标系中是否存在点Q ,使以点A 、E 、F 、Q 为顶点的四边形为菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)5,(2)当P 点坐标为(72-,98)时,PG 最大,最大值为32;Q 点坐标为(72,3762-)或(52-,2)或(112-,92);【解析】【分析】(1)求出A 、B 、C 三点坐标,应用三角形面积公式可求;(2)过P 点作x 轴平行线,交CM 于点H ,过点G 作GD ⊥PH ,垂足为D ,设PG 与AC 、x 轴交点分别为N 、F ,设P (m ,213222m m --+),则H (21344m m --,213222m m --+),表示出PD 长,求最值即可;(3)求出E 点坐标为(-1,3),设F (12,n ),表示出AE 、AF 、EF 的平方,再分类讨论,根据腰相等列方程即可.【详解】解:把y =0代入213222y x x =--+得,2130222x x =--+,解得,121,4x x ==-,A 、B 两点坐标分别为(-4,0),(1,0),把x =0代入213222y x x =--+得,y =2,C 点坐标为(0,2),S △ABC =1152522AB OC ⋅=⨯⨯=;(2)过P 点作x 轴平行线,交CM 于点H ,过点G 作GD ⊥PH ,垂足为D ,设PG 与AC 、x 轴交点分别为N 、F ,由(1)得,12OC OB OA OC ==,∵∠AOC =∠COB =90°,∴△AOC ∽△COB ,∴∠OAC =∠BCO =∠OCM ,易得OM =OB =1,根据M (-1,0)C (0,2),可得CM 解析式为:y =2x +2;∵DG ∥OC ,∴∠DGH =∠OCM ,∵∠ANF =∠FEG =90°,∠NFA =∠EFG ,∴∠NAF =∠FGE ,∵∠OCM =∠OAC ∴∠DGH =∠FGE ,∵∠GDP =∠GDH =90°,GD =GD ,∴△GDP ≌△GDH ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学期末试题答案
一、选择题:(本题12分,每小题2分)
(7) x≤1且x≠-1 (8) 30 (9) y2+3y-4=0 (10) y=-4x,2、4
(11) 100,120 (12) a≠4且b>7 (13)
-18 (14) 3
三、15.解:设方程的两个相等的实根为x1=x2=n
∴………………………………1分
解得
m=-4 ……………………………………………2分
又
…………………………………………3分
∴
………………………………4分
…………………………………5分
…………………………………6分
16.解∵直线y=2x+b与y轴的交点坐标为(0,-4)
∴b=-4,
y=2x-4 …………………………………………2分
∵双曲线经过,∴k=xy=6, (4)
分
∴y=2x-4与交点为(3,2)与(-1,-6) (6)
分
17.解:根据题意,设y=a(x+1)(x-3),图象经过,…………………1分
∴∴………………………………………3分
∴
∴此抛物线的函数解析式为 (4)
分
∵………………………………………………5分
∴此抛物线开口向上,对称轴x=1,顶点坐标(1,-2)………………8分18.解:根据题意,AB⊥MN于点E,交CD于点B,CDNM是矩形,
∴CD=MN,CM=BE,
∠ABC=∠ABD=90°…………………………………1分
又∠ACB=30°,∠ADB=45°
设AB=x(m)(x>0),则BD=x,BC=AB·ctg30°=
x ………………3分
∵CB+BD=CD,CD=MN=45,∴
x+x=45 …………………………5分
解得
…………………………………7分
AE=AB+BE=16.5+1.5=18.0
答:铁塔AE的高约为
18.0m ……………………………………8分
19.证明:连结AE、ED
∵AD是⊙O的直径,
∴∠AED=90°………………1分
∴∠1+∠2=90°
∵AC⊥BC
∴∠3+∠4=90°
∵BC切⊙O于点E
∴∠2=∠3………………………………………………………………2分
∴∠1=∠4………………………………………………………………3分
∵ED=DG,AD是⊙O的直径
∴EF⊥AD,
EF=FG …………………………………………………5分
∵EF⊥AD,EC⊥AC,∠1=∠4
∴EC=EF……………………………………………………………7分
∴CE=FG……………………………………………………………8分
五、20.解:设BC=x1,AC=x2,
根据题意,得
消x
1、x
2
,得
(2m-1)2-8(m-1)=81 …………………………………5分即m2-3m-18=0 解得
m 1=-3,m
2
=6 ……………………………………7分
当m=-3时,x
1
+x
2
=-7<0,不符合题意,舍去
当m=6时,x2-11x+20=0有两个正实根,且符合题意
所以
m=6 ……………………………………………………………
…………8分
21.解:(1)根据题意,得……3分
令Q≥6,即≥6
又S≥0得0≤S≤550
所以,自变量取值范围为0≤S≤550。
………5分
函数图象如图所示………………………7分
(2)中途应该加油,至少需加一次
油…………………………………9分
因为油箱内至少存油6升,可耗油量44升,可行550千米
若在存油6升时加油44升,可再行550千米
1100>900(千米),故加一次油以后,可到达目的地………………10分
注意:举例中,存油在6~22(升)之间加油,均可到达目的地。
六、22.(1)证明:根据题意,令y=0,得2x2-(m+6)x-m2-3m=0
∵△=(m+6)2+8(m2+3m) =9m2+36m+36=(m+2)2≥0…………1分
∴方程有两个实数根∴抛物线一定与x轴有交点…………2分
(2)解:抛物线与y轴的交点坐标为(0,
-m2-3m)……………3分
令y=0,得
2x2-(m+6)x-m(m+3)=0 (2x+m)(x-m-3)=0
解得
所以,抛物线与x轴的交点坐标为(,0),(m+3,
0) …………5分
∵
所以,抛物线的顶点坐标为
…………………6分
(3)解:根据题意,得
……………………7分
解
得 m
1=-4 m
2
=-…………………………………8分
所以,抛物线的解析式y=2x2-2x-4,或
…10分
七、23.解:连结BD,过点D作DF⊥BC于点F
∵半径OB⊥BC于点B ∴BC切⊙O于点
B …………1分
∵AC切⊙O于点D ∴CD=CB…………2分
∵AC切⊙O于点D,BE是直径,
∴∠1=∠2,∠BDE=90°……3分
∴tg∠2=
∵∠1=∠2,∠A=∠A,AD=2,AE=1
∴△ADE~
△ABD∴………………………………4分
∴tg∠ADE=tg∠2=……………………………………5分
设CD=CB=x(其中x>0)又得AD2=AE·AB
∴…………………………………………6分
∵∠ABC=90°∴AB2+BC2=AC2即
42+x2=(2+x)2
解得
BC=x=3 ……………………………………………………7分
∵DF⊥BC,AB⊥BC,∴DF∥AB
∴CF:FB=CD:AD=3:2,∠3=∠2∴BF=,tg∠3=
∴DF=2BF=∴
……………8分
又
∴………………………9分
∴(平方单
位)……………………………10分
八、(1)证明:∵过抛物线与x轴的交点与x轴垂直的直线与抛物线只有一个
交点,根据题意,知△ABC一定是以AC=BC,∠C=90°的等腰直角三角形。
由对称性知点C为抛物线的顶点,
AB=2|y
| …………………………1分
c
∴
(b2-4ac>0) …………………………………………………………2分
……………………………
……………3分
∴b2-4ac=4,即b2-4ac为定
值……………………………………………4分
(2)根据题意,设△ABC的面积为S
得
……………………5分
∵b2-4ac=4 ∴………………………7分
∴S与系数a、b、c之间应满足且a≠0,b2-4ac=4 (7)
分
当时,a=±2 (8)
分
当a=2时,∵b2=4(2c+1),b、c为非零整数,
∴2c+1为正奇数且为完全平方数
∴c=4,12,24,40,……b=±6,±10,±14,±18,……
满足条件的解析式 y=2x2±6x+4
y=-2x2±10x+12 y=-2x2±14x
y=-2x2±18x+40……
当a=-2时,∵b2=4(1-2c),b、c为非零整数。
∴1-2c 为正奇数且为完全平方数
∴c=-4 , -12 , -24 , -40 ,……b=±6 , ±10 , ±14 , ±18 ,……
满足条件的解析式为 y=2x2±6x-4
y=-22±10x-12 y=-22±14x-24 y=-22±1 8x-40 ……12分。