2015离散数学命题公式
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不可兼析取(Exclusive OR)
定义:设P和Q是两个命题公式,复合命题PQ 称作P和Q的不可兼析取。 PQ的真值为T, 当且仅当P与Q的真值不相同时为T,否则, PQ的真值为F。真值表如下:
P
T T F F
Q
T F T F
PQ
F T T F
不可兼析取的性质
设P、Q、R为命题公式,则有 (1)P Q Q P 交换性 (2)(PQ)R P(QR) 结合性 (3)P(QR)(PQ)(PR) 分配性 (4) PQ (PQ )(PQ) (5) PQ (P Q)由定义得到 (6) PP F,FP P,TP P
My name is tautology
p T T F F
p T T F
q T F T F
p q T F T T
p F F T T
p(p q) T T T T
q p q p q q (p q)(qp) p T T F F T T F F F T F T T T T F T T
C
与非
定义:设P和Q是两个命题公式,复合命题P Q
称作P和Q的“与非”。当且仅当P和Q的真 值都为T时, P Q的真值为 F ,否则P Q的 真值都为T 。真值表如下:
P T T F F Q T F T F PQ F T T T
与非的性质
(1)P Q (PQ) (2)P P (P P)P (3)(P Q)(P Q)(P Q) P Q (4)(P P)( Q Q)P Q (PQ)PQ
Three tasks
• 1. what is tautology and contradiction ? --classification of wff • 2. what is logical equivalences? --relation between two wff. --change proposition’s form but truth value remain unchanged • 3. How many logical operators in the wff and what is 最小联结词组?
2015-3-16
What your name?
• A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a tautology . A compound proposition that is always false is called a contradiction. A compound proposition that is neither a tautology nor a contradiction is called a contingency.用一个命题表达出来。
Propositional Equivalences
• Definition :The compound propositions p and q are called logically equivalent if p q is a tautology. The notation p⇔q denotes that p and q are logically equivalent.
2015-3-16
• Show that (p ∧ q) → (p ∨ q) and (p →q) ∧ p→ q is a tautology. • Show that ¬ (p → (p ∨ q) )∧r is a contradiction. • Show that ¬(p ∨ (¬p ∧ q)) and (¬p ∧ ¬q ) are logically equivalent by developing a series of logical equivalences
条件否定
定义:设P和Q是两个命题公式,复合命题 C PQ称作P和Q的条件否定。 PQ的真值 C Q的真值为F, 为T,当且仅当P的真值为T, C 否则, PQ的真值为 F。真值表如下:
P
T T F F
Q
T F T F
PQ
F T F F
C
条件否定的性质
由定义可知: P Q (P Q)
Propositional Equivalences
One way to determine whether two compound propositions are equivalent is to use a truth table.
Propositionபைடு நூலகம்l Equivalences
Propositional Equivalences
或非
定义:设P和Q是两个命题公式,复合命题P
Q称作P和Q的“或非”。当且仅当P和 Q的真值都为F 时,PQ的真值为T ,, 否则, PQ的真值都为F。真值表如下:
P T T F Q T F T PQ F F F
F
F
T
或非的性质
(1)P Q (PQ) (2)P P (PP)P (3)(PQ)(PQ)(PQ) PQ (4)(PP)( Q Q)P Q (P Q) P Q
some important equivalences.
Propositional Equivalences
some important equivalences.
Propositional Equivalences
• 证明:(p q) ( p q) ⇔ p
• 证明:p (q r) ⇔ q ( pr ) ⇔ r (q p) 证明:((p q) (p ( q r))) ( p q) ( p r) ⇔ T
Which is the minimal number of truthfunctional connectives?
• According to the Statement on normal forms (see slide 7) the following connectives suffice: , , (funkcionally complete system) The following systems of truth-functional connectives are functionally complete: 1. {, , }, 2. {, } or {, }, 3. {, }, 4. {} or {}. Hence in order to express any truth-value function (and thus any PL formula) just one connective suffices! Either Scheffer’s NAND or Pierce’s NOR
最小联结词组(续)
② {} , {}或{,}不能表示 因为如果有P(…(PQ) … …) 若对右边所出现的变元都指派真值为T, 由,定义可知其真值必为T,而左边 的真值为F,矛盾。
一般来说,命题公式用{ ,,}表示。
• (8)证明{ },{ }和{ }不是最小联结词 组。 • (9)证明{ ,},和{ ,C }是最小联 结词组。
Remark: The symbol is not a logical connective, and p ⇔ q is not a compound proposition but rather is the statement that p q is a tautology. The symbol is sometimes used instead of ≡ to denote logical equivalence.
Introduction to Logic 25
My name is contradiction
p T T F F p T T F F q T F T F q T F T F pq T T T F p q T F F F p F F T T (p q) p F F F F
p(p q) (p(p q)) T F T F T F T F
联结词是否够用
每种联结词对应一种四个T或F的组 合,总共可以有24=16种组合,似乎需 要16种联结词才够用。 事实上,我们定义的这九种就够用 了。
最小联结词组
最小联结词组应为{,}或{,},亦可 以为{}或{}。 证明:1)用这些联结词组可以表示其它的 联结词。 2)用{},{},{}以及{,}不能表示其 它的联结词。 ① {}不能表示 , ,… 因为含有二元联结词的命题公式不能用仅 含一元联结词的命题公式等价代换。