高中数学第二章统计2.3变量间的相关关系课件新人教A版必修3
高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3
解:(1)画出散点图.
(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是 负相关?
解:(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x的值由小 变大时,另一个变量y的值也由小变大,所以它们具有正相关关系.
方法技巧 两个随机变量x和y是否具有相关关系的确定方法: (1)散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断 (如本题); (2)表格、关系式法:结合表格或关系式进行判断; (3)经验法:借助积累的经验进行分析判断.
4
4
解:(2)由表中的数据得: xi yi =52.5, x =3.5, y =3.5, xi2 =54,
i 1
i 1
n
所以 b =
xi yi n x y
i 1
n
xi2
2Hale Waihona Puke nx=52.5 4 3.5 3.5 54 4 3.52
=0.7,
i 1
a = y - b x =3.5-0.7×3.5=1.05,
年份x
储蓄存款 y(千亿元)
2013 5
2014 6
2015 7
2016 8
2017 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2 012,z=y-5 得到表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(1)求z关于t的线性回归方程;
5
5
解:(1) t =3, z =2.2, ti zi=45, ti2 =55,
知识探究
1.相关关系与函数关系不同 函数关系中的两个变量间是一种确定性关系,相关关系是一种不确定性关系. 2.正相关和负相关 (1)正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们就称它为正相关. (2)负相关 在散点图中,点散布在从左上角到右下角的区域,对于两个变量的这种相关 关系,我们就称它为负相关.
高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)
总费用y/万元 2.2 3.8 5.5 6.5 7.0
(1)根据表格数据,画出散点图;
(2)求线性回归方程y^=b^x+a^的系数a^,b^; (3)估计使用年限为 10 年时,车的使用总费用是多少?
【解题探究】(1)利用描点法作出散点图; (2)把数据代入公式,可得回归方程的系数; (3)把x=10代入回归方程得y值,即为总费用的估计 值.
【答案】A 【解析】在A中,若b确定,则a,b,c都是常数,Δ= b2-4ac也就唯一确定了,因此,这两者之间是确定性的函数 关系;一般来说,光照时间越长,果树亩产量越高;降雪量越 大,交通事故发生率越高;施肥量越多,粮食亩产量越高,所 以B,C,D是相关关系.故选A.
两个变量x与y相关关系的判断方法 1.散点图法:通过散点图,观察它们的分布是否存在 一定规律,直观地判断.如果发现点的分布从整体上看大致在 一条直线附近,那么这两个变量就是线性相关的,注意不要受 个别点的位置的影响. 2.表格、关系式法:结合表格或关系式进行判断. 3.经验法:借助积累的经验进行分析判断.
变量之间的相关关系的判断
【 例 1】 下 列 变 量 之 间 的 关 系 不 是 相 关 关 系 的 是 ()
A.二次函数y=ax2+bx+c中,a,c是已知常数,取b 为自变量,因变量是判别式Δ=b2-4ac
B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩田施肥量和粮食亩产量
【解题探究】判断两个变量之间具有相关关系的关键是 什么?
①反映^y与 x 之间的函数关系;
②反映 y 与 x 之间的函数关系;
③表示^y与 x 之间的不确定关系;
④表示最接近 y 与 x 之间真实关系的一条直线.
A.①②
【创新设计14-2015学年高中数学 2.3.1 变量之间的相关关系;2.3.2 两个变量的线性相关课件 新人教A版必修3
^
(
)
C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kg D.若该大学某女生身高为170 cm,则可断定其体重必为 58.79 kg
答案 D ^ 解析 当 x=170 时,y =0.85×170-85.71=58.79,
体重的估计值为 58.79 kg.
5.正常情况下,年龄在 18 岁到 38 岁的人,体重 y(kg)对身高 x(cm)的回归方程为y=0.72x-58.2,张红同学(20 岁)身高 178 cm,她的体重应该在________kg 左右.
跟踪演练1
下列两个变量之间的关系,哪个不是函数关系 ( )
A.正方体的棱长和体积 B.圆半径和圆的面积 C.正n边形的边数和内角度数之和 D.人的年龄和身高 答案 D
解析
A、B、C都是函数关系,对于A,V=a3;对于B,S=
πr2;对于C,g(n)=(n-2)π.而对于年龄确定的不同的人可以 有不同的身高,∴选D.
(2)正相关与负相关:
右上角 的 左下角 到_______ ①正相关:散点图中的点散布在从_______ 区域.
左上角 到_______ 右下角 的 ②负相关:散点图中的点散布在从_______
区域.
2.回归直线的方程 (1)回归直线:如果散点图中点的分布从整体上看大致在 一条直线 附近,就称这两个变量之间具有_________ 线性相关 关 _________
^
A.y平均增加1.5个单位
B.y平均增加2个单位
C.y平均减少1.5个单位
答案 解析 C
D.y平均减少2个单位
∵两个变量线性负相关,∴变量x增加一个单位,y
平均减少1.5个单位.
4.(2013· 滨州高一检测)设某大学的女生体重 y(单位:kg)与身高 x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i = 1,2,…,n),用最小二乘法建立的回归方程为y = 0.85x - 85.71,则下列结论中不正确的是 A. y 与 x 具有正的线性相关关系 B.回归直线过样本点的中心(x, y)
高中数学人教A版必修3课件:2-3-2《线性回归方程》
二倍角的正弦、余弦、 正切公式
2.3 变量间的相关关系
2.3.2 线性回归方程
3.1.3
二倍角的正弦、余弦、 正切公式
本课主要学习变量间的相关关系的相关内容,具体 包括线性回归方程的求解。 本课开始回顾了上节课所学变量间的相关关系与散 点图的相关内容,紧接着引入回归直线的定义及特征, 回归直线方程的定义及求法(最小二乘法),并且通过 例题和习题进行讲解。最后通过习题进行加深巩固。
y
500 450 400 350
水稻产量
300 10
(施化肥量)
20
30
40
50
x
3.1.3
二倍角的正弦、余弦、 正切公式
3、最小二乘法 假设我们已经得到两个具有线性相关的变量的一组数 据(x1,y1),(x2,y2),…(xn,yn).
n n ( xi x)( yi y ) xi yi nxy i 1 i 1 b n n 2 2 2 ( xi x) xi nx i 1 i 1 a y bx
注意:求回归直线方程的关键是如何用数学的方法来刻画“从整 体上看各点与此直线的距离最小”,即最贴近已知的数据点,最 能代表变量x与y之间的关系.
3.1.3
二倍角的正弦、余弦、 正切公式
在7块并排、形状大小相同的试验田上进行施化肥量对水稻产 量影响的试验,得到如下表所示的一组数据(单位:kg):
施化肥量x 水稻产量y 15 330 20 345 25 365 30 405 35 445 40 450 45 455
第四步:写出直线方程.
二倍角的正弦、余弦、 正切公式 解:1、列表
3.1.3
2、代入公式计算
高中数学 第二章 统计 2.3 变量间的相关关系课件 新人教A版必修3.pptx
3.正相关和负相关 (1) 正相关:散 点图中的点散 布在从 _左__下__角__到 _右__上__角__ 的区域. (2) 负相关:散 点图中的点散 布在从 _左__上__角__到 _右__下__角__ 的区域.
3
[点睛] 对正相关和负相关的理解 (1)正相关 随自变量的变大(或变小),因变量也随之变大(或变小), 这种带有随机性的相关关系,我们称为正相关.例如,人 年龄由小变大时,体内脂肪含量也由少变多. (2)负相关 随自变量的变大(或变小),因变量却随之变小(或变大), 这种带有随机性的相关关系,我们称为负相关.例如,汽 车越重,每消耗 1 L 汽油所行驶的平均路程就越短.
4
4.回归直线方程 (1)回归直线:如果散点图中点的分布从整体上看大致 在_一__条__直__线__附近,就称这两个变量之间具有_线__性__相__关__关 系,这条直线叫做回归直线. (2)回归方程:_回__归__直__线__的方程,简称回归方程. (3)回归方程的推导过程: ①假设已经得到两个具有线性相关关系的变量的一组 数据(x1,y1),(x2,y2),…,(xn,yn). ②设所求回归方程为_^y_=__^b_x_+__^a_,其中^a,^b是待定参数.
11
解析:由题意可知 x =2+4+55+6+8=5, y =30+40+650+50+70=50. 即样本中心为(5,50). 设回归直线方程为^y =6.5x+^a , ∵回归直线过样本中心( x , y ), ∴50=6.5×5+^a,即^a=17.5, ∴回归直线方程为^y =6.5x+17.5 答案:^y =6.5x+17.5
5
③由最小二乘法得
n
n
xi- x yi- y xiyi-n x y
i=1
2019年最新-人教版高中数学必修三第二章-统计-3.1《变量之间的相关关系》ppt课件
2.相关关系的概念
自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的 关系叫相关关系.
(1)相关关系与函数关系的异同点: 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系; 而相关关系是一种非确定关系;
谢谢!
墨子,(约前468~前376)名翟,鲁人 ,一说 宋人, 战国初 期思想 家,政 治家, 教育家 ,先秦 堵子散 文代表 作家。 曾为宋 国大夫 。早年 接受儒 家教育 ,后聚 徒讲学 ,创立 与儒家 相对立 的墨家 学派。 主张•兼 爱”“ 非攻“ 尚贤” “节用 ”,反 映了小 生产者 反对兼 并战争 ,要求 改善经 济地位 和社会 地A 完整地聆听歌曲。
点散布在从左下角 到右上角的区域
称它们成 正相关。
脂肪含量
40
35
如图: 30
25
20
15
10
5
年龄
O
20 25 30 35 40 45 50 55 60 65
下列关系属于负相关关系的是( )
C
A.父母的身高与子女的身高
B.农作物产量与施肥的关系
C.吸烟与健康的关系
D.数学成绩与物理成绩的关系
我们再观察它的图像发现这些点大致分布在一条直线附近,像这样,如果 散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具 有线性相关关系;
2.3 变量间的相关关系
2.3.1 变量之间的相关关系
本课主要学习变量间的相关关系与散点图的相关内容,具体包括相关关系的 定义以及通过散点图如何判断变量间的关系。
高一数学人教A版必修3课件:2.3变量间的相关关系(一、二)
思考 1:观察上表中的数据,大体上看,随着 年龄的增加,人体脂肪含量怎样变化?
知识探究(二) :散点图
年龄 脂肪 年龄 脂肪 23 9.5 53 29.6 27 17.8 54 30.2 39 21.2 56 31.4 41 25.9 57 30.8 45 27.5 58 33.5 49 26.3 60 35.2 50 28.2 61 34.6
问题提出
1. 函数是研究两个变量之间的依存关系的一种 数量形式.对于两个变量, 如果当一个变量的取值 一定时,另一个变量的取值被唯一确定,则这两 个变量之间的关系就是一个函数关系.
问题提出
1. 函数是研究两个变量之间的依存关系的一种 数量形式.对于两个变量, 如果当一个变量的取值 一定时,另一个变量的取值被唯一确定,则这两 个变量之间的关系就是一个函数关系.
知识探究(三) :回归直线
思考 1:一组样本数据的平均数是样本数据的 中心,那么散点图中样本点的中心如何确定? 它一定是散点图中的点吗?
脂肪含量 40 35 30 25 20 15 10 5 0
(x , y )
20 25 30 35 40 45 50 55 60 65 年龄
知识探究(三) :回归直线 思考 2:在各种各样的散点图中,有些散点图中 的点是杂乱分布的,有些散点图中的点的分布有 一定的规律性,年龄和人体脂肪含量的样本数据 的散点图中的点的分布有什么特点?
自变量取值一定时,因变量的取值带有 一定随机性的两个变量之间的关系,叫做相 关关系.
知识探究(一) :变量之间的相关关系
思考 4:函数关系与相关关系之间的区别与联系.
知识探究(一) :变量之间的相关关系
思考 4:函数关系与相关关系之间的区别与联系.
2014高中数学 2.3 变量间的相关关系课件(2)新人教A版必修3
诱思探究1
一组样本数据的平均数是样本数据的中心,那 么散点图中样本点的中心如何确定?它一定是散点 图中的点吗?
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
样本点的中心的 坐标为样本数据 的平均数; 它不一定是散点 图中的点。
n
i
nx y nx
2
ˆx ˆ y b a
( x x)
x
i 1
2
i
2 ˆ Q ( y y ) i i 为最小,这样就得到了 时,总体偏差 i 1
回归方程,这种求回归方程的方法叫做最小二乘 ˆx a 法.回归方程 y ˆ b ˆ ˆ 分别表示回归方程的斜率,截距。 中,a ˆ, b
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
在直角坐标系中,任何一条直线都有相应的方程, 回归直线的方程称为回归方程.对一组具有线性相关 关系的样本数据,如果能够求出它的回归方程,那么 我们就可以比较具体、清楚地了解两个相关变量的内 在联系,并根据回归方程对总体进行估计.
1 1 (5 0 36) 169 15.367 11 11
xi (5)2 02 362 4335
2 i 1
11
11
x y
i 1 i
11
i
5 156 0 150 36 54 14828
i i
ˆ b
x y 11x y
温故知新
一.变量之间的相关关系: 1.变量间相关关系的定义:自变量取值一定时,因变 量的取值带有一定随机性的两个变量之间的关系,叫 做相关关系. 2.相关关系与函数关系的异同点: (1)相同点:两者均是指两个变量间的关系。 (2)不同点:①函数关系是一种确定的关系;相关关系 是一种非确定的关系. 函数关系是两个非随机变量的 关系,而相关关系是非随机变量与随机变量间的关系. ②函数关系是一种因果关系,而相关关系不一定是因果 关系,也可能是伴随关系.
高中数学 第二章 统计 第3节 变量间的相关关系课件 新人教A版必修3.pptx
2
[核心必知] 1.预习教材,问题导入 根据以下提纲,预习教材 P84~P91,回答下列问题. (1)两个变量之间除了函数关系还有其他关系吗? 提示:相关关系. (2)当两个变量呈负相关关系时,散点图有什么特点? 提示:当两个变量之间呈负相关关系时,散点图中的点 散布的位置是从左上角到右下角的区域. (3)求回归直线方程的主要方法是什么? 提示:求回归直线方程的主要方法是最小二乘法.
bn=12an,求证数列bn是等比数列,并求其通项公式. [尝试解答] 依题意 an=2+(n-1)×(-1)=3-n,
于是 bn=123-n.
而bbn-n 1=121234- -nn=12-1=2.
∴数列 b 是公比为 n
2
的等比数列,通项公式为
bn=2n-3.
15
[思考 3] 怎样理解两个变量之间的关系? 名师指津:两个变量间的关系分为三类: (1)确定性的函数关系,如正方形的边长与面积的关系; (2)相关关系,变量间确实存在关系,但又不具备函数关 系所要求的确定性,它们的关系是带有随机性的,这种关系 就是相关关系,例如,某位同学的“物理成绩”与“数学成 绩”之间的关系; (3)不相关,即两个变量间没有任何关系.
提示:由^a= y -^b x 得 y =^b x +^a,因此点( x , y )在回 归直线上.
10
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)相关关系
;
(2)ቤተ መጻሕፍቲ ባይዱ点图:
;
(3)回归直线方程及求回归直线方程的方法步骤:
.
11
12
瑞雪兆丰年,这不禁使我们想到这样一句谚语:“冬天 麦盖三层被,来年枕着馒头睡”,意思是冬天“棉被”盖得 越厚,春天小麦就长得越好.
最新人教A版必修三高中数学2.3.2变量间的相关关系(二)公开课课件
解析答
^
^
^
跟踪训练2
以下是某地搜集到的新房屋的销售价格y和 110
21.6
房屋的面积 xx 的数据: 房屋面积 (m2) 115 销售价格y(万元) 24.8
80
18.4
135
29.2
105
22
(1)画出数据对应的散点图; 解 数据对应的散点图如图所示:
靠拢 .现在这个概念引伸到随机变量有向回归线集中的
趋势 .即观察值不是全落在回归线上,而是散布在回归 线周围 . 但离回归线越近,观察值越多,偏离较远的观 一条直线 察值极少,这种不完全呈函数关系,但又有一定数量 (1) 回归直线:如果散点图中点的分布从整体上看大致 关系的现象称回归. 线性相关 在 附近,就称这两个变量之间具有 回归直线 关系,这条直线叫做回归直线 . (2) 回归方程: 对应的方程叫做回归直线的方 (3) 回归方程 y=bx+a,其中b是回归方程的斜率, a是截距. 程,简称回归方程. 答案
如果散点图中点的分布从整体上看大致在一条直线附 近,就称这两个变量之间具有线性相关关系. 两个变量线性相关是相关关系的一种.
答案
知识点二 答案
回归直线的方程
思考 数学上的“回归”是什么意思? “ 回 归 ” 一 词 最 早 由 英 国 统 计 学 家 (Francils
Galton) 提出的,本意是子女的身高会向一般人的均值
解析答
(2)如果具有线性相关关系,求出回归方程.
解 计算相应的数据之和:
i=1
xi=1 031, yi=71.6,
i=1
8
8
i=1
x2 i =137 835, xiyi=9 611.7,
高中高中数学第二章统计章末总结课件新人教A版必修320190108244
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这 10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 500, 3 000)的这段应抽取多少人?
解:(3) 100 = 1 ,0.000 5×500=0.25, 10000 100
10 000×0.25× 1 =25. 100
女生 男生
(A)24
(B)18
(C)16
(D)12
一年级 373 377
二年级 x
370
三年级 y z
解析:(1)由题意可知 x =0.19,所以 x=380,所以三年级的总人数为 y+z=500, 2000
所以应在三年级抽取的学生人数为 500 ×64=16(人),故选 C. 2000
(2)(202X·泰安高一检测)总体由编号为01,02,…,19,20的20个个体组成.
(2)根据(1)中所求线性回归方程,如果植被面积为 200 公顷,那么下降的气温大约是 多少℃?
n
n
(xi x)( yi y)
xi yi n x y
参考公式: b i1 n
(xi x)2
= i1 n
xi2
n
2
x
, a = y -bx .
i 1
i 1
解:(2)由(1)得当 x=200 时, y =0.03×200+2.5=8.5. 所以植被面积为 200 公顷时,下降的气温大约是 8.5 ℃.
(1)求居民收入在[3 000,3 500)的频率; (2)根据频率散布直方图算出样本数据的中位数;
解:(1)0.000 3×500=0.15. (2)0.000 2×500=0.1,0.000 4×500=0.2, 0.000 5×500=0.25. 设中位数为x,则0.1+0.2+(x-2 000)×0.000 5=0.5, 解得x=2 400,中位数为2 400元.
高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教
A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1
,
a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.
高中数学 第二章 统计 2.3 变量间的相关关系课件 新人教A版必修3
K12课件
3
2.回归直线的方程 (1)回归直线:如果散点图中点的分布从整体上看大致在一条直 线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回 归直线. (2)回归方程:回归直线对应的方程叫做回归直线的方程,简称 回归方程.
K12课件
4
(3)回归方程的求解过程.
K12课件
5
[化解疑难] (1)散点图的应用 ①散点图形象地体现了数据的密切程序,因此我们可以根据散 点图来判断两个变量有没有线性关系. ②从散点图上可以看出,如果变量之间存在着某种关系,这些 点会有一个大致的集中趋势.
K12课件
13
【解析】 (1)
题号
判断
原因分析
①
不是相关关系
身高与视力无关,不具有函数关系,也 不具有相关关系
②
不是函数关系,也 做自由落体的物体的质量与落地时间
不是相关关系
无关,不具有相关关系
③
相关关系
降雪量越大,交通事故发生率越高,不 确定性的关系
故填③.
K12课件
14
(2)以 x 轴为年平均气温,y 轴为年降雨量,可得相应的散点图, 如图所示:
K12课件
1
【课标要求】
1.理解两个变量的相关关系的概念. 2.会作散点图,并利用散点图判断两个变量之间是否具有相关 关系. 3.会求回归直线方程. 4.能利用回归方程由一个变量的变化去推测、估计另一个变量 的变化.
K12课件
2
自主学习 基础认识
1.两个变量的线性相关的有关概念 (1)散点图:将样本中 n 个数据点(xi,yi)(i=1,2,…,n)描在平 面直角坐标系中得到的图形. (2)正相关与负相关. ①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. (3)线性相关:散点图中的点如果分布在某条直线附近,我们就 可以得出结论:这两个变量之间具有线性相关关系. (4)回归分析:对具有相关关系的两个变量进行统计分析的方法 叫做回归分析.
新人教A版高中数学教材目录(必修+选修)【很全面】
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章 数列2.1 数列的概念与简单表示法阅读与思考 斐波那契数列阅读与思考 估计根号下2的值2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列前n 项和阅读与思考 九连环探究与发现 购房中的数学小结复习参考题第三章 不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿信息技术应用 用Excel 解线性规划问题举例3.4 基本不等式2ab b a +≤小结复习参考题选修1-1第一章 常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章 圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换3.伸缩变换4.投影变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用nα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
课标人教A版必修3全套课件第二章变量间的相关关系2.3 变量间的相关关系
英国科学家探险家和人类测量学家。 英国科学家探险家和人类测量学家。1822年2月16日生于伯明 年 月 日生于伯明 日卒于伦敦附近的萨里。 翰,1911年1月17日卒于伦敦附近的萨里。C.R.达尔文的表弟 年 月 日卒于伦敦附近的萨里 达尔文的表弟 高尔顿和 首先发现回归现象的是英国生物学家高尔顿 首先发现回归现象的是英国生物学家高尔顿和皮尔 他们分别在遗传学研究中发现, 逊,他们分别在遗传学研究中发现,生物后代的属 性与其父母有关, 性与其父母有关,这种关系仅仅在平均程度上有所 差别。他们发现, 差别。他们发现,高个子父母的子代平均高度比较 矮个子父母的子代平均高度比较低, 高,矮个子父母的子代平均高度比较低,进一步的 研究又发现, 研究又发现,高个子子代的平均高度要比父代的高 度低,而矮个子子代的平均高度要比父代的高度高, 度低,而矮个子子代的平均高度要比父代的高度高, 形成向种族平均高度靠拢的趋势, 形成向种族平均高度靠拢的趋势,高尔顿将这种现 象称作为“回归” 象称作为“回归”。 回归分析的目的就是确定变量之间数量关系的可能 形式,并用一个数学模型来表示这种关系形式。 形式,并用一个数学模型来表示这种关系形式。
在一次对人体脂肪含量和年龄的关系研究中,研究人员获得 在一次对人体脂肪含量和年龄的关系研究中 研究人员获得 了一份样本数据: 了一份样本数据
说明:各个年龄阶段的脂肪数据是这个年龄样本的平均数 说明 各个年龄阶段的脂肪数据是这个年龄样本的平均数
根据上述数据,人体的脂肪含量与年龄之间有什么样的关系 根据上述数据 人体的脂肪含量与年龄之间有什么样的关系? 人体的脂肪含量与年龄之间有什么样的关系
x y 1.08 1.12 1.19 1.28 1.36 1.48 1.59 1.68 1.80 1.87 1.98 2.07 2.25 2.37 2.40 2.55 2.64 2.75 2.92 3.03 3.14 3.26 3.36 3.50
人教版高中数学 A版 必修三 第二章 《2.3.1 2.3.2变量间的相关关系》教学课件
据: 房屋面积x(m2)
115 110
80
135 105
销售价格y(万元)
24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图;
解 数据对应的散点图如图所示:
解析答案
(2)求回归方程,并在散点图中加上回归直线.
解析答案
类型三 回归方程的应用 例3 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响, 经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 摄氏温度/℃ -5 0 4 7 12 15 19 23 27 31 36
解析答案
返回
达标检测
12345
1.对于给定的两个变量的统计数据,下列说法正确的是( C ) A.都可以分析出两个变量的关系 B.都可以用一条直线近似地表示两者的关系 C.都可以作出散点图 D.都可以用确定的表达式表示两者的关系
答案
2.观察下列散点图,具有相关关系的是( D )
12345
A.①② C.②④
第二章 §2.3 变量间的相关关系
2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关(一)
学习目标
1.了解相关关系; 2.了解正相关,负相关的概念; 3.会作散点图,并能通过散点图判断两个变量之间是否具有相关关系.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 相关关系
思考 数学成绩y与学习数学所用时间t之间的关系,能否用函数关系刻画?
但381.15是对该城市人均GDP为12万元的情况下所作的一个估计,
该城市患白血病的儿童可能超过380人,也可能低于380人.
解析答案
返回
达标检测
人教版高中数学必修三目录-)(最新整理)
必修 3第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
高中数学【人教A版必修】三第二章2.3变量间的相关关系课件
高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
3
4
2.5
3
5
6
4
4.5
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出 的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少 吨标准煤?
我们在生活中,碰到很多相关关系的问题:
我们还可以举出现实生活中存在的许多相关关系的问题.例如:
➢商品销售收入与广告支出经费之间的关系.
商品销售收入与广告支出 经费之间有着密切的联系, 但商品收入不仅与广告支出 多少有关,还与商品质量、 居民收入等因素有关.
➢ 粮食产量与施肥量之间的关系.
在一定范围内,施肥量越 大,粮食产量就越高.但是,施 肥量并不是决定粮食产量的唯 一因素,因为粮食产量还要受 到土壤质量、降雨量、田间管 理水平等因素的影响.
高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
1.了解变量之间的相关关系; 2.会区分变量间的函数关系与相关关系; 3.会作散点图,并由此对变量间的正相关或负相关作出直观 的判断; 4.会求线性回归方程,并会利用回归方程进行预测.
➢ 人体内脂肪含量与年龄之间的关系.
在一定年龄段内,随着年 龄的增长,人体内的脂肪含量 会增加,但人体内的脂肪含量 还与饮食习惯、体育锻炼等有 关,可能还与个人的先天体质 有关.
上面的几个例子都反映了:两个变量之间是一种不确 定的关系.产生这种关系的原因是受到许多不确定的随机因 素的影响.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【规律总结】求回归方程的步骤及注意事项 (1)步骤 第一步,计算平均数 第二步,求和 第三步,计算
n
x, y ;
i x y , x i i 2; i 1 i 1
i
n
第四步,写出回归方程 n
b
x
i 1 n
x yi y
i
x y n x y
【解题指南】1.根据相关关系的定义判断即可. 2.根据线性相关的定义去判断,注意线性相关关系并不一定是一次函数关系.
【自主解答】1.选A.①中学生的学习态度与学习成绩之间不是因果关系,但具 有相关性,是相关关系.②教师的执教水平与学生的学习成绩之间的关系是相 关关系.③④都不具备相关关系. 2.选B.由散点图可以判断日期与发烧人数具有线性相关关系,但不是函数关系, 更不是一次函数关系,因为所有点不在一条直线上,而是在一条直线附近.
【解析】(1)作出散点图如图所示,
(2)由散点图可知,各点并不在一条直线附近,所以两个变量是非线性相关关系.
类型二 求回归方程 1.(2013·锦州高一检测)已知一组观测值具有线性相关关系,
若对于y bx a
程为 ( )
,求得b=0.51, x=61.75, y =38.14,则回归方
A.y=0.51x+6.65
二、散点图和线性相关 根据右图,回答下列问题:
探究1:年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?如 果上述样本的数据形成的点均匀分布于一个圆内,数据之间还能线性相关吗? 提示:这些点分布在一条直线附近;点均匀分布于一个圆内,这样的点不具有线 性相关关系.
探究2:画散点图时,坐标系中的横、纵坐标的长度单位必须相同吗? 提示:可以不同,应考虑数据分布的特征. 探究3:成正相关和负相关的两个相关变量的散点图分别有什么特点? 提示:正相关的散点图中的点散布在从左下角到右上角的区域,负相关的散点 图中的点散布在从左上角到右下角的区域.
2.3
变量间的相关关系
1.通过实例了解变量之间的相互关系,认识现实生活中变量间存在的非确定性
的相关关系,体会研究此类问题在现实生活中的重要性. 2.会作散点图,学会用数量来描述现实关系.
3.知道最小二乘法的思想,了解其公式的推导过程.
4.能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数 公式不要求记忆).
探究3:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几 条? 提示:对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,依照 求回归直线的过程求出,回归直线只有一条.
【探究总结】 1.回归方程的意义 回归方程只能估计变量之间的关系,不同于函数关系式,得到的值不是准确值. 通过回归方程,可以清楚地让我们了解变量之间的相关性.
1.下列变量之间的关系是函数关系的是 ( ) A.已知二次函数y=ax2+bx+c,其中a,c是已知常数,取b为自变量,因变量是这个函 数的判别式Δ=b2-4ac B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.父母的身高和子女的身高
【解析】选A.由函数关系和相关关系的定义可知A中Δ=b2-4ac,因为a,c是已 知常数,b为自变量,所以给定一个b的值,就有唯一确定的Δ与之对应,所以Δ 与b之间是一种确定的关系,是函数关系.B,C,D中两个变量之间的关系都是随 机的、不确定的,所以不是函数关系.
2.回归方程计算得到的数据存在误差的原因 (1)回归方程中的截距和斜率都是通过样本估计出来的,存在随机误差,这种误 差可以导致计算结果的偏差. (2)即使截距和斜率没有误差,也不可能百分之百地保证能够和实际的y的值很 接近.
【拓展延伸】样本中心的含义 点(x , y)是在用最小二乘法计算回归直线方程时出现的一个特殊点,我们又 称为样本中心点.可以验证样本中心点一定在回归直线上,这一性质在解决回 归直线问题时要灵活应用,巧妙代入,从而简化计算.
【探究总结】 1.两变量关系的分类 (1)确定性的函数关系,如正方形的边长和面积. (2)变量间确实存在关系,但又不具备函数关系所具有的确定性,它们的关系式 带有随机性,是一种相关关系. (3)不相关,即两变量之间没有任何关系.
2.相关关系与函数关系的异同点 (1)相同点:均是指两个变量的关系. (2)不同点:函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数 关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系,而相关 关系是非随机变量与随机变量的关系.
时间t 油量y
1 2
2 4
3 6
4 8
问题2:小麦的产量y千克每亩与施肥量x千克每亩之间的关系如下表:
施肥量x
20
30
40
50
产量y
440
460
470
480
(1)问题1中,从表里数据能得出油量y与时间t之间的函数关系式吗? 提示:因为是以均匀的速度注入桶里,所以注入的油量y与注入的时间t成正比 例关系,由数据表格知,注入的油量y与注入的时间t之间的函数关系式为 y=2t(t≥0)(实际问题,因此自变量的取值范围应该有意义).
日期
3.1
3.2
3.3
3.4
3.5
3.6
人数
日期 人数
100
3.7 141
109
3.8 152
115
3.9 158
118
3.10 175
121
3.11 186
131
3.12 203
下列说法: ①根据此散点图,可以判断日期与发烧人数具有线性相关关系. ②根据此散点图,可以判断日期与发烧人数具有一次函数关系. 其中正确的是 ( ) A.② B.① C.①② D.都不正确
三、回归方程 请根据回归方程“ ”思考下面的问题: 探究1:回归方程中 的几何意义分别是什么? 提示: 是回归方程的斜率 ,bx是截距 y a .
,a, b
b
a
探究2:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),…,(xn,yn),设其回归方程为 y bx a,可 以用哪些数量关系来刻画各样本点与回归直线的接近程度? 提示:可以用|yi-y i |或(yi- y i)2,其中 y i=bxi+a.(如图)
【自主解答】1.选A. a=y-bx =38.14-0.51×61.75≈6.65. 2.(1)
( 2)
5 7 9 11 1 2 3 6 x 8, y 3, 4 4
4 i 1 i
2 x i 276. xi yi 112, i 1
i
4
4
所以
b
(2)问题2中,从表里数据能得出小麦的产量y与施肥量x之间的函数关系式吗? 提示:从表格里我们很容易发现施肥量越大,小麦的产量就越高.但是,施肥量 并不是影响小麦产量的唯一因素,小麦的产量还受土壤的质量、降雨量、田间 管理等诸多因素影响,这时两个变量之间就不是确定性的函数关系,因此不能 得到y和x的函数关系式.
(3)问题1,2分别体现了变量之间的什么关系? 提示:问题1中的变量间的关系是确定的,是一种函数关系;问题2中变量间的关 系不确定,是一种相关关系. 探究2:如何判断变量之间的关系是函数关系还是相关关系? 提示:函数关系:当自变量一定时,因变量的取值也是确定的.当自变量一定时, 因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系.
2.回归方程 (1)最小二乘法:求回归直线使得样本数据的点到回归直线的 距离的平方和最小 的方法叫做最小二乘法. _________________
(2)回归方程:方程 y bx a是两个具有线性相关关系的变量 的一组数据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,a, b 是待定参数.
1.两个变量的线性相关
左下角 到_______. 右上角 (1)正相关:点散布的方向:从_______
(2)负相关:点散布的方向:从_______到_______.
左上角
右下角
(3)回归直线:如果散点图中点的分布从整体上 看在一条直线附近,就称这两个变量之间具有 回归直线 线性相关 关系,这条直线叫做_________. _________
所以
x y
i 1 4
4xy 4x
2
x
i 1
2 i
112 4 8 3 0.8, 276 4 64
a y bx 3 0.8 8 3.4, 所以y 0.8x 3.4.
(3)当y=20时,20=0.8x-3.4,所以x=29.25.
C.y=0.51x+42.30
B. y=6.65x+0.51
D.y =42.30x+0.51
2.变量x,y有如下观测数据
x
(1)画散点图. (2)求x,y的回归方程. (3)根据方程,预测y=20时x的值.
5
7
9
11
y
1
2
3
6
x ,y ),代入式子,只需 【解题指南】1.根据回归方程过定点( 求出 a 的值验证即可. 2.根据数据,得到坐标,画出图形,再利用最小二乘法得到b和a 的值,从而得到方程.
【规律总结】 1.散点图在判断相关性中的作用 散点图是由大量数据对应的点的分布构成的,对于性质不明确的两组数据可先 作散点图,直观地分析它们有无相关关系及关系的密切程度. 2.相关模型的判断方法 两变量具有相关关系但不一定是线性相关,所以当画出的点明显在一条曲线附 近时,两变量也具有相关关系,但不是线性相关的.
【探究总结】 1.散点图的作用 (1)判断两个变量之间有无相关关系,一种常用的简便可行的方法是绘制散点图. (2)根据散点图很容易看出两个变量之间是否具有相关关系,是不是线性相关关 系,是正相关还是负相关,相关关系强还是弱.