高中数学 (1.1 指数与指数幂的运算 第2课时)示范教案 新人教A版必修1

合集下载

《指数与指数幂的运算》教学设计【高中数学人教A版必修1(新课标)】

《指数与指数幂的运算》教学设计【高中数学人教A版必修1(新课标)】

《指数与指数幂的运算》教学设计从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.1.掌握n次方根及根式的概念,正确运用根式的运算性质进行根式的运算;2.了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化;3.理解有理数指数幂和无理数指数幂的含义及其运算性质.【教学重点】根式与分数指数幂之间的互相转化.【教学难点】根式运算与有理数指数幂的运算.引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础.(一)创设情景,揭示课题1.以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性.2.由实例引入,了解指数概念提出的背景,体会引入指数的必要性;(1)据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%.那么在2010年,我国的GDP可望为2000年的多少倍?(2)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的系573012tp⎛⎫= ⎪⎝⎭,那么当生物体死亡了1万年后,它体内碳14的含量为多少?(3)对1.07310,10000573012p⎛⎫= ⎪⎝⎭这两个数的意义如何?怎样运算?3.初中根式的概念思考1:4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个?思考2:-27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个?思考3:一般地,实常数a的平方根、立方根是什么概念?思考4:如果x4=a,x5=a,x6=a,参照上面的说法,这里的x分别叫什么名称?思考5:推广到一般情形,a的n次方根是一个什么概念?试给出其定义.如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根.思考1:-8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是什么数?怎样表示?思考2:设a为实常数,则关于x的方程x3=a,x5=a分别有解吗?有几个解?思考3:一般地,当n为奇数时,实数a的n次方根存在吗?有几个?思考4:设a为实常数,则关于x的方程x4=a,x6=a分别有解吗?有几个解?思考5:一般地,当n为偶数时,实数a的n次方根存在吗?有几个?思考6:,1)n N n∈>叫做根式,其中n叫做根指数,a叫做被开方数.那么,a的n次方根用根式怎么分类表示?当n是奇数时,a的n当n是偶数时,若a>0,则a的n次方根为若a=0,则a的n次方根为0;若a<0,则a的n次方根不存在.思考1:354分别等于什么?一般地n等于什么?思考2n 等于什么?当n a =; 当n ||a =. 例1.求下列各式的值(1 (2; (3(4 (5; (6 例2.化简下列各式(1(2)2 4.复习初中整数指数幂的运算性质;nn n mn n m n m n m b a ab a a a a a ===⋅+)()((二)探索新知1.指数与指数幂的运算 (1)分数指数幂思考1:设a >0,分别等于什么?思考2:观察上述结论,你能总结出什么规律?思考3思考4n ma =(a >0,m ,n ∈N 且n >1),那么238表示一个什么数?21523,4分别表示什么根式? 思考5:你认为如何规定n ma-(a >0,m ,n ∈N ,且n >1)的含义?思考6:怎样理解零的分数指数幂的意义? 思考7:233352(2),(2),(2)---都有意义吗?当0a <时,*(,,1)n ma m n N n ∈>何时无意义? 正数的分数指数幂的意义.规定:)1,,,0(*>∈>=nNnmaaa n mnm*10,,,1)mnmna a m n N na-==>∈>0的正分数指数幂等于0,0的负分数指数幂没有意义.指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.2.有理指数幂的运算性质(1)(0,,)r s r sa a a a r s Q+⋅=>∈;(2)()(0,,)r s rsa a a r s Q=>∈;(3)()(0,0,)r r rab a b a b r Q=>>∈.引导学生解决本课开头实例问题.3.无理指数幂思考1=1.414 21356…,那么思考2:观察上面两个图表,思考3:有理指数幂的运算性质适应于无理数指数幂吗?指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.思考:(教材P 63练习4)巩固练习思考:(教材P 62思考题) (三)例题讲解例3.求下列各式的值(1)2327;(2)1225-;(3)51()2-;(4)3416()81-例4.化简下列各式的值211511336622(1)(2)(6)(3)(,0)a b a b a b a b -÷-> 31884(2)()(,0)m n m n ->(3)2(4)0)a >说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. (四)课堂练习教材对应习题. (五)课堂小结本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. (六) 布置作业课本习题略.。

人教A版高中数学必修一新课标优秀教学案示范教案指数与指数幂的运算第课时

人教A版高中数学必修一新课标优秀教学案示范教案指数与指数幂的运算第课时

第二章 基本初等函数(Ⅰ)本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点),通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点);知道指数函数y=a x 与对数函数y=log a x 互为反函数(a >0,a≠1),初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.本章教学时间约需14课时,具体分配如下(仅供参考)2.1.1 指数与指数幂的运算整体设计教学分析我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n 次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.推进新课新知探究提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.(4)用一个式子表达是,若x n=a,则x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零. (3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:①当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用n a表示,如果是负数,表示,正的n次方根与负的n次方根合并写成±n a(a>0).负的n次方根用n a②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号n a表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-,而-27的4次方根不存在等.其中527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式.根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n n a =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 因此我们得到n 次方根的运算性质:①(n a )n =a.先开方,再乘方(同次),结果为被开方数.②n 为奇数,n n a =a.先奇次乘方,再开方(同次),结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方(同次),结果为被开方数的绝对值. 应用示例 思路1例1求下列各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出下列各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a-3, (3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a 点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1下列各式中正确的是( ) (1)44a =a;(2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,本题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故本题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故本题错. (3)a 0=1是有条件的,即a≠0,故本题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故本题正确.所以答案选(4).点评:本题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1.223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 若12a -a 2+=a-1,求a 的取值范围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的是( )A.正数的n 次方根是一个正数B.负数的n 次方根是一个负数C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *).答案:C2.化简下列各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.3.计算407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+∙-++∙+ =22)25()25(-++ =5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5. ②n na =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a 当n 为奇数时,a ∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a =a.例如443=3, 40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即(n a na )n =a (n >1,n ∈N )是恒等式,n n a =a (n >1,n ∈N )是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.1.如果x n =a,那么x 叫a 的n 次方根,其中n >1且n ∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(na )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简下列各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a ∙=32||b a ∙.2.若5<a<8,则式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23.答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.(设计者:路致芳)。

高中数学 2.1.1指数与指数幂的运算(2)教案 新人教版必修1

高中数学 2.1.1指数与指数幂的运算(2)教案 新人教版必修1

2.1.1(2)指数与指数幂的运算(教学设计)内容:分数指数幂一、教学目标(一)知识目标(1)理解根式的概念及其性质,能根据性质进行简单的根式计算。

(2)理解掌握分数指数幂的意义并能进行基本的运算。

(二)能力目标(1)学生能进一步认清各种运算间的联系,提高归纳,概括的能力.(2)让学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.(3)训练学生思维的灵活性(三)德育目标(1)激发学生自主学习的兴趣(2)养成良好的学习习惯教学重点:次方根的概念及其取值规律。

教学难点:分数指数幂的意义及其运算根据的研究。

教学过程:一、复习回顾,新课引入:指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展。

引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义。

.然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出及,同时追问这里的由来。

二、师生互动,新课讲解: 1.分数指数幂 看下面的例子: 当0 a 时,(1)2552510)(a a a ==,又5102=,所以510510a a =;(2)3443412)(a a a==,又4123=,所以412412a a =.从上面的例子,我们看到,当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式. 那么,当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式呢?根据n 次方根的定义,规定正数的正分数指数幂的意义是:n m nm a a=(0>a ,1*,,>∈n N n m ).0的正分数指数幂等于0, 0的负分数指数幂无意义.由于分数有既约分数和非既约分数之分,因此当0<a 时,应当遵循原来的运算顺序,通常不写成分数指数幂形式.例如:3273-=-,而3)27(62=-.规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于分数指数幂即有理数指数幂同样适用. 联系并指出整数指数幂的运算性质对有理指数幂仍然适用 (1)a r a s =a r+s(a>0,r,s ∈Q) (2)(a r )s =a rs(a>0,r,s ∈Q) (3)(ab)r =a r b r(a>0,b>0, r,∈Q)3.分数指数幂与根式的表示方法之间关系。

人教A版《必修1》“2.1.1指数与指数幂运算(第2课时)”导学案

人教A版《必修1》“2.1.1指数与指数幂运算(第2课时)”导学案

高一数学《必修 1》导教学设计指数与指数幂的运算(二)阅读课本 P的第10行∽ P后再做教学设计:【使用说明及学法指导】【课前导学】1、( 1)正数的分数指数幂的意义为:;( 2)若,,则=________ ,÷=________ ,=_____ ,=________ 。

2、无理数指数幂是一个确定的_______,有理数指数幂的运算性质同样______________无理数指数幂。

【预习自测】1、求值 :(1);(2);(3);(4).2、用分数指数幂的形式表示以下各式(其中a>0):(1);(2);(3).3、已知,则和分别是的近似值和近似值.【课中导学】第一独立思虑研究,尔后合作交流显现研究一:化简(式中字母都是正数): (1) () ;(2)( 2)(— 6)÷ (3).变式:( 1);( 2).研究二:计算以下各式的值:(1);( 2).变式:计算以下各式:(1);(2)小结:运算结果不强求一致用哪一种形式表示,但不能够同时既含根号又含分数指数,也不能够既含分母,又含有负指数。

【总结提升】学完本节课,你在知识、方法等方面有什么收获与感觉?请写下来1.实数指数幂的运算性质:( 1);(2);(3).2.【课后作业】1、计算以下各式(分别写出运算过程和结果):3 / 2(1)?÷=_____________=______ ;( 2)== ;(3)?÷?=____________=________ ;( 4)==.2、化简(式中字母都是正数)(1);( 2);(3)3÷(—2) ×(4). 3、4、已知+=3,求以下各式的值:(1)+;(2)+;(3).。

高中数学2.1.1指数与指数幂的运算教案新人教A版必修1

高中数学2.1.1指数与指数幂的运算教案新人教A版必修1

数,负数没有 n 次方根。此时正数 a 的 n 次方根可表示为: n a (a 0)
其中 n a 表示 a 的正的 n 次方根, n a 表示 a 的负的 n 次方根。
例 3.根据 n 次方根的概念,分别求出 0 的 3 次方根, 0 的 4 次方根。 解:因为不论 n 为奇数,还是偶数,都有 0n=0,所以 0 的 3 次方根, 0 的 4 次方根均为 0。
当 n 为奇数时,由 n 次方根定义得: a n a n
当 n 为偶数时,由 n 次方根定义得: a n an
则 |a | | n an | n an
综上所述: (n a) n
a, n为奇数 | a |, n为偶数
注意:性质②有一定变化,大家应重点掌握。 (III )例题讲解 例 1.求下列各式的值:
am an
am
n
;又因为
( a )n 可看作 a m a n ,所以
b
(a)n b
an bn
可以 归入性质
( ab) n
an bn (n ∈ Z) ) , 这是为下面学习分数指数幂的概念和性
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
质做准备。为了学习分数指数幂,先要学习
n 次根式( n N * )的概念。
(2)填空( 3),( 4)复习了平方根、立方根这两个概念。如:
22=4 ,( -2 )2=4
2
, -2 叫 4 的平方根
23=8
2 叫 8 的立方根;
(-2 ) 3=-8 -2 叫-8 的立方根
25=32
2 叫 32 的 5 次方根

高中数学 2.1.1指数与指数幂的运算(第2课时)课件 新人教A版必修1

高中数学 2.1.1指数与指数幂的运算(第2课时)课件 新人教A版必修1

完整版ppt
12
【解析】
完整版ppt
13
(2)已知a2x= 2+1,求aa3xx++aa--3xx.
【解析】 原式=ax+a-xax+a2xa+-xa-2x-1 = 2+1+ 21+1-1=2 2-1.
完整版ppt
14
探究 对“条件求值”问题一定要求弄清已知与未知的联 系,然后采取“整体代换”或“求值后代换”两种方法求值, 要注意正确地变形,像平方、立方等以及一些公式的应用问 题,还要注意开方时的取值符号问题.
第二章 基本初等函数(Ⅰ)
完整版ppt
1
2.1 指 数 函 数
完整版ppt
2
2.1.1 指数与指数幂的运算(第2课时)
完整版ppt
3
课时学案 课时作业
完整版ppt
4
课时学案
完整版ppt
5
题型一 分数指数幂的运算 例1 计算下列各式.
【答案】 (1)100 (2)-1697-459090 5
完整版ppt
15
思考题3
已知a+a-1=5,求a2+a-2,a
1 2
+a-
1 2
,a
1 2
-a-
1 2
.
【答案】 a2+a-2=(a+a-1)2-2=23.
完整版ppt
16
课后巩固
完整版ppt
17
1.(2
1 2
×3
1 3
)6等于(
Hale Waihona Puke A.8C.17) B.9 D.72
答案 D
完整版ppt
18
2.若a>0且b>0,则(a6b-3)

2 3
等于(
)

高中数学新人教版A版精品教案《2.1.1 指数与指数幂的运算》

高中数学新人教版A版精品教案《2.1.1 指数与指数幂的运算》

2.1.1 指数与指数幂的运算一、教材分析及学情分析:本节是高中数学新人教版必修1的第二章指数函数的内容。

在第一章学完函数概念和基本性质后第二章学习具体的指数函数模型从中学会研究函数的基本方法。

首先需要将指数范围从整数推广到实数。

为指数函数定义域好知识铺垫。

二、三维目标1.知识与技能(1)理解n次方根与根式的概念;(2)理解有理数指数幂的含义,正确运用根式运算性质化简、求值;(3)会根式与分数指数幂的互化。

2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出次方根的概念,进而学习根式的性质引导学生反复理解正分数指数幂的意义。

它不表示相同因式的乘积,而是根式的一种新的写法。

通过两者互化,巩固。

加深对概念的理解。

3.情感、态度与价值观(1)归纳的思想,(2)分类的思想(3)推广的思想(4)逼近的思想三、教学重点(1)根式概念的理解;(2)分数指数幂的意义四、教学难点(1)根式概念的理解(2)分数指数幂与根式的互化。

五、教学策略(发现教学法)1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律2在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内由此让学生体会发现规律,并由特殊推广到一般的研究方法六、教学过程:1由引例发现分数指数幂的存在,从而激发学生探究新知的欲望。

2由二次方根和三次方根的概念推广到n次方根的概念。

3观察归纳得到根式与分数指数幂的互化理解分数指数幂的意义。

4了解用有理数指数幂逼近无理数指数幂得到无理数指数幂的近似值。

5将指数整数推广到实数。

七、小结八、作业。

人教版高中数学必修1-2.1《指数与指数幂的运算(第2课时)》教学设计

人教版高中数学必修1-2.1《指数与指数幂的运算(第2课时)》教学设计

2.1.1指数与指数幂的运算(第二课时)(胡文娟)一、教学目标(一)核心素养通过指数运算符号的使用与运算法则的总结,培育学生数学抽象、数学运算、逻辑推理的核心素养,为指数函数学习打下坚实基础.(二)学习目标1.理解有理数指数幂的含义及其运算性质.2.运用有理数指数幂运算性质进行计算.(三)学习重点1.有理数指数幂的运算性质.2.运用有理数指数幂的性质进行计算.(四)学习难点有理数指数幂的运算性质及其应用二、教学设计(一)课前设计1.预习任务(1)求下列各式的值:①0232)2017(2)8(--⋅--;②21)62581(- 详解:①原式014164121)8(3232=-⋅=-⋅-=; ②原式925)53()53(2214==⎥⎦⎤⎢⎣⎡=--.(2)计算下列各式. ①=⋅2222 ,=⋅212122 ;②=22)2( ,=221)2( ;③=⨯2)32( ,=⨯21)32( ;观察上面的计算结果,你能得出什么结论?结论: .详解: ①16222242222===⋅+,222221212121==⋅+; ②1622)2(42222===⨯,22)2(221221==⨯; ③3632)32(222=⨯=⨯,632)32(212121=⨯=⨯.结论:整数指数幂的运算性质对于有理数指数幂也适用.2.预习自测 (1)对于0>a ,Q ,∈s r ,以下运算中正确的是( )A .rs s r a a a =⋅B .s r s r a a +=)(C .r r r b a ba -=)( D .s r s r ab b a +=)( 【知识点】有理数指数幂的运算性质.【数学思想】【解题过程】s r s r a a a +=⋅,A 选项错;rs s r a a =)(,B 选项错;由有理数指数幂的运算性质得D 选项不成立.【思路点拨】正确识记并掌握有理数指数幂的运算性质.【答案】C .(2)下列各式正确的是( )A .y x y x 3223=B .)0()(2<=-x x xC .x x x =⋅52D .35332x x x =⋅ 【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质.【数学思想】32x y = A (0)x x =-< B 59x == D 错.【思路点拨】根据根式与分数指数幂的互化进行判断.【答案】C .。

人教新课标版数学高一A版必修1 指数与指数幂的运算 教案

人教新课标版数学高一A版必修1  指数与指数幂的运算 教案

必修一2.1.1 指数与指数幂的运算【教学目标】1.知识与技能:(1)通过与初中所学的知识进行类比,理解根式的意义,掌握根式的性质;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情感态度价值观:(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.【重点难点】1.教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质.2.教学难点:分数指数幂及根式概念的理解.【教学策略与方法】1.教学方法:启发讲授式与问题探究式.2.教具准备:多媒体【教学过程】一般地,如果ax n=,那么x叫做a的n次方根,其中n>1,且n∈N﹡.2、n次方根的性质思考:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?1.正数的奇次方根是一个正数;负数的奇次方根是一个负数;0的奇次方根是0.2.正数的偶次方根有两个,且互为相反数;负数没有偶次方根;0的偶次方根是0.0的任何次方根都是0,记作=0.思考:分别等于什么?3、根式的运算性质结论:na开奇次方根,则有aan n=.结论:na开偶次方根,则有aan n=.例求下列各式的值:学生:聆听并思考老师提出的问题教师:提出问题学生:独立思考并积极回答问题总结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.教师:提出问题学生:独立思考并积极回答问题师生共同归纳总结:根据n次方根的意义,可得.教师:举出实际例子学生:思考问题并解决问题在教师的引导下,师生共同讨论并归纳得出结论.析与引导,既能帮助学生复习以前已学知识,而且能够培养学生运用知识的能力.通过具体例题,让学生自主归纳总结根式的运算性质,让学生亲身经历感受知识形成的过程.当n为奇数时,nx a(a R)=∈当n为偶数时,0nx a(a)=±≥练习:1.判断下列式子中正确的是2.求下列各式的值二、指数与指数幂的运算思考:整数指数幂是如何定义的?有何规定?整数指数幂有那些运算性质?(m,n ∈Z)1、正数的正分数指数幂的意义:2、正数的负分数指数幂的意义:3、规定0的正分数指数幂为0,0的负分数在教师的引导下,师生共同讨论并归纳得出结论:根式化简或求值的注意点解决根式的化简或求值问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式的性质进行化简或求值.教师:提出问题学生:思考问题并解决问题教师:讲解学生:认真聆听并思考问题通过练习帮助学生进一步理解根式化简和根式的性质的应用,巩固所学的知识.通过所学初中知识进行类比,让学生亲身经历知识的形成过程,有利于学生对知识的掌握.指数幂没有意义.练习:1、用根式表示下列各式:(a>0)2、用分数指数幂表示下列各式:4.有理指数幂的运算性质指数的概念从整数指数推广到了有理数指数,整数指数幂的运算性质对于有理指数幂都适用.练一练:1、计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b-÷-(2)31884()m n-解:(1)原式=211115326236[2(6)(3)]a b+-+-⨯-÷-=04ab=4a(2)原式=318884()()m n-=23m n-例:利用分数指数幂的形式表示下列各式(其中a >0).教师:提出问题学生:思考问题并解决问题教师:通过ppt演示练习题学生:独立完成习题并给出规范的解答通过巩固练习进一步的加深对分数指数幂的理解与认识.通过例题的详细讲解,帮助学例2.计算下列各式(1)34(25125)25-÷(2)232(.aaa a>0)解:(1)原式=111324(25125)25-÷=231322(55)5-÷=2131322255---=1655-= 655-(2)原式=12522652362132aa a aa a--===⋅练习:1、计算下列各式(式中字母都是正数).;2.计算下列各式(式中字母都是正数).教师:讲解学生:聆听并认真思考教师:通过ppt演示练习题学生:自己动手解决问题生能够在实际问题中灵活的运用分数指数幂.环节三:课堂小结(1)理解根式的意义和根式的性质;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;学生回顾,总结. 引导学生对所学的知识进行小结,由利于学生对已有的知识结构进行编码处理,加强理解记忆,引导学生对学习过程进行反思,为在今后的学习中,进行有效。

高中数学 2.1.2指数与指数幂的运算教案 新人教A版必修1

高中数学 2.1.2指数与指数幂的运算教案 新人教A版必修1

课题:指数与指数幂的运算(2)课时:002课 型:新授课 教学目标:使学生正确理解分数指数幂的概念,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.无理数指数幂的意义. 教学过程:一、复习准备:1. 提问:什么叫根式? →根式运算性质:()n n a =?、n n a =?、npmp a =?2. 计算下列各式的值:22()b - ;33(5)-;243,510a ,397 二、讲授新课:1. 教学分数指数幂概念及运算性质: ① 引例:a >0时,1051025255()aa a a === → 312?a =; 32333232)(a a a == →?a =.① 定义分数指数幂:规定*(0,,,1)m nmna a a m n N n =>∈>;*11(0,,,1)m nm nmnaa m n N n a a-==>∈>③ 练习:A.将下列根式写成分数指数幂形式:n m a (0,,1)a m n N n *>∈>;253;345 B. 求值 2327; 255; 436-; 52a -.④ 讨论:0的正分数指数幂? 0的负分数指数幂?⑤ 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质:0,0,,a b r s Q >>∈r a ·s r r a a +=; rs s r a a =)(; s r r a a ab =)(.2. 教学例题:(1)、(P 51,例2)解:① 2223323338(2)224⨯====② 1112()21222125(5)555--⨯--====③ 5151(5)1()(2)2322----⨯-=== ④334()344162227()()()81338-⨯--===(2)、(P 51,例3)用分数指数幂的形式表或下列各式(a >0) 解:117333222.a a a a aa +=⋅==22823222333a a a a a a +⋅⋅⋅==31442133332()a a a a a a a =⋅===3、无理指数幂的教学23的结果?→定义:无理指数幂.(结合教材P 58利用逼近的思想理解无理指数幂意义)无理数指数幂),0(是无理数αα>a a 是一个确定的实数.实数指数幂的运算性质? 三、巩固练习:1、练习:书P54 1、2、3 题.2、求值:2327; 4316-; 33()5-; 2325()49-3、化简:211511336622(3)(8)(6)a b a b a b -÷-;311684()m n4. 计算:122121(2)()248n n n ++-⋅的结果5. 若13107310333,384,[()]n a a a a a -==⋅求的值四. 课堂小结:1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.五、布置作业:书P59 2、4题.六、课后记:精美句子1、善思则能“从无字句处读书”。

高中数学 2.1.1指数与指数幂的运算(二)教案 新人教A版必修1

高中数学 2.1.1指数与指数幂的运算(二)教案 新人教A版必修1

高中数学 2.1.1指数与指数幂的运算(二)教案新人教A版必修1§2.1.1 指数(分数指数幂)第二课时提问:1.习初中时的整数指数幂,运算性质? 什么叫实数? 有理数,无理数统称实数.2.观察以下式子,并总结出规律:a >0小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式). 根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如: 即:*(0,,1)m n m n a a a n N n =>∈>为此,我们规定正数的分数指数幂的意义为: 正数的定负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)mn mn a a m n N a -=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新思考:32的含义是什么? 由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即: 3.例题(1).(P 60,例2)求值解:① 2223323338(2)224⨯====(2).(P 60,例3)用分数指数幂的形式表或下列各式(a >0)解:117333222.a a a a a a +=⋅==分析:先把根式化为分数指数幂,再由运算性质来运算.课堂练习:P 63练习 第 1,2,3,4题补充练习:1. 计算:122121(2)()248n n n ++-⋅的结果 2. 若13107310333,384,[()]n a a a a a -==⋅求的值 小结:1.分数指数是根式的另一种写法.2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.作业:P69习题 2.1 第2题。

人教新课标版数学高一-必修一 指数与指数幂的运算1(第2课时)

人教新课标版数学高一-必修一 指数与指数幂的运算1(第2课时)

数学人教A必修1第二章2.1.1 指数与指数幂的运算第2课时1.理解分数指数幂的含义,掌握根式与分数指数幂的互化.2.掌握指数幂的运算性质,并能对代数式进行化简或求值.1.分数指数幂(1)意义:mna=______,mna-=______=______,其中a>0,m,n N*,n>1.(2)0的正分数指数幂等于______,0的负分数指数幂__________.(3)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了__________指数.【做一做1-1】253=().A.53 B.35 C.153 D.532【做一做1-2】455-=().A.455 B.1455C.554 D.15542.有理数指数幂的运算性质(1)a r a s=______(a>0,r,s Q);(2)(a r)s=______(a>0,r,s Q);(3)(ab)r=______(a>0,b>0,r Q).三条运算性质的文字叙述:(1)同底数幂相乘,底数不变,指数相加;(2)幂的乘方,底数不变,指数相乘;(3)积的乘方等于乘方的积.【做一做2-1】 已知m >0,则1233m m ⋅=( ).A .mB .13mC .1D .29m 【做一做2-2】 已知x >0,y >0,化简232137()x y-=( ).A .xy B.x 14y9 C .216349x y - D .233721x y -3.无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的______.有理数指数幂的运算性质同样适用于无理数指数幂.在引入分数指数幂的概念后,指数概念就实现了由整数指数幂向有理数指数幂的扩展;在引入无理数指数幂的概念后,指数概念就实现了由有理数指数幂向实数指数幂的扩展.【做一做3-1】 ( ).A .10B .25C .D .25【做一做3-2】11⋅=( ).A. 3 B .2 3 C .1 D .3答案:1.(1)na m1m na1n a m(2)0 没有意义 (3)有理数【做一做1-1】 D 【做一做1-2】 D 2.(1)a r +s (2)a rs (3)a r b r 【做一做2-1】 A【做一做2-2】 B 原式=23232121213737()()x y xy-⨯-=⨯21=x 14y -9=x 14y 9. 3.实数【做一做3-1】 B 原式=52=25.【做一做3-2】 D 原式=1123==.24a 与12a 一定相等吗剖析:当a =-4时,221112444444(4)[(4)]16(2)2a =-=-===,而12a =-4无意义,所以2142a a ≠.其原因是指数幂的运算性质中(a r )s=a rs成立的条件是a >0,r ,s R ,但是24a与12a 中a 的取值范围分别是R 和[0,+),所以24a 与12a 不一定相等.因此,在应用指数幂的运算性质时,要注意其前提条件,即a >0,b >0.题型一 根式化为指数式【例1】 将下列根式化为分数指数幂的形式. (1)1a 1a (a >0); (2)13x (5x 2)2; (3)23243(0)b b --⎛⎫⎪> ⎪⎝⎭. 反思:解此类问题应熟练应用na m=m na ,1n a m=m na-(a >0,m ,n N *,且n >1),当所求根式含有多重根号时,要由里向外用分数指数幂写出,然后用性质进行化简.题型二 分数指数幂的运算【例2】 (1)计算:141030.7533270.064[(2)]160.018---⎛⎫--+-++- ⎪⎝⎭; (2)933337132aa a a --⋅a >0).反思:在进行幂和根式的化简时,一般要先将根式化成幂的形式,并化小数指数幂为分数指数幂,尽可能地统一成分数指数幂形式,再利用幂的运算性质进行化简、求值和计算.题型三 根据条件,求代数式的值 【例3】 已知1122a a-+=3,求a +a -1,a 2+a-2的值.分析:观察到1122a a-+=1,对已知等式两边平方即可求解.反思:根据条件求值是代数式求值中的常见题型,一般要结合已知条件先化简再求值,另外要特别注意条件的应用,如条件中的隐含条件,整体代入等.本题若通过1122a a -+=3先解出a 再代入求值,则非常复杂.题型四 易混易错题易错点 忽略1na 有意义的条件导致计算出错 【例4】 化简:11222(1)[(1)()]a a a ----.答案:【例1】 解:(1)33441a a -⎛⎫=== ⎪⎝⎭.(2)3591353511()x x x-=====.(3)原式=2221211()3334394[()]bbb ---⨯⨯-==.【例2】 解:(1)原式=133(0.4)--1+(-2)-4+314242(2)(0.1)-+=0.4-1-1+116+18+0.1=14380.(2)原式=19131711393713()()323223236666[][]aaaaa⨯⨯-⨯-⨯-+-⋅÷⋅==a 0=1.【例3】 解:∵1122a a-+=3,∴11222()a a -+=9.∴a +2+a -1=9,a +a -1=7. ∴(a +a -1)2=49,即a 2+2+a -2=49. ∴a 2+a -2=47.【例4】 错解:(1-a ) 11222[(1)()]a a --- =1112222(1)(1)()a a a -⨯⨯---=(1-a )(a -1)-114()a -=14()a --.错因分析:错解中忽略了题中12()a-有意义的条件,若12()a-有意义,则-a≥0,故a≤0,这样122 [(1)]a--=(1-a)-1.正解:由12()a-有意义可知-a≥0,故a≤0,所以1112222(1)[(1)][()]a a a----=1112222(1)[(1)][()]a a a----=(1-a)(1-a)-11144 ()() a a -=-.1化简2115113366221()(3)3a b a b a b⎛⎫-÷ ⎪⎝⎭的结果是().A.6a B.-a C.-9a D.9a2 243342()a b a b-a>0,b>0)=__________.3计算1323144--⎛⎛⎫++⨯⎪⎝⎭⎝⎭=__________.4已知a2+a-2=3,则a+a-1=__________.5已知11224x x-+=,求1224200x xx x--+++-的值.答案:1.C原式=211151323662133a b a b++⎛⎫-÷ ⎪⎝⎭=21111532623699a b a+-+--=-.2.ab原式=12131111323321122633311233()a b a ba bab a b+-++---==ab-1=ab.3.21原式=(2-2)-2+1311311124322222221(6)(32)462652636218--++-⨯⨯=+++⨯-⨯=.4. ∵a 2+a -2=(a +a -1)2-2,∴(a +a -1)2-2=3,∴(a +a -1)2=5,∴a +a -1=5.解:∵1122x x-+=4,∴x +2+x -1=16.∴x +x -1=14.∴x 2+2+x -2=196,x 2+x -2=194. ∴原式=144194200+-=-3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 指数与指数幂的运算(2)导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂. 推进新课 新知探究 提出问题(1)整数指数幂的运算性质是什么?(2)观察以下式子,并总结出规律:a >0, ①510a =352)(a =a 2=a510;②8a =24)(a =a 4=a 28;③412a =443)(a =a 3=a 412; ④210a=225)(a =a 5=a210.(3)利用(2)的规律,你能表示下列式子吗?435,357,57a ,n m x (x>0,m,n∈N *,且n>1).(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般的情形吗? 活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义; a -n=n a1(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n. (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①510a =a 510,②8a =a 28,③412a =a 412,④210a =a210结果的a 的指数是2,4,3,5分别写成了510,28,412,510,形式上变了,本质没变.根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,435=543,357=735,57a =a 57,n m x =x nm .(4)53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m的n 次方根是x nm . 结果表明方根的结果和分数指数幂是相通的.(5)如果a>0,那么a m的n 次方根可表示为na m=a n m ,即a nm =n a m(a>0,m,n∈N *,n>1).综上所述,我们得到正数的正分数指数幂的意义,教师板书: 规定:正数的正分数指数幂的意义是a mn =n a m(a>0,m,n∈N *,n>1).提出问题①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗?③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢? 活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n=n a1(a≠0),n∈N *. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.规定:正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n∈N *,n>1).③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是:正数的正分数指数幂的意义是a mn =n m a (a>0,m,n∈N *,n>1),正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.⑤若没有a >0这个条件会怎样呢?如(-1)31=3-1=-1,(-1)62=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a >0的条件,比如式子3a 2=|a|32,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:(1)a r ·a s =a r+s(a>0,r,s∈Q ),(2)(a r )s =a rs(a>0,r,s∈Q ),(3)(a·b)r =a r b r(a>0,b>0,r∈Q ).我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.应用示例思路1 例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式.a 3·a ;a 2·32a ;3a a (a>0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8.活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.解:(1)原式=[2×(-6)÷(-3)]a 612132-+b653121-+=4ab 0=4a;(2)(m 41n83-)8=(m 41)8(n83-)8=m841⨯n883⨯-=m 2n -3=32nm .点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63;(2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(nm =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4计算下列各式:(1)(125253-)÷425; (2)322aa a •(a >0).活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.解:(1)原式=(2531-12521)÷2541=(532-523)÷521 =52132--52123-=561-5=65-5;(2)322a a a •=32212aa a •=a32212--=a 65=65a .思路2例1比较5,311,6123的大小.活动:学生努力思考,积极交流,教师引导学生解题的思路,由于根指数不同,应化成统一的根指数,才能进行比较,又因为根指数最大的是6,所以我们应化为六次根式,然后,只看被开方数的大小就可以了.解:因为5=635=6125,311=6121,而125>123>121,所以6125>6123>6121. 所以5>6123>311.点评:把根指数统一是比较几个根式大小的常用方法. 例2求下列各式的值:(1)432981⨯;(2)23×35.1×612.活动:学生观察以上几个式子的特征,既有分数指数幂又有根式,应把根式转化为分数指数幂后再由运算法则计算,如果根式中根指数不同,也应化成分数指数幂,然后分析解答,对(1)应由里往外432981⨯=421344)3(3⨯,对(2)化为同底的分数指数幂,及时对学生活动进行评价.解:(1)432981⨯=[34×(334)21]41=(3324+)41=(3314)41=367=633;(2)63125.132⨯⨯=2×321×(23)31×(3×22)61=231311++·3613121++=2×3=6.例3计算下列各式的值: (1)[(a 23-b 2)-1·(ab -3)21(b 21)7]31;(2)1112121-+-++--a a a aa;(3)14323)(---÷a b b a.活动:先由学生观察以上三个式子的特征,然后交流解题的方法,把根式用分数指数幂写出,利用指数的运算性质去计算,教师引导学生,强化解题步骤,对(1)先进行积的乘方,再进行同底数幂的乘法,最后再乘方,或先都乘方,再进行同底数幂的乘法,对(2)把分数指数化为根式,然后通分化简,对(3)把根式化为分数指数,进行积的乘方,再进行同底数幂的运算. 解:(1)原式=(a23-b 2)31-(ab -3)61·(b 21)37=a 21b32-a 61b21-b 67=a6121+b672132+--=a 32b 0=a 32;另解:原式=(a 23b -2a 21b 23-·b 27)31=(a2123+b27232+--)31=(a 2b 0)31=a 32;(2)原式=11111-+-++a aa aa =)1(1-+a a a =)1(11-+-a a a a=)111(1-+-a a a= )1(2--a a =)1(2a a a-;(3)原式=(a 21b 32)-3÷(b -4a -1)21=a23-b -2÷b -2a21-=a2123+-b-2+2=a -1=a1. 例4已知a >0,对于0≤r≤8,r∈N *,式子(a )8-r·)1(4ar能化为关于a 的整数指数幂的情形有几种?活动:学生审题,考虑与本节知识的联系,教师引导解题思路,把根式转化为分数指数幂后再由运算法则计算,即先把根式转化为分数指数幂,再进行幂的乘方,化为关于a 的指数幂的情形,再讨论,及时评价学生的作法.解:(a )8-r·)1(4ar=a 28r -·a4r -=a448rr --=a4316r -.16-3r 能被4整除才行,因此r=0,4,8时上式为关于a 的整数指数幂.点评:本题中确定整数的指数幂时,可由范围的从小到大依次验证,决定取舍.利用分数指数幂进行根式运算时,结果可以化为根式形式或保留分数指数幂的形式.例5已知f (x )=e x -e -x ,g (x )=e x +e -x.(1)求[f (x )]2-[g (x )]2的值; (2)设f (x )f (y )=4,g (x )g (y )=8,求)()(y x g y x g -+的值.活动:学生观察题目的特点,说出解题的办法,整体代入或利用公式,建立方程,求解未知,如果学生有难度,教师可以提示引导,对(1)为平方差,利用公式因式分解可将代数式化简,对(2)难以发现已知和未知的关系,可写出具体算式,予以探求.解:(1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )]=(e x -e -x +e x +e -x )(e x -e -x -e x -e -x )=2e x (-2e -x )=-4e 0=-4;另解:(1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2=e 2x -2e x e -x +e -2x-e 2x -2e x e -x -e -2x=-4e x -x=-4e 0=-4;(2)f (x )·f(y )=(e x -e -x )(e y -e -y )=e x +y+e -(x+y)-e x -y -e -(x-y)=g (x+y )-g (x -y )=4, 同理可得g (x )g (y )=g (x+y )+g (x -y )=8, 得方程组⎩⎨⎧=++=+8,y)-g(x y)g(x 4,y)-g(x -y)g(x 解得g (x+y )=6,g (x -y )=2.所以)()(y x g y x g -+=26=3.点评:将已知条件变形为关于所求量g (x+y )与g (x -y )的方程组,从而使问题得以解决,这种处理问题的方法在数学上称之为方程法,方程法所体现的数学思想即方程思想,是数学中重要的数学思想. 知能训练课本P 54练习 1、2、3. [补充练习]教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.1.(1)下列运算中,正确的是( ) A.a 2·a 3=a 6B.(-a 2)3=(-a 3)2C.(a -1)0=0D.(-a 2)3=-a 6(2)下列各式①42)4(n-,②412)4(+-n ③54a ,④45a (各式的n∈N ,a∈R )中,有意义的是( )A.①②B.①③C.①②③④D.①③④ (3)24362346)()(a a •等于( )A.aB.a 2C.a 3D.a 4(4)把根式-232)(--b a 改写成分数指数幂的形式为( )A.-2(a-b)52- B.-2(a-b)25-C.-2(a52--b52-) D.-2(a25--b 25-)(5)化简(a 32b 21)(-3a 21b 31)÷(31a 61b 65)的结果是( )A.6aB.-aC.-9aD.9a2.计算:(1)0.02731--(-71)-2+25643-3-1+(2-1)0=________.(2)设5x =4,5y =2,则52x -y=________.3.已知x+y=12,xy=9且x <y,求21212121yx y x +-的值.答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)83.解:21212121yx y x +-=))(())((2121212121212121y x y x y x y x -+--=yx yy x x -+-21212. 因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x <y,所以x-y=-2×33=-63.所以原式36612--=33-. 拓展提升1.化简111113131313132---+++++-x xx x x x x x .活动:学生观察式子特点,考虑x 的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1=(x 31)3-13=(x 31-1)·(x 32+x 31+1); x+1=(x 31)3+13=(x 31+1)·(x 32-x 31+1); x-x 31=x 31[(x 31)2-1]=x 31(x 31-1)(x 31+1). 构建解题思路教师适时启发提示.解:111113131313132---+++++-x xx x x x x x =111)(11)(3131323131333131323331---+++++-x x x x x x x x x=)1()1)(1(1)1)(1(1)1)(1(31313131313132312132313231-+--++-++++++-x x x x x x x x x x x x x=x 31-1+x 32-x 31+1-x 32-x 31=-x 31. 点拨:解这类题目,要注意运用以下公式, (a 21-b 21)(a 21+b 21)=a-b, (a 21±b 21)2=a±2a 21b 21+b,(a 31±b 31)(a 32μa 31b 31+b 32)=a±b.2.已知a 21+a21-=3,探究下列各式的值的求法.(1)a+a -1;(2)a 2+a -2;(3)21212323----aa a a .解:(1)将a 21+a21-=3,两边平方,得a+a -1+2=9,即a+a -1=7;(2)将a+a -1=7两边平方,得a 2+a -2+2=49,即a 2+a -2=47; (3)由于a 23-a23-=(a 21)3-(a21-)3,所以有21212323----aa a a =2121212112121))((-----++-aa a a a a a a =a+a -1+1=8.点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值. 课堂小结活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:(1)分数指数幂的意义就是:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n∈N *,n>1),正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. (3)有理数指数幂的运算性质:对任意的有理数r 、s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈Q ),②(a r )s =a rs(a>0,r,s∈Q ),③(a·b)r =a r b r(a>0,b>0,r∈Q ). (4)说明两点:①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用(a n)nm =nm n a⨯=a m来计算.作业课本P 59习题2.1A 组 2、4.设计感想本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.。

相关文档
最新文档