高考物理最新近代物理知识点之原子结构知识点(1)
原子物理第一章知识点总结
角动量守恒:
角动量守恒:
由能量守恒和角动量守恒的表达式消`:
利用库仑公式:
代入整理得:
α粒子距原子核越近
α粒子所能达到的最小距离
两个相斥的粒子碰撞时能靠近的最小距离
可以由此估计原子核大小的数量级:
原子半径数量级为 米,原子核半径数量级为 米,相差4-5个数量级,面积相差8-10个数量级,体积相差12-15个数量级。若把原子放大到足球场地那么大,则原子核相当于场地中心的一个黄豆粒。可见原子中是非常空旷的。
2.实验结果:
绝大部分α粒子进入金箔后直穿而过(θ=0)或基本直穿而过(θ很小,约在2-3度之间);
有少数α粒子穿过金属箔时,运动轨迹发生了较大角度的偏转(45o );
个别的α粒子,其散射角>90o,有的竟沿原路完全反弹回来,θ180o。
2.汤姆逊模型的困难
近似1:α粒子散射受电子的影响忽略不计
近似2只受库仑力的作用。
2、粒子散射实验为人类开辟了一条研究微观粒子结构的新途径,以散射为手段来探测,获得微观粒子内部信息的方法,为近代物理实验奠定了基础,对近代物理有着巨大的影响。
3、粒子散射实验还为材料分析提供了一种手段。
α粒子散射理论中的几个近似:
1.薄膜中的原子核前后不互相覆盖。
2.只发生一次散射。
3.核外电子的作用可以忽略。
0.019
0.19
1.7
16.9
112
172.3
由此可以看出,要得到大角散射,正电荷必须集中在很小的范围内,α粒子必须在离正电荷很近处通过。
2.卢瑟福散射公式
通过b~b-db之间的圆环形面积的α粒子,必定散射到θ~θ+dθ之间的空心圆锥体中。
高考物理知识大全十九:近代物理
十九、近代物理一、知识网络二、画龙点睛概念一、原子结构:1、电子的发现和汤姆生的原子模型:(1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成①装置:②现象:a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。
如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。
散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型(1)原子核式结构模型与经典电磁理论的矛盾(两方面)a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
高考原子物理常考知识点
高考原子物理常考知识点原子物理是高考物理中的重要内容,它涵盖了原子的结构、原子核的性质、放射性等多个知识点。
掌握了这些知识,不仅可以帮助我们解答试题,还能对我们理解现实世界中的物质变化和发展具有重要意义。
本文将从三个主要方面介绍高考原子物理的常考知识点。
一、原子的结构原子的结构是研究原子物理的基础,它由质子、中子和电子组成。
质子和中子位于原子核中,电子则在原子核外围的轨道上运动。
质子的质量和电荷分别为1和+1,中子没有电荷,而电子的质量很小,电荷为-1。
根据电子的能级差异,我们可以将电子分为K层、L层、M层等,电子的规则排布遵循奥布规则。
二、原子核的性质原子核是原子的核心,它由质子和中子组成。
原子核的直径很小,但是它却集中了原子的绝大部分质量和正电荷。
质子具有相互排斥的电荷,然而原子核为何能够稳定存在呢?这是因为质子和中子之间存在着强相互作用力,它可以克服质子之间的排斥作用。
在物理中,我们通过质子的质量数和原子序数来描述一个核。
质量数等于质子数加中子数,原子序数等于质子数。
常见的核还具有放射性,主要有α衰变、β衰变和γ衰变。
三、放射性放射性是原子物理中的重要现象,它是某些核素发生自发性核变反应而释放出粒子或电磁波的现象。
放射性核素分为α射线、β射线和γ射线。
α粒子是由两个质子和两个中子组成的带正电荷的粒子,它的穿透能力很弱。
β粒子分为β+射线和β-射线,前者是一个正电子,后者是一个带1单位负电荷的高速电子,它们穿透能力比α粒子强。
γ射线是一种电磁波,它的穿透能力最强。
这些放射性现象在核反应和医学诊疗中有着广泛的应用。
综上所述,高考原子物理常考的知识点主要包括原子的结构、原子核的性质和放射性。
了解原子的结构对我们理解物质的微观世界有着重要作用,原子核的性质的理解有助于我们认识核反应和放射性的本质,而放射性则对于核能的利用和医学的发展有着重要的意义。
通过对这些知识点的学习和掌握,我们不仅可以更好地应对高考中的相关题目,还能对我们的知识结构和思维方式产生积极影响。
专题 原子物理——原子结构
专题原子物理——☞原子结构☞【专题简介】近代物理包括能量量子化、光电效应、原子结构、原子核等。
广东每年命1道选择题,以近代物理史实为依托,难度较低。
本专题中的原子结构主要包括氢原子的能级跃迁问题、α散射实验、光电效应等应用。
其中能级跃迁问题、光电效应是高考的热点:m e v C2=eU C1.遏止电压:12m e v C2,W0为逸出功)2.光电效应方程:E k=ℎυ−W0(E k为最大初动能E k=123.玻尔原子理论中的频率条件:ℎυ=E n−E m【高考真题】1.(2022广东卷)目前科学家已经能够制备出能量量子数n较大的氢原子。
氢原子第n能级的,其中E1=−13.6eV。
图是按能量排列的电磁波谱,要使n=20的氢原子吸收能量为E n=E1n2一个光子后,恰好失去一个电子变成氢离子,被吸收的光子是()A.红外线波段的光子B.可见光波段的光子C.紫外线波段的光子D.X射线波段的光子2.(2007广东卷)如图所示为氢原子的四个能级,其中E1为基态。
若氢原子A处于激发态E2,氢原子B处于激发态E3,则下列说法中正确的是()A.原子A可能辐射出3种频率的光子B.原子B可能辐射出3种频率的光子C.原子A能够吸收原子B发出的光子并跃迁到能级E4D.原子B能够吸收原子A发出的光子并跃迁到能级E4【巩固提升】1.图甲为氢原子能级图,图乙为氢原子的光谱,Hα、Hβ、Hγ、Hδ是可见光区的四条谱线,其中Hβ谱线是氢原子从n=4能级跃迁到n=2能级辐射产生的,下列说法正确的是()A.这四条谱线中,Hα谱线光子频率最大B.氢原子的发射光谱属于连续光谱C.用能量为3.5eV的光子照射处于n=2激发态的氢原子,氢原子不发生电离D.若Hα、Hβ、Hγ、Hδ中只有一种光能使某金属产生光电效应,那一定是Hδ2.氦元素对地球来说是一种非常稀少和宝贵的资源。
如图所示为氦离子(He+)的能级图,若根据玻尔原子理论,关于氦离子能级跃迁,下列说法正确的是()A.大量处于n=3能级的氦原子,最多可辐射2种不同频率的光子B.从n=4向n=3能级跃迁,要向外辐射光子的能量2.64eVC.处于n=1能级的氦原子,可以吸收54.0eV的能量而发生电离D.从n=3跃迁到n=2能级比从n=2跃迁到n=1能级辐射出的光子波长短3.有些金属原子受激后,从某激发态跃迁回基态时,会发出特定颜色的光。
高考物理近代物理知识点
高考物理近代物理知识点近代物理是物理学的一个重要分支,旨在研究能级、原子、分子以及相对论等领域的现象和定律。
在高考物理中,近代物理占据了相当大的比重。
以下将从能级理论、光电效应和相对论三个方面进行介绍。
一、能级理论:能级理论是近代物理研究的重要内容之一,主要用于解释原子和分子内部的能量分布。
根据量子力学的基本原理,原子和分子具有离散的能量态,即能级。
这些能级之间的跃迁导致了物质的各种性质。
在光谱学研究中,能级理论起到了至关重要的作用。
当物质受到外部能量激发时,电子从低能级跃迁至高能级,产生吸收峰;而当电子回到低能级时,会发射出特定波长的光线,形成发射光谱。
这种通过能级跃迁产生的吸收和发射现象被广泛应用于光谱分析和激光技术等领域。
二、光电效应:光电效应是指当金属表面受到光的照射时,会释放出电子的现象。
这一现象的研究为光电子学的发展奠定了基础。
根据光电效应的实验结果,可以得出以下几个重要的结论:1. 光电效应与光的频率有关,而与光的强度无关。
只有当光的频率大于某一临界频率时,才会引起光电效应;2. 光电子的动能与光的频率成正比,而与光的强度无关;3. 光电效应的观察结果与金属的性质有关,不同金属的临界频率和最大动能不同。
根据这些结论,科学家们提出了光的粒子性质和能量量子化的观念,进一步推动了量子力学的发展。
三、相对论:相对论是物理学中的重要理论之一,由爱因斯坦提出。
它改变了人们对时空观念的理解,并提出了质能等效原理和光速不变原理。
相对论主要涉及到以下几个方面的内容:1. 狭义相对论:研究时空的相对性和光的行为。
其中最著名的结论是质能等效原理,即著名的E=mc²公式;2. 相对论动力学:利用洛伦兹变换来描述高速运动物体的性质。
相对论动力学解决了经典力学在高速运动下的局限性问题;3. 引力的相对论:研究引力场的性质,提出广义相对论的引力场方程,并预言了黑洞、宇宙膨胀等天文现象。
相对论的提出和发展推动了物理学的进步,并在现代科学和技术中发挥着重要的作用,如核能的释放、宇航技术的发展等。
近代物理知识点
近代物理知识点近代物理是物理学发展的一个重要阶段,它颠覆了传统的物理观念,为我们打开了认识世界的新视角。
下面让我们一起走进近代物理的世界,了解一些关键的知识点。
首先要提到的是量子力学。
在经典物理学中,我们通常认为物理量是连续变化的,但量子力学告诉我们,在微观世界里,很多物理量是离散的、不连续的。
比如能量,原子中的电子只能处于特定的能级,而不能处于两个能级之间的任意值。
这种量子化的现象是微观世界的基本特征之一。
光的波粒二象性是近代物理中的一个重要概念。
过去,人们认为光要么是波,要么是粒子。
但近代物理的研究表明,光既有波动性,又有粒子性。
在某些实验中,光表现出波动性,如干涉和衍射现象;而在另一些实验中,如光电效应,光则表现出粒子性。
这一发现让我们对光的本质有了全新的认识。
相对论也是近代物理的重要组成部分。
狭义相对论指出,时间和空间不是绝对的,而是相对的,它们会随着物体的运动状态而改变。
比如时间膨胀和长度收缩现象。
当物体的运动速度接近光速时,时间会变慢,长度会缩短。
而广义相对论则进一步探讨了引力的本质,认为引力是由于时空的弯曲造成的。
原子结构的研究也是近代物理的重要内容。
卢瑟福通过α粒子散射实验,提出了原子的核式结构模型,即原子中心有一个很小的原子核,电子在核外绕核运动。
后来,玻尔结合量子力学的概念,对原子结构进行了更深入的解释,提出了玻尔模型。
量子隧穿效应是一个有趣的现象。
在经典力学中,一个粒子如果能量不足,是无法越过一个势垒的。
但在量子力学中,粒子有一定的概率能够穿越势垒,即使它的能量低于势垒的高度。
这一现象在半导体器件等领域有着重要的应用。
薛定谔方程是量子力学中的基本方程,它描述了微观粒子的状态随时间的变化。
通过求解薛定谔方程,我们可以得到粒子的各种可能的状态和相应的概率。
海森堡的不确定性原理也是量子力学中的一个关键概念。
它表明,我们不能同时精确地测量一个粒子的位置和动量,或者能量和时间。
当我们对其中一个量测量得越精确,对另一个量的测量就越不精确。
高考物理近代物理知识点之原子结构图文解析
高考物理近代物理知识点之原子结构图文解析一、选择题1.如图所示是玻尔理论中氢原子的能级图,现让一束单色光照射一群处于基态的氢原子,受激发的氢原子能自发地辐射出三种不同频率的光,则照射氢原子的单色光的光子能量为( )A.13.6eV B.12.09eV C.10.2eV D.3.4eV2.氢原子能级图的一部分如图所示,A、B、C分别表示原子在三种跃迁过程中辐射出的光子.其中E A表示原子从n=3能级向n=2能级跃迁的能量,E B表示原子从n=2能级向n=1能级跃迁的能量,E C表示原子从n=3能级向n=1能级跃迁的能量,则下述关系中正确的是A.E A < E B < E CB.E A < E C < E BC.E C < E B < E AD.E B <E A < E C3.光电效应实验的装置如图所示,用A、B两种不同频率的单色光分别照射锌板,A光能使验电器的指针发生偏转,B光则不能使验电器的指针发生偏转,下列说法正确的是A.照射光A光的频率小于照射光B光的频率B.增大照射光A的强度,验电器指针张角将变小C.使验电器指针发生偏转的是正电荷D.若A光是氢原子从n=5能级向n=1能级跃迁时产生的,则B光可能是氢原子从n=6能级向n=1能级跃迁时产生的4.关于近代物理,下列说法正确的是()A.放射性元素的半衰期随温度的升高而变短B .α粒子散射实验证明了原子的核式结构C .α、β、γ射线比较,α射线的穿透能力最强D .光电效应现象揭示了光的波动性5.氢原子部分能级的示意图如图所示,不同金属的逸出功如下表所示:铯钙镁铍钛金逸出功W/eV1.92.73.73.94.14.8大量处于n=4能级的氢原子向低能级跃迁时辐射的所有光子中,能够使金属铯发生光电效应的光子有几种A .2B .3C .4D .56.下列说法正确的是A .比结合能越小的原子核,核子结合得越牢固,原子核越稳定B .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能与动能之和不变C .原子核发生一次β衰变,原子核内的一个质子转变为一个中子D .处于激发态的原子核辐射出γ射线时,原子核的核子数不会发生变化 7.下列说法正确的是:( )A .汤姆孙通过研究阴极射线发现了电子,从而建立了核式结构模型B .贝克勒尔通过对天然放射现象的硏究,发现了原子中存在原子核C .原子核由质子和中子组成,稳定的原子核内,中子数一定小于质子数D .大量处于基态的氢原子在单色光的照射下,发出多种频率的光子,其中必有一种与入射光频率相同8.若用|E 1|表示氢原子处于基态时能量的绝对值,处于第n 能级的能量为12n E E n ,则在下列各能量值中,可能是氢原子从激发态向基态跃迁时辐射出来的能量的是( )A .114E B .134E C .178E D .1116E9.如图所示为氢原子的能级示意图,一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2. 49 eV 的金属钠,下列说法正确的是( )A .这群氢原子能发出三种频率不同的光,其中从n =3跃迁到n =2所发出的光波长最短B .这群氢原子能发出两种频率不同的光,其中从n=3跃迁到n=1所发出的光频率最高C .金属钠表面所发出的光电子的初动能最大值为11. 11 eVD .金属钠表面所发出的光电子的初动能最大值为9. 60 eV 10.根据近代物理知识,你认为下列说法中正确的是( ) A .在原子核中,比结合能越大表示原子核中的核子结合的越牢固B .已知氢原子从基态跃迁到某一激发态需要吸收的能量为12.09eV ,则动能等于12.09eV 的另一个氢原子与这个氢原子发生正碰,可以使这个原来静止并处于基态的氢原子跃迁到该激发态C .相同频率的光照射不同金属,则从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越大D .铀核23892(U)衰变为铅核20682(Pb)的过程中,中子数减少21个11.氢原子能级图的一部分如图所示,a 、b 、c 分别表示氢原子在不同能级间的三种跃迁途径,设在a 、b 、c 三种跃迁过程中,放出光子的能量和波长分别是E a 、E b 、E c 和λa 、λb 、λc ,则( )A .b a c λλλ=+B .b a c λλλ=C .111baeλλλ=+D .b a cE E E =-12.下列四个实验中,能说明光具有粒子性的是( )A .B .C .D .13.可见光光子的能量在1. 61~3.10 eV 范围内。
高考物理近代物理知识点之原子核知识点总复习附答案
高考物理近代物理知识点之原子核知识点总复习附答案一、选择题1.在核反应堆中,为了使快中子的速度减慢,可选用作为中子减速剂的物质是()A.氢B.镉C.氧D.水2.在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。
下列说法符合历史事实的是()A.卢瑟福在原子核人工转变的实验中发现了中子B.爱因斯坦为了解释光电效应的实验规律提出了光子说C.贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核D.查德威克利用α射线轰击氮原子核获得了质子3.关于天然放射性,下列说法正确的是A.天然放射现象说明原子是可分的B.放射性元素的半衰期与外界的温度有关,温度越高半衰期越短C.放射性元素发生β衰变时所释放出的电子是原子核内的中子转化为质子时产生的D.机场、车站进行安检时,能发现箱内危险物品,是利用了α射线较强的穿透能力4.下列实验或发现中能提示原子具有核式结构的是A.粒子散射实验B.光电效应实验C.中子的发现D.氢原子光谱的发现5.中国大科学装置“东方超环”(EAST)近期实现1亿摄氏度等离子体运行等多项重大突破。
由于其内部核反应原理与太阳类似,因此“东方超环”也被称为“人造太阳”“人造太阳”采用的核反应方程可能是()A.B.C.D.6.下列四幅图涉及不同的物理知识,其中说法正确的是()A.图(甲):用紫外线照射到金属锌板表面时会发生光电效应,当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能也随之增大B.图(乙):卢瑟福通过分析α粒子散射实验结果,提出了原子的核式结构模型C.图(丙):氢原子由较高能级跃迁到较低能级时,会吸收一定频率的光子D .图(丁):原有50个氡核,经过一个半衰期的时间,一定还剩余25个 7.23290Th 具有放射性,经以下连续衰变过程:2322282282282089088899082Th Ra Ac Th Pb →→→→→,最后生成稳定的20882Pb ,下列说法中正确的是 A .23290Th 和22890Th 中子数相同,质子数不同B .整个衰变过程共发生6次α衰变和4次β衰变C .22888Ra 发生β衰变后变为22889Ac ,说明22888Ra 原子核内有β粒子D .22888Ra 的半衰期为6.7年,取40个该种原子核,经过13.4年剩下10个该种原子核8.由于放射性元素镎的半衰期很短,在自然界很难被发现,只有通过人工的方法制造,已知镎经过一系列α衰变和β衰变后变成铋,下列说法正确的是( )A .镎原子核比铋原子核多28个质子B .发生了7次α衰变和6次衰变C .一定量的放射性该元素,随着存放时间的推移,放射线的穿透力越来越弱D .镎原子核的平均结合能小于衰变后生成的原子核的平均结合能9.原子核反应有广泛的应用,如用于核电站等。
高三物理近代知识点
高三物理近代知识点近代物理是指从19世纪中叶至20世纪初所发展起来的物理学分支,它主要涉及电磁学、光学、相对论和量子力学等领域的重要知识点。
在高中物理课程中,学习近代物理的内容对于理解和应用现代科学技术具有重要意义。
本文将详细介绍高三物理中的一些近代知识点。
一、电磁学1. 电场与电势高三物理课程中,学生需要掌握电场与电势的概念及其数学表达。
电场是指电荷所产生的空间区域内的物理量,而电势则表示某一点的电场能量。
2. 法拉第电磁感应定律法拉第电磁感应定律是描述磁场变化引起感应电动势的定律。
学生需要了解电磁感应定律的表达式以及其应用。
3. 楞次定律楞次定律是描述由感应电动势产生的电流方向的规律。
在高三物理中,学生需要掌握楞次定律以及其应用,如电动势与电流方向的确定等。
二、光学1. 光的波粒二象性在高三物理中,学生需要了解光既可以表现出波动性,又可以表现出粒子性。
例如,光的干涉、衍射现象可以通过波动模型解释,而光电效应则需要利用光的粒子性来解释。
2. 波粒对偶原理波粒对偶原理指出任何物质粒子都具有波动性,而波动也具有粒子性。
学生需要理解波粒对偶原理的基本概念,并能应用于解释光子、电子等物质粒子的行为。
3. 爱因斯坦关于光电效应的解释爱因斯坦提出的关于光电效应的解释通过解明光的粒子性来解释光电效应。
学生需要了解爱因斯坦的工作以及他的解释对光学和量子物理的影响。
三、相对论1. 狭义相对论狭义相对论是爱因斯坦于1905年提出的一种描述运动物体性质的理论。
学生需要了解相对论的基本思想,如相对性原理、光速不变原理等,并能应用相对论解决一些与运动相关的问题。
2. 质能关系质能关系是相对论的重要结论之一,它表明质量和能量是等价的。
学生需要理解质能关系的表达式 E=mc²及其物理意义,并能应用于解决与质能转换相关的问题。
四、量子力学1. 波尔模型波尔模型是对氢原子结构的简化描述,它基于量子力学的基本原理,解释了氢原子谱线以及电子能级的存在。
高三物理原子结构知识点
高三物理原子结构知识点原子结构是高中物理学习中的重要内容,它涉及到原子的组成、元素周期表、电子结构等知识点。
下面将对高三物理原子结构知识点进行详细介绍。
一、原子的组成原子是构成一切物质的基本单位,具有质量和电荷。
它由电子、质子和中子组成。
质子位于原子核中心,带有正电荷;中子也位于原子核中心,没有电荷;电子绕着原子核旋转,带有负电荷。
二、元素周期表元素周期表是一种将元素按照一定规律排列的表格,在周期表中,元素按照原子序数的大小从左到右排列,同时具有周期性的性质。
周期表的主要组成部分有元素的原子序数、元素符号、元素名字和相对原子质量等。
三、氢原子的电子结构氢原子是原子结构的最简单例子,它只有一个质子和一个电子。
根据波尔理论,氢原子的电子绕原子核做圆周运动,且只能处于能量量子化的离散能级上。
氢原子的电子结构可以用能级图表示,能级图中的每一层代表一个能级,能级越靠近原子核,能量越低。
当电子由高能级跃迁到低能级时,会发出或吸收能量。
四、能级和壳层能级是原子中电子在其中可以存在的离散能量状态,用n表示,n=1, 2, 3, ...,能级数越大,对应的能量越高。
壳层是能级的分组,用字母K、L、M、N...表示,每个壳层可以容纳一定数量的电子。
五、电子排布原则和填充规律根据泡利不相容原理、阿伦尼乌斯规则和洪特规则,电子在填充能级和壳层时遵循一定的排布原则。
泡利不相容原理指出在同一个能级上的电子应该尽量避免拥挤,电子的自旋方向要相反;阿伦尼乌斯规则指出电子优先填充低能级的壳层;洪特规则说明填充同一个壳层时,电子会优先填充不饱和的轨道。
六、元素的周期性和周期律元素周期性是指元素性质随着周期表位置的变化而呈现出来的规律性。
元素周期性的存在与元素的原子结构有关,即元素的电子排布会影响元素的性质。
根据元素周期表,我们可以发现周期表中元素性质的周期性变化规律。
七、原子的半径和离子半径原子半径是指原子核到最外层电子轨道外边缘的距离。
高二物理原子结构知识点归纳总结
高二物理原子结构知识点归纳总结在高二物理学习中,原子结构是一个重要的知识点。
理解原子结构的概念和原理对于学习物理和理解其他相关概念至关重要。
本文将对高二物理原子结构的知识点进行归纳总结,以帮助同学们更好地掌握这一部分内容。
1. 原子的组成原子是化学元素的基本单位,由原子核和电子组成。
原子核由质子和中子组成,质子带正电荷,中子不带电。
电子绕原子核轨道运动,带负电荷。
2. 质子数与电子数原子的质子数等于其原子核中所含有的质子数目,也等于其元素周期表中的序数。
原子的电子数等于其质子数,在中性原子中质子数和电子数相等。
3. 原子序数和质量数原子序数的定义是指一个元素的原子核中质子的数目,通常用字母Z表示。
质量数则指的是一个原子核中质子和中子的总数,通常用字母A表示。
同一个元素的同位素具有相同的原子序数,但质量数不同。
4. 原子的电子排布根据泡利不相容原理、奥卡福电离能规则以及洪特规则,电子排布在原子各个轨道中,并遵循一定的顺序,即能级顺序。
5. 壳层与能级电子的排布遵循能量最低原则,最低能量的壳层是1s壳层,其次是2s、2p,以此类推。
每个壳层都包含若干个能级。
6. 能级图能级图是表示原子能级、电子排布情况的图表。
在能级图中,能级用数字表示,壳层用字母表示。
通过能级图,可以清晰地展示原子电子轨道的排布规律。
7. 原子的量子数原子的量子数用来描述原子的状态,其中包括主量子数、角量子数、磁量子数和自旋量子数。
这些量子数决定了电子轨道的位置和方向。
8. 原子的光谱原子的光谱是指原子在被激发后发射或吸收的光线。
光谱可以分为连续光谱、线状光谱和带状光谱。
通过观察和研究光谱可以了解原子的结构特征。
9. 波粒二象性根据波粒二象性理论,电子既可以表现出粒子性也可以表现出波动性。
这一理论揭示了电子行为的双重性质。
10. 原子核原子核是原子的核心部分,质子和中子集中在这里。
原子核的直径很小,但却集中了原子几乎所有的质量。
11. 原子核的结构原子核由质子和中子组成,质子数决定了元素的种类,而质子和中子总数决定了同位素的种类。
高考物理新近代物理知识点之原子结构分类汇编含答案(1)
高考物理新近代物理知识点之原子结构分类汇编含答案(1)一、选择题1.下列四幅图涉及到不同的物理知识,其中说法正确的是()A.图甲:普朗克通过研究黑体辐射提出能量子的概念,成功解释了光电效应B.图乙:玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率是不连续的C.图丙:卢瑟福通过分析α粒子散射实验结果,发现了质子和中子D.图丁:根据电子束通过铝箔后的衍射图样,可以说明电子具有粒子性2.玻尔的原子模型在解释原子的下列问题时,和卢瑟福的核式结构学说观点不同的是()A.电子绕核运动的向心力,就是电子与核之间的静电引力B.电子只能在一些不连续的轨道上运动C.电子在不同轨道上运动时能量不同D.电子在不同轨道上运动时静电引力不同3.如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
下列说法正确的是()A.该实验是卢瑟福建立原子核式结构模型的重要依据B.该实验证实了汤姆孙原子模型的正确性C.α粒子与原子中的电子碰撞会发生大角度偏转D.绝大多数的α粒子发生大角度偏转4.下列说法正确的是()A.“光电效应”现象表明光具有波动性B.电子的发现揭示了原子不是构成物质的最小微粒C.天然放射现象表明原子可以再分D.卢瑟福根据“α粒子散射”实验建立原子结构“枣糕模型”5.下列说法正确的是A .比结合能越小的原子核,核子结合得越牢固,原子核越稳定B .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能与动能之和不变C .原子核发生一次β衰变,原子核内的一个质子转变为一个中子D .处于激发态的原子核辐射出γ射线时,原子核的核子数不会发生变化6.下列说法正确的是:( )A .汤姆孙通过研究阴极射线发现了电子,从而建立了核式结构模型B .贝克勒尔通过对天然放射现象的硏究,发现了原子中存在原子核C .原子核由质子和中子组成,稳定的原子核内,中子数一定小于质子数D .大量处于基态的氢原子在单色光的照射下,发出多种频率的光子,其中必有一种与入射光频率相同7.在卢瑟福的α粒子散射实验中,有少数的α粒子发生了大角度的偏转,其原因是( ) A .原子中有带负电的电子,电子会对α粒子有引力的作用.B .正电荷在原子中是均匀分布的.C .原子的正电荷和绝大部分的质量都集中在一个很小的核上.D .原子是不可再分的.8.我国科学家潘建伟院士预言十年左右量子通信将“飞”入千家万户.在通往量子论的道路上,一大批物理学家做出了卓越的贡献,下列有关说法正确的是A .爱因斯坦提出光子说,并成功地解释了光电效应现象B .德布罗意第一次将量子观念引入原子领域,提出了定态和跃迁的概念C .玻尔在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念D .普朗克把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性9.下列说法正确的是( )A .α粒子散射实验的结果证明原子核是由质子和中子组成的B .比结合能越大,原子核中的核子结合得越牢固,原子核越稳定C .核力是短程力,其表现一定为吸引力D .质子、中子、α粒子的质量分别为1m 、2m 、3m ,由2个质子和2个中子结合成一个α粒子,释放的能量是()2123m m m c +-10.物理学家通过对现象的深入观察和研究,获得正确的科学认识,推动了物理学的发展.下列说法正确的是A .卢瑟福通过对阴极射线的研究,提出了原子的核式结构模型B .玻尔的原子理论成功地解释了氢原子光谱的实验规律C .爱因斯坦通过对光电效应的研究,揭示了光具有波粒二象性D .德布罗意提出微观粒子动量越大,其对应的波长越长11.下列有关四幅图的说法中,正确的是( )A.α粒子散射实验证实了汤姆逊原子枣糕模型的正确性B.在光颜色保持不变的情况下,入射光越强,饱和光电流越大C.放射线甲由α粒子组成,每个粒子带两个单位正电荷D.该链式反应属于原子核的聚变反应12.下列四个实验中,能说明光具有粒子性的是()A.B.C.D.13.在物理学的发展过程中,许多物理学家做出了重要贡献,下列叙述正确的是A.库仑发现了电子B.安培发明了电池C.法拉第最早提出了电场的概念D.奥斯特首先发现了电磁感应现象14.如图,为氢原子能级图;金属钾的逸出功为2.25eV,则下面有关说法正确的是A.处于基态的氢原子能吸收13.0eV的光子后跃迁至n=3能级B.大量处n=4能级的氢原子向低能级跃迁时,最多可辐射出5种不同频率的光C.用处于n=3能级的氢原子向低能级跃迁所辐射出的各种色光照射金属钾,都能发生光电效应D.用大量处于n=4能级的氢原子向低能级跃迁所辐射出的光照射金属钾,所产生光电子的最大初动能为10.5eV15.关于下列四幅图说法不正确的是()A.原子中的电子绕原子核高速运转时,运行轨道的半径可以是任意的B.光电效应实验说明了光具有粒子性C.电子束通过铝箔时的衍射图样证实了电子具有波动性D.发现少数粒子发生了较大偏转,说明原子的正电荷和绝大部分质量集中在很小空间范围16.下列说法中正确的是。
原子结构知识点
原子结构知识点前言原子结构是化学中一个非常重要的概念,它解释了物质的性质和行为。
本文将重点介绍原子结构相关的知识点,包括原子的组成、结构和性质,希望能帮助读者更深入地了解原子的奥秘。
原子的组成原子是构成所有物质的基本单位,它由三种基本粒子组成:质子、中子和电子。
质子带正电荷,中子是中性粒子,而电子带负电荷。
质子和中子位于原子核中,形成原子的核心,而电子则绕核壳层运动。
原子的结构原子的结构包括原子核和电子壳层。
原子核由质子和中子组成,电子围绕在原子核外部的不同能级壳层上运动。
原子核的直径约为电子壳层的万分之一,但其中包含原子99.9%以上的质量。
电子结构电子壳层的能级分为K、L、M、N等,每个能级壳层可以容纳不同数量的电子。
根据泡利不相容原理和居里原理,每个电子轨道最多容纳2个电子,且必须填满低能级轨道后才能填满高能级轨道。
原子物理性质原子的物理性质主要由其原子序数(核电荷数)和电子结构决定。
原子序数越大,原子核中的质子数目越多,电子结构也更加稳定。
原子的性质还受到元素化学属性的影响,如电负性、原子半径、离子半径等。
原子结构的应用原子结构不仅在化学领域有重要应用,还在物理、材料科学等领域发挥关键作用。
人们通过深入研究原子结构,可以设计新材料、开发新技术,甚至探索宇宙奥秘。
结语原子结构是一个精彩而复杂的领域,本文只是对其进行了简要介绍,希望读者在学习过程中能够继续深入探索原子结构的奥秘,拓展对自然世界的认识,为科学发展做出贡献。
以上就是有关原子结构知识点的介绍,希望能对你有所启发。
近代物理知识点
近代物理知识点近代物理是物理学发展的一个重要阶段,它在经典物理学的基础上,对自然界的认识有了更深入和广泛的拓展。
接下来,让我们一同走进近代物理的知识世界。
首先,我们来谈谈狭义相对论。
狭义相对论是由爱因斯坦提出的,它颠覆了我们对时间和空间的传统观念。
在狭义相对论中,时间和空间不再是绝对的,而是相对的。
这意味着运动的观察者所测量到的时间和空间与静止的观察者可能是不同的。
其中一个重要的概念是光速不变原理。
无论观察者处于何种运动状态,光速在真空中总是恒定不变的,约为 299792458 米每秒。
这一原理是狭义相对论的基石。
根据狭义相对论,还引出了时间膨胀和长度收缩的现象。
当物体运动速度接近光速时,时间会变慢,而物体的长度会在运动方向上收缩。
这种效应在日常生活中的速度下很难察觉,但在接近光速的高速运动中就变得非常显著。
接着,让我们了解一下量子力学。
量子力学研究的是微观世界中粒子的行为。
与经典物理学中粒子具有确定的位置和动量不同,在量子力学中,粒子的状态是由波函数来描述的。
海森堡的不确定性原理是量子力学的一个关键概念。
它指出,我们无法同时精确地测量一个粒子的位置和动量。
也就是说,当我们对粒子的位置测量得越精确,对其动量的测量就越不精确,反之亦然。
量子力学中的另一个重要概念是量子跃迁。
粒子可以在不同的能级之间瞬间跃迁,吸收或释放能量。
这种跃迁是不连续的,而不是像经典物理学中那样是连续的过程。
还有物质波的概念。
德布罗意提出,不仅光具有波粒二象性,实物粒子也具有波粒二象性。
这意味着像电子这样的粒子也可以表现出波动性。
再来说说原子核物理。
原子核是原子的核心部分,由质子和中子组成。
原子核的结构和性质是原子核物理研究的重要内容。
原子核的衰变是一种常见的现象。
包括α衰变、β衰变和γ衰变等。
α衰变是原子核放出一个α粒子(即氦核),β衰变则是原子核中的中子转变为质子或质子转变为中子时放出电子或正电子,γ衰变则是原子核在能级跃迁时放出γ射线。
高考物理最新近代物理知识点之原子结构知识点总复习含解析(2)
高考物理最新近代物理知识点之原子结构知识点总复习含解析(2)一、选择题1.根据近代物理知识,你认为下列说法中正确的是( ) A .在原子核中,比结合能越大表示原子核中的核子结合的越牢固B .已知氢原子从基态跃迁到某一激发态需要吸收的能量为12.09eV ,则动能等于12.09eV 的另一个氢原子与这个氢原子发生正碰,可以使这个原来静止并处于基态的氢原子跃迁到该激发态C .相同频率的光照射不同金属,则从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越大D .铀核23892(U)衰变为铅核20682(Pb)的过程中,中子数减少21个2.如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
下列说法正确的是( )A .该实验是卢瑟福建立原子核式结构模型的重要依据B .该实验证实了汤姆孙原子模型的正确性C .α粒子与原子中的电子碰撞会发生大角度偏转D .绝大多数的α粒子发生大角度偏转3.光电效应实验的装置如图所示,用A 、B 两种不同频率的单色光分别照射锌板,A 光能使验电器的指针发生偏转,B 光则不能使验电器的指针发生偏转,下列说法正确的是A .照射光A 光的频率小于照射光B 光的频率 B .增大照射光A 的强度,验电器指针张角将变小C .使验电器指针发生偏转的是正电荷D .若A 光是氢原子从n =5能级向n =1能级跃迁时产生的,则B 光可能是氢原子从n =6能级向n =1能级跃迁时产生的4.如图所示为氢原子的能级结构示意图,一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49 eV 的金属钠.下列说法正确的是( )A.这群氢原子能辐射出三种不同频率的光,其中从n=3能级跃迁到n=2能级所发出的光波长最短B.这群氢原子在辐射光子的过程中电子绕核运动的动能减小,电势能增大C.能发生光电效应的光有三种D.金属钠表面所发出的光电子的最大初动能是9.60 eV5.关于近代物理,下列说法正确的是()A.放射性元素的半衰期随温度的升高而变短B.α粒子散射实验证明了原子的核式结构C.α、β、γ射线比较,α射线的穿透能力最强D.光电效应现象揭示了光的波动性6.氢原子光谱在可见光区域内有四条谱线,都是氢原子中电子从量子数n>2的能级跃迁到n=2的能级发出的光,它们在真空中的波长由长到短,可以判定A.对应的前后能级之差最小B.同一介质对的折射率最大C.同一介质中的传播速度最大D.用照射某一金属能发生光电效应,则也一定能7.氢原子部分能级的示意图如图所示,不同金属的逸出功如下表所示:铯钙镁铍钛金逸出功W/eV 1.9 2.7 3.7 3.9 4.1 4.8大量处于n=4能级的氢原子向低能级跃迁时辐射的所有光子中,能够使金属铯发生光电效应的光子有几种A.2B.3C .4D .58.一个氢原子从量子数n=2的能级跃迁到量子数n=3的能级,该氢原子 A .吸收光子,能量增加 B .放出光子,能量减少 C .放出光子,能量增加D .吸收光子,能量减少9.关于阴极射线的本质,下列说法正确的是( ) A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子D .阴极射线本质是X 射线10.关于近代物理学,下列说法正确的是( )A .查德威克发现质子的核反应方程为4141712781He N O H +→+B .由爱因斯坦光电效应方程可知,光电子的最大初动能与入射光的频率成正比C .氢原子的电子由外层轨道跃迁到内层轨道时,要放出光子,氢原子的能量减小, 电子的动能减小D .光电效应和康普顿效应深入揭示了光的粒子性,前者表明光子具有能量,后者表明光子既具有能量,也具有动量11.氢原子能级图如图所示,下列说法正确的是A .当氢原子从n =2能级跃迁到n =3能级时,需要吸收0. 89eV 的能量B .处于n =2能级的氢原子可以被能量为2eV 的电子碰撞而向高能级跃迁C .一个处于n =4能级的氢原子向低能级跃迁时,可以辐射出6 种不同頻率的光子D .n =4能级的氢原子跃迁到n=3能级时辐射出电磁波的波长比n =3能级的氢原子跃迁到n =2能级时辐射出电磁波的波长短12.下列四个实验中,能说明光具有粒子性的是( )A .B .C.D.13.氢原子发光时,能级间存在不同的跃迁方式,图中①②③三种跃迁方式对应的光谱线分别为Ⅰ、Ⅱ、Ⅲ,下列 A、B、C、D 光谱图中,与上述三种跃迁方式对应的光谱图应当是下图中的(图中下方的数值和短线是波长的标尺)A.B.C.D.14.图为氢原子能级的示意图,现有大量的氢原子处于以n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是A.最容易表现出衍射现象的光是由,n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D .用n =2能级跃迁到n =1能级辐射出的光照射逸出功为6.34eV 的金属铂能发生光电效应 15.氢原子能级图的一部分如图所示,a 、b 、c 分别表示氢原子在不同能级间的三种跃迁途径,设在a 、b 、c 三种跃迁过程中,放出光子的能量和波长分别是E a 、E b 、E c 和λa 、λb 、λc ,则( )A .b a c λλλ=+B .b a c λλλ=C .111baeλλλ=+D .b a cE E E =-16.氢原子从能量为m E 的较高激发态跃迁到能量为n E 的较低激发态,设真空中的光速为c ,则氢原子 A .吸收光子的波长为()m n c E E h - B .辐射光子的波长为()m n c E E h- C .吸收光子的波长为n m chE E -D .辐射光子的波长为nm chE E -17.α粒子散射实验中,不考虑电子和α粒子的碰撞影响,是因为 A .α粒子与电子根本无相互作用B .α粒子受电子作用的合力为零,是因为电子是均匀分布的C .α粒子和电子碰撞损失能量极少,可忽略不计D .电子很小,α粒子碰撞不到电子18.图示是氢原子的能级图,大量处于n =5的能级的氢原子,在向低能级跃迁的过程中,下列说法正确的是A .辐射的光子频率最多有5种B .辐射的光子频率最多有8种C .可能辐射能量为2.86eV 的光子D .可能辐射能量为11eV 的光子19.卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是A .B .C .D .20.下列说法正确的是A .23411120H+H He+n →是α衰变B .α粒子散射实验中,极少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据C .核反应方程:9412426Be+He C+x →中的x 为质子D .氡的半衰期为3.8天,若有4个氡原子核,经过3.8天后就一定只剩下2个氡原子核 21.关于近代物理,下列说法错误..的是 ( ) A .轻核聚变反应方程234112H H He X +→+中,X 表示电子B .α粒子散射实验现象揭示了原子的核式结构C .分别用红光和紫光照射金属钾表面均有光电子逸出,紫光照射时,逸出的光电子的最大初动能较大D .基态的一个氢原子吸收一个光子跃迁到n = 3激发态后,可能发射2种频率的光子 22.下列能揭示原子具有核式结构的实验是( ) A .光电效应实验 B .伦琴射线的发现 C .α粒子散射实验D .氢原子光谱的发现23.下列说法中正确的是 。
高考物理近代物理知识点之原子结构全集汇编附解析
高考物理近代物理知识点之原子结构全集汇编附解析一、选择题1.下面是历史上的几个著名实验的装置图,其中发现电子的装置是( )A .B .C .D .2.下列说法正确的是( )A .β衰变现象说明电子是原子核的组成部分B .在光电效应实验中,只增加入射光的强度,饱和光电流不变C .在核反应方程41417278He N O X +→+中,X 表示的是中子D .根据玻尔理论,处于基态的氢原子吸收光子发生跃迁后,其电子的动能减少 3.不断发现和认识新现象,进而理解事物的本性,这是一切科学发展的必由之路。
下列说法正确的是A .放射性元素衰变的快慢是由原子所处的化学状态和外部条件决定的B .原子核越大,它的比结合能越大C .电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构D .如果大量氢原子处在n =3的能级,会辐射出6种不同频率的光 4.氢原子部分能级的示意图如图所示,不同金属的逸出功如下表所示:铯钙镁铍钛金逸出功W/eV1.92.73.73.94.14.8大量处于n=4能级的氢原子向低能级跃迁时辐射的所有光子中,能够使金属铯发生光电效应的光子有几种A.2B.3C.4D.5n 的激发态的氢原子,能够自发跃迁5.如图所示为氢原子的能级图,一群处于量子数4到较低的能量状态,并向外辐射光子.已知可见光的光子的能量范围为1.64~3.19 eV,锌板的逸出功为3.34 eV,则向外辐射的多种频率的光子中A.最多有4种频率的光子B.最多有3种频率的可见光C.能使锌板发生光电效应的最多有4种频率的光子D.能使锌板发射出来的光电子,其初动能的最大值为9.41 eV6.物理学家通过对现象的深入观察和研究,获得正确的科学认识,推动了物理学的发展.下列说法正确的是A.卢瑟福通过对阴极射线的研究,提出了原子的核式结构模型B.玻尔的原子理论成功地解释了氢原子光谱的实验规律C.爱因斯坦通过对光电效应的研究,揭示了光具有波粒二象性D.德布罗意提出微观粒子动量越大,其对应的波长越长7.下列现象中,与原子核内部变化有关的是A.粒子散射现象B.天然放射现象C.光电效应现象D.原子发光现象8.下列有关四幅图的说法中,正确的是( )A.α粒子散射实验证实了汤姆逊原子枣糕模型的正确性B.在光颜色保持不变的情况下,入射光越强,饱和光电流越大C.放射线甲由α粒子组成,每个粒子带两个单位正电荷D.该链式反应属于原子核的聚变反应9.下列叙述中符合物理学史的有()A.汤姆孙通过研究阴极射线实验,发现了电子B .卢瑟福通过对α粒子散射实验现象的分析,证实了原子核是可以再分的C .法国物理学家库仑测出元电荷e 的电荷量D .玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构模型10.许多情况下光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的一条重要途径.利用氢气放电管可以获得氢原子光谱,根据玻尔理论可以很好地解释氢原子光谱的产生机理.已知氢原子的基态能量为E 1,激发态能量为12n E E n =,其中n = 2,3,4….1885年,巴尔末对当时已知的在可见光区的四条谱线做了分析,发现这些谱线的波长能够用一个公式表示,这个公式写做221112R n λ⎛⎫=- ⎪⎝⎭,n = 3,4,5,….式中R 叫做里德伯常量,这个公式称为巴尔末公式.用h 表示普朗克常量,c 表示真空中的光速,则里德伯常量R 可以表示为( ) A .12E hc-B .12E hcC .1E hc-D .1E hc11.在物理学的发展过程中,许多物理学家做出了重要贡献,下列叙述正确的是 A .库仑发现了电子 B .安培发明了电池C .法拉第最早提出了电场的概念D .奥斯特首先发现了电磁感应现象12.如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
高考物理营口近代物理知识点之原子结构图文解析
高考物理营口近代物理知识点之原子结构图文解析一、选择题1.下列有关四幅图的说法中,正确的是( )A.α粒子散射实验证实了汤姆逊原子枣糕模型的正确性B.在光颜色保持不变的情况下,入射光越强,饱和光电流越大C.放射线甲由α粒子组成,每个粒子带两个单位正电荷D.该链式反应属于原子核的聚变反应2.下列叙述中符合史实的是A.玻尔理论很好地解释了氢原子的光谱B.汤姆孙发现电子,表明原子具有核式结构C.卢瑟福根据α粒子散射实验的现象,提出了原子的能级假设D.贝克勒尔发现了天然放射现象,并提出了原子的核式结构3.关于近代物理,下列说法正确的是()A.放射性元素的半衰期随温度的升高而变短B.α粒子散射实验证明了原子的核式结构C.α、β、γ射线比较,α射线的穿透能力最强D.光电效应现象揭示了光的波动性4.图甲所示为氢原子能级图,大量处于n=4激发态的氢原子向低能级跃迁时能辐射出多种不同频率的光,其中用从n=4能级向n=2能级跃迁时辐射的光照射图乙所示光电管的阴极K时,电路中有光电流产生,则A.改用从n=4能级向n=1能级跃迁时辐射的光,一定能使阴极K发生光电效应B.改用从n=3能级向n=1能级跃迁时辐射的光,不能使阴极K发生光电效应C.改用从n=4能级向n=1能级跃迁时辐射的光照射,逸出光电子的最大初动能不变D.入射光的强度增大,逸出光电子的最大初动能也增大5.下列说法正确的是()A.“光电效应”现象表明光具有波动性B .电子的发现揭示了原子不是构成物质的最小微粒C .天然放射现象表明原子可以再分D .卢瑟福根据“α粒子散射”实验建立原子结构“枣糕模型” 6.一个氢原子从量子数n=2的能级跃迁到量子数n=3的能级,该氢原子 A .吸收光子,能量增加 B .放出光子,能量减少 C .放出光子,能量增加D .吸收光子,能量减少7.若用|E 1|表示氢原子处于基态时能量的绝对值,处于第n 能级的能量为12n E E n =,则在下列各能量值中,可能是氢原子从激发态向基态跃迁时辐射出来的能量的是( )A .114E B .134E C .178E D .1116E 8.人们发现,不同的原子核,其核子的平均质量(原子核的质量除以核子数)与原子序数有如图所示的关系.下列关于原子结构和核反应的说法正确的是( )A .由图可知,原子核D 和E 聚变成原子核F 时会有质量亏损,要吸收能量B .由图可知,原子核A 裂变成原子核B 和C 时会有质量亏损,要放出核能C .已知原子核A 裂变成原子核B 和C 时放出的γ射线能使某金属板逸出光电子,若增加γ射线强度,则逸出光电子的最大初动能增大D .卢瑟福提出的原子核式结构模型,可以解释原子的稳定性和原子光谱的分立特征 9.在卢瑟福的α粒子散射实验中,有少数的α粒子发生了大角度的偏转,其原因是( ) A .原子中有带负电的电子,电子会对α粒子有引力的作用. B .正电荷在原子中是均匀分布的.C .原子的正电荷和绝大部分的质量都集中在一个很小的核上.D .原子是不可再分的.10.氢原子发光时,能级间存在不同的跃迁方式,图中 ① ② ③ 三种跃迁方式对应的光谱线分别为Ⅰ、Ⅱ、Ⅲ ,下列 A 、B 、C 、D 光谱图中,与上述三种跃迁方式对应的光谱图应当是下图中的(图中下方的数值和短线是波长的标尺)A .B .C .D .11.根据近代物理知识,你认为下列说法中正确的是( ) A .在原子核中,比结合能越大表示原子核中的核子结合的越牢固B .已知氢原子从基态跃迁到某一激发态需要吸收的能量为12.09eV ,则动能等于12.09eV 的另一个氢原子与这个氢原子发生正碰,可以使这个原来静止并处于基态的氢原子跃迁到该激发态C .相同频率的光照射不同金属,则从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越大D .铀核23892(U)衰变为铅核20682(Pb)的过程中,中子数减少21个12.如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
高考物理最新近代物理知识点之原子结构知识点
高考物理最新近代物理知识点之原子结构知识点一、选择题1.关于近代物理,下列说法错误..的是 ( ) A .轻核聚变反应方程234112H H He X +→+中,X 表示电子B .α粒子散射实验现象揭示了原子的核式结构C .分别用红光和紫光照射金属钾表面均有光电子逸出,紫光照射时,逸出的光电子的最大初动能较大D .基态的一个氢原子吸收一个光子跃迁到n = 3激发态后,可能发射2种频率的光子 2.如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
下列说法正确的是( )A .该实验是卢瑟福建立原子核式结构模型的重要依据B .该实验证实了汤姆孙原子模型的正确性C .α粒子与原子中的电子碰撞会发生大角度偏转D .绝大多数的α粒子发生大角度偏转 3.下列叙述中符合史实的是A .玻尔理论很好地解释了氢原子的光谱B .汤姆孙发现电子,表明原子具有核式结构C .卢瑟福根据α粒子散射实验的现象,提出了原子的能级假设D .贝克勒尔发现了天然放射现象,并提出了原子的核式结构 4.关于近代物理,下列说法正确的是( ) A .放射性元素的半衰期随温度的升高而变短 B .α粒子散射实验证明了原子的核式结构 C .α、β、γ射线比较,α射线的穿透能力最强 D .光电效应现象揭示了光的波动性5.氢原子部分能级的示意图如图所示,不同金属的逸出功如下表所示:铯钙镁铍钛金逸出功W/eV1.92.73.73.94.14.8大量处于n=4能级的氢原子向低能级跃迁时辐射的所有光子中,能够使金属铯发生光电效应的光子有几种A .2B .3C .4D .56.如图是原子物理史上几个著名的实验,关于这些实验,下列说法正确的是:A .卢瑟福α粒子散射实验否定了原子结构的枣糕模型,提出原子的核式结构模型B .放射线在磁场中偏转,中间没有偏转的为γ射线,电离能力最强C .电压相同时,光照越强,光电流越大,说明遏止电压和光的强度有关D .铀235只要俘获中子就能进行链式反应7.下列有关原子结构和原子核的认识,其中正确的是 . A .γ射线是高速运动的电子流B .氢原子辐射光子后,其绕核运动的电子动能增大C .太阳辐射能量的主要来源是太阳中发生的重核裂变D .21083Bi 的半衰期是5天,100克21083Bi 经过10天后还剩下50克8.若用|E 1|表示氢原子处于基态时能量的绝对值,处于第n 能级的能量为12n E E n=,则在下列各能量值中,可能是氢原子从激发态向基态跃迁时辐射出来的能量的是( ) A .114E B .134E C .178E D .1116E 9.氢原子能级图如图所示,下列说法正确的是A .当氢原子从n =2能级跃迁到n =3能级时,需要吸收0. 89eV 的能量B .处于n =2能级的氢原子可以被能量为2eV 的电子碰撞而向高能级跃迁C .一个处于n =4能级的氢原子向低能级跃迁时,可以辐射出6 种不同頻率的光子D .n =4能级的氢原子跃迁到n=3能级时辐射出电磁波的波长比n =3能级的氢原子跃迁到n =2能级时辐射出电磁波的波长短10.根据近代物理知识,你认为下列说法中正确的是( ) A .在原子核中,比结合能越大表示原子核中的核子结合的越牢固B .已知氢原子从基态跃迁到某一激发态需要吸收的能量为12.09eV ,则动能等于12.09eV 的另一个氢原子与这个氢原子发生正碰,可以使这个原来静止并处于基态的氢原子跃迁到该激发态C .相同频率的光照射不同金属,则从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越大D .铀核23892(U)衰变为铅核20682(Pb)的过程中,中子数减少21个11.下列说法正确的是( )A .α粒子散射实验的结果证明原子核是由质子和中子组成的B .比结合能越大,原子核中的核子结合得越牢固,原子核越稳定C .核力是短程力,其表现一定为吸引力D .质子、中子、α粒子的质量分别为1m 、2m 、3m ,由2个质子和2个中子结合成一个α粒子,释放的能量是()2123m m m c +-12.氢原子能级图的一部分如图所示,A 、B 、C 分别表示原子在三种跃迁过程中辐射出 的光子.其中E A 表示原子从n=3能级向n=2能级跃迁的能量,E B 表示原子从n=2能级向 n=1能级跃迁的能量,E C 表示原子从n=3能级向n=1能级跃迁的能量,则下述关系中正确的是A .E A < EB < EC B .E A < E C < E B C .E C < E B < E AD .E B <E A < E C 13.下列说法正确的是A .23411120H+H He+n →是α衰变B .α粒子散射实验中,极少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据C .核反应方程:9412426Be+He C+x →中的x 为质子D .氡的半衰期为3.8天,若有4个氡原子核,经过3.8天后就一定只剩下2个氡原子核 14.如图所示为氢原子能级图以及从n =3、4、5、6能级跃迁到2n =能级时辐射的四条谱线,下列叙述正确的是( )A .四条谱线中αH 对应的光子能量最大B .四条谱线中αH 对应的光的频率最大C .用能量为12.75eV 的光子照射基态的氢原子,氢原子有可能跃迁到n =3的激发态上D .大量处于n =3能级的氢原子向低能级跃迁时,最多产生3种频率不同的光子 15.关于下列四幅图说法不正确的是( )A .原子中的电子绕原子核高速运转时,运行轨道的半径可以是任意的B .光电效应实验说明了光具有粒子性C .电子束通过铝箔时的衍射图样证实了电子具有波动性D.发现少数粒子发生了较大偏转,说明原子的正电荷和绝大部分质量集中在很小空间范围16.下面是历史上的几个著名实验的装置图,其中发现电子的装置是()A. B.C. D.17.氢原子的能级如图所示,下列说法不正确的是:( )A.一个氢原子从n=4的激发态跃迁到基态时,有可能辐射出6种不同频率的光子,这时电子动能减少,原子势能减少B.已知可见光的光子能量范围约为 1.62 eV—3.11 ev,处于n=3能级的氢原子可以吸收任意频率的紫外线,并发出电离C.有一群处于n=4能级的氢原子.如果原子n=2向n=1跃迁所发生的光正好使某种金属材料产生光电效应,则这群氢原子发出的光谱中共有3条谱线能使该金属产生光电效应D.有一群处于n=4能级的氢原子.如果原子n=2向n=1跃迁所发出的光正好使某种金属材料产生光电效应,从能级n=4向n=1发出的光照射该金属材料,所产生的光电子的最大初动能为 2.55eV18.关于原子结构的认识历程,下列说法正确的有A.汤姆孙发现电子后猜想出原子内的正电荷集中在很小的核内B.α粒子散射实验中少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据C.卢瑟福的原子核式结构模型能够很好的解释光谱的分立特征和原子的稳定性D.玻尔原子理论无法解释较复杂原子的光谱现象,说明玻尔提出的原子定态概念是错误的19.使某种金属X发生光电效应所需的光子最小的能量为2.60eV.已知一群氢原子处于量子数n=3的激发态,其能级如图所示.这些氢原子能够自发地跃迁到较低的能量状态,并向外辐射多种频率的光.那么,若用这些氢原子辐射的光照射这种金属X,能够使这种金属X发生光电效应的不同频率的光有( )A .一种B .两种C .三种D .四种20.氦氖激光器能产生三种波长的激光,其中两种波长分别为λ1=0.632 8 μm ,λ2=3.39 μm .已知波长为λ1的激光是氖原子在能级间隔为ΔE 1=1.96 eV 的两个能级之间跃迁产生的.用ΔE 2表示产生波长为λ2的激光所对应的跃迁的能级间隔,则ΔE 2的近似值为 A .10.50 eVB .0.98 eVC .0.53 eVD .0.37 eV21.氢原子能级如图所示,则下列说法正确的是A .氢原子能级越高原子的能量越大,电子绕核运动的轨道半径越大,动能也越大B .用动能为12.3eV 的电子射向一群处于基态的氢原子,原子有可能跃迁到n=2的能级C .用光子能量为12.3eV 的光照射一群处于基态的氢原子,氢原子有可能跃迁到n=2的能级D .用光子能量为1.75eV 的可见光照射大量处于n=3能级的氢原子时,氢原子不能发生电离22.原子从a 能级跃迁到b 能级时辐射波长为λ1的光子,原子从b 能级跃迁到c 能级时吸收波长为λ2的光子,已知λ1>λ2.那么原子从a 能级状态跃迁到c 能级状态时将要( ) A .辐射波长为1212λλλλ-的光子 B .辐射波长为λ1-λ2的光子 C .吸收波长为λ1-λ2的光子 D .吸收波长为1212λλλλ-的光子 23.图甲所示为氢原子的能级,图乙为氢原子的光谱.已知谱线a 是氢原子从n =4的能级跃迁到n =2能级时的辐射光,则谱线b 可能是氢原子( )时的辐射光A .从5n =的能级跃迁到3n =的能级B .从4n =的能级跃迁到3n =的能级C .从5n =的能级跃迁到2n =的能级D .从3n =的能级跃迁到2n =的能级24.下列关于物理学史与物理学研究方法的叙述中正确的是( )A .密立根测定了静电力常量B .奧斯特首先发现了电磁感应现象C .库仑最早用扭秤实验测量出电子电荷量的精确值D .法拉第最早提出了“电场”的概念25.可见光光子的能量在1. 61~3.10 eV 范围内。
近代物理学知识点
近代物理学知识点近代物理学是物理学发展的一个重要阶段,它颠覆了许多传统的观念,为我们理解自然界的本质提供了全新的视角。
以下将为您介绍一些近代物理学中的关键知识点。
首先,不得不提的是相对论。
相对论由爱因斯坦提出,分为狭义相对论和广义相对论。
狭义相对论主要探讨了时间和空间的相对性,以及光速不变原理。
它告诉我们,当物体的运动速度接近光速时,时间会变慢,长度会缩短。
比如,一个高速运动的飞船中的时间流逝相对于地球上会变慢。
这可不是科幻小说中的想象,而是经过实验验证的科学事实。
广义相对论则进一步将引力现象解释为时空的弯曲。
质量会使周围的时空发生弯曲,物体在这个弯曲的时空中运动,就表现出了引力的效果。
比如,地球围绕太阳公转,实际上是沿着太阳造成的时空弯曲的“测地线”运动。
这个理论不仅成功地解释了水星近日点的进动等问题,还对宇宙的结构和演化有着重要的意义。
量子力学是近代物理学的另一大支柱。
它研究的是微观世界粒子的行为。
在量子力学中,粒子不再具有确定的位置和动量,而是处于一种“叠加态”。
直到进行测量时,它们才会“坍缩”到一个确定的状态。
这就好比一个盒子里的猫,在打开盒子之前,猫处于既生又死的叠加态。
量子力学中的薛定谔方程是描述微观粒子状态随时间变化的基本方程。
通过求解这个方程,可以得到粒子的各种可能状态及其概率。
而且,量子力学还引入了“量子纠缠”的概念,两个处于纠缠态的粒子,无论相隔多远,对其中一个粒子的测量会瞬间影响另一个粒子的状态,这种超距作用让人们对自然界的本质有了更深的思考。
在近代物理学中,还有一个重要的概念是黑体辐射。
黑体是能够完全吸收外来辐射而不反射的物体。
研究黑体辐射的规律时,经典物理学遇到了巨大的困难。
普朗克提出了能量量子化的假说,成功地解释了黑体辐射的实验结果。
这一假说为量子力学的发展奠定了基础。
物质的波粒二象性也是近代物理学的重要发现。
德布罗意认为,不仅光具有波粒二象性,实物粒子也具有波动性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理最新近代物理知识点之原子结构知识点(1)一、选择题1.子与氢原子核(质子)构成的原子称为氢原子(hydrogen muon atom),它在原子核的物理研究中有很重要作用,如图氢原子的能级示意图。
假定光子能量为E的一束光照射容器中大量处于能级的氢原子,氢原子吸收光子后,发出频率为....和的光,且依次增大,则E等于()A. B. C. D.2.氢原子部分能级的示意图如图所示,不同金属的逸出功如下表所示:铯钙镁铍钛金逸出功W/eV 1.9 2.7 3.7 3.9 4.1 4.8大量处于n=4能级的氢原子向低能级跃迁时辐射的所有光子中,能够使金属铯发生光电效应的光子有几种A.2B.3C.4D.5n 的激发态的氢原子,能够自发跃迁3.如图所示为氢原子的能级图,一群处于量子数4到较低的能量状态,并向外辐射光子.已知可见光的光子的能量范围为1.64~3.19 eV,锌板的逸出功为3.34 eV,则向外辐射的多种频率的光子中A .最多有4种频率的光子B .最多有3种频率的可见光C .能使锌板发生光电效应的最多有4种频率的光子D .能使锌板发射出来的光电子,其初动能的最大值为9.41 eV 4.下列说法正确的是A .比结合能越小的原子核,核子结合得越牢固,原子核越稳定B .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能与动能之和不变C .原子核发生一次β衰变,原子核内的一个质子转变为一个中子D .处于激发态的原子核辐射出γ射线时,原子核的核子数不会发生变化5.若用|E 1|表示氢原子处于基态时能量的绝对值,处于第n 能级的能量为12n E E n =,则在下列各能量值中,可能是氢原子从激发态向基态跃迁时辐射出来的能量的是( )A .114E B .134E C .178E D .1116E 6.关于近代物理学,下列说法正确的是( )A .查德威克发现质子的核反应方程为4141712781He N O H +→+B .由爱因斯坦光电效应方程可知,光电子的最大初动能与入射光的频率成正比C .氢原子的电子由外层轨道跃迁到内层轨道时,要放出光子,氢原子的能量减小, 电子的动能减小D .光电效应和康普顿效应深入揭示了光的粒子性,前者表明光子具有能量,后者表明光子既具有能量,也具有动量7.人们发现,不同的原子核,其核子的平均质量(原子核的质量除以核子数)与原子序数有如图所示的关系.下列关于原子结构和核反应的说法正确的是( )A .由图可知,原子核D 和E 聚变成原子核F 时会有质量亏损,要吸收能量B .由图可知,原子核A 裂变成原子核B 和C 时会有质量亏损,要放出核能C .已知原子核A 裂变成原子核B 和C 时放出的γ射线能使某金属板逸出光电子,若增加γ射线强度,则逸出光电子的最大初动能增大D .卢瑟福提出的原子核式结构模型,可以解释原子的稳定性和原子光谱的分立特征8.下列叙述中不正确的是()A.光的粒子性被光电效应和康普顿效应所证实B.玻尔建立了量子理论,成功解释了所有原子发光现象C.在光的干涉现象中,干涉亮条纹部分是光子到达几率大的地方D.宏观物体的物质波波长非常小,不易观察到它的波动性9.物理学家通过对现象的深入观察和研究,获得正确的科学认识,推动了物理学的发展.下列说法正确的是A.卢瑟福通过对阴极射线的研究,提出了原子的核式结构模型B.玻尔的原子理论成功地解释了氢原子光谱的实验规律C.爱因斯坦通过对光电效应的研究,揭示了光具有波粒二象性D.德布罗意提出微观粒子动量越大,其对应的波长越长10.下列说法正确的是()A.β衰变现象说明原子核外存在电子B.只有入射光的波长大于金属的极限波长,光电效应才能产生C.氢原子从基态向较高能量态跃迁时,电子的动能减小D.α粒子散射实验表明核外电子轨道是量子化的11.一群氢原子中的电子从较高能级自发地跃迁到较低能级的过程中A.原子要吸收一系列频率的光子B.原子要吸收某一种频率的光子C.原子要发出一系列频率的光子D.原子要发出某一种频率的光子12.下列叙述中符合史实的是A.玻尔理论很好地解释了氢原子的光谱B.汤姆孙发现电子,表明原子具有核式结构C.卢瑟福根据α粒子散射实验的现象,提出了原子的能级假设D.贝克勒尔发现了天然放射现象,并提出了原子的核式结构13.卢瑟福利用 粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是A.B.C.D.14.下列关于物理学史与物理学研究方法的叙述中正确的是()A.密立根测定了静电力常量B.奧斯特首先发现了电磁感应现象C .库仑最早用扭秤实验测量出电子电荷量的精确值D .法拉第最早提出了“电场”的概念 15.下列说法正确的是A .23411120H+H He+n →是α衰变B .α粒子散射实验中,极少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据C .核反应方程:9412426Be+He C+x →中的x 为质子D .氡的半衰期为3.8天,若有4个氡原子核,经过3.8天后就一定只剩下2个氡原子核 16.下列说法中正确的是 。
A .发现天然放射现象的意义在于使人类认识到原子具有复杂的结构B .结合能越大的原子核,原子核中的核子结合得越牢固,原子核越稳定。
C .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能和动能之和守恒D .在光电效应实验中,用同种频率的光照射不同的金属表面,从金属表面逸出的光电子的最大初动能E k 越大,则这种金属的逸出功W 0越小17.汞原子的能级图如图所示.现让一束单色光照射到大量处于基态的汞原子上,汞原子只发出三种不同频率的单色光.那么,关于入射光的能量,下列说法正确的是( )A .可能大于或等于7.7 eVB .可能大于或等于8.8 eVC .一定等于7.7 eVD .包含2.8 eV 、4.9 eV 、7.7 eV 三种18.物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展。
下列说法符合事实的是 ( )A .汤姆孙发现了电子,并提出了“原子的核式结构模型”B .卢瑟福用α粒子轰击147N 获得反冲核178O ,发现了质子C .查德威克发现了天然放射性现象,说明原子核有复杂结构D .普朗克提出的“光子说”成功解释了光电效应19.已知金属钙的逸出功为2.7 eV ,氢原子的能级图如图所示,当大量氢原子从n=4的能级向低能级跃迁时,下列说法正确的是( )A .电子的动能减少,氢原子系统的总能量减少B.氢原子可能辐射4种频率的光子C.有3种频率的辐射光子能使钙发生光电效应D.从n=4到n=1发出的光的波长最长20.如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.29eV的金属钠,下列说法中正确的是()A.这群氢原子只能发出三种频率不同的光,其中从n=3 跃迁到n=2所发出的光波长最短B.金属钠表面所发出的光电子的初动能最大值为9.80eVC.金属钠表面所发出的光电子的初动能最大值为11.31eVD.这群氢原子只能发出两种频率不同的光,其中从n=3跃迁到n=1所发出的光频率最高21.氦原子被电离一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E1=-54.4eV,氦离子能级的示意图如图所示,在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是()A.40.8eV B.54.4eVC.51.0eV D.43.2eV22.图为氢原子能级的示意图,现有大量的氢原子处于以n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是A .最容易表现出衍射现象的光是由,n =4能级跃迁到n =1能级产生的B .频率最小的光是由n =2能级跃迁到n =1能级产生的C .这些氢原子总共可辐射出3种不同频率的光D .用n =2能级跃迁到n =1能级辐射出的光照射逸出功为6.34eV 的金属铂能发生光电效应 23.图甲所示为氢原子的能级,图乙为氢原子的光谱.已知谱线a 是氢原子从n =4的能级跃迁到n =2能级时的辐射光,则谱线b 可能是氢原子( )时的辐射光A .从5n =的能级跃迁到3n =的能级B .从4n =的能级跃迁到3n =的能级C .从5n =的能级跃迁到2n =的能级D .从3n =的能级跃迁到2n =的能级 24.卢瑟福提出了原子的核式结构模型,这一模型建立的基础是A .α粒子的散射实验B .对阴极射线的研究C .天然放射性现象的发现D .质子的发现 25.下列现象中,与原子核内部变化有关的是 A .粒子散射现象B .天然放射现象C .光电效应现象D .原子发光现象【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【解析】【详解】μ子吸收能量后从n=2能级跃迁到较高m能级,然后从m能级向较低能级跃迁,若从m能级向低能级跃迁时如果直接跃迁到基态n=1能级,则辐射的能量最大,否则跃迁到其它较低的激发态时μ子仍不稳定,将继续向基态和更低的激发态跃迁,即1、2、3…m任意两个轨道之间都可以产生一种频率的辐射光,故总共可以产生的辐射光子的种类为,解得m=4,即μ子吸收能量后先从n=2能级跃迁到n=4能级,然后从n=4能级向低能级跃迁。
辐射光子的按能量从小到大的顺序排列为4能级到3能级,能级3到能级2,能级4到能级2,能级2到能级1,能级3到能级1,能级4到能级1.所以能量E与hν3相等。
故C正确。
故选C。
【点睛】本题需要同学们理解μ子吸收能量后从较低能级跃迁到较高能级,而较高能级不稳定会自发的向较低能级跃迁,只有跃迁到基态后才能稳定,故辐射光子的种类为,这是高考的重点,我们一定要熟练掌握.2.C解析:C【解析】【详解】氢原子由量子数n=4的能级跃迁低能级时辐射光子的能量有6种;其中:E4-E1=-0.8+13.6eV=12.8eV;E4-E2=-0.8+3.40eV=2.6eV;E4-E3=-0.85+1.51eV=0.66eV;E3-E2=-1.51+3.40eV=1.89eV;E3-E1=-1.51+13.6eV=12.09eV;E2-E1=-3.40+13.6eV=10.2eV;金属铯的逸出功为1.9eV,则能够使金属铯发生光电效应的光子有4种,故选C.3.D解析:D【解析】C=6,得处于n=4的激发态一共可能产生6条光谱线,故AB错误;因锌板的逸出功根据24为3.34eV,而一群处于量子数n=4的激发态氢原子,向基态跃迁过程中,产生的光子能量分别是12.75 eV,12.09eV,10.2eV,2.55eV,1.89eV,0.66eV,依据光电效应产生条件:入射光的能量大于或等于锌板的逸出功,能使锌板发生光电效应的最多有3种频率的光子,故C错误;依据光电效应方程:E km=hγ-W,使锌板发射出来的光电子,其最大初动能的最大值为E km=12.75-3.34=9.41 eV,故D正确;故选D.点睛:此题考查数学组合公式,掌握能级的跃迁,激发态不稳定,会向基态发生跃迁,理解光电效应的条件与其方程的内容.4.D解析:D【解析】A .比结合能越大的原子核,核子结合得越牢固,原子核越稳定,A 错误;B .根据玻尔理论可知,氢原子核外电子跃迁过程,氢原子要辐射(或吸收)光子,电子的总能量变化,B 错误;C .原子核β衰变所放出的电子为原子核内一个中子转化为一个质子和一个电子而来的,C 错误;D .处于激发态的原子核放出γ射线时,只是能量减小,核子数并没有发生变化,D 正确。