用加减法解二元一次方程组课件
合集下载
用加减消元法解二元一次方程组-七年级数学上册课件(沪科版)
x=a (5) 写解: 将方程组的解表示成 y=b 的形式.
x=a
(5) 写解:将方程组的解表示成
的形式.
y=b
课前热身
根据等式的基本性质填空: (1) 若 a=b,那么 a±c = b±c . (等式性质1) 思考:若 a=b,c=d,那么 a+c=b+d 吗? (2) 若 a=b,那么 ac = bc . (等式性质2)
探究新知
例 1 解方程组
3x 5y 21 2x 5y 11
4、解方程组
用加减法消去 x 的方法
5x-6y=33, ②
是 ①×5-②×3 ,消去 y 的方法是 ①×3+②×2 .
巩固练习
3x+5y=m+2 5、已知关于 x,y 的二元一次方程组
2x+3y=m 的解满足 x+y=-10,求代数式 m2-2m+1 的值.
巩固练习
6、已知 (3x+2y-5)2 与 │5x+3y-8│互为相反数, 则 x= 1 , y= 1 .
知识回顾 三、用代入消元法解二元一次方程组的步骤:
(1) 变形:选择一个系数比较简单的方程,用含有 x 的代数式 表示 y (或用含有 y 的代数式表示 x );
(2) 代入:将变形后的方程代入另外一个方程中,消去一个未知 数,得到一个一元一次方程;
(3) 解:解消元后的一元一次方程;
(4) 反代:把求得的未知数的值代入原方程组中任意的一个方程 (或代入变形后的方程)中,求得另一个未知数数的值;
①
除代入消元法,还
② 有其他方法吗?
认真观察此方程组中各个未知数的 系数有什么特点,并相互讨论看还有 没有其它的解法.
x=a
(5) 写解:将方程组的解表示成
的形式.
y=b
课前热身
根据等式的基本性质填空: (1) 若 a=b,那么 a±c = b±c . (等式性质1) 思考:若 a=b,c=d,那么 a+c=b+d 吗? (2) 若 a=b,那么 ac = bc . (等式性质2)
探究新知
例 1 解方程组
3x 5y 21 2x 5y 11
4、解方程组
用加减法消去 x 的方法
5x-6y=33, ②
是 ①×5-②×3 ,消去 y 的方法是 ①×3+②×2 .
巩固练习
3x+5y=m+2 5、已知关于 x,y 的二元一次方程组
2x+3y=m 的解满足 x+y=-10,求代数式 m2-2m+1 的值.
巩固练习
6、已知 (3x+2y-5)2 与 │5x+3y-8│互为相反数, 则 x= 1 , y= 1 .
知识回顾 三、用代入消元法解二元一次方程组的步骤:
(1) 变形:选择一个系数比较简单的方程,用含有 x 的代数式 表示 y (或用含有 y 的代数式表示 x );
(2) 代入:将变形后的方程代入另外一个方程中,消去一个未知 数,得到一个一元一次方程;
(3) 解:解消元后的一元一次方程;
(4) 反代:把求得的未知数的值代入原方程组中任意的一个方程 (或代入变形后的方程)中,求得另一个未知数数的值;
①
除代入消元法,还
② 有其他方法吗?
认真观察此方程组中各个未知数的 系数有什么特点,并相互讨论看还有 没有其它的解法.
人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)
解:由②-①得: x=6
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
人教版七年级下册数学8.2.2加减消元法解二元一次方程组课件
463x+361y=102
2006x-2007y=2008
(3) 3(x-1)=y+5 5(y-1)=3(x+5)
5.已知关于x、y的方程组 2x-3y=3和 3x+2y=11
2ax+3by=3
ax+by=-1
的解相同。
x 2 y 1
2
6.方程
+ =0与二元一次方程组 3ax+by=11
ax-by= 2
(1)某个未知数的系数互为相反数,则可以直接 把这两个方程中的两边分别相加, 消去这个未知数;
(2)如果某个未知数系数相等,则可以直接 把这两个方程中的两边分别相减, 消去这个未知数。
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
8.2.2 消元
——用加减法解二元一次方程组
1、根据等式性质填空:
<1>若a=b,那么a±c= b±c .(等式性质1)
<2>若a=b,那么ac= bc . (等式性质2)
a
b
若a=b,那么 c = c .(b≠0)
2、解二元一次方程组的基本思路是什么?
二元
消元 转化
一元
3、用代入法解方程的步骤是什么?
1
点悟:
当方程组中任一个未知数的系数绝对值不是1, 且不相等或成倍数关系时,应将两个方程同时变 形, 使两个方程中某一未知数的系数绝对值相等, 利用加减法解方程组, 同时选择系数比较小的未知数消元。
加减法归纳:
用加减法解二元一次方程组时,若同一个未 知数的系数绝对值不相等,且不成整数倍时, 把一个(或两个)方程的两边乘以适当的数, 使两个方程中某一未知数的系数绝对值相等, 从而化为第一类型方程组求解.
七年级数学下册第7章一次方程7.2二元一次方程组的解法7.2.3用加减法解二元一次方程组1
解法一: 由①-②,得3x=3.
解法二: 由②,得3x+(x-3y)=2. ③把①代入③,得3x+5=2.
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打
“×”;
(2)请选择一种你喜欢的方法,完成解答.
第十七页,共二十四页。
首页
末页
解:(1)解法一中的解题过程有错误. 由①-②,得 3x=3“×”, 应为由①-②,得-3x=3. (2)由①-②,得-3x=3,解得 x=-1. 把 x=-1 代入①,得-1-3y=5,解得 y=-2.
用加减消去 y 的方法是①__×__2_+__②__×_3___.
第十二页,共二十四页。
首页
末页
分层作业
[学生(xué sheng)用书P34]
3x-2y=5,① 1.用加减法解二元一次方程组3x+4y=-1.②下列四种解法中,正确 的是( C ) A.①+②,得 6x-2y+(-4y)=5-1 B.②-①,得 4y-2y=-1+5,所以 y=2 C.②-①,得 4y+2y=-1-5,所以 y=-1
第九页,共二十四页。
首页
末页
类型之三 与方程组的解有关的问题
已知关于 x、y 的方程组mmxx-+12nny=y=512,的解为xy==23,. 求 m、n 的值.
解:将xy==23,代入方程组,得22mm-+323nn==215,.②①
②-①,得92n=92,即 n=1.
将 n=1 代入②,得 m=1.
【解析】 根据二元一次方程组的定义,将xy==21,代入aaxx+-bbyy==71,,得 2a+b=7, a=2, 2a-b=1,解得b=3,所以 a+b=5.
第二十页,共二十四页。
首页
二元一次方程组的解法 乘法 加减消元法.ppt
加 减 消 元 法:
消去一个未知数的方法是:如果两个方程中有一个未知数的系数 相等,那么把这两个方程相减(或相加);否则,先把其中一个方 程乘以适当数,将所得方程与另一个方程相减(或相加),或者先 把两个方程分别乘以适当的数,再把所得到的方程相减(或相加). 这种解二元一次方程组的方法叫做加减消元法简称加减法
所以
x 1
y
3
2x3(3)11
x 1
解方程组
3x 4y 8 ① 4x 2y 1 ②
能不能使两个方 程中x(或y)的 系数相等(或互
为相反数)
解 : ②×2,得 8x4y2 ③
③- ,得
(8x4y)(3x4y)(2)8
5x10
解 得 x2 把 x2 代入①,得
3(2)4y8
x2
所以
y 7
x 3
y
2
试一试:用加减法解方程组
3x+4y= 16 ①
5x-6y= 33 ②
解: ①×3,②×2,得
9x+12y= 48 ③ 10x-12y= 66 ④
③+④,得
(9x+12y)+(10x-12y)=48+66 19x= 114
x=6
把x=6代入①,得 x= 6
所以
y= - 1
3×6+4y= 16 4y= -2 y= - 1 2
8.2 二元一次方程组的解法 加减消元法
3x 5y 21 ① 2x 5y 11 ②
①+②
4x 5y 3 ① 2x 5y 1 ②
①-②
下例方程组可以用加 减消元法来做吗?
3x+4y= 16 ①
5x-6y= 33 ② 分析:1、此方程组能否直接用加减法消
华东师大版七年级下册数学《加减法解二元一次方程组》课件
• 2、如遇见未知数系数绝对值不等呢:运用方 程基本变形规则2扩大系数至绝对值相等,再 用加减消元
三、实践验证感悟 •P32练习 1、3题
活动小结:
1、方法与思想:今天我们又学习了解二元一次方程组的另 一种消元方法--加减法,它是通过把两个方程两边相加(或 相减)消去一个未知数,把二元一次方程组转化为一元一次方 程。
2、依据方程变形规则1.
3、如何实现准确加减消元:位置对应 理 据符号关系定加减
系数绝对值相等处
4、请同学们归纳一下,什么样的方程组用“代入法”,什么 样的方程组用“加减法”。
作业巩固
•P36习题7.2第1题 ① ③ ④
加减消元法 解二元一次方程组
井研县周坡镇初级中学校 詹 勇
一、温故为知新
• 1.解二元一次方程组的基本思想是什
么?
。
• 2.用代入法解方程组
• 2x + 3y = 4 ①
• 2x - 3y = -8 ②
二、新知探索------初认识
• 例1 解方程组 2x + 3y = 4 ①
•
2x - 3y =-8 ②
•
3x- 4y = 2 ②
解:
①+
②得 ∴
8x = 16 x=2
把x=2代入②得 y = 1
ห้องสมุดไป่ตู้
∴
x=2
y =1
消谁最方便? 如何消?
如要想消x, 又怎么办呢?
新知探索------深入认识
• 深入思考实践解方程组
•
5x+4y=11 ①
•
3x - y = 7 ②
探索交流--经验
• 1、通过将两个方程相加(或相减),消去一个 未知数,将 方程组转化为一元一次方程来解, 这种解法叫加减消元法,简称加减法。依据 是方程基本变形规则1
三、实践验证感悟 •P32练习 1、3题
活动小结:
1、方法与思想:今天我们又学习了解二元一次方程组的另 一种消元方法--加减法,它是通过把两个方程两边相加(或 相减)消去一个未知数,把二元一次方程组转化为一元一次方 程。
2、依据方程变形规则1.
3、如何实现准确加减消元:位置对应 理 据符号关系定加减
系数绝对值相等处
4、请同学们归纳一下,什么样的方程组用“代入法”,什么 样的方程组用“加减法”。
作业巩固
•P36习题7.2第1题 ① ③ ④
加减消元法 解二元一次方程组
井研县周坡镇初级中学校 詹 勇
一、温故为知新
• 1.解二元一次方程组的基本思想是什
么?
。
• 2.用代入法解方程组
• 2x + 3y = 4 ①
• 2x - 3y = -8 ②
二、新知探索------初认识
• 例1 解方程组 2x + 3y = 4 ①
•
2x - 3y =-8 ②
•
3x- 4y = 2 ②
解:
①+
②得 ∴
8x = 16 x=2
把x=2代入②得 y = 1
ห้องสมุดไป่ตู้
∴
x=2
y =1
消谁最方便? 如何消?
如要想消x, 又怎么办呢?
新知探索------深入认识
• 深入思考实践解方程组
•
5x+4y=11 ①
•
3x - y = 7 ②
探索交流--经验
• 1、通过将两个方程相加(或相减),消去一个 未知数,将 方程组转化为一元一次方程来解, 这种解法叫加减消元法,简称加减法。依据 是方程基本变形规则1
二元一次方程组的解法加减消元法北师大版八年级数学上册PPT精品课件
解:
①+②×4,得7x=35. 解得x=5. 把x=5代入②,得y=1. 所以方程组的解为
二级能力提升练
13. 已知二元一次方程x+y=a+1的一个解也是方程组
的解,则a的值为( A )
A. -1
B. 1
C. 0
D. 2
14. 若方程组
可直接用加减法消去y,
则a,b的关系为( C ) A. 互为相反数
●
4.开篇写 湘君眺 望洞庭 ,盼望 湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
●
5.以景物 衬托情 思,以 幻境刻 画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
●
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
●
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
B. 互为倒数
C. 绝对值相等
D. 相等
三级拓展延伸练
15. 已知实数a,b满足方程组
的值是( B )
A. 3
B. -3
C. 4
D. -4
则a2-b2
16. 若abk≠0,且a,b,k满足方程组
则
的值为( D )
●
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
4. 解方程组
要( C )
A. ①×2-② B. ①×3-②×2 C. ①×2+② D. ①×3+②×2
①+②×4,得7x=35. 解得x=5. 把x=5代入②,得y=1. 所以方程组的解为
二级能力提升练
13. 已知二元一次方程x+y=a+1的一个解也是方程组
的解,则a的值为( A )
A. -1
B. 1
C. 0
D. 2
14. 若方程组
可直接用加减法消去y,
则a,b的关系为( C ) A. 互为相反数
●
4.开篇写 湘君眺 望洞庭 ,盼望 湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
●
5.以景物 衬托情 思,以 幻境刻 画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
●
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
●
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
B. 互为倒数
C. 绝对值相等
D. 相等
三级拓展延伸练
15. 已知实数a,b满足方程组
的值是( B )
A. 3
B. -3
C. 4
D. -4
则a2-b2
16. 若abk≠0,且a,b,k满足方程组
则
的值为( D )
●
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
4. 解方程组
要( C )
A. ①×2-② B. ①×3-②×2 C. ①×2+② D. ①×3+②×2
第5章 2.第2课时 用加减法解二元一次方程组
【规范解答】(1)①-②,得 3x=-9,解得 x=-3.把 x=-3 代入①得-15
-6y=1,解得 y=-83.所以,原方程组的解为yx==--833 .
(2)②×3,得 51x-9y=222③,①+③,得 59x=295,解得 x=5,把 x=5
代入②,得 85-3y=74,y=131.所以,原方程组的解为xy==1531 .
D.①×2-②×(-3),消去 y
11.若方程 mx+ny=6 的两个解是xy==11 ,xy==-2 1 ,则 m、n 的值为( A )
A.4,2
B.2,4
C.-4,-2
D.-2,-4
12.若二元一次方程 2x+y=3,3x-y=2,2x-my=-1 有公共解,则 m 的值
是( D )
A.-2
B.-1
C.4
D.3
13.用加减消元法解方程组23xx+ +32yy= =65① ② ,由①×2-②×3,得 -5x=-3 .
x=3
ax+by=3
14.已知y=-2 的方程组bx+ay=-7 的解,则代数式(a+b)(a-b)的值
为 -8 .
15.当 x=2 时,代数式 x2+ax+b 的值为 3;当 x=-3 时,其值为 4,则当
x=1 时,其值是 -45
.
16.已知|2a-b-3|+(a+2b+1)2=0.求(2a+b)2017 的值. 解:根据非负数的性质,得2a+a-2bb- +31= =00 ,解得ab==1-1 ,所以(2a+b)2017 =(2-1)2017=1
Байду номын сангаас
17.若xy==34 是关于 x、y 的二元一次方程组aaxx+ -bbyy= =- -17 的解.求 a+b 的值.
解二元一次方程组加减消元法公开课一等奖课件省赛课获奖课件
10.3. 解二元一次方程组(2)
【教学目的】
1、会用加减消元法解二元一次方程组。 2、能根据方程组的特点,灵活选用适宜消元办法。 3、经历从“二元”到“一元”的转化过程,进一 步体会 “转化”的思想办法在数学中的应用价值。
【教学重点、难点】
1、掌握加减消元法解二元一次方程组的原理及普 通环节。
2、能纯熟运用加减消元法解二元一次方程组。 3、体会解二元一次方程组的基本思路——消元即 “化二元为一元”的思想。
你懂得苹果汁、橙汁的单价吗?
已知买3瓶苹果汁和2瓶橙汁共需23元; 又知买5瓶苹果汁和2瓶橙汁共需33元。
解法二、
设苹果汁和橙汁的单价分别为x 元和y元
ቤተ መጻሕፍቲ ባይዱ
① ② 根据题意可得
x我会2解3 !2y
3
① ② 5 23 2y 2y 33
3
x 5 y 4
你是如何解这个方程组的?
① 解由法①一得、3xx22yy15
组的特点!
解得 x=5
将x=5代入①得 15+2y=23
解因这此个原方方程程得组的y=解4是52xx
2y 3y
4 5
注意:1、勿忘检查 ;2、应用题勿忘答!
你能用上面的办法解下列方程组吗?
① x2
② P90例2、解方程组
y 3
想一想:
1、回想上述解方程组的过程,你的 基本思路是什么?
2、这里所用的办法与代入消元法有 何异同?
试一试:
参考上面的思路如何解下列方程组呢?
No
例3、解方程组
Image
解:①×3得,15x-6y=12 ③
②×2得,4x-6y=-10 ④
③-④得,11x=22
x=2
【教学目的】
1、会用加减消元法解二元一次方程组。 2、能根据方程组的特点,灵活选用适宜消元办法。 3、经历从“二元”到“一元”的转化过程,进一 步体会 “转化”的思想办法在数学中的应用价值。
【教学重点、难点】
1、掌握加减消元法解二元一次方程组的原理及普 通环节。
2、能纯熟运用加减消元法解二元一次方程组。 3、体会解二元一次方程组的基本思路——消元即 “化二元为一元”的思想。
你懂得苹果汁、橙汁的单价吗?
已知买3瓶苹果汁和2瓶橙汁共需23元; 又知买5瓶苹果汁和2瓶橙汁共需33元。
解法二、
设苹果汁和橙汁的单价分别为x 元和y元
ቤተ መጻሕፍቲ ባይዱ
① ② 根据题意可得
x我会2解3 !2y
3
① ② 5 23 2y 2y 33
3
x 5 y 4
你是如何解这个方程组的?
① 解由法①一得、3xx22yy15
组的特点!
解得 x=5
将x=5代入①得 15+2y=23
解因这此个原方方程程得组的y=解4是52xx
2y 3y
4 5
注意:1、勿忘检查 ;2、应用题勿忘答!
你能用上面的办法解下列方程组吗?
① x2
② P90例2、解方程组
y 3
想一想:
1、回想上述解方程组的过程,你的 基本思路是什么?
2、这里所用的办法与代入消元法有 何异同?
试一试:
参考上面的思路如何解下列方程组呢?
No
例3、解方程组
Image
解:①×3得,15x-6y=12 ③
②×2得,4x-6y=-10 ④
③-④得,11x=22
x=2
用加减法解二元一次方程组课件PPT
{
③-②得:7y=-28
用你喜欢的方法解方程组:
练习
问题4 如何用加减消元法解下列二元一次方程组?
01
追问3 如何用加减法消去x?
04
追问1 直接加减是否可以?为什么?
02
追问2 能否对方程变形,使得两个方程中某个未知数的系数相反或相同?
03
应用新知
应用新知
3x+4y=16
5x-6y=33
基本思路:
写解
求解
加减
二元
一元
加减消元:
消去一个元
求出两个未知数的值
写出方程组的解
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
变形
同一个未知数的系 数相同或互为相反数
2. 二元一次方程组解法有 .
代入法、加减法
1、系数相同时用 减法消元
2、系数互为相反数时用加法消元
3x + 5y = 5 11x-6y=5 3x -4y = 23 13x-6y =21
6x+7y=5 0.5X-3y=5 6x-7y=15 -0.5x-5y=3
3x-4y=14 5x+4y=2 解 ①+②,得 8x=16 x =2
一、选择你喜欢的方法解下列方程组
小试牛刀 类比应用、闯关练习
知识应用拓展升华
解: ②×2得:
4x +6y =-16 ③
将y =-4代入①得:
4x-(-4)=12
解得: x = 2
∴原方程组的解是
{
4x - y =12 ①
2x +3y =-8 ②
用加减法解下列方程组
x =2
y =-4
{
解: ①×3得:
12x -3y =36 ③
③-②得:7y=-28
用你喜欢的方法解方程组:
练习
问题4 如何用加减消元法解下列二元一次方程组?
01
追问3 如何用加减法消去x?
04
追问1 直接加减是否可以?为什么?
02
追问2 能否对方程变形,使得两个方程中某个未知数的系数相反或相同?
03
应用新知
应用新知
3x+4y=16
5x-6y=33
基本思路:
写解
求解
加减
二元
一元
加减消元:
消去一个元
求出两个未知数的值
写出方程组的解
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
变形
同一个未知数的系 数相同或互为相反数
2. 二元一次方程组解法有 .
代入法、加减法
1、系数相同时用 减法消元
2、系数互为相反数时用加法消元
3x + 5y = 5 11x-6y=5 3x -4y = 23 13x-6y =21
6x+7y=5 0.5X-3y=5 6x-7y=15 -0.5x-5y=3
3x-4y=14 5x+4y=2 解 ①+②,得 8x=16 x =2
一、选择你喜欢的方法解下列方程组
小试牛刀 类比应用、闯关练习
知识应用拓展升华
解: ②×2得:
4x +6y =-16 ③
将y =-4代入①得:
4x-(-4)=12
解得: x = 2
∴原方程组的解是
{
4x - y =12 ①
2x +3y =-8 ②
用加减法解下列方程组
x =2
y =-4
{
解: ①×3得:
12x -3y =36 ③
北师大版初中数学八年级(上)5-2求解二元一次方程组(第2课时加减法) 教学课件
①
解方程组:
②
解: ②×4得:
4x-4y=16③
①+③得:7x = 35,
解得:x = 5.
把x = 5代入②得,y = 1.
所以原方程组的解为
方法总结
同一未知数的系数 不相等也不互为相反数 时,
利用等式的性质,使得未知数的系
数 相等或互为相反数
.
找系数的最小公倍数
课堂小结
基本思路“消元”
解
二
元
7x-4y=4, ①
5x-4y=-4. ② 解:①-②,得
2x=4-4,×
x=0
3x-4y=14, ① 5x+4y=2. ② 解: ①-②,得
-2x=12 ×
x=-6
订正:解:①-②,得 2x=4+4, x=4
订正:解:①+②,得 8x=16 x=2
7.用加减消元法解方程组:
①
②
【解】由①×6,得 2x+3y=4 ③
像上面这种解二元一次方程组的方法,叫做加减 消元法,简称加减法.
例3:用加减法解方程组:
2x 3y 12 ① 3x 4y 17 ② 解:①×3得: 6x+9y=36 ③
②×2得:6x+8y=34 ④ ③-④得: y=2 把y=2代入①,
解得: x=3
所以原方程组的解是
x y
3 2
试一试
解得:y 1.
把 y 1 代入①,得:2x 5 注哦7.意! :要检验
解得:x 1.
x 1,
所以方程组的解为 y 1.
方法总结
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
归纳总结
当方程组中两个方程的某个未知数的系数互为 相反数或相等时,可以把方程的两边分别相加(系数 互为相反数)或相减(系数相等)来消去这个未知数, 得到一个一元一次方程,进而求得二元一次方程组的 解.
人教七年级数学下课件8.2消元——解二元一次方程组第2课时用加减法解二元一次方程组
解:(1)设出租车的起步价是 x 元,超过 1.5 千米后每千米收费 y 元.依 题意得,xx++((46..55--11..55))yy==1104..55,解得xy==42..5,答:出租车的起步 价是 4.5 元,超过 1.5 千米后每千米收费 2 元
(2)4.5+(5.5-1.5)×2=12.5(元).答:小张乘出租车从市政府到娄底 南站(高铁站)走了 5.5 千米,应付车费 12.5 元
【综合运用】 16.(13 分)(2015·娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为 0~ 1.5 千米,超过 1.5 千米的部分按每千米另收费. 小刘说:“我乘出租车从市政府到娄底汽车站走了 4.5 千米,付车费 10.5 元.” 小李说:“我乘出租车从市政府到娄底汽车站走了 6.5 千米,付车费 14.5 元.” 问:(1)出租车的起步价是多少元?超过 1.5 千米后每千米收费多少元? (2)小张乘出租车从市政府到娄底南站(高铁站)走了 5.5 千米,应付车费多少元?
x=2, A.y=-4
x=2, B.y=4
x=-2, C.y=4
x=-2, D.y=-4
3.(4 分)解方程组32xx-+33yy==41,②①时,用加减消元法最简便的是( A )
A.①+② B.①-② C.①×2-②×3 D.①×3+②×2
4.(4 分)用加减法解方程组44xx+ -33yy= =62.,若先求 x 的值,应先将两个方程组___加_____; 若先求 y 的值,应先将两个方程相___减_____.
13.(2015·武汉)定义运算“*”,规定 x*y=ax2+by,其中 a,b 为常数,且 1*2=5,2*1=
6,则 2*3=___1_0____.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题:
x+3y=17
1.已知方程组 两个方程 2x-3y=6 只要两边 分别相加 就可以消去未知数 y 25x-7y=16
2.已知方程组
两个方程
25x+6y=10 只要两边分别相减 就可以消去未知数 x
二.选择题
6x+7y=-19①
1. 用加减法解方程组
6x-5y=17②
应用( B )
A.①-②消去y B.①-②消去x C. ②- ①消去常数项 D. 以上都不对
解下面的二元一次方程组.
x y 22 2 x y 40
① ②
还别的方法吗?
观察此方程组中各个未知数的系数有什么特点? 并讨论看还有没有其它的解法. 尝试一下能否求出它的解
x y 22 2 x y 40
① ②
解方程组
4x+10y=3.6① 15x-10y=8 ②
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点:
同一个未知数的系数相同或互为相反数
二元 一元
基本思路: 加减消元:
主要步骤:加减 求解
消去一个元 分别求出两个未知数的值 写出原方程组的解
写解
作业
1、课本P-102 练习1(1)、(2), P-103 第2题(1)、(2)
分析:
观察方程组中的两个方程,未知数y的系数相 反,把两个方程两边分别相加,就可以消去未知 数y,同样得到一个一元一次方程。
加减消元法
x y 22 2 x y 40
由②- ①得: x=18
①
②
4x+10y=3.6①
15x-10y=8 ②
由 ②+①得:19x=11.6
两个二元一次方程中同一未知数的系数相反 或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,得到一个一元一次方程, 这种方法叫做加减消元法,简称加减法.
2、思考题: 在解二元一次方程组中, 代入法 和加减法有什么异同点?
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
A.6x=8 B.6x=18 C.6x=5 D.x=18
Hale Waihona Puke 三.指出下列方程组求解过程中 有错误步骤,并给予订正: 7x-4y=4 ①
3x-4y=14①
②
5x+4y=2 5x-4y=-4② 解:①-②,得 解 ①-②,得 2x=4-4, -2x=12 x=0 x =-6 解: ①-②,得 解: ①+②,得 8x=16 2x=4+4, x =2 x=4