高考数学(理)题型全归纳(提高版)定积分和微积分基本定理
2019年高考数学理科考点一遍过13定积分与微积分基本定理(含解析)
考点13 定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义.一、定积分 1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x 所围成的图形称为曲边梯形(如图①).(2)求曲边梯形面积的方法与步骤:①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②);③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s .3.定积分的定义和相关概念(1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i −1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i −1,x i ]上任取一点ξi(i =1,2, …,n ),作和式11()()nni i i i b af x f nξξ==-∆=∑∑;当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作()d baf x x ⎰,即()d baf x x ⎰=1lim ()ni n i b af nξ→∞=-∑. (2)在()d baf x x ⎰中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d bba akf x x k f x x =⎰⎰(k 为常数);(2)[()()]d ()d ()d bb ba aaf xg x x f x x g x x ±=±⎰⎰⎰;(3)()d =()d +()d bc baacf x x f x x f x x ⎰⎰⎰(其中a <c <b ).【注】定积分的性质(3)称为定积分对积分区间的可加性,其几何意义是曲边梯形ABCD 的面积等于曲边梯形AEFD 与曲边梯形EBCF 的面积的和.5.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分ba ⎰ f (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图①中阴影部分).(2)一般情况下,定积分ba ⎰ f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的曲边梯形面积的代数和(图②中阴影部分所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.6.定积分与曲边梯形的面积的关系(常用结论)定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来确定:设阴影部分面积为S ,则 (1)()d b aS f x x =⎰; (2)()d baS f x x =-⎰;(3)()()d d c bacS f x x f x x=-⎰⎰; (4)()()()()d d []d bbbaaaS f x x g x x f x g x x =-=-⎰⎰⎰.7.定积分的物理意义 (1)变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即()d bas v t t =⎰.(2)变力做功一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s m ,则力F 所做的功为W =Fs .如果物体在变力F (x )的作用下沿着与F (x )相同的方向从x =a 移动到x =b ,则变力F (x )做的功()d baW F x x =⎰.二、微积分基本定理一般地,如果 f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么()d baf x x ⎰=F (b )−F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式,其中F (x )叫做 f (x )的一个原函数.为了方便,我们常把F (b )−F (a )记作()|ba F x ,即()d baf x x ⎰=()|b a F x =F (b )−F (a ). 【注】常见的原函数与被积函数的关系 (1)d |(bb a a C x Cx C =⎰为常数);(2)11d |(1)1bn n ba ax x x n n +=≠-+⎰; (3)sin d cos |bb a a x x x =-⎰; (4)cos d sin |bb a a x x x =⎰;(5)1d ln |(0)bb a ax x b a x=>>⎰; (6)e d e |bx x b a a x =⎰;(7)d |(0,1)ln x bxba a a a x a a a=>≠⎰;(8)322|(0)3b a ax x b a =>≥⎰.考向一 定积分的计算1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强; (2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分x ⎰的几何意义是求单位圆面积的14,所以π=4x⎰.2.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分;(3)分别用求导公式找到一个相应的原函数;(4)利用牛顿—莱布尼茨公式求出各个定积分的值;(5)计算原始定积分的值.3.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加.4.奇偶函数的定积分(1)若奇函数y=f(x)的图象在[−a,a]上连续,则()d0aaf x x-=⎰;(2)若偶函数y=g(x)的图象在[−a,a]上连续,则()d2()da aag x x g x x-=⎰⎰.典例A.12B.1C.2D.3【答案】A故选A.【解题技巧】求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.1.若cos2cos dtt x x=-⎰,其中()0,πt∈,则t=A .π6 B .π3 C .π2D .5π6考向二 利用定积分求平面图形的面积利用定积分求平面图形面积问题的常见类型及解题策略 (1)利用定积分求平面图形面积的步骤①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案. (2)知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.(3)与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.典例2 设抛物线C :y =x 2与直线l :y =1围成的封闭图形为P ,则图形P 的面积S 等于 A .1 B .13 C .23D .43【答案】D【解析】由21y x y ⎧=⎨=⎩,得1x =±.如图,由对称性可知,12301142(11d )2(11)033S x x x =⨯-=⨯-=⎰. 故选D.2.用S 表示图中阴影部分的面积,则S 的值是A .()d ca f x x ⎰B .()d caf x x ⎰C .()d ()d bcabf x x f x x +⎰⎰D .()d ()d cbba f x x f x x -⎰⎰考向三 定积分的物理意义利用定积分解决变速直线运动与变力做功问题利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.典例3 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t +t=-+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是 A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2【答案】C【解析】令v (t )=0得,3t 2−4t −32=0,解得t =4(83t =-舍去). 汽车的刹车距离是42400253(73)d [725ln(1)]|425ln 5.12t +t t t t t -=-++=++⎰故选C.3.已知物体运动的速度与时间的关系式为49v t =-,则物体从0t =到5t =所走的路程为 A .11B .5C .1014D .201AB C .πD .2π2.求曲线2y x =与y x =所围成的图形的面积S ,正确的是 A .()120d S x x x =-⎰B .()120d S xx x =-⎰C .()12d S y y y =-⎰D 3.若()π4sin cos d 2ax x x +=⎰,则a 的值不可能为 A .13π12 B .7π4 C .29π12D .37π124.已知函数()f x 在R 上可导,且()()()34120f x x x f f '+'=-,则1()d f x x =⎰A .1B .1-C .394D .394-5.汽车以()32 m/s v t =+作变速运动时,在第1s 至2s 之间的1s 内经过的路程是 A .5m BC .6mD6.若函数()()πsin 0,06f x A x A ωω⎛⎫=->> ⎪⎝⎭的图象如图所示,则图中阴影部分的面积为A .12B .14C .24D .227.已知二项式912x ax ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为212-,则e 1d a x x x ⎛⎫+ ⎪⎝⎭⎰的值为 A .2e 12+B .2e 32-C .2e 32+D .2e 52-8.曲线2y x x =--与x 轴所围成图形的面积被直线y kx =分成面积相等的两部分,则k 的值为A .14-B .C .1-D 1 9.设()22fx x x =-,在区间[]01,上随机产生10000个随机数,构成5000个数对()(),1,2,,5000i i x y i =,记满足()()1,2,,5000i i f x y i ≥=的数对(),i i x y 的个数为X ,则X 的估计值约为A .3333B .3000C .2000D .166710.已知定义在R 上的函数()f x 与()g x ,若函数()f x 为偶函数,函数()g x 为奇函数,且()0d 6a f x x =⎰,则()()2d aaf xg x x -⎡⎤+=⎣⎦⎰__________.1.(2015年高考湖南卷理科)2(1)d x x -=⎰.2.(2015年高考天津卷理科)曲线2y x =与直线y x =所围成的封闭图形的面积为 . 3.(2015年高考山东卷理科)执行如图所示的程序框图,输出的T 的值为 .4.(2015年高考福建卷理科)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .5.(2015年高考陕西卷理科)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【点睛】本题主要考查定积分的求法、二倍角的余弦公式,考查了已知三角函数值求角,意在考查综合运用所学知识解决问题的能力,是中档题.求解时,首先求出定积分cos dtx x⎰,代入0cos2cos dtt x x=-⎰,利用二倍角公式得到关于sin t的方程,求出sin t,结合t的范围可得结果.2.【答案】D【解析】由定积分的几何意义知,图中阴影部分的面积为()[]d()d()d()db c c ba b b af x x f x x f x x f x x-+=-⎰⎰⎰⎰.故选D.3.【答案】B【解析】由积分的物理意义可知物体从t=0到t=5所走的路程为()()52549d29|50455t t t t-=-=-=⎰.故选B.1.【答案】A【解析】(()2211y x x y=∴-+=表示以()1,0为圆心,1为半径的圆,∴定积分x⎰等于该圆的面积的四分之一,∴A.2.【答案】A【解析】如图所示,由定积分几何意义可得()12d S x x x =-⎰,故选A . 3.【答案】B 【解析】由题得()()ππ44ππsin cos d sin cos |cos sin cos sin sin cos 44aax x x x x a a a a +=-=---=-⎰π42a ⎛⎫=-=⎪⎝⎭,所以π1sin 42a ⎛⎫-= ⎪⎝⎭,把7π4a =代入,3π1sin 22≠,显然不成立,故选B .5.【答案】D【解析】由题意可得在第1s至2s之间的1s内经过的路程132=,故选D . 6.【答案】C【解析】由图可知,1A =,πππ2362T ⎛⎫=--= ⎪⎝⎭,即πT =,∴2ω=,则()πs i n 26fx x ⎛⎫=-⎪⎝⎭. ∴图中的部分的面积为ππ12120π1π1πππs i n 2d c o s (2626266S x x x ⎡⎤⎛⎫⎛⎫⎛⎫=--=-=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰.112⎛=⨯= ⎝⎭.故选C . 【名师点睛】本题考查了导数在求解面积中的应用,关键是利用图形求解函数的解析式,再在运用积分求解.定积分的计算一般有三个方法: ①利用微积分基本定理求原函数;②利用定积分的几何意义,即利用面积求定积分;③利用奇偶性、对称性求定积分,如奇函数在对称区间的定积分值为0. 7.【答案】B【解析】二项式912x ax ⎛⎫+ ⎪⎝⎭的展开式的通项为99219911C C 22r rr r r r r T x x ax a --+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,令3r =可得3x 的系数为3393121C 22a a ⎛⎫⋅= ⎪⎝⎭.由题意得3212122a =-,解得1a =-. 所以ee 1212e 11d 1e 3ln |2d 2x x a x x x x x x -⎛⎫⎛⎫⎛⎫+=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰.故选B .【名师点睛】先由二项式定理求得展开式的通项,根据题意求得实数a 的值,再根据微积分基本定理求定积分. 8.【答案】D【解析】如图所示,曲线2y x x =--与x 轴的交点为()1,0-和0,0(),曲线2y x x =--与直线y kx =的交点为()21,k k k ----和0,0().由题意和定积分的几何意义得:()2211()d 2d kx x x xx kx x -----=---⎰⎰,化简得:()()33111=2632k k ⎛⎫++ ⎪-+ ⎪⎝⎭,即31=1+2k (),解得:112k =-=-.故选D .【点睛】1.由函数图象或曲线围成的曲边图形面积的计算及应用,一般转化为定积分的计算及应用, 但一定要找准积分上限、下限及被积函数,且当图形的边界不同时,要讨论解决.具体步骤如下:(1)画出图形,确定图形范围;(2)解方程组求出图形交点坐标,确定积分上、下限; (3)确定被积函数,注意分清函数图形的上、下位置; (4)计算定积分,求出平面图形的面积.2.由函数求其定积分,能用公式的利用公式计算,有些特殊函数可根据其几何意义,求出其围成的几何图形的面积,即其定积分. 9.【答案】A【解析】满足()i i y f x ≤是在曲线()y f x =、0,1y x ==所围成的区域内(含边界),又该区域的面积为()122310122d |33x x x xx -=-=⎰,故X 的估计值为2500033333⨯≈. 故选A .【名师点睛】对于曲边梯形的面积,我们可以用定积分来计算.设事件A 为“[]0,1上随机产生数对(),x y ,满足()y f x ≤ ”,则总的基本事件为0101x y ≤≤⎧⎨≤≤⎩,对应的测度为正方形的面积1,而随机事件A 对应的测度为为曲边梯形()0101y f x x y ⎧≤⎪≤≤⎨⎪≤≤⎩的面积,它可利用定积分来计算. 10.【答案】12【解析】∵函数()f x 为偶函数,函数()g x 为奇函数,∴函数()f x 的图象关于y 轴对称,函数()g x 的图象关于原点对称. ∴()()0d 2d 12aa a f x x f x x -==⎰⎰,()d 0aag x x -=⎰,∴()()()()2d d 2d 12aaaa a a f x g x x f x x g x x ---⎡⎤+=+=⎣⎦⎰⎰⎰.【点睛】根据定积分的几何意义和函数的奇偶性求解.定积分()()d (0)ba f x x f x >⎰的几何意义是表示曲线()y f x =以下、x 轴以上和直线,x a x b ==之间的曲边梯形的面积,解题时要注意面积非负,而定积分的结果可以为负.1.【答案】0 【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰.2.【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰.4.【答案】512【解析】依题意知点D 的坐标为(1,4),所以矩形ABCD 的面积S =1×4=4,阴影部分的面积S 阴影=3222111754d 44333| x x x =-=--=⎰, 根据几何概型的概率计算公式得,所求的概率P =553412S S ==阴影.5.【答案】1.2【解析】建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()53235355222240(2)d (2)(255)[255]257575753x x x x ---=-=⨯-⨯-⨯--⨯-=⎰,故原始的最大流量与当前最大流量的比值是161.2403,所以答案为1.2.。
高三数学一轮复习知识点归纳与总结:定积分与微积分的基本定理
届高三数学一轮复习(知识点归纳与总结):定积分与微积分的基本定理————————————————————————————————作者:————————————————————————————————日期:第十四节定积分与微积分基本定理[备考方向要明了]考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.如2012年江西T11等.3.考查曲边梯形面积的求解.如2012年湖北T3,山东T15,上海T13等.4.与几何概型相结合考查.如2012年福建T6等.[归纳·知识整合]1.定积分(1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x =b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf(x)d x=k∫b a f(x)d x.②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫ba f (t )d t 是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )记成F (x )|b a ,即∫b a f (x )d x =F (x )|b a =F (b )-F (a ).[自测·牛刀小试]1.∫421xd x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2D .ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143 C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎭⎫13t 3-12t 2+2t 21=176.3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________.解析:∫20x 2d x =13x 3 |20=83. 答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π. 答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝⎛⎭⎫12,2,B ⎝⎛⎭⎫2,12,所以阴影部分的面积,212⎰⎝⎛ -x +52-⎭⎫1x d x = ⎝⎛⎭⎫-12x 2+52x -ln x 212=158-2ln 2. 答案:158-2ln 2利用微积分基本定理求定积分[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝⎛⎭⎫e 2x +1x d x ; (5)20π⎰sin 2x 2d x .[自主解答](1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33 |21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫20x d x =13x 3 |20+12x 2 |20 =⎝⎛⎭⎫13×23-0+⎝⎛⎭⎫12×22-0=143.(4)∫21⎝⎛⎭⎫e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)20π⎰ sin 2x 2d x =20π⎰⎝⎛⎭⎫12-12cos x d x =20π⎰12d x -1220π⎰cos x d x =12x 20π-12sin x 20π=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分: (1)∫20|x -1|d x ; (2)20π⎰1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1)x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝⎛⎭⎫x -x 22 |10+⎝⎛⎭⎫x 22-x |21 =12+12=1. (2) 20π⎰1-sin 2x d x=20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x+cos x)4π+(-cos x-sin x) 24ππ=2-1+(-1+2)=22-2.利用定积分的几何意义求定积分[例2]∫10-x2+2x d x=________.[自主解答]∫10-x2+2x d x表示y=-x2+2x与x=0,x=1及y=0所围成的图形的面积.由y=-x2+2x得(x-1)2+y2=1(y≥0),又∵0≤x≤1,∴y=-x2+2x与x=0,x=1及y=0所围成的图形为14个圆,其面积为π4.∴∫10-x2+2x d x=π4.在本例中,改变积分上限,求∫20-x2+2x d x的值.解:∫20-x2+2x d x表示圆(x-1)2+y2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x2+2x d x=π2.———————————————————利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f(x)=∫x0(cos t-sin t)d t(x>0),则f(x)的最大值为________.解析:因为f(x)=∫x02sin⎝⎛⎭⎫π4-t d t=2cos⎝⎛⎭⎫π4-t|x0=2cos⎝⎛⎭⎫π4-x-2cosπ4=sin x+cos x-1=2sin⎝⎛⎭⎫x+π4-1≤2-1,当且仅当sin⎝⎛⎭⎫x+π4=1时,等号成立.答案:2-1利用定积分求平面图形的面积[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x |40=163. [答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫20f (x )d x =∫1x d x +∫21(-x +2)d x =23x 32 |10+⎝⎛⎭⎫2x -x 22 |21=76.——————————————————— 利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23B.13C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x 2⇒x =12或x =-12(舍),所以阴影部分面积S =120⎰⎝⎛⎭⎫14-x 2d x +112⎰⎝⎛⎭⎫x 2-14d x=⎝⎛⎭⎫14x -13x 3120+⎝⎛⎭⎫13x 3-14x 112=14.定积分在物理中的应用[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t =(20t -0.2t 2) |500=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b a v (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b a F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x=10x |20+⎝⎛⎪⎪⎭⎫32x 2+4x 42=20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰错误!未找到引用源。
高中高考考点难点常见题型(带答案解析) 定积分与微积分的基本定理(解析版)
简单已测:424次正确率:91.8 %1.定积的值是( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:D 解析:,故选:.⼀般已测:3296次正确率:69.9 %2.计算( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的概念、定积分的⼏何意义答案:B解析:选⼀般已测:4642次正确率:87.5 %3.若,,则,,的⼤⼩关系为( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的基本性质、定积分的常⽤结论答案:B解析:由于,,,且,所以,故选.⼀般已测:3883次正确率:75.3 %4.若,则( )2xdx ∫0212342xdx =x =4∫202∣∣∣∣20D (1−cos x )dx =∫− 2π2ππ+2π−2π−2(1−cos x )dx=(x −sin x )∫− 2π2π =π−2.∣∣∣∣ 2π− 2πB .S = x dx 1∫122S = dx 2∫12x 1S =e dx 3∫12x S 1S 2S 3S <S <S 123S <S <S 213S <S <S 231S <S <S321S = x dx = x ∣ = − = 1∫12231312383137S = dx =lnx ∣ =ln 22∫12x 112S = e dx =e ∣ =e −e 3∫12x x 122ln 2< <e −e 372S <S <S 213B f (x )=x +2 f (x )dx 2∫01 f (x )dx=∫01A.B.C.D.考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:被积函数的原函数、微积分基本定理答案:B解析:令(常数),则,所以,解得,故选:.中等已测:4750次正确率:71.2 %5.在如图所⽰平⾯直⻆坐标系中,正⽅形的边⻓为,曲线是函数图象位于正⽅形内的部分,直线恰好是函数在处的切线,现从正⽅形内任取⼀点,那么点取⾃阴影部分的概率等于( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:曲边梯形的⾯积、定积分的⼏何意义答案:D解析:正⽅形的边⻓为,由函数,得,则,得.⼜当时,,可得,曲线的解析式为,阴影部分⾯积.点取⾃阴影部分的概率等于.故选:.−1−31 311f (x )dx =m ∫01f (x )=x +2m 2m = f (x )dx =( x +2mx ) = +2m ∫01313∣∣0131m =− 31B OABC 1m y =a (x −1)+b 2AC y=a (x −1)+b 2x =0P P1213141 61∵OABC 1,∴S =1正方形OABC y =a (x −1)+b 2y =2a (x −1)′y ∣ =−2a =−1′x =0a =21x=0y =a +b =1b = 21∴m y = (x −1)+ 21221∴S = [ (x −1)+ −(−x +1)]dx = x dx = x ∣=∫0121221∫012126130161∴P 61D⼀般已测:4665次正确率:92.6 %6.已知,则⼆项式的展开式中的系数为( )A.B.C.D.考点:利⽤定积分的性质解题、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:C 解析:,的展开式的通项公式为,令得,,展开式中的系数为.⼀般已测:2948次正确率:92.5 %7.实数使得复数是纯虚数,则的⼤⼩关系是( )A.B.C.D.考点:⽤定义求定积分、⽤所求定积分的⼏何意义求定积分知识点:定积分的概念、复数的概念答案:C解析:,它为纯虚数,所以,表⽰单位圆的四分之⼀的⾯积为,所以,应选.中等已测:3726次正确率:56.3 %8.若,则=( )A.B.a = dx ∫ e 1e x1(1− )x a 5x −316080−80−160∵a= dx =lne −ln =2∫ e 1e x 1e 1∴(1−)=(1−)xa 5x25T=C (−2)x r +15r r −r −r=−3r =3∴x −3C (−2)=−80533a1−i a +i b = xdx ,c= dx ∫01∫011−x 2a ,b ,c a <b <c a <c <b b <c <a c <b <a= = 1−i a +i1−i 1+i ()()a +i 1+i ()()2a −1+a +1i ()a =1,b = xdx = ∣ = ,c = dx ∫012x 20121∫011−x 2 4πb <c <a C f x + f x dx =x ()∫01() f x dx ∫01()41 21C.D.考点:⽤定义求定积分、利⽤定积分的性质解题知识点:定积分的基本性质、基本积分公式答案:A 解析:由,则,则,,则,故选A .⼀般已测:2708次正确率:72.5 %9.⼀个⼈骑⻋以⽶/秒的速度匀速追赶停在交通信号灯前的汽⻋,当他离汽⻋⽶时,交通信号灯由红变绿,汽⻋开始做变速直线⾏驶(汽⻋与⼈的前进⽅向相同),若汽⻋在时刻的速度⽶/秒,那么此⼈( ).A.可在秒内追上汽⻋B.不能追上汽⻋,但其间最近距离为⽶C.不能追上汽⻋,但其间最近距离为⽶D.不能追上汽⻋,但其间最近距离为⽶考点:⼆次函数的单调性、利⽤定积分的⼏何意义解题知识点:微积分基本定理、基本积分公式答案:D解析:设该⼈骑⻋⾏驶距离和汽⻋⾏驶距离的差为,则,所以,所以该⼈不能追上汽⻋,但其间最近距离为⽶⼀般已测:391次正确率:82.7 %10.甲、⼄两⼈从同⼀起点出发按同⼀⽅向⾏⾛,已知甲、⼄⾏⾛的速度与⾏⾛的时间分别为,(如图),当甲⼄⾏⾛的速度相同(不为零)时刻( )A.甲⼄两⼈再次相遇B.甲⼄两⼈加速度相同12fx +f x dx =x ()∫01()f x =x − f x dx ()∫01() fx dx = x − f x dx dx∫01()∫01(∫01())= xdx − f x dx dx = − f x dx ∫01∫01[∫01()]21∫01()∴ f x dx = − f x dx ∫01()21∫01() f x dx =∫01()41625t v (t )=t 716147S (t )S (t )= 6−t dt =6t −t ∫0t()212S (t ) =S (6)=36−18=18max 7v =甲t v =t 乙2C.甲在⼄前⽅D.⼄在甲前⽅考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:定积分的物理意义、变速运动问题答案:C解析:由,得,解得(舍),或.由..所以当甲⼄⾏⾛的速度相同(不为零)时刻甲在⼄前⽅.故选:.中等已测:1818次正确率:73.8 %11.已知,若函数满⾜,则称为区间上的⼀组``等积分''函数,给出四组函数:①②;③;④函数分别是定义在上的奇函数且积分值存在.其中为区间上的“等积分”函数的组数是( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的基本性质、微积分基本定理答案:C解析:本题是新定义问题,主要考查对定义的理解和定积分的计算.对于①,⽽,所以①是⼀组“等积分”函数;对于②,,⽽,所以②不是⼀组``等积分''函数;对于③,函数的图像是以原点为圆⼼,为半径的半圆,故,⽽,所以③是⼀组``等积分''函数;对于④,由于函数分别是定义在上的奇函数且积分值存在,利⽤奇函数的图像关于原点对称和定积分的⼏何意义,可以求得函数的定积分,所以④是⼀组``等积分''函数.故选.简单已测:3293次正确率:86.3 %12..v =v 甲乙 =t t 2t =0t =1 dt = t ∣ = ∫01t 32 230132 t dt = t ∣= ∫0123130131C a <b f (x ),g (x ) f (x )dx = g (x )dx ∫a b∫a bf (x ),g (x )[a ,b ]f (x )=2∣x ∣,g (x )=x +1;f (x )=sinx ,g (x )=cosx f (x )=,g (x )= πx 1−x 2432f (x ),g (x )[−1,1][−1,1]1234f x dx = 2x dx = 2−x dx + 2xdx =2,∫−11()∫−11∣∣∫−10()∫01g x dx = x +x ∣ =2∫−11()(212)−11 f (x )dx = sinxdx =0∫−11∫−11 g x dx = cos xdx =2sin 1≠0∫−11()∫−11f (x )1 f x dx = dx = ∫−11()∫−111−x 22πg x dx = πx ∣ = ∫−11()413−112πf (x ),g (x )[−1,1] f (x )dx = g x dx =0∫−11∫−11()C (sinx +cosx )dx =∫− 2π2π考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、被积函数的原函数答案:解析:;故填.⼀般已测:4543次正确率:94.5 %13..考点:利⽤定积分的⼏何意义解题知识点:定积分的概念、定积分的⼏何意义答案:解析:函数即:,表⽰以为圆⼼,为半径的圆在轴上⽅横坐标从到的部分,即四分之⼀圆,结合定积分的⼏何意义可得.故答案为.⼀般已测:2478次正确率:65.4 %14.⼀辆汽⻋在⾏驶中由于遇到紧急情况⽽刹⻋,以速度⾏驶⾄停⽌,在此期间汽⻋继续⾏驶的距离是.考点:定积分在求⾯积中的应⽤、微积分基本定理求定积分知识点:定积分的物理意义、基本积分公式答案:解析:本题考查定积分的概念.令,化为,⼜,解得.汽⻋继续⾏驶的距离.⼀般已测:4698次正确率:91.6 %15.若正实数满⾜,则的最⼩值为.考点:利⽤基本不等式求最值、利⽤公式求定积分知识点:定积分的基本性质、基本积分公式答案:解析:由题意得;即,所以(当且仅当时等号成⽴).所以,即的最⼩值为.简单已测:1192次正确率:87.8 %16.有⼀⾮均匀分布的细棒,已知其线密度为,棒⻓为,则细棒的质量.考点:⽤定义求定积分、微积分基本定理求定积分2(sinx +cosx )dx =−cosx +sinx ∣ ∫− 2π 2π()−2π2π=1+1=22 ( )dx ∫121−(x −1)2=4πy=1−(x −1)2(x −1)+y =1(x ≥1,y ≥0)22(1,0)1x 12 ( )dx = ×π×1=∫121−(x −1)24124π 4πv (t )=7−3t +1+t 254+25ln 5v (t )=7−3t + =01+t253t −4t −32=02t >0t =4S = (7−3t + )dt =(7t − t +25ln (1+t ))∣ =4+25ln 5∫041+t 2523204m ,n + = (x +)dx m 2n 1∫−22π14−x 2log (m +2n )22(x + )dx = dx = × π×2=2∫−22π14−x 2π1∫−224−x 2π1212 + =2m 2n 1m +2n =(m +2n )( + )= + +2≥2 +2=4m 12n 1m 2n 2n m × m 2n 2n m m =2n log m +2n ≥log 4=22()2log (m +2n )22ρx =x ()32M =(1)(2)知识点:定积分的物理意义、定积分的常⽤结论答案:解析:依题意有:.⼀般已测:3051次正确率:65.2 %17.在区间上给定曲线.试在此区间内确定点的值,使图中的阴影部分的⾯积与之和最⼩,并求最⼩值.考点:导数在最⼤值、最⼩值问题中的应⽤、定积分在求⾯积中的应⽤知识点:利⽤导数求函数的最值、微积分基本定理答案:时,最⼩,且最⼩值为解析:⾯积等于边⻓分别为与的矩形⾯积去掉曲线与轴、直线所围成的⾯积,即.的⾯积等于曲线与轴,,围成的⾯积去掉矩形边⻓分别为,⾯积,即.所以阴影部分的⾯积.令,得或.时,;时,;时,.所以当时,最⼩,且最⼩值为.⼀般已测:401次正确率:92.8 %18.已知.求的单调区间;求函数在上的最值.考点:利⽤导数研究函数的单调性、利⽤导数求闭区间上函数的最值知识点:函数单调性和导数的关系、利⽤导数求函数的最值(1)答案:单调调增区间是,单调递减区间是.解析:依题意得,,定义域是.,令,得或; 令得,且函数定义域是,函数的单调增区间是,单调递减区间是.(2)答案:最⼤值是,最⼩值是.解析:由(1)知函数在区间上为减函数,区间上为增函数, 且,在上的最⼤值是,最⼩值是.4x dx= ∣ =4∫0234x 402[0,1]y =x 2t S 1S 2t=21S (t )41S 1t t 2y =x 2x x =t S =t ⋅t − x dx = t 12∫0t 2323S 2y =x 2x x =t x =1t 21−t S = x dx −t (1−t )= t −t + 2∫t 122323231S (t )=S +S = t −t + (0≤t ≤1)12343231S (t )=4t −2t =4t (t − )=0′221t =0t = 21t =0S (t )= 31t = 21S (t )= 41t =1S (t )= 32t = 21S (t )41F (x )= (t +2t −8)dt ,(x >0)∫0x2F (x )F (x )[1,3](2,+∞)(0,2)F (x )= (t +2t −8)dt =( t +t−8t )∣ = x +x −8x ∫0x 231320x 3132(0,+∞)(1)F (x )=x +2x −8′2F (x )>0′x >2x <−4F (x )<0,′−4<x <2(0,+∞)∴F (x )(2,+∞)(0,2)F (3)=−6F (2)=− 328F (x )(0,2)(2,3)F (1)=− ,F (2)=− ,F (3)=−6320328∴F (x )[1,3]F (3)=−6F (2)=− 328(1)(2)中等已测:3275次正确率:52.7 %19.已知⼆次函数,直线,直线(其中,为常数),若直线,与函数的图象以及,、轴与函数的图象所围成的封闭图形(阴影部分)如图所⽰.求,,的值;求阴影⾯积关于的函数的解析式.考点:求函数解析式的常⽤⽅法、利⽤定积分的⼏何意义解题知识点:⼆次函数的解析式、⼆次函数的图象(1)答案:, , 解析:由图形可知⼆次函数的图象过点,,并且的最⼤值为,则解得,函数的解析式为.(2)答案:解析:由得,,,,直线与的图象的交点坐标为由定积分的⼏何意义知:.f (x )=ax +bx +c 2l :x =21l :y =−t +8t 220≤t ≤2t l 1l 2f (x )l 1l 2y f (x )a b c S t S (t )a=−1b =8c =0(0,0)(8,0)f (x )16 ⎩⎨⎧c =0,a ⋅8+b ⋅8+c =02=164a 4ac −b 2 ⎩⎨⎧a =−1b =8c =0∴f (x )f (x )=−x +8x 2S (t )=− t +10t −16t + 3432340{ y =−t +8t 2y =−x +8x2x −8x −t (t −8)=02∴x =t 1x =8−t 2∵0≤t ≤2∴l 2f (x )(t ,−t +8t )2S (t )= −t +8t −−x +8x dx + [(−x +8x )−(−t +8t )]dx ∫0t [(2)(2)]∫t 222=[(−t +8t )x −(− +4x )]∣ +[(− +4x )−(−t +8t )x ]∣ 23x 320t 3x 322t 2=− t +10t −16t + 3432340。
高考数学考点突破——导数及其应用与定积分:定积分与微积分基本定理 含解析
高考数学考点突破——导数及其应用与定积分:定积分与微积分基本定理 含解析【考点梳理】1.定积分的概念与几何意义(1)定积分的定义如果函数f(x)在区间[a ,b]上连续,用分点将区间[a ,b]等分成n 个小区间,在每个小区间上任取一点ξi(i =1,2,…,n),作和式f(ξi)Δx =f(ξi),当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a ,b]上的定积分,记作f(x)dx ,即f(x)dx =f(ξi).1n i =∑1n i =∑lim n →∞1n i =∑在f(x)dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式.(2)定积分的几何意义(1)kf(x)dx=kf(x)dx(k为常数).(2)[f1(x)±f2(x)]dx=f1(x)dx±f2(x)dx.(3)f(x)dx=f(x)dx+f(x)dx(其中a<c<b).3.微积分基本定理一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么f(x)dx=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F(b)-F(a)记为F(x) ,即f(x)dx=F(x))=F(b)-F(a).【考点突破】考点一、定积分的计算【例1】(1)(cos x+1)dx=________.(2)|x2-2x|dx=________.(3)(2x+)dx=________.[答案] (1) π(2) 8 (3) 1+π4[解析] (1)(cos x+1)dx=(sin x+x)=π.(2)|x2-2x|dx=(x2-2x)dx+(2x-x2)dx=+=+4+4-=8.(3)dx表示以原点为圆心,以1为半径的圆的面积的,∴dx=.又∵ 2xdx=x2=1,∴(2x+)dx=2xdx+dx=1+.。
高考专题定积分与微积分基本定理
定积分与微积分基本定理[知识梳理]1.定积分的概念2.定积分的几何意义3.定积分的性质4.微积分基本定理5.定积分的应用(1)定积分与曲边梯形面积的关系设阴影部分的面积为S.6.定积分应用的两条常用结论(1)当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.(2)加速度对时间的积分为速度,速度对时间的积分是路程.[诊断自测] 1.概念思辨(1)在区间[a ,b ]上连续的曲线y =f (x )和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )|d x .( )(2)若⎠⎛ab f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )答案 (1)√ (2)× (3)√ (4)√ 2.教材衍化答案D(2)(选修A2-2P 67T 7)直线y =3x 与曲线y =x 2围成图形的面积为( )A.272 B .9 C.92 D.274 答案 C 解析由已知,联立直线与曲线方程得到⎩⎨⎧y =3x ,y =x 2,解得⎩⎨⎧x =0,y =0或⎩⎨⎧x =3,y =9,则围成图形的面积为⎠⎛03(3x -x 2)d x =⎝⎛⎭⎪⎫32x 2-13x 3|30=32×3×3-13×3×3×3 =16×3×3×3=92.故选C.3.小题热身答案 B答案 D题型1定积分的计算典例1 (优质试题·广州质检)定积分⎠⎛-22|x 2-2x |d x =( ) A .5 B .6 C .7 D .8被积函数中含有绝对值,可表示为分段函数后再求积分.答案 D 解析∵|x 2-2x |=⎩⎨⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2,∴⎠⎜⎛-22|x 2-2x |d x =⎠⎜⎛-2(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫13x 3-x 2|0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2|20=8.故选D. 典例2求和的积分,可转化为求积分的和.答案 23典例3本题应用转化法.答案π2方法技巧求定积分的常用方法1.微积分基本定理法:其一般步骤为:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数、对数函数等基本初等函数的和、差、积或商.(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分.(3)分别用求导公式找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值.(5)计算原始定积分的值.2.用定积分的几何意义求:将待求定积分转化为一个易求平面图形的面积,进而求值.如典例3.3.用定积分的基本性质求:对绝对值函数,分段函数,可利用定积分的基本性质将积分区间分解为若干部分求解.冲关针对训练1.(2014·江西高考)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( ) A .-1 B .-13 C.13 D .1 答案 B解析 令⎠⎛01f (x )d x =m ,则f (x )=x 2+2m ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝ ⎛⎭⎪⎫13x 3+2mx |10=13+2m =m ,解得m =-13,故选B.2.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案B题型2 利用定积分求平面图形的面积角度1 求平面图形的面积典例(优质试题·葫芦岛模拟)如图所示,正弦曲线y =sin x ,余弦曲线y =cos x 与两直线x =0,x =π所围成的阴影部分的面积为( )A .1 B. 2 C .2 D .2 2本题采用割补转化法.答案 D角度2 已知曲边梯形面积求参数典例 (优质试题·北京东城区检测)如图,已知点A ⎝ ⎛⎭⎪⎫0,14,点P (x 0,y 0)(x 0>0)在曲线y =x 2上,若阴影部分的面积与△OAP 的面积相等,则x 0=________.本题应用方程思想.答案6 4角度3与其他知识的交汇命题典例(2014·辽宁高考)正方形的四个顶点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y=-x2和y=x2上,如图所示.若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是________.本题应用数形结合思想方法.答案2 3方法技巧1.利用定积分求平面图形面积的步骤(1)根据题意画出图形.(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限.(3)把曲边梯形的面积表示成若干个定积分的和.(4)计算定积分,求出平面图形的面积.2.知图形的面积求参数.求解此类题的突破口是画图,一般是先画出它的草图,然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.见角度2典例.3.与概率相交汇问题.解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.见角度3典例.冲关针对训练1.(优质试题·河北衡水中学三模)由曲线y=2-x2,直线y=x及x轴所围成的封闭图形(图中的阴影部分)的面积是()A.92 B.423+76 C.76 D.2+1答案 B2.(优质试题·洛阳统考)若⎠⎛0n |x -5|d x =25,则(2x -1)n 的二项展开式中x 2的系数为________.答案 180①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .3 答案 C答案 A3.(优质试题·和平区期末)物体A以v=3t2+1(m/s)的速度在一直线l上运动,物体B在直线l上,且在物体A的正前方5 m处,同时以v=10t(m/s)的速度与A同向运动,出发后物体A追上物体B所用的时间t(s)为()A.3 B.4 C.5 D.6答案 C4.(优质试题·江西联考)⎠⎛01(2x +1-x 2)d x =________.答案 1+π4 解析 ⎠⎛011-x 2d x 表示以原点为圆心,以1为半径的圆的面积的14,∴⎠⎛011-x 2d x =π4.又∵⎠⎛012x d x =x 210=1,∴⎠⎛01(2x +1-x 2)d x =⎠⎛012x d x +⎠⎛11-x 2d x =1+π4.[基础送分 提速狂刷练]一、选择题1.(优质试题·凉山州模拟)⎠⎛1e ⎝⎛⎭⎪⎫x +1x d x =( )A .e 2B.e 2+12C.e 2-12D.e 2+32答案 B解析 ⎠⎛1e ⎝⎛⎭⎪⎫x +1x d x =⎝ ⎛⎭⎪⎫12x 2+ln x |e 1=⎝ ⎛⎭⎪⎫12e 2+1-⎝ ⎛⎭⎪⎫12+0=e 2+12,故选B.答案 C3.(优质试题·抚州期中)曲线y =2x 与直线y =x -1及直线x =1所围成的封闭图形的面积为( )A.34B.52 C .4-2ln 2 D .2ln 2-12 答案 D解析 画图得三个交点分别为(1,0),(1,2),(2,1),故曲线y =2x 与直线y =x -1及直线x =1所围成的封闭图形的面积为S =⎠⎛12⎝⎛⎭⎪⎫2x -x +1=⎝ ⎛⎭⎪⎫2ln x -12x 2+x |21=2ln 2-2+2+12-1=2ln 2-12,故选D.4.(优质试题·南昌一模)若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是( )A .2B .3C .4D .6 答案 A解析 由题意可知⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =(x 2+ln x )|a1=a 2+ln a -1=3+ln2,解得a =2.故选A.5.(优质试题·郑州质检)已知等比数列{a n },且a 6+a 8=⎠⎛0416-x 2d x ,则a 8(a 4+2a 6+a 8)的值为( ) A .π2 B .4π2 C .8π2 D .16π2 答案 D解析 因为a 6+a 8=⎠⎛416-x 2d x =14×π×42=4π,所以a 8(a 4+2a 6+a 8)=a 8a 4+2a 6a 8+a 28=a 26+2a 6a 8+a 28=(a 6+a 8)2=16π2,故选D.6.(优质试题·河南模拟)已知1sin φ+1cos φ=22,若φ∈⎝ ⎛⎭⎪⎫0,π2,则⎠⎛-1tan φ(x 2-2x )d x =( )A.13 B .-13 C.23 D .-23 答案 C7.设a =⎠⎛0πsin x d x ,则⎝ ⎛⎭⎪⎫a x -1x 6的展开式中常数项是( )A .-160B .160C .-20D .20 答案 A 解析依题意得,a =-cos x|π0=-(cosπ-cos0)=2,⎝⎛⎭⎪⎫ax -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6的展开式的通项T r +1=C r 6·(2x )6-r ·⎝⎛⎭⎪⎫-1x r =C r 6·26-r·(-1)r·x3-r.令3-r =0,得r =3.因此⎝⎛⎭⎪⎫a x -1x 6的展开式中的常数项为C 36·23·(-1)3=-160,故选A.8.如图,设抛物线y =-x 2+1的顶点为A ,与x 轴正半轴的交点为B ,设抛物线与两坐标轴正半轴围成的区域为M ,随机往M 内投一点P ,则点P 落在△AOB 内的概率是( )A.56B.45C.34D.23 答案 C解析 因为第一象限内抛物线与坐标轴所围区域的面积为⎠⎛01(-x 2+1)d x =(-13x 3+x )|10=23,△AOB 的面积为S =12×1×1=12,所以P点落在△AOB 内的概率为1223=34.故选C.9.(优质试题·枣庄模拟)一辆汽车做变速直线运动,在时刻t 的速度为v (t )=2+sin t (t 的单位:h ,v 的单位:km/h),那么它在0≤t ≤1这段时间内行驶的路程s (单位:km)是( )A .3-cos1B .3+cos1C .1+cos1D .1-cos1答案 A解析 由v (t )=2+sin t >0,故这辆车行驶的路程s =⎠⎛01v (t )d t =⎠⎛01(2+sin t )d t =(2t -cos t )10=(2-cos1)-(-cos0)=3-cos1,故选A.10.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形(如图中的阴影部分所示)的面积是()A .1 B.π4 C.223 D .22-2 答案 D二、填空题答案212.(优质试题·南开区二模)由曲线y =x 2,y =x 围成的封闭图形的面积为________.答案 1313.(优质试题·金版原创)若m >1,则f (m )=⎠⎛1m ⎝⎛⎭⎪⎫1-4x 2d x 的最小值为________.答案 -1解析 f (m )=⎠⎛1m ⎝⎛⎭⎪⎫1-4x 2d x =⎝ ⎛⎭⎪⎫x +4x |m 1=m +4m -5≥4-5=-1,当且仅当m =2时等号成立.14.(优质试题·山西大学附中模拟)曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________.答案 23-2π3三、解答题15.(优质试题·阳东县校级月考)如图,过点A (6,4)作曲线f (x )=4x -8的切线l .(1)求切线l 的方程;(2)求切线l ,x 轴及曲线f (x )=4x -8所围成的封闭图形的面积S .解 (1)f ′(x )=424x -8=1x -2,∴切线l 的斜率k =f ′(6)=12,∴切线l 的方程为y -4=12(x -6),即x -2y +2=0.(2)令f (x )=0得x =2,把y =0代入x -2y +2=0得x =-2, ∴封闭图形的面积16.(优质试题·信阳调研)在区间[0,1]上给定曲线y =x 2.试在此区间内确定t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 面积S 1等于边长为t 与t 2的矩形面积去掉曲线 y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-⎠⎛0tx 2d x =23t 3. S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t .即S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13.所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0时,得t =0或t =12.t =0时,S =13;t =12时,S =14;t =1时,S =23. 所以当t =12时,S 最小,且最小值为14.。
高考数学一轮总复习 2.13定积分与微积分基本定理
【答案】 D
ppt课件
【名师点评】 定积分的主要应用是求曲边形的面积,一般 地,由曲线 y=f(x),y=g(x),直线 x=a,x=b(a<b)所围成的曲边 形的面积 S=b|f(x)-g(x)|dx,被积函数中的绝对值是不可少的,
a
在具体解题中就是根据两个函数 y=f(x),y=g(x)图象位置的高低, 用分段的形式将面积表示出来.
S=1
0
x+13xdx+132-x+13xdx
=23x
3 2
+16x201
+2x-13x231
=23+16+43=163.
ppt课件
考点三 定积分在物理中的应用
【例 3】 物体 A 以 v=3t2+1(m/s)的速度在一直线 l 上运动,
物体 B 在直线 l 上,且在物体 A 的正前方 5 m 处,同时以 v=10t(m/s)
A.S=1(x2-x)dx 0
B.S=1(x-x2)dx 0
C.S=1(y2-y)dy 0
D.S=1(y- y)dy 0
答案 B
ppt课件
3.1 -x2+2xdx=________. 0 ppt课件
解析 1 -x2+2x dx表示y= -x2+2x 与x=0,x=1及y=0所围 0
成的图形的面积.
ppt课件
J 基础回扣·自主学习
理教材 夯基础 厚积薄发
ppt课件
知识点一 (1)定积分的定义
知识梳理 定积分的定义及几何意义
ppt课件
如果函数f(x)在区间[a,b]上 连续
,当n→∞时,和式
n
i=1
b-n af(ξi)无限接近
某个常数
,
这个常数 叫做函数f(x)在区
苏教版高中数学高考总复习(理科)知识梳理定积分和微积分基本定理
定积分和微积分基本定理【考纲要求】1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念及其基本定理。
2.正确计算定积分,利用定积分求面积。
【知识网络】【考点梳理】要点一、定积分的概念定积分的定义:如果函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<⋅⋅⋅<<<⋅⋅⋅<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=⋅⋅⋅,作和式11()()n nn i i i i b aI f x f nξξ==-=∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分.记作()baf x dx ⎰,即()baf x dx ⎰=1lim ()ni n i b af nξ→∞=-∑,这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.要点诠释:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限. 要点二、定积分的性质 (1)()()bba akf x dx k f x dx =⎰⎰(k 为常数),(2)[]1212()()()()bb ba aaf x f x dx f x dx f x dx ±=±⎰⎰⎰,(3)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰(其中b c a <<),(4)利用函数的奇偶性求积分:若函数()y f x =在区间[],b b -上是奇函数,则()0bb f x dx -=⎰; 若函数()y f x =在区间[],b b -上是偶函数,则0()2()bbbf x dx f x dx -=⎰⎰.定积分的概念定积分的性质微积分基本定理定积分的几何意义及应用要点三、微积分基本定理如果'()()F x f x =,且)(x f 在[]b a ,上连续,则()()()baf x dx F b F a =-⎰,其中()F x 叫做)(x f 的一个原函数.由于[]()'(),F x c f x +=()F x c +也是)(x f 的原函数,其中c 为常数.一般地,原函数在[]b a ,上的改变量)()(a F b F -简记作()baF x .因此,微积分基本定理可以写成形式:()()()()bbaaf x dx F x F b F a ==-⎰.要点诠释:求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.由此,求导运算与求原函数运算互为逆运算.要点四、定积分的几何意义设函数)(x f 在区间[]b a ,上连续. 在[]b a ,上,当0)(≥x f 时,定积分⎰badx x f )(在几何上表示由曲线)(x f y =以及直线b x a x ==,与x 轴围成的曲边梯形的面积;如图(1)所示.在[]b a ,上,当0)(≤x f 时,由曲线)(x f y =以及直线b x a x ==,与x 轴围成的曲边梯形位于x 轴下方,定积分⎰badx x f )(在几何上表示上述曲边梯形面积的负值;在[]b a ,上,当)(x f 既取正值又取负值时,定积分⎰badx x f )(的几何意义是曲线)(x f y =,两条直线b x a x ==,与x 轴所围成的各部分面积的代数和. 在x 轴上方的面积积分时取正号,在x 轴下方的面积积分时,取负号.如图(2)所示.要点五、应用(一)应用定积分求曲边梯形的面积1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x = (()0f x ≥)围成的曲边梯形的面积:()[()()]bbaaS f x dx f x g x dx ==-⎰⎰;2. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x = (0)(≤x f )围成的曲边梯形的面积:()()[()()]bb baaaS f x dx f x dx g x f x dx ==-=-⎰⎰⎰;3. 如图,由曲线11()y f x =22()y f x =12()()0f x f x ≥≥及直线x a =,x b =()a b <围成图形的面积公式为:1212[()()]()()bb baaaS f x dx f x f x dx f x dx =-=-⎰⎰⎰.4.利用定积分求平面图形面积的步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图像;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; (3)写出定积分表达式; (4)求出平面图形的面积. (二)利用定积分解决物理问题 ①变速直线运动的路程作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间[,]a b 上的定积分,即()baS v t dt =⎰.②变力作功物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W =()baF x dx ⎰.【典型例题】类型一:运用微积分定理求定积分 例1. 运用微积分定理求定积分(1)⎰-π)cos (sin dx x x ; (2)dx xx x ⎰+-212)1(; (3)⎰-+0)(cos πdx e x x .【解析】(1)∵(cos sin )sin cos '--=-x x x x ,∴00(sin cos )(cos sin )2-=--=⎰x x dx x x ππ;(2)∵2321(ln )23'-+=-+x x x x x x, ∴232221115()(ln )ln 2236x x x x dx x x -+=-+=-⎰.(3)∵(sin )cos '+=+xxx e x e ,∴01(cos )(sin )1x x x e dx x e e πππ--+=+=-⎰; 【总结升华】求定积分最常用的方法是微积分基本定理,其关键是找出使得()()F x f x '=的原函数()F x 。
高考(理)一轮复习:3.4定积分与微积分基本定理
1.下列结论正确的打“√”,错误的打“×”. (1)设函数 y=f(x)在区间[a,b]上连续,则 (2)若 f(x)是连续的偶函数,则 的奇函数,则
������ -������ ������ -������
f(x)dx=
������ 0
f(t)dt. (
)
f(x)dx=2
f(x)dx;若 f(x)是连续 ( ) )
������ ������ ������ ������ ������ ������ ������ ������
1dx=b-a; kf(x)dx= k
������ ������
f(x)dx
;
[f1(x)±f2(x)]dx= f(x)dx=
������ ������ f ( x )d x ± f (x)dx; ������ 1 ������ 2 ������ ������ f(x)dx+ ������ f(x)dx(a<c<b). ������
A,我们称 A 是函数 y=f(x)在区间[a,b]上的定积分,记作 即 ������ f(x)dx=A.其中 积分的上限, f(x)
������
������ ������
f(x)dx,
叫作 积分号 叫作被积函数.
,a 叫作积分的下限,b 叫作
-4知识梳理 双基自测
1
2
3
4
5
3.定积分的运算性质 (1) (2) (3) (4)
-5知识梳理 双基自测
1
2
3
4
5
4.微积分基本定理 如果连续函数 f(x)是函数 F(x)的导函数,即 f(x)=F'(x),则有 ������ F(b)-F(a) . f ( x )d x= ������
高中数学高考总复习计划定积分及微积分基本定理习题及详解
定积分与微积分根本定理习题一、选择题1.a=2xdx,b=2e x dx,c=2sinxdx,那么a、b、c的大小关系是()000 A.<<B.<<C.<<a D.<<acb abc cb cab2.由曲线y=x2,y=x3围成的封闭图形面积为()练习、设点P在曲线y=x2上从原点到A(2,4)移动,如果把由直线OP,直线y=x2及直线x=2所围成的面积分别记作1,2.如下列图,当1=2时,点P的坐标是()S S S S3.由三条直线x=0、x=2、y=0和曲线y=x3所围成的图形的面积为() A.4D.64.1-1(sin x+1)dx的值为()A.0B.2C .2+2cos1D.2-2cos15.曲线y=cosx(0≤x≤2π)与直线y=1所围成的图形面积是()A.2πB.3πD.π6.函数F(x)=x t(t-4)dt在[-1,5]上()32A.有最大值0,无最小值B.有最大值0和最小值-332C.有最小值-3,无最大值D.既无最大值也无最小值7.等差数列2+n,函数f(x)=x1{a}的前n项和S=2nt dt,假设f(x)<a,那么x的取值范围是()n n31B.(0,21)C.(-11,)D.(0,11)e e e e8.如下列图,在一个长为π,宽为2的矩形OABC内,曲线y=sinx(0≤x≤π)与x轴围成如下列图的阴影局部,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),那么所投的点落在阴影局部的概率是()x+2-2≤x<09.函数f(x)=π的图象与x轴所围成的图形面积S为()2cosx0≤x≤2B.1 C.410.设函数f(x)=x-[x],其中[x]表示不超过x的最大整数,如[-]=-2,[]=1,[1]=1.又函数x ng(x)=-3,f(x)在区间(0,2)上零点的个数记为m,f(x)与g(x)的图象交点的个数记为n,那么g(x)dx的m值是()54C.-57A.-B.-D.-234611.甲、乙两人进行一项游戏比赛,比赛规那么如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b、c可以相等),假设关于x的方程x2+2bx+c=0有实根,那么甲获胜,否那么乙获胜,那么在一场比赛中甲获胜的概率为()12.正方形四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1) ,曲线y=x2(x≥0)与x轴,直线x=1构成区域M,现将一个质点随机地投入正方形中,那么质点落在区域 M内的概率是( )二、填空题13.函数f(x)=3x2+2x+1,假设1-1f(x)dx=2f(a)成立,那么a=________.14.=∫π0(sinx+cos)dx,那么二项式(a x-1)6的展开式中含x2项的系数是________.a2xx15.抛物线y 2=2与直线y=4-x围成的平面图形的面积为________.x16.抛物线y 2=(>0)与直线x=1围成的封闭图形的面积为4,假设直线l与抛物线相切且平行于直线axa32x-y+6=0,那么l 的方程为______.17.函数f(x)=-x3+ax2+bx(a,b∈R)的图象如下列图,它与x轴在原点处相切,且x轴与函数1图象所围成区域(图中阴影局部)的面积为12,那么a的值为________.三、解答题18.如下列图,在区间[0,1]上给定曲线2,试在此区间内确定t的值,使图中阴影局部的面积1 y=x S+S2最小.122xx2221、[答案]D[解析]a=2xdx=2x|0=2,b=2edx=e|0=e-1>2,c=2sinxdx=-cosx|0=1000-cos2∈(1,2),∴c<a<b.y=x22、[答案]A[解析]由y=x3得交点为(0,0),(1,1).∴=1(23=131411 x-x)dxx-x0=.S3412 0练习;[答案]A[解析]设P(t,t2≤t≤2),那么直线OP:y=tx,∴S=t2t32 )(0(tx-x)dx=6;S=120t8t 34416212,(x -tx)dx=3-2t+6,假设S=S,那么t=3,∴P39.3x423、[答案]A[解析]S=2xdx=40=4.4、[答案]B[解析]1(sinx+1)dx=(-cosx+x)|-11=(-cos1+1)-(-cos(-1)-1)=2.5、[答案]A[解析]2π2π=2π.如右图,S=∫0(1-cosx)dx=(x-sinx)|06、[答案]B[解析]F′(x)=x(x-4),令F′(x)=0,得x1=0,x2=4,7322532∵F(-1)=-3,F(0)=0,F(4)=-3,F(5)=-3.∴最大值为0,最小值为-3.7、[答案]D;[解析]f(x)=x1|x=lnx,a=S-S=2111t dt=lnt1-10=11,由lnx<11得,0<x<e.33218、[答案]A[解析]由图可知阴影局部是曲边图形,考虑用定积分求出其面积.由题意得=πSsinxdx=-cosx|πP=S2=1.0=-(cosπ-cos0)=2,再根据几何概型的算法易知所求概率=πS矩形OABC2π9、[答案]C[解析]面积=∫πf()dx=0-2(x+2)dxπ02cosxd=2+2=4.-2+∫S2x2x10、[答案]A[解析]由题意可得,当0<x<1时,[x]=0,f(x)=x,当1≤x<2时,[x]=1,f(x)=x-1,所以当x∈(0,2)时,函数f(x)有一个零点,由函数f(x)与g(x)的图象可知两个函数有4个交点,n4x x245所以m=1,n=4,那么g(x)dx=-3dx=-61=-2.m111、[答案]A;[解析]方程x2+2bx+c=0有实根的充要条件为=4b2-4c≥0,即b2≥c,1b2db01由题意知,每场比赛中甲获胜的概率为p=1×1=3.12、[答案]C ;[解析]如图,正方形面积213|111 1,区域M的面积为S=1x dx=x=,故所求概率p=.3331232113、[答案]-1或3;[解析]∵1-1f(x)dx=1-1(3x +2x+1)dx=(x+x+x)|-1=4,1-211f(x)dx=2f(a),∴6a+4a+2=4,∴a=-1或.14、[答案]-192;[解析]由得aπ0(sinx+cos)dx=(-cosxπ0=(sinπ=∫+sin)|-2x x22π16的展开式中第r+1项是T =(-1)r r6-r×x3-r,令3-r=cos2)-(sin0-cos0)=2,(2x-x)×C×2r+162得,r=1,故其系数为115(-1)×C6×2=-192.15、[答案]18[解析]由方程组y2=2x 解得两交点(2,2)、(8,-4),选y作为积分变量x=y2、y=4-x A B2x=4-y∴S=y2y2y322-4[(4-y)-]dy=(4y--)|-4=18.22616、[答案]16-8y +1=0[解析]由题意知1x2axdx=3,∴a=1,2221设l:y=2x+b代入y =x中,消去y得,4x+(4b-1)x+b=0,由=0得,b=8,∴l方程为16x-8y+1=0.17、[答案]-1[解析]f′(x)=-3x2+2ax+b,∵f′(0)=0,∴b=0,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).S=-0(32141阴影-x+ax)dx=12a=12,∴a=-1.a2t22318、[解析]由题意得S1=t·t-xdx=3t,2=12d-t 2(1-)=23-t2+1,所以S x x t3t3t=1+2=43-21≤≤1).3t t+(0SSS3t又′(=4t 2-2t=4tt-1,令′(=,得t=1或t=.St)2St)021 1因为当0<t<2时,S′(t)<0;当2<t≤1时,S′(t)>0.所以()在区间,1上单调递减,在区间1t11,1上单调递增.所以,当=时,min=.St222S4。
高中数学高考总复习定积分与微积分基本定理习题及详解
1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f (x )与x=a ,x=b 及x轴围成的曲边梯形面积,在一般情形下.⎰badx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号.在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx )x (f ba⎰表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和.注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于⎰badx x f )(.3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)⎰⎰⎰±=±bababadx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=baba dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a ,b ]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f (x )是偶函数,则⎰⎰=-a aadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4. 微积分基本定理:一般地,若)()()(],[)(),()('a Fb F dx x f b a x f x f x F ba-==⎰上可积,则在且注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据导数定义知:F (x )+C 也是f (x )的原函数,求定积分⎰badx x f )(的关键是求f (x )的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F (x ).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据⎰=π200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积下列结论正确的是( )A .面积为0B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积 题意分析:本题考查定积分的几何意义,注意dx x ⎰π20sin 与y=sinx 及直线x=a ,x=b 和x 轴围成的面积的区别.思路分析:作出函数y=sinx 在区间[0,π2]内的图象及积分的几何意义及函数的对称性可判断. 解:对于(A ):由于直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积为正可判断A 错.对于(B ),(C )根据y=sinx 在[0,π2]内关于()0,π对称知两个答案都是错误的. 根据函数y=sinx 的图象及定积分的几何意义可知:答案(D )是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx 与x 轴、直线x=0,x=π2围成的面积等于⎰π20)(dx x f .例2.利用定积分的几何意义,说明下列等式的合理性 (1)121=⎰xdx(2)⎰=-1241πdx x .题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x ,及y=21x -恒为正时,定积分⎰12xdx表示函数y=2x 图象与x=0,x=1围成的图形的面积,dx x ⎰-121表示函数y=21x -图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x 及y=21x -的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x 的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积∆S =11221=⨯⨯.由于在区间[0,1]内f (x )恒为正,故1210=⎰xdx .(2)由]1,0[,11222∈=+⇒-=x y x x y ,故函数y 21x -=(]1,0[∈x 的图象如图所示,所以函数y 21x -=与直线x=0,x=1围成的图形面积是圆122=+y x 面积的四分之一,又y 21x -=在区间[0,1]上恒为正.⎰=-1241πdx x解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x 及函数y=21x -在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.题意分析:本题考查定积分的几何意义,⎰-+-4|)3||1(|dx x x 的值是函数|3||1|-+-=x x y 的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x -1,x -3的符号,把函数|3||1|-+-=x x y 化为分段函数,再根据定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.解:函数|3||1|-+-=x x y 化为⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y由于函数⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y 在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S 1 函数y=2的图象与直线x=1,x=3围成的面积是S 2 函数y=2x -4的图象与直线x=3,x=4围成的面积是S 3 由图知:S 1=S 3=,31)24(21=⨯+S 2=422=⨯ 由定积分的几何意义知:⎰-+-4|)3||1(|dx x x =10231=++S S S解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分⎰-+-4|)3||1(|dx x x 的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x -1|+|x -3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a ,b ]上f (x )恒为正时,f (x )在区间[a ,b]上定积分值才等于函数图象与直线x=a ,x=b 围成的面积.在画函数图象时注意x 的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.高中数学高考总复习定积分与微积分基本定理习题及详解一、选择题1.(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14C.13D.712(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝⎛⎭⎫43,169B.⎝⎛⎭⎫45,169 C.⎝⎛⎭⎫43,157D.⎝⎛⎭⎫45,1373.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64.(2010·湖南省考试院调研)⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2π B .3π C.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.(2010·吉林质检)函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( ) A.32B .1C .4D.1210.(2010·沈阳二十中)设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题13.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a=________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.。
高考理科数学新课标件定积分与微积分基本定理
定积分的性质
线性性质
对于任意常数$k_1$和$k_2$,有$int_{a}^{b}[k_1f(x) + k_2g(x)]dx = k_1int_{a}^{b}f(x)dx + k_2int_{a}^{b}g(x)dx$。
区间可加性
若$c$是区间$[a,b]$内的一点,则$int_{a}^{b}f(x)dx = int_{a}^{c}f(x)dx + int_{c}^{b}f(x)dx$。
微积分基本定理在解题中的应用
01
计算定积分
02
证明等式
利用微积分基本定理,可以直接计算 出某些函数的定积分结果,而不需要 使用复杂的积分方法和技巧。
通过构造适当的原函数和变上限积分 ,可以利用微积分基本定理证明一些 与定积分相关的等式。
03
解决实际问题
微积分基本定理在实际问题中也有广 泛的应用,例如计算物体的质量、重 心、转动惯量等物理量,以及求解经 济学中的边际效应和弹性等问题。
VS
变量代换法的步骤
首先,根据被积函数的特征,选择合适的 变量代换;其次,将原积分转化为关于新 变量的积分;最后,求出原函数并加上常 数C。
分部积分法
分部积分法的原理
利用两个函数乘积的积分等于其中一个函数与另一个函数的原函数乘积的积分减去另一 个函数与第一个函数的原函数乘积的积分,从而将复杂的积分转化为简单的积分形式。
要点二
定积分的几何意义
定积分在几何上表示由曲线$y=f(x)$,直线$x=a$, $x=b$及$x$轴所围成的曲边梯形的面积。若$f(x) geq 0$ ,则定积分$int_{a}^{b}f(x)dx$等于曲边梯形的面积;若 $f(x) leq 0$,则定积分$int_{a}^{b}f(x)dx$等于曲边梯形 面积的负值。
3.3定积分与微积分基本定理 高三数学总复习讲义Word版含答案
§3.3 定积分与微积分基本定理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).知识拓展1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零. 2.若函数f (x )在闭区间[-a ,a ]上连续,则有(1)若f (x )为偶函数,则ʃa -a f (x )d x =2ʃa0f (x )d x .(2)若f (x )为奇函数,则ʃa -a f (x )d x =0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则ʃb a f (x )d x =ʃb a f (t )d t .( √ )(2)若函数y =f (x )在区间[a ,b ]上连续且恒正,则ʃb a f (x )d x >0.( √ )(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × ) (4)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × )题组二 教材改编 2.[P66A 组T14]ʃe +121x -1d x =________. 答案 1 解析 ʃe +121x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 3.[P55A 组T1] ʃ0-11-x 2d x =________. 答案 π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积,∴ʃ0-11-x 2d x =π4. 4.[P60A 组T6]汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m. 答案132解析 s =ʃ21(3t +2)d t =2213(2)|2t t + =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 题组三 易错自纠5.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8), 图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=24201(2)|4x x -=8-14×24=4,故选D.6.若ʃT 0x 2d x =9,则常数T 的值为________.答案 3解析 ∵ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 7.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________.答案 43解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x=30110||3x x -+=13+1=43.题型一 定积分的计算1.(2018·唐山调研)定积分ʃ1-1(x 2+sin x )d x =______.答案 23解析 ʃ1-1(x 2+sin x )d x =ʃ1-1x 2d x +ʃ1-1sin x d x =2ʃ10x 2d x =2·310|3x =23. 2.ʃ1-1e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +2答案 C解析 ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e xd x=-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C.3.(2017·昆明检测)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34 B.45 C.56 D .不存在答案 C解析 如图,ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=31220111|(2)|32x x x +- =13+⎝⎛⎭⎫4-2-2+12=56. 思维升华 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和. (3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分典例 (1)计算:ʃ313+2x -x 2 d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y=0围成的图形的面积,∴ʃ313+2x -x 2d x =14×π×4=π.(2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y=0围成的图形的面积,又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m =-1.命题点2 求平面图形的面积典例 (2017·青岛月考)由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________. 答案 4-ln 3解析 由xy =1,y =3,可得A ⎝⎛⎭⎫13,3.由xy =1,y =x ,可得B (1,1),由y =x ,y =3,得C (3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1131(3)d x x -⎰+ʃ31(3-x )d x =113(3ln )|x x -+2311(3)|2x x -=(3-1-ln 3)+⎝⎛⎭⎫9-92-3+12=4-ln 3.思维升华 (1)根据定积分的几何意义可计算定积分. (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.跟踪训练 (1)定积分ʃ309-x 2d x 的值为________.答案9π4解析 由定积分的几何意义知,ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积.故ʃ309-x 2d x =π·324=9π4.(2)如图所示,由抛物线y =-x 2+4x -3及其在点A (0,-3)和点B (3,0)处的切线所围成图形的面积为______.答案 94解析 由y =-x 2+4x -3,得y ′=-2x +4.易知抛物线在点A 处的切线斜率k 1=y ′|x =0=4,在点B 处的切线斜率k 2=y ′|x =3=-2.因此,抛物线在点A 处的切线方程为y =4x -3,在点B 处的切线方程为y =-2x +6. 两切线交于点M ⎝⎛⎭⎫32,3.因此,由题图可知所求的图形的面积是 S =33222302[(43)(43)]d [(26)(43)]d x x x x x x x x ---+-+-+--+-⎰⎰33222302d (69)d x x x x x =+-+⎰⎰33323203211|(39)|33x x x x =+-+ =98+98=94.题型三 定积分在物理中的应用典例 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12 s ~6 s 间的运动路程为____ m. 答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得611122()d 2d s t t t x ==⎰⎰v +ʃ312d t +ʃ63⎝⎛⎭⎫13t +1d t =2132611321|2|()|6t t t t +++=494(m).所以物体在12 s ~6 s 间的运动路程是494 m.思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃba F (x )d x .跟踪训练 一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 JC.433 J D .2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x=3211[(5)3x x -=433, ∴F (x )做的功为433 J.1.π220sin d 2xx ⎰等于( ) A .0 B.π4-12 C.π4-14D.π2-1答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰=π2011(sin )|22x x -=π4-12.2.(2018·东莞质检)ʃ1-1(1-x 2+x )d x 等于( ) A .π B.π2 C .π+1 D .π-1答案 B解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =211π1|22x -+=π2.故选B.3.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( ) A .2 B .-2 C .1 D .-1答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1,所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x + ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x=320311011()|()|33x x x x x ----+-=-13-23 =-1,故选D.4.(2018·大连调研)若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .6 答案 A解析 由题意知ʃa 1⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|a 1 =a 2+ln a -1=3+ln 2,解得a =2.5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( )A.43 B.54 C.65 D.76答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x +ʃe 11xd x =3101|3x +ln x |e 1=13+1=43.故选A. 6.(2017·湖南长沙模拟)设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =1答案 A解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin 1.∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos 1.∵sin 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A. 7.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .2 答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x=221201()|()|22x x x x -+-=⎝⎛⎭⎫1-12+⎝⎛⎭⎫222-2-⎝⎛⎭⎫12-1=1. 8.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40⎝ ⎛⎭⎪⎫7-3t +251+t d t =243[725ln(1)]|2t t t -++ =28-24+25ln 5=4+25ln 5.9.π)d 4x x += ________.答案 2解析 由题意得π)d 4x x +=ππ220(sin cos )d (sin cos )|x+x x x x =-⎰=⎝⎛⎭⎫sin π2-cos π2-(sin 0-cos 0)=2. 10.(2018·太原调研)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________. 答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-⎝⎛⎭⎫-sin π3= 3. 11.(2017·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 答案 49解析 封闭图形如图所示,则332220022|0,33a x x a a ==-=⎰解得a =49.12.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.答案 43解析 根据f (x )的图象可设f (x )=a (x +1)·(x -1)(a <0).因为f (x )的图象过(0,1)点,所以-a =1,即a =-1.所以f (x )=-(x +1)(x -1)=1-x 2.所以S =ʃ1-1(1-x 2)d x =2ʃ10(1-x 2)d x =31012()|3x x -=2⎝⎛⎭⎫1-13=43.13.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15答案 A解析 由题意得,所求阴影部分的面积 31231200211)d ()|,333S x x x x ==-=⎰ 故选A.14.(2018·呼和浩特质检)若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案 B解析 方法一 S 1=3211|3x =83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.15.(2017·郑州调研)ʃ1-1(1-x 2+e x -1)d x =______. 答案 π2+e -1e-2 解析 ʃ1-1(1-x 2+e x -1)d x =ʃ1-11-x 2d x +ʃ1-1(e x -1)d x .因为ʃ1-11-x 2d x 表示单位圆的上半部分的面积, 所以ʃ1-11-x 2d x =π2. 而ʃ1-1(e x -1)d x =(e x -x )|1-1=(e 1-1)-(e -1+1)=e -1e-2, 所以ʃ1-1(1-x 2+e x -1)d x =π2+e -1e-2. 16.若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________. 答案 -4解析 因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故ʃ20f (x )d x =ʃ20(x 3-3x 2)d x =4320()|4x x =-4.。
定积分与微积分基本定理高考数学复习最新版
0
0
【解析】 由yy= =xx2得yx==00或yx==11, ∴S=1(x-x2)dx,故选 B.
0
【答案】 B
3.设 f(x)=x22x (( x<x≥ 0)0),则- 1 1f(x)dx 的值是(
)
A.1 x2dx -1
-1
【解析】 ∵(13x3-cos x)′=x2+sin x,
∴1
(x2+sin x)dx=(13x3-cos x)|1-1=23.
-1
【答案】
2 3
π (1)(2013·佛山质检)若∫ 2 0(sin x+acos x)dx=2,则
实数 a 等于( )
A.-1
B.1
C. 3
D.- 3
•第十三节 定积分与微积分基本定理
•1.定积分的概念与性质 •(1)定积分的定义: •如果函数f(x)在区间[a,b]上连续,用分点a =x0<x1<…<xi-1<xi<…<xn=b将区间[a,b]等 分成n个小区间,在每个小区间[xi-1,xi]上任 取一点ξi(i=1,2,…,n),作
•和式 _______________________________
(3)定积分的基本性质
kbf(x)dx
①bkf(x)dx=______a ________.(k 为常数) a
②b[f1(x)±f2(x)]dx=______ab_f1_(_x_)d_x_±___ab_f2_(_x_)_d_x___.
a
c
f(x)dx
③bf(x)dx=____a________+bf(x)dx(其中 a<c<b).
=(x-12x2)|10+(12x2-x)|21=1.
【备战】高考数学 热点题型和提分秘籍 专题16 定积分与微积分基本定理 理(含解析)
专题十六 定积分与微积分基本定理【高频考点解读】1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义. 【热点题型】 题型一 定积分 例1、⎠⎛241x d x 等于( )A .2ln 2B .-2ln 2C .-ln 2D .ln 2 解析:⎠⎛241x d x =ln x | 42=ln 4-ln 2=ln 2.答案:D 【提分秘籍】1.定积分是一个数值(极限值),它只与被积函数以及积分区间有关,而与积分变量无关,即⎠⎛a b f (x )d x =⎠⎛a b f (t )d t =⎠⎛a bf (u )d u .2.设函数f (x )在闭区间[-a ,a ]上连续,则由定积分的几何意义和奇偶函数的对称性可知有以下两个结论:(1)若f (x )是偶函数,则f (x )d x =2⎠⎛0af (x )d x ;(2)若f (x )是奇函数,则f (x )d x =0.【举一反三】由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3【热点题型】题型二 微积分基本定理 例2、⎠⎛01(e x+2x )d x 等于( )A .1B .e -1C .eD .e +1解析:⎠⎛01(e x+2x )d x =(e x+x 2)⎪⎪⎪10=(e 1+1)-e 0=e.答案:C 【提分秘籍】利用微积分基本定理(即牛顿—莱布尼兹公式)求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找被积函数f (x )的原函数F (x ),利用求导运算与求原函数运算互为逆运算的关系,运用基本初等函数求导公式和导数四则运算法则从反方向上求出F (x ).【举一反三】设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( )A.56B.12C.23D.16【热点题型】题型三 利用定积分求平面图形的面积例3、如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23B.13C.12 D 14【提分秘籍】 利用定积分求曲边梯形面积的步骤 (1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案. 【举一反三】不等式x 2-2x <0表示的平面区域与抛物线y 2=4x 围成的封闭区域的面积是________.【热点题型】题型四 定积分与概率计算交汇命题例4、若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,不等式y ≥x 2所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.【答案】118【提分秘籍】利用定积分求出数列通项后,借助于数列裂项求和的方法可求和. 【举一反三】已知等比数列{a n },且a 4+a 8=⎠⎛024-x 2d x ,则a 6(a 2+2a 6+a 10)的值为( )A .π2B .4C .πD .-9π解析:∵a 4+a 8=π,∴a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2=π2,故选A.答案:A 【高考风向标】1.(2014·福建卷) 如图14,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.图142.(2014·湖北卷) 若函数f (x ),g (x )满足⎠⎛-11f(x)g(x)d x =0,则称f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数:①f(x)=sin 12x ,g(x)=cos 12x ;②f(x)=x +1,g(x)=x -1;③f(x)=x ,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是( )A .0B .1C .2D .33.(2014·湖南卷) 已知函数f (x )=sin(x -φ),且∫2π30f(x)d x =0,则函数f(x)的图像的一条对称轴是( ) A .x =5π6 B .x =7π12 C .x =π3D .x =π64.(2014·江西卷) 若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C .13D .15.(2014·山东卷) 直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A. 22 B. 42 C. 2 D. 46.(2014·陕西卷) 定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1【答案】C 【解析】⎠⎛01(2x +e x)d x =(x 2+e x )10=(12+e 1)-(02+e 0)=e .7.(2013·北京卷) 直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83 D.16 23【答案】C 【解析】由题意得直线l 的方程是y =1,代入抛物线方程得x =±2,所以直线l 与抛物线C 所围成图形的面积S =4-2⎠⎛02x24dx =4-2⎝⎛⎭⎪⎫x 312⎪⎪⎪ 20)=83. 8.(2013·福建卷) 当x∈R,|x|<1时,有如下表达式:1+x +x 2+…+x n+…=11-x.两边同时积分得:∫1201dx +∫120xdx +∫120x 2dx +…+∫120x n dx +…=∫12011-x dx ,从而得到如下等式:1×12+12×⎝ ⎛⎭⎪⎫122+13×⎝ ⎛⎭⎪⎫123+…+1n +1×⎝ ⎛⎭⎪⎫12n +1+…=ln 2.请根据以上材料所蕴含的数学思想方法,计算:C 0n×12+12C 1n ×122+13C 2n ×123+…+1n +1C n n ×⎝ ⎛⎭⎪⎫12n +1=__________.9.(2013·湖北卷) 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 210.(2013·湖南卷) 若⎠⎛0T x 2dx =9,则常数T 的值为________.【答案】3 【解析】由积分运算公式可得⎠⎛0T x 2dx =⎪⎪⎪13x 3T 0=13T 3=9,解得T =3. 11.(2013·江西卷) 若S 1=⎠⎛12x 2dx ,S 2=⎠⎛121x dx ,S 3=⎠⎛12e xdx ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1【随堂巩固】1.设函数f (x )=ax 2+b (a ≠0),若∫30f (x )d x =3f (x 0),则x 0=( ) A .±1 B. 2 C .± 3 D .22.已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .43.函数f (x )=⎩⎪⎨⎪⎧x +-2≤x ,2cos x x ≤π2的图象与x 轴所围成的封闭图形的面积为( )A.32 B .1 C .4D.12解析:由该分段函数的图象可知S =∫0-2(x +2)d x +∫π202cos x d x =⎝ ⎛⎭⎪⎫12x 2+2x |0-2+2sin x |π20=2+2=4. 答案:C4.已知a ∈⎣⎢⎡⎦⎥⎤0,π2,则当∫a0(cos x -sin x )d x 取最大值时,a 的值为( )A.π6B.π4 C.π3D.π25.由曲线y =x 2和直线x =0,x =1,y =t 2,t ∈(0,1)所围成的图形(如图阴影部分)的面积的最小值为( )A.23B.13 C.12 D.146.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈ [0,1]1x,x ,e](e 为自然对数的底数),则∫e0f (x )d x 的值为________.7.设a >0.若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.8.若f (x )是一次函数,且∫10f (x )d x =5,∫10xf (x )d x =176,那么∫21f x xd x 的值是________.9.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2, (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值.【解析】(1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧ c =2-a b =0, ∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x =[13ax 3+(2-a )x ]|10=2-23a =-2,∴a =6, 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1].∴当x =0时,f (x )min =-4;当x =±1时,f (x )max =2.10.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.11.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.(1)求y=f(x)的表达式;(2)求y=f(x)的图像与两坐标轴所围成图形的面积.(3)若直线x=-t(0<t<1),把y=f(x)的图像与两坐标轴所围成图形的面积二等分,求t的值.【解析】(1)设f(x)=ax2+bx+c,则f′(x)=2ax+b,又已知f′(x)=2x+2,∴a=1,b=2,∴f(x)=x2+2x+c.又方程f(x)=0有两个相等的实根,∴判别式Δ=4-4c=0,即c=1.故f(x)=x2+2x+1.。