广东省揭阳市2019届高三上学期期末学业水平调研数学(文)试卷(含答案)

合集下载

广东省揭阳市2019届高三上学期期末学业水平调研数学(文)试题及精品解析

广东省揭阳市2019届高三上学期期末学业水平调研数学(文)试题及精品解析

C. {0,2,3}
D. {0,1,2,3}
【解析】解: ∵ ������ = { ‒ 1,0,1,2,3},������ = { ‒ 1,1}; ∴ ∁������������ = {0,2,3}. 故选:C. 进行补集的运算即可. 考查列举法的定义,以及补集的运算.
2.
复数
������ = 1 ‒ ������ + 2 + ������
故选:B.
������与������的夹角为锐角


⇒⃗ ⋅ ⃗ ≥ 0
������ ������
,反之不成立,夹角可能为0.即可判断出结论.
本题考查了向量的夹角、数量积运算性质、简易逻辑,考查了推理能力与计算能力,属于基础题.
4.
已知函数������(������) = 2
������2 ‒ ������
2
的虚部是( )
A. 3
【答案】B 【解析】解:
2
B. 2
C. 2i
D. 3i
∵ ������ = 1 ‒ ������ + 2 + ������ = (1 ‒ ������)(1 + ������) + 2 + ������ = 1 + ������ + 2 + ������ = 3 + 2������
A. 充分不必要条件 C. 充要条件
【答案】B
B. 必要不充分条件 D. 既不充分也不必要条件
⃗ ⃗ ⇒⃗ ⋅ ⃗ ≥ 0 【解析】解:������与������的夹角为锐角 ������ ������ ,反之不成立,夹角可能为 0. ⃗⋅⃗≥0 ⃗ ⃗ ∴ “������ ������ ”是“������与������的夹角为锐角”的必要不充分条件.

2018-2019学年广东省揭阳市高三(上)期末数学试卷(文科)(解析版)

2018-2019学年广东省揭阳市高三(上)期末数学试卷(文科)(解析版)

2018-2019学年广东省揭阳市高三(上)期末数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1,2,3},B={﹣1,1},则∁A B=()A.{1,2}B.{0,1,2}C.{0,2,3}D.{0,1,2,3} 2.(5分)复数的虚部是()A.3B.2C.2i D.3i3.(5分)“”是“与的夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)已知函数,,则=()A.1B.C.D.5.(5分)记等比数列{a n}的前n项和为S n,已知S1=﹣2,S3=﹣6,且公比q≠1,则a3=()A.﹣2B.2C.﹣8D.﹣2或﹣8 6.(5分)若点在抛物线C:y2=2px上,记抛物线C的焦点为F,则直线AF 的斜率为()A.B.C.D.7.(5分)已知x∈[0,π],且,则=()A.B.C.D.28.(5分)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多C.2012年该地区基础设施的投资额比2004年的投资额翻了两番D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.9.(5分)函数的图象大致为()A.B.C.D.10.(5分)若x,y满足约束条件,则的最小值为()A.﹣1B.﹣2C.1D.211.(5分)某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为()A.πB.2πC.4πD.16π12.(5分)已知函数,其中e是自然对数的底,若f(a﹣1)+f (2a2)≤0,则实数a的取值范围是()A.(﹣∞,﹣1]B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量、,若,则=;14.(5分)已知双曲线的一条渐近线为,那么双曲线的离心率为.15.(5分)如图,圆柱O1O2内接于球O,且圆柱的高等于球O的半径,则从球O内任取一点,此点取自圆柱O1O2的概率为;16.(5分)已知数列{a n}满足,(n∈N*),则数列{a n}中最大项的值为.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且2a sin B cos A﹣b sin A =0,(1)求A;(2)当函数取得最大值时,试判断△ABC的形状.18.(12分)如图,在三棱锥P﹣ABC中,正三角形P AC所在平面与等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中点,OH⊥PC于H.(1)证明:PC⊥平面BOH;(2)若,求三棱锥A﹣BOH的体积.19.(12分)某公司培训员工某项技能,培训有如下两种方式:方式一:周一到周五每天培训1小时,周日测试方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.20.(12分)设椭圆的右顶点为A,下顶点为B,过A、O、B(O为坐标原点)三点的圆的圆心坐标为.(1)求椭圆的方程;(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN =60°,求点M的坐标.21.(12分)已知函数.(1)求函数f(x)的单调递减区间;(2)求实数a的值,使得x=2是函数唯一的极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)已知曲线C的参数方程为,(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线l1、l2相互垂直,与曲线C分别相交于A、B 两点(不同于点O),且l1的倾斜角为锐角α.(1)求曲线C和射线l2的极坐标方程;(2)求△OAB的面积的最小值,并求此时α的值.[选修4-5:不等式选讲](10分)23.已知函数f(x)=|x﹣2|﹣a|x+2|.(1)当a=2时,求不等式f(x)<2的解集;(2)当x∈[﹣2,2]时,不等式f(x)≥x恒成立,求a的取值范围.2018-2019学年广东省揭阳市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵A={﹣1,0,1,2,3},B={﹣1,1};∴∁A B={0,2,3}.故选:C.2.【解答】解:∵=,∴复数的虚部是2.故选:B.3.【解答】解:与的夹角为锐角⇒,反之不成立,夹角可能为0.∴“”是“与的夹角为锐角”的必要不充分条件.故选:B.4.【解答】解:根据题意,函数,若,则23﹣a=,解可得:a=5,则f(﹣)=22﹣5=,故选:D.5.【解答】解:∵S1=﹣2;∴a1=﹣2,设等比数列{a n}的公比为q,则:;∴q2+q﹣2=0;∵q≠1;∴解得q=﹣2;∴.故选:C.6.【解答】解:把代入y2=2px,得8=4p,即p=2.∴抛物线方程为y2=4x,抛物线焦点F(1,0),∴.故选:C.7.【解答】解:由,得,即2sin x+9cos x=7,与sin2x+cos2x=1联立,又x∈[0,π],得sin x=,cos x=,∴==.故选:B.8.【解答】解:对于A,由图象可知,投资额逐年增加,故A正确;对于B,2000年至2004年的投资总额为11+19+25+35+37=127亿元,小于2011年的129亿元,故B正确;对于C,2004年的投资额为37亿元,2012年该地区基础设施的投资额为148,等于2004年的投资额翻了两番,故C正确;对于D,在线性回归模型中,取t=10,可得y=99+17.5×10=274亿元,故D错误.故选:D.9.【解答】解:当x→﹣∞时,→+∞,由此排除C,D;当x>0时,f(x)=lnx+,f′(x)=,当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f (x)单调递增.∴图象A符合.故选:A.10.【解答】解:x,y满足约束条件的平面区域如下图所示:平移直线y=﹣2x,由图易得,当x=0,y=﹣1时,即经过A时,目标函数z=2x+y的最小值为:﹣1.故选:A.11.【解答】解:由三视图知,该几何体为圆锥,设底面圆的半径为r,母线的长为l,则2r+2l=8,即r+l=4;∴圆锥的侧面积为S侧=,(当且仅当r=l时“=”成立);∴圆锥的侧面积最大值为4π.故选:C.12.【解答】由,知f(x)在R 上单调递增,且,即函数f(x)为奇函数,故f(a﹣1)+f(2a2)≤0⇔f(a﹣1)≤f(﹣2a2)⇔a﹣1≤﹣2a2⇔2a2+a﹣1≤0,解得.故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.【解答】解:∵;∴;∴;∴;∴.故答案为:.14.【解答】解:双曲线﹣=1(a>0,b>0)的一条渐近线方程为y=x,由题意可得=,即为b=a,c==2a,可得e==2.故答案为:2.15.【解答】解:由已知有:在△AOO1中有:|o1o|=,(R为球的半径),则r=,又“点取自圆柱O1O2”的概率为==,故答案为:.16.【解答】解:由(n∈N*),得(n∈N*),∴数列{}是以为首项,以8为公差的等差数列,则,则.当n=1时,;当n=2时,a2=﹣1;当n=3时,.当n≥3时,数列为递减数列,则数列{a n}中最大项的值为.故答案为:.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分17.【解答】解:(1)由正弦定理得a sin B=b sin A≠0,又2a sin B cos A﹣b sin A=0,∴2cos A=1,即,∵0<A<π∴;(2)解法一:∵∴,从而,∴===,∵,∴当时,函数f(x)取得最大值,这时,即△ABC是直角三角形;解法二:∵∴,∴==2sin C,∵,∴当时,函数f(x)取得最大值,∴△ABC是直角三角形.18.【解答】解:(1)∵AB=BC,O是AC中点,∴BO⊥AC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)又平面P AC⊥平面ABC,且BO⊂平面ABC,平面P AC∩平面ABC=AC,∴BO⊥平面P AC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴BO⊥PC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)又OH⊥PC,BO∩OH=O,∴PC⊥平面BOH;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)∵△HAO与△HOC面积相等,∴V A﹣BOH=V B﹣HAO=V B﹣HOC,∵BO⊥平面P AC,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∵,∠HOC=30°∴HC=1,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴,即.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)19.【解答】解:(1)设甲乙两组员工受训的平均时间分别为t1、t2,则(小时)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)(小时)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因10<10.9,据此可判断培训方式一比方式二效率更高.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)来自乙组的人数为:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)记来自甲组的2人为:a、b;来自乙组的4人为:c、d、e、f,则从这6人中随机抽取2人的不同方法数有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15种,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)其中至少有1人来自甲组的有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共9种,故这2人中至少有1人来自甲组的概率.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)20.【解答】解:(1)依题意知A(a,0),B(0,﹣b),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)∵△AOB为直角三角形,∴过A、O、B三点的圆的圆心为斜边AB的中点,∴,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴椭圆的方程为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)由(1)知B(0,﹣1),依题意知直线BN的斜率存在且小于0,设直线BN的方程为y=kx﹣1(k<0),则直线BM的方程为:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)由消去y得(1+3k2)x2﹣6kx=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)解得:,y N=kx N﹣1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴=∴=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)【注:学生直接代入弦长公式不扣分!】在中,令y=0得x=﹣k,即M(﹣k,0)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)在Rt△MBN中,∵∠BMN=60°,∴,即,整理得,解得,∵k<0,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)∴点M的坐标为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)21.【解答】解:(1)f'(x)=(x﹣2)(e x﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令f'(x)<0,得或,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由得0<x<2,而不等式组的解集为ϕ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴函数f(x)的单调递减区间为(0,2);﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)依题意得g'(x)=f'(x)+ax(x﹣2)=(x﹣2)(e x+ax﹣1),显然g'(2)=0,﹣﹣﹣(5分)记h(x)=e x+ax﹣1,x∈R,则h(0)=0,当a=0时,h(1)=e﹣1>0;当a≠0时,;由题意知,为使x=2是函数g(x)唯一的极值点,则必须h(x)≥0在R上恒成立;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)只须h(x)min≥0,因h'(x)=e x+a,①当a≥0时,h'(x)=e x+a>0,即函数h(x)在R上单调递增,而,与题意不符;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)②当a<0时,由h'(x)<0,得x<ln(﹣a),即h(x)在(﹣∞,ln(﹣a))上单调递减,由h'(x)>0,得x>ln(﹣a),即h(x)在(ln(﹣a),+∞)上单调递增,故h(x)min=h(ln(﹣a)),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)若a=﹣1,则h(x)≥h(x)min=h(0)=0,符合题意;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)若a≠﹣1,则0=h(0)≥h(x)min=h(ln(﹣a)),不合题意;综上所述,a=﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【或由h(x)min≥0,及h(0)=0,得h(0)=h(x)min,∴ln(﹣a)=0,解得a=﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)】(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.【解答】解:(1)由曲线C的参数方程为,(t为参数),得普通方程为4y=x2,由x=ρcosθ,y=ρsinθ,得4ρsinθ=ρ2cos2θ,所以曲线C的极坐标方程为ρcos2θ=4sinθ,[或]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)过极点的两射线l1、l2相互垂直,与曲线C分别相交于A、B两点(不同于点O),且l1的倾斜角为锐角α.故l2的极坐标方程为;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)依题意设,则由(1)可得,同理得,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴=∵,∴0<α<π,∴=≥16,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)△OAB的面积的最小值为16,此时sin2α=1,得,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)[选修4-5:不等式选讲](10分)23.【解答】解:(1)①当x<﹣2时,f(x)=﹣x+2+2(x+2)=x+6<2,解得x<﹣4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)②当﹣2≤x<2时,f(x)=﹣x+2﹣2(x+2)=﹣3x﹣2<2,解得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)③当x≥2时,f(x)=x﹣2﹣2(x+2)=﹣x﹣6<2解得x≥2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)上知,不等式f(x)<2的解集为;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)解法1:当x∈[﹣2,2]时,f(x)=2﹣x﹣a(x+2)=﹣(a+1)x+2(1﹣a),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设g(x)=f(x)﹣x,则∀x∈[﹣2,2],g(x)=﹣(a+2)x+2(1﹣a)≥0恒成立,只需,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)即,解得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)解法2:当x∈[﹣2,2]时,f(x)=2﹣x﹣a(x+2),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)f(x)≥x,即2﹣x﹣a(x+2)≥x,即(x+2)a≤2(1﹣x)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)①当x=﹣2时,上式恒成立,a∈R;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)②当x∈(﹣2,2]时,得=恒成立,只需,综上知,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)】。

揭阳市届高三上学期学业水平考试(文数).doc

揭阳市届高三上学期学业水平考试(文数).doc

揭阳市201X 届高三上学期学业水平考试数学(文科)本试卷共4页,21小题,满分150分.考试用时l20分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高. 一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}A =-,则A .1i A +∈B .21i A +∈C .31i A +∈D .41i A +∈2.已知命题P :“2,230x R x x ∀∈++≥”,则命题P 的否定为A.2,230x R x x ∀∈++< B. 2,230x R x x ∃∈++≥ C. 2,230x R x x ∃∈++< D. 2,230x R x x ∃∈++≤ 3.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖4.已知()f x 是定义在R 上的奇函数,当0x ≥时()3xf x m =+(m 为常数),则函数()f x 的大致图象为5.已知倾斜角为α的直线l 与直线220x y -+=平行,则tan 2α的值为A.45 B. 34 C. 43 D. 23 6.已知双曲线2221x y a-=的一个焦点为(2,0),则它的离心率为A.233 B. 63 C. 32D.2 7.如图,已知ABCDEF 是边长为1的正六边形,则()BA BC AF ⋅+的值为A.1-B.1C.3 D.08.某几何体的三视图及尺寸如图示,则该几何体的表面积为A. 3πB. 4πC. 6πD. 10π9.已知向量(,1),(2,)a x z b y z =-=+,且a b ⊥,若变量x,y满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则z 的最大值为A.1B.2C.3D.410.已知数阵111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭中,每行的三个数依次成等差数列,每列的三个数也依次成等差数列,若224a =,则所有这九个数的和为.A. 16B. 32C. 36D.40二.填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题) 11.函数1()lg(1)f x x =-的定义域为 .12.近年来,随着以煤炭为主的能源消耗大幅攀升、机动车保有量急 剧增加,我国许多大城市灰霾现 象频发,造成灰霾天气的“元凶”之一是空气中的pm2.5(直径小于等于2.5微米的颗粒物).右图是某市某月(按30天计)根 据对“pm2.5” 24小时平均浓度值测试的结果画成的频率分布直方图,若规定空气中 “pm2.5”24小时平均浓度值不超过0.075毫克/立方米为达标,那么该市当月有 天 “pm2.5”含量不达标. 13.在△ABC 中,已知60,4,5,A b c ===则sin B = . (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题) 直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆35cos 15sin x y θθ=+⎧⎨=-+⎩()θθπ∈为参数,[0,2)所截得的弦长为 . 15.(几何证明选讲选做题)如图,从圆O 外一点P 引圆的切线PC 和割线PBA ,已知PC=2PB ,3BC =,则AC 的长为 ____ .三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()sin()cos ,()f x x x x R π=--∈. (1) 求函数()f x 的最小正周期; (2) 求函数()f x 的最大值和最小值;(3) 若1(),(0,)42f παα=∈,求sin cos αα+的值.17. (本小题满分12分)某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,其中5ξ≥为标准A ,3ξ≥为标准B ,产品的等级系数越大表明产品的质量越好,已知某厂执行标准B 生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率.18. (本小题满分14分)如图①边长为1的正方形ABCD 中,点E 、F 分别为AB 、BC 的中点,将△BEF 剪去,将△AED 、△DCF 分别沿DE 、DF 折起,使A 、C 两点重合于点P 得一三棱锥如图②示. (1)求证:PD EF ⊥; (2)求三棱锥P DEF -的体积; (3)求点E 到平面PDF 的距离.19.(本小题满分14分)已知直线:l y x m =+,m R ∈. (1)若以点()2,1M -为圆心的圆与直线l 相切与点P ,且点P 在x 轴上,求该圆的方程;(2)若直线l 关于x 轴对称的直线l '与抛物线21:C x y m=相切,求直线l 的方程和抛物线C 的方程.20.(本小题满分14分)已知数列{}n a 是公比1q >的等比数列,且1240a a +=,12256,a a =又 2log n n b a =.(1)求数列{n b }的通项公式;(2)若1n n n T T b +-=(*n N ∈),且10.T =求证:对,2n N n *∀∈≥有211334n i i T =≤<∑.21.(本小题满分14分)已知函数32()2f x x ax x =--+.(a R ∈). (1)当1=a 时,求函数)(x f 的极值; (2)若对x R ∀∈,有4'()||3f x x ≥-成立,求实数a 的取值范围.参考答案一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一.选择题:B C B B C A D B C C解析:1.∵{1,0,1}A =-,210i A +=∈,故选B.4.由该函数的图象过原点且关于原点对称可排除A 、C ,由()f x 在[0,)+∞为增函数,可排除D ,故选B. 5.依题意知:1tan 2α=,从而22tan 4tan 21tan 3ααα==-,选C. 6.由22,13c b a ==⇒=22333c e a ⇒===,选A. 7.()BA BC AF ⋅+=()BA BC CD BA BD ⋅+=⋅=0,选D.8. 由三视图知,该几何体为圆锥,其底面的半径为1,r =高22h =, 母线223l r h =+=, 故24S rl r πππ=+=表,故选B.9.∵a b ⊥ ∴2()02x z y z z x y -++=⇒=+,点(,)x y 的可行域如图示, 当直线2z x y =+过点(1,1)时,Z 取得最大值,max 213z =+=,选C. 10.依题意得111a a a a a a+++++12333a aa =++,选C. 二.填空题:11. {|12}x x x >≠且(或{|122}x x x <<>或;12. 27; 13.772. 14. 82;15. 23.解析: 11.由101211x x x x ->⎧⇒>≠⎨-≠⎩且.12.该市当月“pm2.5”含量不达标有801001601206020()0.0053027333333+++++⨯⨯=(天);13.====⋅⋅-+=72sin sin ,2160cos 54254022ac A bc B a 77214.把直线和圆的参数方程化为普通方程得,01=++y x 22(3)(1)25x y -++=,于是弦心距,223=d 弦长9225822l =-=.15.∵,PCB PAC CPB APC ∠=∠∠=∠ ∴PBC ∆∽PCA ∆ ∴1232PB BC BC AC PC AC AC =⇒=⇒= 三.解题题:16.解:(1)∵()sin cos 2sin(),4f x x x x x R π=-=-∈----------------2分∴函数()f x 的最小正周期2T π=------------------------3分(2)函数()f x 的最大值和最小值分别为2,2-.---------------------5分 (3)由1()4f α=得1sin cos 4αα-= ∴21(sin cos )16αα-=,---------------------------6分1151sin 2,sin 21616αα-==-------------------------------7分∴21531(sin cos )1sin 211616ααα+=+=+=------------------9分∵(0,)2πα∈,∴sin cos 0αα+>∴31sin cos 4αα+=.--------------------------------12分 17.解:(1)由样本数据知,30件产品中等级系数7ξ≥有6件,即一等品有6件,二等品有9件,三等品有15件------------------------------3分 ∴样本中一等品的频率为60.230=,故估计该厂生产的产品的一等品率为0.2;---4分 二等品的频率为90.330=,故估计该厂生产的产品的二等品率为0.3;-------5分 三等品的频率为150.530=,故估计该厂生产的产品的三等品的频率为0.5.-----6分 (2)样本中一等品有6件,其中等级系数为7的有3件,等级系数为8的也有3件,--7分记等级系数为7的3件产品分别为1C 、2C 、3C ,等级系数为8的3件产品分别为1P 、2P 、3P .则从样本的一等品中随机抽取2件的所有可能为:121323(,),(,),(,),C C C C C C 12(,),P P 1323(,),(,)P P P P ,11121321(,),(,),(,),(,),C P C P C P C P 2223(,),(,)C P C P ,3132(,),(,),C P C P 33(,)C P .共15种,------------------10分记从“一等品中随机抽取2件,2件等级系数都是8”为事件A ,则A 包含的基本事件有 12(,),P P 1323(,),(,)P P P P 共3种,----------------11分 故所求的概率31()155P A ==.------------------------------12分 18.(1)证明:依题意知图①折前,AD AE CD CF ⊥⊥,------------------1分 ∴,PD PE PF PD ⊥⊥,---------------------------------2分 ∵PEPF P = ∴PD ⊥平面PEF ------------------4分又∵EF ⊂平面PEF ∴PD EF ⊥--------------------------5分(2)解法1:依题意知图①中AE=CF=12 ∴PE= PF=12, 在△BEF 中222EF BE ==,-----6分 在PEF ∆中,222PE PF EF PE PF +=∴⊥∴8121212121=⋅⋅=⋅⋅=∆PF PE S PEF -------------------8分 ∴13P DEF D PEF PEF V V S PD --∆==⋅11113824=⨯⨯=.-----10分【(2)解法2:依题意知图①中AE=CF=12 ∴PE= PF=12,在△BEF 中222EF BE ==,-----------------------6分 取EF 的中点M ,连结PM则PM EF ⊥,∴2224PM PE EM =-=-------------7分 ∴1122122248PEF S EF PM ∆=⋅=⨯⨯=---------------8分 ∴13P DEF D PEF PEF V V S PD --∆==⋅11113824=⨯⨯=.-------------10分】 (3) 由(2)知PE PF ⊥,又PE PD ⊥ ∴⊥PE 平面PDF ----------12分 ∴线段PE 的长就是点E 到平面PDF 的距离--------------------13分∵12PE =, ∴点E 到平面PDF 的距离为12.----------------14分 19.解(1)解法1.依题意得点P 的坐标为(,0)m -.-------1分 ∵以点()2,1M -为圆心的圆与直线l 相切与点P ,∴MP l ⊥.0(1)112MP l k k m --⋅=⋅=---,解得1m =-.----3分∴点P 的坐标为()1,0.设所求圆的半径r ,则22||112r PM ==+=,--------------5分 ∴所求圆的方程为()222(1)2x y -++=.-----------------6分【解法2.设所求圆的方程为()2222(1)x y r -++=,--------------1分依题意知点P 的坐标为(,0)m -.--------------------------2分 ∵以点()2,1M -为圆心的圆与直线l 相切于点(),0P m -,∴222(2)1,21.2m r m r ⎧++=⎪++⎨=⎪⎩解得1,2.m r =-⎧⎪⎨=⎪⎩------------------5分∴所求的圆的方程为()222(1)2x y -++=.-----------------6分】(2)解法1.将直线方程y x m =+中的y 换成y -,可得直线l '的方程为y x m =--.------------------------7分由21,.x y m y x m ⎧=⎪⎨⎪=--⎩得20mx x m ++=,(0)m ≠---------------9分 2Δ14m =-,--------------------------------10分∵直线l '与抛物线21:C x y m =相切∴0∆=,解得12m =±.-------------------------12分当12m =时,直线l 的方程为12y x =+,抛物线C 的方程为22x y =,-----13分当12m =-时,直线l 的方程为12y x =-,抛物线C 的方程为22x y =-.---14分【解法2.将直线方程y x m =+中的y 换成y -,可得直线l '的方程为y x m =--.-7分设直线l '与抛物线21:C x y m=相切的切点为()00,x y ,--------8分 由2y mx =得2y mx '=,则021mx =----①------------------10分 00y x m =--------②200y mx =.---------③①②③联立得1142m m m =-21142m m ⇒=⇒=±,----12分 当12m =时,直线l 的方程为12y x =+,抛物线C 的方程为22x y =,---13分当12m =-时,直线l 的方程为12y x =-,抛物线C 的方程为22x y =-.----14分】20.解:(1)解法1:∵1240a a +=,12256,a a =且1q >解得12832a a =⎧⎨=⎩---------2分 ∴214a q a == ∴11211842n n n n a a q --+==⨯=---------------------4分 ∴ 2log n n b a ==212log 221n n +=+-----------------6分【解法2:由1240a a +=,12256,a a =且1q > 得12832a a =⎧⎨=⎩ ∴214aq a ==-------------------------2分∴112122log log loglog 42,n n n n n na b b a a a +++-=-===------------3分 又1212log log 83,b a ===--------------------------------------4分 ∴{}n b 是以3为首项,2为公差的等差数列,------------------5分 ∴3(1)221n b n n =+-⨯=+;-------------------------6分】 (2)当2n ≥时,1121,n n n T T b n ---==- ∴()()()()11232211n n n n n T T T T T T T T T T ---=-+-+-+-+ =()()()()12132123532n n n n --+-+-+++=()()11;n n =-+-------8分∵当2n ≥时,()()1111111211n T n n n n ⎛⎫==- ⎪-+-+⎝⎭,-----------10分 ∴21ni iT =∑=2341111nT T T T ++++ 111111111111123243531211n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥----+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=111131111.221421n n n n ⎛⎫⎛⎫+--=-+ ⎪ ⎪++⎝⎭⎝⎭-------------------12分∵2n ≥,∴111151236n n +≤+=+ ∴31113151.4214263n n ⎛⎫-+≥-⋅= ⎪+⎝⎭ 又1101n n +>+ ∴311134214n n ⎛⎫-+< ⎪+⎝⎭ 即对,2n N n *∀∈≥,211334n i i T =≤<∑.-------------------------14分21.解:(1)当1=a 时,32()2f x x x x =--+2'()321f x x x =--=(1)(31)x x -+,---------------------2分令'()0f x =,解得121,13x x =-=. 当'()0f x >时,得1x >或13x <-; 当'()0f x <时,得113x -<<. 当x 变化时,'()f x ,()f x 的变化情况如下表:x1(,)3-∞-13- 1(,1)3- 1(1,)+∞'()f x +-+()f x单调递增极大单调递减极小单调递增--------------------------------------------------------------4分 ∴当13x =-时,函数()f x 有极大值,15()=()2,327f x f -=极大-------------5分 当1x =时函数()f x 有极小值,()(1)1f x f ==极小-----------------6分 (2)∵2'()321f x x ax =--,∴对x R ∀∈,4'()||3f x x ≥-成立, 即24321||3x ax x --≥-对x R ∀∈成立,------------------------7分 ①当0x >时,有213(21)03x a x -++≥,即12133a x x+≤+,对(0,)x ∀∈+∞恒成立,---------------9分∵11323233x x x x +≥⋅=,当且仅当13x =时等号成立,11 ∴212a +≤12a ⇒≤--------------------------------11分 ②当0x <时,有213(12)03x a x +-+≥, 即1123||3||a x x -≤+,对(,0)x ∀∈-∞恒成立, ∵113||23||23||3||x x x x +≥⋅=,当且仅当13x =-时等号成立, ∴11222a a -≤⇒≥-----------------------------13分 ③当0x =时,a R ∈ 综上得实数a 的取值范围为11[,]22-.---------------------------14分。

揭阳市2019届高三上期末学业水平调研数学(文)试卷(含答案)

揭阳市2019届高三上期末学业水平调研数学(文)试卷(含答案)

揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1,2,3}A =-,{1,1}B =-,则A B =ðA .{1,2}B .{0,1,2}C .{0,2,3}D .{0,1,2,3} 2.复数221z i i=++-的虚部是 A .3 B .2 C .2i D .3i3.“0a b ⋅≥”是“a 与b 的夹角为锐角”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数2()2x a f x -=,14f =,则(f =A .1B .18-C .12D .185.记等比数列{}n a 的前n 项和为n S ,已知132,6S S =-=-,且公比1q ≠,则3a =A .-2B .2C .-8D .-2或-86.若点A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,则直线AF 的斜率为A .4 B .3 C . D .37.已知[0,]x π∈,且3sin2x=tan 2x =A .12-B .12C .43D .28.右图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.9.函数1()ln ||f x x=+的图象大致为10.若,x y 满足约束条件10210x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A .-1B .-2C .1D . 211.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为 A .πB .2πC .4πD .16πA .B .C .D .OHCBAP12.已知函数312()423x xf x x x e e =-+-,其中e 是自然对数的底, 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是A .(,1]-∞-B .1[,)2+∞C .1(1,)2-D .1[1,]2-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,)a x =、(1,2)b =--,若a b ⊥,则||a = _____;14.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为y ,则该双曲线的离心率为____;15.如图,圆柱O 1 O 2内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱O 1 O 2的概率为; 16.已知数列{}n a 满足119a =-,181nn n a a a +=+()n N *∈,则数列{}n a 中最大项的值为. 三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分 17.(12分)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2si n c o s s i n 0a B A b A-=,(1)求A ;(2)当函数()sin )6f x B C π=-取得最大值时,试判断ABC ∆的形状.18.(12分)如图,在三棱锥P-ABC 中,正三角形PAC 所在平面与等腰三角形ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H .(1)证明:PC ⊥平面BOH ;(2)若OH OB ==,求三棱锥A-BOH 的体积.19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表:(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周...培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率. 20.(12分)设椭圆()222210x y a b a b+=>>的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为1()22-. (1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.21.(12分)已知函数()()21322x f x x e x x =--+. (1)求函数()f x 的单调递减区间;(2)求实数a 的值,使得2x =是函数()()3213g x f x ax ax =+-唯一的极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程](10分)已知曲线C 的参数方程为22x ty t=⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α.(1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值. 23. [选修45:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.11.三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=,S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 12. 由222'()42240x x f x x e e x x -=-++≥-+=≥,知()f x 在R 上单调递增,且31()422()3x x f x x x e e f x --=-++-=-,即函数()f x 为奇函数, 故2(1)(2)0f a f a -+≤2(1)(2)f a f a ⇔-≤-212a a ⇔-≤-2210a a ⇔+-≤, 解得112a -≤≤. 二、填空题181n n n a a +=+18n n n n a a a +==+18n na a +⇒-=, 即数列1{}na 是公差为8的等差数列,故111(1)8817n n n a a =+-⨯=-,所以1817n a n =-,当1,2n =时0n a <;当3n ≥时,0n a >,数列{}n a 递减,故最大项的值为317a =.三、解答题17.解:(1)由正弦定理sin sin a bA B=得sin sin 0a B b A =≠,----------------------------------2分又2sin cos sin 0a B A b A -=, ∴2cos 1A =,即1cos 2A =,------------------------------------------------------------------------4分∵0A π<<∴3A π=.-----------------------------------------------------------------------------6分(2)解法一:∵3A π=∴23C B π=-,从而62C Bππ-=-,------------------------------7分∴()sin sin()2f x B B π=+-sin B B =------------------------------------------8分12(sin )2B B =+2sin()3B π=+---------------------------------------------10分 ∵33B πππ<+<,∴当6B π=时,函数()f x 取得最大值,这时632C ππππ=--=,即ABC∆是直角三角形.-------------------------------------------12分 【解法二:∵3A π=∴23B C π=-,-----------------------------------------------------------------7分∴2()sin())36f x C C ππ=-+-OHC B AP11sin 3(cos )2222C C C C =+- 2sin C =--------------------------------------------------------------------------------------10分∵203C π<<,∴当2C π=时,函数()f x 取得最大值, ∴ABC∆是直角三角形.---------------------------------------------------------------------------12分】18.解:(1)∵AB =BC ,O 是AC 中点,∴BO ⊥AC ,-------------------------------------------------------------------------------------------1分又平面PAC ⊥平面ABC ,且BO ⊂平面ABC ,平面PAC ∩平面ABC =AC ,∴ BO ⊥平面PAC ,----------------------------------------------3分 ∴ BO ⊥PC ,------------------------------------------------------4分 又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;---------------------------------------------6分 (2)解法1:∵△HAO 与△HOC 面积相等,∴A BOH B HAO B HOC V V V ---==, ∵BO ⊥平面PAC ,∴13B HOC OHC V S OB -∆=⋅,-------------------------------------------------8分∵OH = ∴1HC =,∴12OHC S CH OH ∆=⋅=,-----------------------------------------------------------------------10分∴11322B OCH V -=⨯=,即12A BOH V -=.----------------------------------------------------12分 【其它解法请参照给分】19.解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时)----------------------------------------2分2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)----------------------------------------4分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;---------------------------------------------6分(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=,--------------------------------------------------7分 来自乙组的人数为:620430⨯=,----------------------------------------------------------------8分记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取2人的不同方法数有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,)b c b d b e b f ,(,),(,),(,)c d c e c f ,(,),(,),(,)d e d f e f ,共15种,----------------------------------------------10分其中至少有1人来自甲组的有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,),b c b d b e b f 共9种,故所求的概率93155P ==.----------------------------------------------------------------------12分20.解:(1)依题意知(,0)A a ,(0,)B b -,------------------------------------------------------------------1分∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点,∴1,2222a b =-=-,即1a b ==,--------------------------------3分 ∴椭圆的方程为2213x y +=.-----------------------------------------4分(2)由(1)知(0,1)B -,依题意知直线BN 的斜率存在且小于0,设直线BN 的方程为1(0)y kx k =-<, 则直线BM 的方程为:11y x k=--,------------------------------------------------------------5分 由2233,1.x y y kx ⎧+=⎨=-⎩消去y 得22(13)60k x kx +-=,----------------------------------------------6分 解得:2613N k x k =+,1N N y kx =-,---------------------------------------------------------------7分∴||BN =|N x == ∴|||N B BN x x =-26||13k k=+,------------------------------------------------8分【注:学生直接代入弦长公式不扣分!】在11y x k=--中,令0y =得x k =-,即(,0)M k - ∴||BM =,-----------------------------------------------------------------------------------9分在Rt△MBN 中,∵∠BMN=60°,∴|||BN BM =,26||13k k=+23|10k k -+=,解得||k =,∵0k <,∴k =,------------------------------------------------------11分∴点M 的坐标为(3.---------------------------------------------------------------------------12分 21.解:(1)()()()21x f x x e '=--,-----------------------------------------------------------------1分令()0f x '<,得2010xx e -<⎧⎨->⎩或2010xx e ->⎧⎨-<⎩,-----------------------------------------------------2分由2010xx e -<⎧⎨->⎩得02x <<,而不等式组2010xx e ->⎧⎨-<⎩的解集为φ-----------------------------3分∴函数()f x 的单调递减区间为()0,2;----------------------------------------------------------4分(2)依题意得()()()()()221x g x f x ax x x e ax ''=+-=-+-,显然()20g '=,---5分记()1x h x e ax =+-,x R ∈,则()00h =,当0a =时,()110h e =->;当0a ≠时,110ah e a ⎛⎫=> ⎪⎝⎭;由题意知,为使2x =是函数()g x 唯一的极值点,则必须()0h x ≥在R 上恒成立;----------7分只须()min 0h x ≥,因'()x h x e a =+,①当0a ≥时,'()0x h x e a =+>,即函数()h x 在R 上单调递增, 而()1110h a e-=--<,与题意不符;--------------------------------------------------------8分②当0a <时,由()0h x '<,得()ln x a <-,即()h x 在()(),ln a -∞-上单调递减, 由()0h x '>,得()ln x a >-,即()h x 在()()ln ,a -+∞上单调递增, 故()()()min ln h x h a =-,------------------------------------------------------------------------10分若1a =-,则()()mi n ()00h x h x h ≥==,符合题意;------------------------------------11分若1a ≠-,则()()()min 00()ln h h x h a =≥=-,不合题意; 综上所述,1a =-.----------------------------------------------------------------------------------12分【或由()min 0h x ≥,及(0)0h =,得()min (0)h h x =, ∴()ln 0a -=,解得1a =-.-----------------------------------------------------------------12分】22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=, 所以曲线C 的极坐标方程为2c o s 4s i n ρθθ=,[或24sin cos θρθ=]--------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分 (2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24si n ()2cos()2B παρπα+=+,即24c o ssinB αρα=,--------------------------------------------------7分∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OABS αα∆=⋅16sin 2α=16≥,----------------9分 △OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=.-------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<,--------------------------------------------------------------------------------------2分③当2x ≥时,()22(2)62f x x x x =--+=--< 解得2x ≥,---------------------------------------------------------------------------------------------3分 上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞;-----------------------------------5分(2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,------------6分设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需((2g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分 【解法2:当[2x ∈-时,()2f x x a x=--+,----------------------------------------------6分()f x x≥,即2(x a x x--+≥,即(2x a x+≤----------------------------------7分 ①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min61(2)22a x ≤-+=-+, 综上知,12a ≤-.----------------------------------------------------------------10分】。

【详解】广东省揭阳市2019届高三第一次模拟考试数学(文)试题含答案

【详解】广东省揭阳市2019届高三第一次模拟考试数学(文)试题含答案

2019年5月广东省揭阳市2019年高考一模数学(文科)试题本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A. B. C. D.【答案】C【分析】先求函数定义域得集合A,再根据交集定义求结果.【详解】因为,所以,选C.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.2.已知,是虚数单位,若,,则A. B. 1或-1 C. D.【答案】B【分析】根据复数的模得方程,解得.【详解】因为,所以,选B.【点睛】熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.3.已知向量,若,则的值为A. B. C. D.【答案】A【分析】先求,再根据向量数量积得方程,解得的值.【详解】因为,所以由得,选A. 【点睛】求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.4.已知函数,则A. 是奇函数,且在R上是增函数B. 是偶函数,且在R上是增函数C. 是奇函数,且在R上是减函数D. 是偶函数,且在R上是减函数【答案】C【分析】根据函数奇偶性定义以及指数函数单调性进行判断选择.【详解】因为定义域为,且,所以是奇函数,因为在上单调递减,在上单调递增,所以在上单调递减,综上选 C.【点睛】本题考查函数奇偶性定义以及指数函数单调性,考查基本分析判断能力.属基本题.5.已知曲线,则下面结论正确的是()A. 把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线.B. 把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线.C. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线.D. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线.【答案】C把上各点的横坐标缩短到原来的倍,纵坐标不变,可得的图象;再把得到的曲线向左平移个单位长度,得到曲线的图象,故选.6.已知数列满足(),,等比数列满足,,则的前6项和为A. B. C. D.【答案】B【分析】先求,再求等比数列公比,最后根据等比数列前项和公式求结果.【详解】因为,所以,因此等比数列公比,所以的前6项和为,选 B.【点睛】本题考查等比数列前项和公式,考查基本分析求解能力.属基本题.7.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确...的是A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟B. 第二种生产方式比第一种生产方式的效率更高C. 这40名工人完成任务所需时间的中位数为80D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.。

揭阳市2019届高三上学期期末学业水平调研数学(文)试题含答案

揭阳市2019届高三上学期期末学业水平调研数学(文)试题含答案

绝密★启用前揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1,2,3}A =-,{1,1}B =-,则A B =ðA .{1,2}B .{0,1,2}C .{0,2,3}D .{0,1,2,3}2.复数221z i i=++-的虚部是 A .3B .2C .2iD .3i3.“0a b ⋅≥”是“a 与b 的夹角为锐角”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数2()2xaf x -=,14f =,则(f = A .1 B .18- C .12D .185.记等比数列{}n a 的前n 项和为n S ,已知132,6S S =-=-,且公比1q ≠,则3a =A .-2B .2C .-8D .-2或-86. 若点(2,A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,则直线AF 的斜率为A B C . D7. 已知[0,]x π∈,且3sin2x =tan 2x = A .12- B .12 C .43D .28. 右图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比 2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元. 9.函数1()ln ||f x x=+的图象大致为10.若,x y 满足约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A . -1B .-2C .1D . 211.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为 A .πB .2πC .4πD .16π12.已知函数312()423x x f x x x e e=-+-,其中e 是自然对数的底, 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是A .(,1]-∞-B .1[,)2+∞C .1(1,)2-D .1[1,]2-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,)a x =、(1,2)b =--,若a b ⊥,则||a = _____;14.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为y =,则该双曲线的离心率为____;15. 如图,圆柱O 1 O 2 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱O 1 O 2 的概率为 ;OHCBAP16. 已知数列{}n a 满足119a =-,181n n n a a a +=+()n N *∈,则数列{}n a 中最大项的值为 .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分17.(12分)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2s i n c o s s i n a B A b A -=,(1)求A ;(2)当函数()sin )6f x B C π=-取得最大值时,试判断ABC ∆的形状.18.(12分)如图,在三棱锥P-ABC 中,正三角形PAC 所在平面与等腰三角形 ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H . (1)证明:PC ⊥平面BOH ;(2)若OH OB ==,求三棱锥A-BOH 的体积.19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周...培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率. 20.(12分)设椭圆()222210x y a b a b+=>>的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为1)2-. (1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.21.(12分)已知函数()()21322xf x x e x x =--+. (1)求函数()f x 的单调递减区间;(2)求实数a 的值,使得2x =是函数()()3213g x f x ax ax =+-唯一的极值点. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t=⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α. (1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值. 23. [选修4-5:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.:11. 三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=, S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 12. 由222'()42240x x f x x e e x x -=-++≥-+=≥,知()f x 在R 上单调递增,且31()422()3x x f x x x e e f x --=-++-=-,即函数()f x 为奇函数, 故2(1)(2)0f a f a -+≤2(1)(2)f a f a ⇔-≤-212a a ⇔-≤-2210a a ⇔+-≤,解得112a -≤≤. 二、填空题:16. 由181n n n a a +=+得18n n n n a a a +==+18n n a a +⇒-=, 即数列1{}n a 是公差为8的等差数列,故111(1)8817n n n a a =+-⨯=-,所以1817n a n =-, 当1,2n =时0n a <;当3n ≥时,0n a >,数列{}n a 递减,故最大项的值为317a =. 三、解答题17.解:(1)由正弦定理sin sin a bA B=得sin sin 0a B b A =≠,----------------------------------2分又2sin cos sin 0a B A b A -=, ∴2cos 1A =,即1cos 2A =,------------------------------------------------------------------------4分 ∵0A π<< ∴3A π=.-----------------------------------------------------------------------------6分(2)解法一:∵3A π= ∴23C B π=-,从而62C B ππ-=-, ------------------------------7分OHCB AP∴()sin sin()2f x B B π=-sin B B =------------------------------------------8分12(sin )2B B =+2sin()3B π=+---------------------------------------------10分 ∵33B πππ<+<,∴当6B π=时,函数()f x 取得最大值,这时632C ππππ=--=,即ABC ∆是直角三角形. -------------------------------------------12分【解法二:∵3A π=∴23B C π=-, -----------------------------------------------------------------7分∴2()sin())36f x C C ππ=-+-11sin cos )22C C C C =++- 2sin C =--------------------------------------------------------------------------------------10分 ∵203C π<<,∴当2C π=时,函数()f x 取得最大值,∴ABC ∆是直角三角形.------------------- --------------------------------------------------------12分】18.解:(1)∵AB =BC ,O 是AC 中点,∴ BO ⊥AC , -------------------------------------------------------------------------------------------1分 又平面PAC ⊥平面ABC ,且BO ⊂平面ABC ,平面PAC ∩平面ABC =AC , ∴ BO ⊥平面PAC ,----------------------------------------------3分 ∴ BO ⊥PC ,------------------------------------------------------4分 又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;---------------------------------------------6分 (2)解法1:∵△HAO 与△HOC 面积相等,∴A BOH B HAO B HOC V V V ---==,∵BO ⊥平面PAC , ∴13B HOC OHC V S OB -∆=⋅, -------------------------------------------------8分∵OH =,∠HOC=30° ∴1HC =,∴122OHC S CH OH ∆=⋅=,-----------------------------------------------------------------------10分∴11322B OCHV -=⨯=,即12A BOH V -=.----------------------------------------------------12分【其它解法请参照给分】19.解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时) ----------------------------------------2分2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)----------------------------------------4分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;---------------------------------------------6分(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=,--------------------------------------------------7分 来自乙组的人数为:620430⨯=,----------------------------------------------------------------8分 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取2人的不同方法数有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,)b c b d b e b f ,(,),(,),(,)c d c e c f ,(,),(,),(,)d e d f e f ,共15种,----------------------------------------------10分其中至少有1人来自甲组的有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,),b c b d b e b f共9种,故所求的概率93155P ==.----------------------------------------------------------------------12分20.解:(1)依题意知(,0)A a ,(0,)B b -,------------------------------------------------------------------1分 ∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点,∴1222a b =-=-,即1a b ==,--------------------------------3分 ∴椭圆的方程为2213x y +=.-----------------------------------------4分 (2)由(1)知(0,1)B -,依题意知直线BN 的斜率存在且小于0,设直线BN 的方程为1(0)y kx k =-<,则直线BM 的方程为:11y x k=--,------------------------------------------------------------5分由2233,1.x y y kx ⎧+=⎨=-⎩消去y 得22(13)60k x kx +-=,----------------------------------------------6分解得:2613N kx k=+,1N N y kx =-,---------------------------------------------------------------7分∴||BN =|N x ==∴|||N B BN x x =-26||13k k=+,------------------------------------------------8分【注:学生直接代入弦长公式不扣分!】在11y x k=--中,令0y =得x k =-,即(,0)M k -∴||BM =-----------------------------------------------------------------------------------9分在Rt △MBN 中,∵∠BMN=60°,∴|||BN BM =,26||13k k =+23|10k k -+=,解得||3k =,∵0k <,∴3k =-,------------------------------------------------------11分∴点M 的坐标为.---------------------------------------------------------------------------12分 21.解:(1)()()()21x f x x e '=--,-----------------------------------------------------------------1分令()0f x '<,得2010xx e -<⎧⎨->⎩或2010xx e ->⎧⎨-<⎩,-----------------------------------------------------2分由2010x x e -<⎧⎨->⎩得02x <<,而不等式组2010x x e ->⎧⎨-<⎩的解集为φ-----------------------------3分∴函数()f x 的单调递减区间为()0,2;----------------------------------------------------------4分 (2)依题意得()()()()()221x g x f x ax x x e ax ''=+-=-+-,显然()20g '=,---5分记()1xh x e ax =+-,x R ∈,则()00h =,当0a =时,()110h e =->;当0a ≠时,110a h e a ⎛⎫=> ⎪⎝⎭;由题意知,为使2x =是函数()g x 唯一的极值点,则必须()0h x ≥在R 上恒成立;----------7分只须()min 0h x ≥,因'()xh x e a =+,①当0a ≥时,'()0xh x e a =+>,即函数()h x 在R 上单调递增,而()1110h a e-=--<,与题意不符; --------------------------------------------------------8分 ②当0a <时,由()0h x '<,得()ln x a <-,即()h x 在()(),ln a -∞-上单调递减,由()0h x '>,得()ln x a >-,即()h x 在()()ln ,a -+∞上单调递增,故()()()min ln h x h a =-, ------------------------------------------------------------------------10分 若1a =-,则()()m i n ()00h x h x h ≥==,符合题意;------------------------------------11分 若1a ≠-,则()()()min 00()ln h h x h a =≥=-,不合题意;综上所述,1a =-.----------------------------------------------------------------------------------12分 【或由()min 0h x ≥,及(0)0h =,得()min (0)h h x =,∴()ln 0a -=,解得1a =-. -----------------------------------------------------------------12分】 22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=, 所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] --------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,--------------------------------------------------7分∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OAB S αα∆=⋅16sin 2α=16≥, ----------------9分△OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=. -------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分 ②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<<,--------------------------------------------------------------------------------------2分 ③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,---------------------------------------------------------------------------------------------3分上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞;-----------------------------------5分(2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,------------6分设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需(2)0(2)0g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,----------------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤----------------------------------7分①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分 ②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min61(2)22a x ≤-+=-+,综上知,12a ≤-.----------------------------------------------------------------10分】。

2019年揭阳市调考文科数学题

2019年揭阳市调考文科数学题

绝密★启用前2019—2019学年度揭阳市高中毕业班期末质量测试数学试题(文科)本试卷共4页,21小题,满分150分.考试用时l20分钟. 参考公式:锥体的体积公式13V Sh =,其中S 表示底面积,h 表示高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0A x x =≥,{0,1,2}B =,则A .AB ⊂≠B .B A ⊂≠C .A B B =UD .A B =∅I2.已知复数z 满足(1)2i z -=,则z 为A. 1i +B. 1i -C. 1i -+D. 1i -- 3.已知幂函数()y f x =的图象过点11(,)28--,则2log (4)f 的值为A. 3B. 4C.6D.-64.若(,3),(,2)a xb x ==-,则“x =”是“a b ⊥”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.如果等差数列{}n a 中,35712a a a ++=,那么129a a a +++的值为A.18B.27C.36D.54 6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 A.若l m ⊥,m α⊂,则l α⊥ B.若l α⊥,l m //,则m α⊥ C.若l α//,m α⊂,则l m // D.若l α//,m α//,则l m // 7.已知11tan ,tan()43ααβ=-=则tan β=. A.711 B.117- C. 113- D.113 8.已知双曲线221412x y -=上一点M 的横坐标是3,则点M 到双曲线左焦点的距离是A.4B.1)C. 1)D.8俯视图左视图主视图9.在ABC ∆中,若1c =,a =23A π∠=,则b 为. A.1 B.2 10.已知(){},|8,0,0,x y x y x y Ω=+≤≥≥(){},|2,0,30A x y x y x y =≤≥-≥,若向区域Ω上随机投1个点P ,则点P 落入区域A 的概率为 A.14 B.716 C. 34 D.316二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.命题P :“2,12x Rx x ∃∈+<”的否定P ⌝为: 、P ⌝的真假为 12.如果执行右面的框图,输入5N =,则输出的数S= .第13题图 第12题图13.四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如上图所示,根据图中的信息,在四棱锥P ABCD -的任两个顶点的连线中,互相垂直的异面直线对数为 . (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题) 已知曲线C 的参数方程为1cos ,sin .x y θθ=+⎧⎨=⎩(θ为参数),则曲线C上的点到直线220x y -+=的距离的最大值为 .15.(几何证明选讲选做题) 已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =, 则切线AD 的长为 ____ _.三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分)24131452[185,190)[180,185)[175,180)[170,175)[165,170)[160,165)频数身高(cm )身高(cm )频数[150,155)[165,170)[170,175)[175,180)[155,160)[160,165)1712631男生样本频率分布直方图0.02频率/cm甲D CBAF E乙DBA已知函数()cos f x x x ππ=+, x R ∈. (1)求函数()f x 的最小正周期和值域; (2)求函数()f x 的单调增区间. 17. (本题满分12分)如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=105ADC ∠=,AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱 AC 、AD 的中点.(1)求证:DC ⊥平面ABC ;(2)设CD a =,求三棱锥A -BFE 的体积. 18.(本题满分14分)为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2. 表1:男生身高频数分布表表2::女生身高频数分布表(1)求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高在165180cm :的概率;(3)从样本中身高在180:190cm 之间的男生中任选2人,求至少有1人身高在185:190cm 之间的概率。

揭阳市2019届高三上学期期末数学文科试卷解析

揭阳市2019届高三上学期期末数学文科试卷解析

【点睛】本小题主要考查利用基本元的思想求等比数列的基本量a1 ,q、通项公式和前 n 项和.基本元的 思想是在等比数列中有 5 个基本量a1 ,q,an ,Sn ,n,利用等比数列的通项公式或前 n 项和公式,结合已知条 件列出方程组,通过解方程组即可求得数列a1 ,q,进而求得数列其它的一些量的值. 6.若点 A(2,2 2)在抛物线 C:y2 = 2px 上,记抛物线 C 的焦点为 F,则直线 AF 的斜率为( A.
21+i
1
揭阳市 2019 届高三上学期期末数学文科试卷解析
A. 充分不必要条件 【答案】B 【解析】 【分析】 将两个条件相互推导,根据能否推导的情况,确定正确的选项. 【详解】当a ⋅ b = 0 时,a,b的夹角为直角,故“a ⋅ b ≥ 0”不能推出“a与b的夹角为锐角”.当“a 与b的夹角为锐角”时,a ⋅ b = a ⋅ b ⋅ cosa,b > 0,即能推出“a ⋅ b ≥ 0”.综上所述,“a ⋅ b ≥ 0” 是“a与b的夹角为锐角”的必要不充分条件. 【点睛】本小题主要考查充分、必要条件的判断,属于基础题.解题的方法是将两个条件相互推导,再 根据充要条件的概念得出正确选项. 4.已知函数 f(x) = 2x A. 1 B. − 8
2
)
B. {0, 1, 2}
C. {0, 2, 3}
D. {0,1, 2, 3}
)
【答案】B 【解析】 【分析】 用复数除法运算和加法运算,求得 z 的标准形式,由此求得虚部. 【详解】依题意 z = 1−i1+i + 2 + i = 1 + i + 2 + i = 3 + 2i,故虚部为 2,所以选 B. 【点睛】本小题主要考查复数除法运算,考查复数的加法以及复数虚部的概念,属于基础题. 3.“a ⋅ b ≥ 0”是“a与b的夹角为锐角”的( )

广东省揭阳市2018-2019学年高中毕业班学业水平考试文科数学试题(名师解析)

广东省揭阳市2018-2019学年高中毕业班学业水平考试文科数学试题(名师解析)

揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.【答案】C【解析】【分析】根据补集的概念,求得集合在集合范围内的补集.【详解】在集合中,集合没有的元素是,故.故选C.【点睛】本小题主要考查集合补集的概念及运算,考查全集的概念,属于基础题.2.复数的虚部是( )A. 3B. 2C.D.【答案】B【解析】【分析】用复数除法运算和加法运算,求得的标准形式,由此求得虚部.【详解】依题意,故虚部为,所以选B.【点睛】本小题主要考查复数除法运算,考查复数的加法以及复数虚部的概念,属于基础题.3.“”是“与的夹角为锐角”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】将两个条件相互推导,根据能否推导的情况,确定正确的选项.【详解】当时,的夹角为直角,故“”不能推出“与的夹角为锐角”.当“与的夹角为锐角”时,,即能推出“”.综上所述,“”是“与的夹角为锐角”的必要不充分条件.【点睛】本小题主要考查充分、必要条件的判断,属于基础题.解题的方法是将两个条件相互推导,再根据充要条件的概念得出正确选项.4.已知函数,,则( )A. 1B.C.D.【答案】D【解析】【分析】利用求得的值,即求得函数的解析式,由此来求的值.【详解】依题意,故,解得.故,所以.故选D.【点睛】本小题主要考查函数解析式的求法——待定系数法,考查函数求值,属于基础题.5.记等比数列的前项和为,已知,且公比,则=( )A. -2B. 2C. -8D. -2或-8【答案】C【解析】【分析】利用基本元的思想,将已知条件转化为的形式,解方程组求得的值,进而求得的值.【详解】依题意,解得,故,故选C.【点睛】本小题主要考查利用基本元的思想求等比数列的基本量、通项公式和前项和.基本元的思想是在等比数列中有个基本量,利用等比数列的通项公式或前项和公式,结合已知条件列出方程组,通过解方程组即可求得数列,进而求得数列其它的一些量的值.6.若点在抛物线上,记抛物线的焦点为,则直线的斜率为( )A. B. C. D.【答案】C【解析】【分析】将点的坐标代入抛物线方程,求得的值,由此求得抛物线焦点的坐标,根据两点求斜率的公式求得直线的斜率.【详解】将坐标代入抛物线方程得,故焦点坐标,直线的斜率为,故选C.【点睛】本小题主要考查待定系数法求抛物线的方程,考查抛物线的几何性质,考查已知两点坐标求直线斜率的公式.属于基础题.7.已知,且,则=( )A. B. C. D. 2【答案】B【解析】【分析】先求得的范围,用二倍角公式以及同角三角函数的基本关系式化简已知条件,由此求得的值.【详解】由于,所以,故.所以,即,即,故.【点睛】本小题主要考查二倍角公式以及同角三角函数的基本关系式,属于基础题.8.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是( )A. 从2000年至2016年,该地区环境基础设施投资额逐年增加;B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番;D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】【分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.9.函数的图象大致为( )A. B. C. D.【答案】A【解析】【分析】分别令,根据的函数值,对选项进行排除,由此得出正确选项.【详解】由四个选项的图像可知,令,,由此排除C选项.令,,由此排除B选项.由于,排除D选项.故本小题选A.【点睛】本小题主要考查函数图像的判断,考查利用特殊点排除的方法,属于基础题.10.若满足约束条件,则的最小值为( )A. -1B. -2C. 1D. 2【答案】A【解析】【分析】画出可行域,通过向下平移基准直线到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知,目标函数在点处取得最小值,且最大值为.故选D.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.11.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为( )A. B. C. D.【答案】C【解析】【分析】有三视图得到几何体为圆锥,设出圆锥的底面半径和母线长,根据主视图的周长得到一个等量关系,然后利用基本不等式求得侧面积的最大值.【详解】由三视图知,该几何体为圆锥,设底面的半径为r,母线的长为,则,又S侧=(当且仅当时“=”成立).故选C.【点睛】本小题主要考查由三视图还原为原图,考查圆锥的侧面积计算公式,考查利用基本不等式求最值,属于基础题.12.已知函数,其中是自然对数的底,若,则实数的取值范围是( )A. B. C. D.【答案】D【解析】【分析】首先对函数求导,然后利用基本不等式证得,利用函数奇偶性的定义判断函数为奇函数,在结合奇偶性以及单调性化简,得到关于的一元二次不等式,由此求得的取值范围.【详解】由,知在R 上单调递增,且,即函数为奇函数,故 ,解得.【点睛】本小题主要考查函数导数与单调性,考查利用基本不等式求最小值,考查函数的奇偶性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量、,若,则 _____;【答案】【解析】【分析】由于两个向量垂直,数量积为零,由此列方程,解方程求得的值,进而求得.【详解】由于,故,故.【点睛】本小题主要考查平面向量垂直的坐标表示,考查平面向量模的运算,属于基础题.14.已知双曲线 的一条渐近线方程为,则该双曲线的离心率为____;【答案】2【解析】【分析】根据渐近线方程求得的值,根据离心率的公式求得双曲线的离心率.【详解】由于双曲线的一条渐近线为,故.所以双曲线离心率.【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.15.如图,圆柱O1 O2内接于球O,且圆柱的高等于球O的半径,则从球O内任取一点,此点取自圆柱O1 O2的概率为_________;【答案】【解析】【分析】设出球的半径,利用勾股定理求得圆柱的底面半径,分别计算圆柱和球的体积,然后利用几何概型的概率计算公式,求得所求的概率.【详解】设球的半径为,依题意可知,圆柱底面半径,故圆柱的体积为,而球的体积为,故所求概率为.【点睛】本小题主要考查有关球的内接几何体的问题,考查体积型的集合概型概率计算,属于基础题.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间).有关球内接几何体的问题,主要是构造直角三角形,利用勾股定理来计算长度.16.已知数列满足,,则数列中最大项的值为______.【答案】【解析】【分析】先将转化为,证得是等差数列,由此求得的通项公式,进而求得的通项公式.计算的值,利用数列的单调性求得的最大项.【详解】由得,即数列是公差为8的等差数列,故,所以,当时;当时,,数列递减,故最大项的值为.【点睛】本小题主要考查已知递推公式求数列的通项公式,考查等差数列的定义以及通项公式,考查数列的单调性以及最值,属于中档题.解题的突破口在于将题目所给的递推公式,转化为等差数列的形式,根据等差数列的通项公式间接求得的通项公式.数列的最大值一般是利用数列的单调性来求.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分17.在中,内角、、所对的边分别是、、,且,(1)求;(2)当函数取得最大值时,试判断的形状.【答案】(1)(2)直角三角形【解析】【分析】(1)利用正弦定理化简已知条件得到,由此求得.(2)化简,故时取得最大值,此时三角形为直角三角形.【详解】解:(1)由正弦定理得,又,∴,即,∵∴.(2)∵∴,∴∵,∴当时,函数取得最大值,∴是直角三角形.【点睛】本小题主要考查利用正弦定理进行边角互化,考查三角恒等变换,考查三角函数最值等知识.属于中档题18.如图,在三棱锥P-ABC中,正三角形PAC所在平面与等腰三角形A BC所在平面互相垂直,AB=BC,O是AC 中点,OH⊥PC于H.(1)证明:PC⊥平面BOH;(2)若,求三棱锥A-BOH的体积.【答案】(1)详见解析(2)【解析】【分析】(1)先证明平面,得到,结合已知,证得平面.(2)将所求转化为,利用(1)的结论得到三棱锥的高为,由此计算得三棱锥的体积.【详解】解:(1)∵AB=BC,O是AC中点,∴BO⊥AC,又平面PAC⊥平面ABC,且平面ABC,平面PAC∩平面ABC=AC,∴BO⊥平面PAC,∴BO⊥PC,又OH⊥PC,BO∩OH=O,∴PC⊥平面BOH;(2)∵△HAO与△HOC面积相等,∴,∵BO⊥平面PAC,∴,∵,∠HOC=30°∴,∴,∴,即.【点睛】本小题主要考查线面垂直的证明,考查三棱锥体积的求法,属于中档题.19.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表:第一周第二周第三周第四周甲组2025105乙组8162016(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.【答案】(1)方式一(2)【解析】【分析】(1)用总的受训时间除以,得到平均受训时间.由此判断出方式一效率更高.(2)利用分层抽样的知识,计算得来自甲组人,乙组人.再利用列举法求得“从这人中随机抽取人,求这人中至少有人来自甲组的概率”.【详解】解:(1)设甲乙两组员工受训的平均时间分别为、,则(小时)(小时)据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因,据此可判断培训方式一比方式二效率更高;(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:,来自乙组的人数为:,记来自甲组的2人为:;来自乙组的4人为:,则从这6人中随机抽取2人的不同方法数有:,,,,共15种,其中至少有1人来自甲组的有:,共9种,故所求的概率.【点睛】本小题主要考查平均数的计算,考查分层抽样,考查古典概型的计算方法,属于中档题.20.设椭圆的右顶点为A,下顶点为B,过A、O、B(O为坐标原点)三点的圆的圆心坐标为.(1)求椭圆的方程;(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.【答案】(1)(2)【解析】【分析】(1)根据直径所对圆周角为直角可知为直径,根据圆心坐标求得的值进而求得椭圆的方程.(2)由(1)求得点的坐标,设出直线的方程,同时得到直线的方程.联立直线的方程和椭圆方程,解出点的坐标,由此求得的表达式.通过直线的方程求得点的坐标,进而求得的表达式,利用得到,由此列方程解得的值,从而求得点的坐标.【详解】解:(1)依题意知,,∵△AOB为直角三角形,∴过A、O、B三点的圆的圆心为斜边AB的中点,∴,即,∴椭圆的方程为.(2)由(1)知,依题意知直线BN的斜率存在且小于0,设直线BN的方程为,则直线BM的方程为:,由消去y得,解得:,,∴∴,在中,令得,即∴,在Rt△MBN中,∵∠BMN=60°,∴,即,整理得,解得,∵,∴,∴点M的坐标为.【点睛】本小题主要考查圆的几何性质,考查椭圆的标准方程的求法,考查直线和椭圆的位置关系,属于较难的题目.圆的几何性质主要考查了直径所对的圆周角是直角.直线和椭圆的位置关系,主要是联立直线方程和椭圆方程,解出直线和椭圆交点的坐标.两条斜率存在的直线相互垂直时,斜率乘积为,这个必须熟记.21.已知函数.(1)求函数的单调递减区间;(2)求实数的值,使得是函数唯一的极值点.【答案】(1)(2)-1【解析】【分析】(1)对函数求导并因式分解后,令导数小于零求得函数的单调递减区间.(2)先求出的表达式并因式分解得到,注意到,令通过的导数结合“是函数唯一的极值点”,对分成两类进行讨论,【详解】解:(1),令,得或,由得,而不等式组的解集为∴函数的单调递减区间为;(2)依题意得,显然,记,,则,当时,;当时,;由题意知,为使是函数唯一的极值点,则必须在上恒成立;只须,因,①当时,,即函数在上单调递增,而,与题意不符;②当时,由,得,即在上单调递减,由,得,即在上单调递增,故,若,则,符合题意;若,则,不合题意;综上所述,.【或由,及,得,∴,解得.】【点睛】本小题主要考查利用导数求函数的单调递减区间,考查利用导数求解有关函数极值点的问题,综合性较强,属于难题.利用导数求函数的单调区间,要对函数求导然后因式分解,得到的式子往往是一次函数、二次函数,或者类似二次函数的因式,可以类比二次函数的图像得到函数的单调区间.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点(不同于点O),且的倾斜角为锐角.(1)求曲线C和射线的极坐标方程;(2)求△OAB的面积的最小值,并求此时的值.【答案】(1)C的极坐标方程为,[或];的极坐标方程为;(2)【解析】【分析】(1)消去参数,求得曲线的普通方程,再转为极坐标方程.射线过原点,根据角度直接写出的极坐标方程.(2)利用极坐标方程求得的表达式,求得三角形面积的表达式,利用三角函数的的最值求得三角形面积的最小值,同时求得的值.【详解】解:(1)由曲线C的参数方程,得普通方程为,由,,得,所以曲线C的极坐标方程为,[或]的极坐标方程为;(2)依题意设,则由(1)可得,同理得,即,∴∵∴,∴,△OAB的面积的最小值为16,此时,得,∴.【点睛】本小题主要考查参数方程转化为极坐标方程,考查利用极坐标求三角形的面积,考查三角函数求最值,属于中档题.23.已知函数.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】【分析】(1)当时,利用零点分段法去绝对值,解一元一次不等式求得不等式的解集.(2)当时,对函数去绝对值后,构造一次函数,一次函数恒大于或等于零,则需区间端点的函数值为非负数,由此列不等式组,解不等式组求得的取值范围.【详解】解:(1)①当时,,解得,②当时,,解得,③当时,解得,综上知,不等式的解集为.(2)当时,,设,则,恒成立,只需,即,解得【点睛】本小题主要考查利用零点分段法解含有两个绝对值的不等式,考查化归与转化的数学思想方法,属于中档题.。

广东揭阳市2019届高三上学期期末数学文科试卷及解析

广东揭阳市2019届高三上学期期末数学文科试卷及解析

揭阳市2019届高三上学期期末数学文科试卷一、选择题:本题共12小题,每小题5分,共60分. 1.已知集合{1,0,1,2,3}A =-,{1,1}B =-,则A B =ðA .{1,2}B .{0,1,2}C .{0,2,3}D .{0,1,2,3}2.复数221z i i=++-的虚部是 A .3B .2C .2iD .3i3.“0a b ⋅≥”是“a 与b 的夹角为锐角”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知函数2()2xaf x -=,1(3)4f =,则(2)f -= A .1B .18-C .12D .185.记等比数列{}n a 的前n 项和为n S ,已知132,6S S =-=-,且公比1q ≠,则3a =A .-2B .2C .-8D .-2或-86. 若点(2,22)A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,则直线AF 的斜率为A .24 B .423 C .22 D .2237. 已知[0,]x π∈,且3sin1sin 2x x =+,则tan 2x= A .12- B .12 C .43D .28. 右图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础 设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比 2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5y t =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元. 9.函数1()ln ||f x x x=+的图象大致为10.若,x y 满足约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A . -1B .-2C .1D . 211.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为 A .πB .2πC .4πD .16π12.已知函数312()423x x f x x x e e=-+-,其中e 是自然对数的底, 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是A .(,1]-∞-B .1[,)2+∞C .1(1,)2-D .1[1,]2-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,)a x =、(1,2)b =--,若a b ⊥,则||a = _____;1 1-1-1 xy A .1 1 -1-1xy B . 1 1 -1-1xy C .1 1 -1-1 xy D .OHCBAP14.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为3y x =,则该双曲线的离心率为____;15. 如图,圆柱O 1 O 2 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱O 1 O 2 的概率为 ; 16. 已知数列{}n a 满足119a =-,181n n n a a a +=+()n N *∈,则数列{}n a 中最大项的值为 . 三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答. (一)必考题:共60分 17.(12分)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2sin cos sin 0a B A b A -=, (1)求A ;(2)当函数()sin 3sin()6f x B C π=+-取得最大值时,试判断ABC ∆的形状.18.(12分)如图,在三棱锥P-ABC 中,正三角形P AC 所在平面与等腰三角形ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H .(1)证明:PC ⊥平面BOH ;(2)若3OH OB ==,求三棱锥A-BOH 的体积. 19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周...培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率. 20.(12分)设椭圆()222210x y a b a b+=>>的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为31(,)22-. (1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.21.(12分)已知函数()()21322x f x x e x x =--+. (1)求函数()f x 的单调递减区间;(2)求实数a 的值,使得2x =是函数()()3213g x f x ax ax =+-唯一的极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22. [选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t=⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α.(1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值. 23. [选修45:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数. 一、选择题 题序 1 2 3 4 5 6 7 8 9 10 11 12 答案 CBBDCCBDAACD解析:11. 三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=,S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 12. 由222'()4224240x x x x f x x e e x e e x --=-++≥-+⋅=≥,知()f x 在R 上单调递增,且31()422()3x x f x x x e e f x --=-++-=-,即函数()f x 为奇函数,故2(1)(2)0f a f a -+≤2(1)(2)f a f a ⇔-≤-212a a ⇔-≤-2210a a ⇔+-≤, 解得112a -≤≤. 二、填空题题序 1314 1516答案2解析:16. 由181n n n a a a +=+得181118n n n n a a a a ++==+1118n na a +⇒-=,5291617即数列1{}na 是公差为8的等差数列,故111(1)8817n n n a a =+-⨯=-,所以1817n a n =-, 当1,2n =时0n a <;当3n ≥时,0n a >,数列{}n a 递减,故最大项的值为317a =. 三、解答题17.解:(1)由正弦定理sin sin a bA B=得sin sin 0a B b A =≠,----------------------------------2分 又2sin cos sin 0a B A b A -=, ∴2cos 1A =,即1cos 2A =,------------------------------------------------------------------------4分 ∵0A π<< ∴3A π=.-----------------------------------------------------------------------------6分(2)解法一:∵3A π=∴23C B π=-,从而62C B ππ-=-, ------------------------------7分 ∴()sin 3sin()2f x B B π=+-sin 3cos B B =+------------------------------------------8分132(sin cos )22B B =+2sin()3B π=+---------------------------------------------10分∵33B πππ<+<,∴当6B π=时,函数()f x 取得最大值,这时632C ππππ=--=,即ABC ∆是直角三角形. -------------------------------------------12分【解法二:∵3A π=∴23B C π=-, -----------------------------------------------------------------7分 ∴2()sin()3sin()36f x C C ππ=-+- 3131cos sin 3(sin cos )2222C C C C =++- 2sin C =--------------------------------------------------------------------------------------10分∵203C π<<,∴当2C π=时,函数()f x 取得最大值, ∴ABC ∆是直角三角形.------------------- --------------------------------------------------------12分】 18.解:(1)∵AB =BC ,O 是AC 中点,OHCBAP∴ BO ⊥AC , -------------------------------------------------------------------------------------------1分 又平面P AC ⊥平面ABC ,且BO ⊂平面ABC ,平面P AC ∩平面ABC =AC ,∴ BO ⊥平面P AC ,----------------------------------------------3分∴ BO ⊥PC ,------------------------------------------------------4分 又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;---------------------------------------------6分 (2)解法1:∵△HAO 与△HOC 面积相等,∴A BOH B HAO B HOC V V V ---==, ∵BO ⊥平面P AC , ∴13B HOC OHC V S OB -∆=⋅, -------------------------------------------------8分 ∵3OH =,∠HOC=30° ∴1HC =, ∴1322OHC S CH OH ∆=⋅=,-----------------------------------------------------------------------10分 ∴1313322B OCH V -=⨯⨯=,即12A BOH V -=.----------------------------------------------------12分【其它解法请参照给分】19.解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时) ----------------------------------------2分2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)----------------------------------------4分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;---------------------------------------------6分 (2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=,--------------------------------------------------7分 来自乙组的人数为:620430⨯=,----------------------------------------------------------------8分 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取 2人的不同方法数有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,)b c b d b e b f ,(,),(,),(,)c d c e c f ,(,),(,),(,)d e d f e f ,共15种,----------------------------------------------10分其中至少有1人来自甲组的有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,),b c b d b e b f共9种,故所求的概率93155P ==.----------------------------------------------------------------------12分 20.解:(1)依题意知(,0)A a ,(0,)B b -,------------------------------------------------------------------1分∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点,∴31,2222a b =-=-,即3,1a b ==,--------------------------------3分 ∴椭圆的方程为2213x y +=.-----------------------------------------4分 (2)由(1)知(0,1)B -,依题意知直线BN 的斜率存在且小于0,设直线BN 的方程为1(0)y kx k =-<, 则直线BM 的方程为:11y x k=--,------------------------------------------------------------5分 由2233,1.x y y kx ⎧+=⎨=-⎩消去y 得22(13)60k x kx +-=,----------------------------------------------6分解得:2613N kx k=+,1N N y kx =-,---------------------------------------------------------------7分 ∴22||(1)N N BN x y =++22221||N N N x k x k x =+=+∴2||1||N B BN k x x =+-226||113k k k =+⋅+,------------------------------------------------8分【注:学生直接代入弦长公式不扣分!】在11y x k=--中,令0y =得x k =-,即(,0)M k - ∴2||1BM k =+,-----------------------------------------------------------------------------------9分 在Rt △MBN 中,∵∠BMN=60°,∴||3||BN BM =, 即2226||13113k k k k+⋅=⋅++,整理得2323||10k k -+=, 解得3||3k =,∵0k <,∴33k =-,------------------------------------------------------11分∴点M 的坐标为3(,0)3.---------------------------------------------------------------------------12分 21.解:(1)()()()21x f x x e '=--,-----------------------------------------------------------------1分令()0f x '<,得2010x x e -<⎧⎨->⎩或2010x x e ->⎧⎨-<⎩,-----------------------------------------------------2分由2010xx e -<⎧⎨->⎩得02x <<,而不等式组2010xx e ->⎧⎨-<⎩的解集为φ-----------------------------3分∴函数()f x 的单调递减区间为()0,2;----------------------------------------------------------4分 (2)依题意得()()()()()221x g x f x ax x x e ax ''=+-=-+-,显然()20g '=,---5分记()1x h x e ax =+-,x R ∈,则()00h =,当0a =时,()110h e =->;当0a ≠时,110a h e a ⎛⎫=> ⎪⎝⎭;由题意知,为使2x =是函数()g x 唯一的极值点,则必须()0h x ≥在R 上恒成立;----------7分只须()min 0h x ≥,因'()x h x e a =+,①当0a ≥时,'()0x h x e a =+>,即函数()h x 在R 上单调递增, 而()1110h a e-=--<,与题意不符; --------------------------------------------------------8分 ②当0a <时,由()0h x '<,得()ln x a <-,即()h x 在()(),ln a -∞-上单调递减, 由()0h x '>,得()ln x a >-,即()h x 在()()ln ,a -+∞上单调递增,故()()()min ln h x h a =-, ------------------------------------------------------------------------10分 若1a =-,则()()min ()00h x h x h ≥==,符合题意;------------------------------------11分 若1a ≠-,则()()()min 00()ln h h x h a =≥=-,不合题意;综上所述,1a =-.----------------------------------------------------------------------------------12分 【或由()min 0h x ≥,及(0)0h =,得()min (0)h h x =,∴()ln 0a -=,解得1a =-. -----------------------------------------------------------------12分】 22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=, 所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] --------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,--------------------------------------------------7分 ∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OAB S αα∆=⋅16sin 2α=16≥, ----------------9分 △OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=. -------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分 ②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<<,--------------------------------------------------------------------------------------2分 ③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,---------------------------------------------------------------------------------------------3分上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞;-----------------------------------5分 (2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,------------6分 设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需(2)0(2)0g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分广东揭阳市2019届高三上学期期末数学文科试卷及解析11 即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,----------------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤----------------------------------7分 ①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min 61(2)22a x ≤-+=-+, 综上知,12a ≤-.----------------------------------------------------------------10分】。

广东省揭阳市2019届高三上学期期末学业水平调研数学(文)试题(解析版)

广东省揭阳市2019届高三上学期期末学业水平调研数学(文)试题(解析版)

广东省揭阳市2019届高三上学期期末学业水平调研数学(文)试题(解析版)一、选择题(本大题共12小题,共60.0分)1.已知集合0,1,2,,,则A. B. 1, C. 2, D. 1,2,【答案】C【解析】解:0,1,2,,;2,.故选:C.进行补集的运算即可.考查列举法的定义,以及补集的运算.2.复数的虚部是A. 3B. 2C. 2iD. 3i【答案】B【解析】解:,复数的虚部是2.故选:B.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.“”是“与的夹角为锐角”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】解:与的夹角为锐角,反之不成立,夹角可能为0.“”是“与的夹角为锐角”的必要不充分条件.故选:B.与的夹角为锐角,反之不成立,夹角可能为即可判断出结论.本题考查了向量的夹角、数量积运算性质、简易逻辑,考查了推理能力与计算能力,属于基础题.4.已知函数,,则A. 1B.C.D.【答案】D【解析】解:根据题意,函数,若,则,解可得:,则,故选:D.根据题意,由函数的解析式可得,则,解可得a的值,将代入函数的解析式分析可得答案.本题考查函数解析式的计算,关键是求出a的值,确定函数的解析式.5.记等比数列的前n项和为,已知,,且公比,则A. B. 2 C. D. 或【答案】C【解析】解:;,设等比数列的公比为q,则:;;;解得;.故选:C.根据条件可得出,设公比为q,则根据得出,根据即可解出q的值,从而求出的值.考查等比数列的通项公式,和前n项和公式,以及数列的前n项和的定义.6.若点在抛物线C:上,记抛物线C的焦点为F,则直线AF的斜率为A. B. C. D.【答案】C【解析】解:把代入,得,即.抛物线方程为,抛物线焦点,.故选:C.把点A的坐标代入抛物线方程求得p,得到焦点坐标,再由斜率公式求解.本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,是基础题.7.已知,且,则A. B. C. D. 2【答案】B【解析】解:由,得,即,与联立,又,得,,.故选:B.由已知结合平方关系求得,的值,再化切为弦求解.本题考查三角函数的化简求值,考查倍角公式及同角三角函数基本关系式的应用,是基础题.8.如图是某地区2000年至2016年环境基础设施投资额单位:亿元的折线图则下列结论中表述不正确的是A. 从2000年至2016年,该地区环境基础设施投资额逐年增加B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据时间变量t的值依次为1,2,,建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为亿元.【答案】D【解析】解:对于A,由图象可知,投资额逐年增加,故A正确;对于B,2000年至2004年的投资总额为亿元,小于2011年的129亿元,故B 正确;对于C,2004年的投资额为37亿元,2012年该地区基础设施的投资额为148,等于2004年的投资额翻了两番,故C正确;对于D,在线性回归模型中,取,可得亿元,故D错误.故选:D.根据图象所给数据,对四个选项逐一进行分析得答案.本题考查线性回归方程的求法,考查计算能力,是基础题.9.函数的图象大致为A. B.C. D.【答案】A【解析】解:当时,,由此排除C,D;当时,,,当时,,单调递减,当时,,单调递增.图象A符合.故选:A.由时,,排除C,D;再由导数研究函数的单调性即可求得答案.本题考查函数的图象,考查利用导数研究函数的单调性,是中档题.10.若x,y满足约束条件,则的最小值为A. B. C. 1 D. 2【答案】A【解析】解:x,y满足约束条件的平面区域如下图所示:平移直线,由图易得,当,时,即经过A时,目标函数的最小值为:.故选:A.先根据约束条件画出平面区域,然后平移直线,当过点时,直线在y轴上的截距最大,从而求出所求.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.11.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为A.B.C.D.【答案】C【解析】解:由三视图知,该几何体为圆锥,设底面圆的半径为r,母线的长为l,则,即;圆锥的侧面积为,当且仅当时“”成立;侧圆锥的侧面积最大值为.故选:C.由三视图知该几何体为圆锥,设出底面圆半径和母线长,利用基本不等式求出圆锥侧面积的最大值.本题考查了圆锥的三视图与应用问题,是基础题.12.已知函数,其中e是自然对数的底,若,则实数a的取值范围是A. B. C. D.【答案】D【解析】由,知在R上单调递增,且,即函数为奇函数,故,解得.故选:D.求导化简即知在R上单调递增,再判断函数的奇偶性,最后利用增减性和奇偶性求得实数a的取值范围本题主要考察导数在研究函数单调性的运用的知识点,主要运用求导法思想.二、填空题(本大题共4小题,共20.0分)13.已知向量、,若,则______;【答案】【解析】解:;;;;.故答案为:.根据即可得出,进行数量积的坐标运算即可求出x,进而求出的值.考查向量垂直的充要条件,以及向量数量积的坐标运算.14.已知双曲线的一条渐近线为,那么双曲线的离心率为______.【答案】2【解析】解:双曲线的一条渐近线方程为,由题意可得,即为,,可得.故答案为:2.求出双曲线的一条渐近线方程,由题意可得,由a,b,c的关系和离心率公式计算即可得到所求值.本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程,考查运算能力,属于基础题.15.如图,圆柱内接于球O,且圆柱的高等于球O的半径,则从球O内任取一点,此点取自圆柱的概率为______;【答案】【解析】解:由已知有:在中有:,为球的半径,则,,又“点取自圆柱的概率为柱球故答案为:.由几何概型中的体积型,可得:“点取自圆柱的概率为柱,再求体积之比即可.球本题考查了几何概型中的体积型,属简单题.16.已知数列满足,,则数列中最大项的值为______.【答案】【解析】解:由,得,数列是以为首项,以8为公差的等差数列,则,则.当时,;当时,;当时,.当时,数列为递减数列,则数列中最大项的值为.故答案为:.把已知数列递推式两边取倒数,可得数列是以为首项,以8为公差的等差数列,求其通项公式,得到数列的通项公式,利用函数的单调性求解.本题考查数列递推式,考查等差关系的确定,训练了等差数列通项公式的求法,考查数列的函数特性,是中档题.三、解答题(本大题共7小题,共70.0分)17.在中,内角A、B、C所对的边分别是a、b、c,且,求A;当函数取得最大值时,试判断的形状.【答案】解:由正弦定理得,又,,即,;解法一:,从而,,,当时,函数取得最大值,这时,即是直角三角形;解法二:,,,当时,函数取得最大值,是直角三角形.【解析】利用边角互化的思想,可求出的值,再利用,可得出角A的值;解法一:利用并利用内角和定理,通过两角差的正弦公式与辅助角公式将函数转化为角B为自变量的三角函数,利用正弦函数的有界性求出的最大值,并求出角B的值,再利用内角和定理求出角C的值,从而可判断处的形状;解法二:利用,直接代入函数解析式,利用诱导公式与辅助角公式函数转化为角B 为自变量的三角函数,利用正弦函数的有界性求出的最大值,并求出角B的值,再利用内角和定理求出角C的值,从而可判断处的形状.本题考查正弦定理在解三角形中的应用,考查对正弦定理的灵活应用以及三角函数的变形化简能力,属于中等题.18.如图,在三棱锥中,正三角形PAC所在平面与等腰三角形ABC所在平面互相垂直,,O是AC中点,于H.证明:平面BOH;若,求三棱锥的体积.【答案】解:,O是AC中点,,-------------------------------------------------------------------------------------------分又平面平面ABC,且平面ABC,平面平面,平面PAC,----------------------------------------------分,------------------------------------------------------分又,,平面BOH;---------------------------------------------分与面积相等,,平面PAC,,-------------------------------------------------分,,,-----------------------------------------------------------------------分,即----------------------------------------------------分【解析】推导出,从而平面PAC,进而,再由,能证明平面BOH.,由此能求出三棱锥的体积.本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.【答案】解:设甲乙两组员工受训的平均时间分别为、,则小时----------------------------------------分小时----------------------------------------分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和小时,因,据此可判断培训方式一比方式二效率更高---------------------------------------------分从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:,--------------------------------------------------分来自乙组的人数为:,----------------------------------------------------------------分记来自甲组的2人为:a、b;来自乙组的4人为:c、d、e、f,则从这6人中随机抽取2人的不同方法数有:,,,,,,,,,,,,,,,共15种,----------------------------------------------分其中至少有1人来自甲组的有:,,,,,,,,,共9种,故这2人中至少有1人来自甲组的概率----------------------------------------------------------分【解析】分别求出甲乙两组员工受训的平均时间,据此可判断培训方式一比方式二效率更高.从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为2,来自乙组的人数为4,记来自甲组的2人为:a、b;来自乙组的4人为:c、d、e、f,则从这6人中随机抽取2人,利用列举法能求出这2人中至少有1人来自甲组的概率.本题考查平均数、概率的求法,考查古典概型、列举法、分层抽样等基础知识,考查运算求解能力,是基础题.20.设椭圆的右顶点为A,下顶点为B,过A、O、为坐标原点三点的圆的圆心坐标为.求椭圆的方程;已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若,求点M的坐标.【答案】解:依题意知,,------------------------------------------------------------------分为直角三角形,过A、O、B三点的圆的圆心为斜边AB的中点,,即,--------------------------------分椭圆的方程为-----------------------------------------分由知,依题意知直线BN的斜率存在且小于0,设直线BN的方程为,则直线BM的方程为:,------------------------------------------------------------分由消去y得,----------------------------------------------分解得:,,---------------------------------------------------------------分,------------------------------------------------分【注:学生直接代入弦长公式不扣分!】在中,令得,即,-----------------------------------------------------------------------------------分在中,,,即,整理得,解得,,,------------------------------------------------------分点M的坐标为---------------------------------------------------------------------------分【解析】过A、O、B三点的圆的圆心为斜边AB的中点,即可求出a,b的值,求得椭圆方程;直线BN的方程为,直线BM的方程为:,代入椭圆方程,即可求得,求得,求得,根据三角形的性质即可,即可求得k的值,求得M点坐标本题考查椭圆的性质,直线与椭圆的位置关系,直角三角形的性质,考查转化思想,属于中档题.21.已知函数.求函数的单调递减区间;求实数a的值,使得是函数唯一的极值点.【答案】解:,-----------------------------------------------------------------分令,得或,-----------------------------------------------------分由得,而不等式组的解集为-----------------------------分函数的单调递减区间为;----------------------------------------------------------分依题意得,显然,---分记,,则,当时,;当时,;由题意知,为使是函数唯一的极值点,则必须在R上恒成立;----------分只须,因,当时,0'/>,即函数在R上单调递增,而,与题意不符;--------------------------------------------------------分当时,由,得,即在上单调递减,由0'/>,得,即在上单调递增,故,------------------------------------------------------------------------分若,则,符合题意;------------------------------------分若,则,不合题意;综上所述,----------------------------------------------------------------------------------分【或由,及,得,,解得-----------------------------------------------------------------分】【解析】令,解出即可得出.依题意得,显然,记,,可得,当时,;当时,;由题意知,为使是函数唯一的极值点,则必须在R上恒成立,只须,因,对a分类讨论即可得出.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.22.已知曲线C的参数方程为,为参数,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点不同于点,且的倾斜角为锐角.求曲线C和射线的极坐标方程;求的面积的最小值,并求此时的值.【答案】解:由曲线C的参数方程为,为参数,得普通方程为,由,,得,所以曲线C的极坐标方程为,或--------------------------分过极点的两射线、相互垂直,与曲线C分别相交于A、B两点不同于点,且的倾斜角为锐角.故的极坐标方程为;----------------------------------------------------------------------分依题意设,则由可得,同理得,即,--------------------------------------------------分,,,----------------分的面积的最小值为16,此时,得,-------------------------------------------------------------------------分【解析】由曲线C的参数方程,得普通方程,由此能求出曲线C的极坐标方程;由过极点的两射线、相互垂直,与曲线C分别相交于A、B两点不同于点,且的倾斜角为锐角,能求出的极坐标方程.依题意设,则,同理,由此能法语出的面积的最小值及此时的值.本题考查曲线、射线的极坐标方程的求法,考查三角形的面积的最小值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数.当时,求不等式的解集;当时,不等式恒成立,求a的取值范围.【答案】解:当时,,解得,-------------------------------------------------------------------------------------------分当时,,解得,--------------------------------------------------------------------------------------分当时,解得,---------------------------------------------------------------------------------------------分上知,不等式的解集为;-----------------------------------分解法1:当时,,------------分设,则,恒成立,只需,-------------------------------------------------------------------------------------分即,解得--------------------------------------------------------------------分解法2:当时,,----------------------------------------------分,即,即---------------------------------分当时,上式恒成立,;------------------------------------------分当时,得恒成立,只需,综上知,----------------------------------------------------------------分】【解析】通过讨论x的范围,求出不等式的解集即可;法一:设,结合一次函数的性质得到关于a的不等式组,解出即可;法二:分离参数a,得到恒成立,求出a的范围即可.本题考查了解绝对值不等式问题,函数恒成立问题,考查分类讨论思想,转化思想,是一道中档题.。

2019年广东省揭阳市紫贤中学高三数学文上学期期末试题含解析

2019年广东省揭阳市紫贤中学高三数学文上学期期末试题含解析

2019年广东省揭阳市紫贤中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在的展开式中,含x7的项的系数是()A.60 B.160 C.180 D.240参考答案:D【考点】二项式系数的性质.【分析】利用展开式的通项公式,令展开式中x的指数为7,求出r的值,即可计算对应项的系数.【解答】解:在的展开式中,通项公式为T r+1=?(2x2)6﹣r?=?26﹣r?(﹣1)r?,令12﹣=7,解得r=2,所以含x7项的系数是?24?(﹣1)2=240.故选:D.2. 如图所示,医用输液瓶可以视为两个圆柱的组合体,开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后分钟,瓶内液面与进气管的距离为厘米,已知当时,,如果瓶内的药液恰好156分钟滴完,则函数的图象为()参考答案:A略3.在等比数列() A. B. C.D.参考答案:答案:D4. 下列命题中,真命题的个数有().①②的充分条件是③函数是单调递增函数;④和互为反函数.A.0个B.1个C.2个D.3个参考答案:C5. 设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=()A.[1,4] B.[1,2] C.[﹣1,0] D.[0,2]参考答案:D【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A=[﹣1,2],B={y|y=x2,x∈A}=[0,4],∴A∩B=[0,2].故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.6. 若,且,则的最小值为()A.6 B.2 C.1 D.不存在参考答案:B7. 若a,b,c均为单位向量,a· b,c=x a + y b ,则的最大值是( )A. B.C. D.参考答案:A8. 若方程在内有解,则的图象是()参考答案:D9. 设变量满足约束条件,则目标函数的最大值为A. B. C. D.参考答案:C10. 已知i为虚数单位,若,则()A. 1B.C.D. 2参考答案:C【分析】根据复数的除法运算得到,再由复数相等的概念得到参数值,进而得到结果.【详解】为虚数单位,若,根据复数相等得到.故答案为:C.【点睛】这个题目考查了复数除法运算,以及复数相等的概念,复数与相等的充要条件是且.复数相等的充要条件是化复为实的主要依据,多用来求解参数的值或取值范围.步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.二、填空题:本大题共7小题,每小题4分,共28分11. 右方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为l5,乙组数据的平均数为16.8,则x+y的值为参考答案:1312. 在递增等比数列{a n}中,,则公比=.参考答案:2略13. 设实数a,x,y,满足则xy的取值范围是▲.参考答案:14. 已知的面积为,则的周长等于参考答案:15. 直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于;参考答案:16. 已知定义域为R的函数,则=________;的解集为___________ .参考答案:2;略17. 已知数列{a n}的前n项和为S n,满足:a1=1,a n+1+2S n?S n+1=0,则该数列的前2017项和S2017=.参考答案:【考点】数列的求和.【分析】将a n+1=S n+1﹣S n代入a n+1+2S n?S n+1=0化简后,由等差数列的定义判断出数列{}是等差数列,由条件求出公差和首项,由等差数列的通项公式求出,再求出S n和S2017.【解答】解:∵a n+1+2S n?S n+1=0,∴S n+1﹣S n+2S n?S n+1=0,两边同时除以S n?S n+1得,,又a1=1,∴数列{}是以2为公差、1为首项的等差数列,∴=1+2(n﹣1)=2n﹣1,则S n=,∴该数列的前2017项和S2017==,故答案为:.三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1,2,3}A =-,{1,1}B =-,则A B =ðA .{1,2}B .{0,1,2}C .{0,2,3}D .{0,1,2,3}2.复数221z i i=++-的虚部是 A .3B .2C .2iD .3i3.“0a b ⋅≥r r ”是“a r 与b r的夹角为锐角”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数2()2x af x -=,14f =,则(f = A .1B .18-C .12D .185.记等比数列{}n a 的前n 项和为n S ,已知132,6S S =-=-,且公比1q ≠,则3a =A .-2B .2C .-8D .-2或-86. 若点(2,A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,则直线AF 的斜率为A .4 B .3 C . D .37. 已知[0,]x π∈,且3sin2x =,则tan 2x= A .12- B .12 C .43D .28. 右图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础 设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比 2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元. 9.函数1()ln ||f x x x=+的图象大致为10.若,x y 满足约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A . -1B .-2C .1D . 211.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为 A .πB .2πC .4πD .16π12.已知函数312()423x x f x x x e e=-+-,其中e 是自然对数的底, 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是A .(,1]-∞-B .1[,)2+∞C .1(1,)2-D .1[1,]2-二、填空题:本题共4小题,每小题5分,共20分.1 1 -1-1 xy 1 1 -1-1 xy 1 1 -1-1xy 1 1 -1-1 xyOHCBAP13.已知向量(1,)a x =r 、(1,2)b =--r ,若a b ⊥r r ,则||a =r_____;14.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为3y x =,则该双曲线的离心率为____;15. 如图,圆柱O 1 O 2 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱O 1 O 2 的概率为 ; 16. 已知数列{}n a 满足119a =-,181n n n a a a +=+()n N *∈,则数列{}n a 中最大项的值为 . 三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答. (一)必考题:共60分17.(12分)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2sin cos sin 0a B A b A -=, (1)求A ;(2)当函数()sin 3)6f x B C π=+-取得最大值时,试判断ABC ∆的形状.18.(12分)如图,在三棱锥P-ABC 中,正三角形P AC 所在平面与等腰三角形 ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H . (1)证明:PC ⊥平面BOH ;(2)若3OH OB ==,求三棱锥A-BOH 的体积.19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周...培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率. 20.(12分)设椭圆()222210x y a b a b+=>>的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为1)2-. (1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.21.(12分)已知函数()()21322x f x x e x x =--+. (1)求函数()f x 的单调递减区间;(2)求实数a 的值,使得2x =是函数()()3213g x f x ax ax =+-唯一的极值点. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t =⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α.(1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值. 23. [选修45:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.解析:11. 三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=, S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 12. 由222'()42240x x f x x e e x x -=-++≥-+=≥,知()f x 在R 上单调递增,且31()422()3x x f x x x e e f x --=-++-=-,即函数()f x 为奇函数, 故2(1)(2)0f a f a -+≤2(1)(2)f a f a ⇔-≤-212a a ⇔-≤-2210a a ⇔+-≤, 解得112a -≤≤. 二、填空题解析:16. 由181n n n a a +=+得18n n n n a a a +==+18n na a +⇒-=, 即数列1{}n a 是公差为8的等差数列,故111(1)8817n n n a a =+-⨯=-,所以1817n a n =-, 当1,2n =时0n a <;当3n ≥时,0n a >,数列{}n a 递减,故最大项的值为317a =.三、解答题OHCB AP17.解:(1)由正弦定理sin sin a bA B=得sin sin 0a B b A =≠,----------------------------------2分 又2sin cos sin 0a B A b A -=,∴2cos 1A =,即1cos 2A =,------------------------------------------------------------------------4分∵0A π<< ∴3A π=.-----------------------------------------------------------------------------6分(2)解法一:∵3A π=∴23C B π=-,从而62C B ππ-=-, ------------------------------7分∴()sin sin()2f x B B π=-sin B B =------------------------------------------8分12(sin )2B B =+2sin()3B π=+---------------------------------------------10分∵33B πππ<+<,∴当6B π=时,函数()f x 取得最大值,这时632C ππππ=--=,即ABC ∆是直角三角形. -------------------------------------------12分【解法二:∵3A π=∴23B C π=-, -----------------------------------------------------------------7分∴2()sin())36f x C C ππ=--11cos sin cos )2222C C C C =++- 2sin C =--------------------------------------------------------------------------------------10分 ∵203C π<<,∴当2C π=时,函数()f x 取得最大值,∴ABC ∆是直角三角形.------------------- --------------------------------------------------------12分】18.解:(1)∵AB =BC ,O 是AC 中点,∴ BO ⊥AC , -------------------------------------------------------------------------------------------1分 又平面P AC ⊥平面ABC ,且BO ⊂平面ABC ,平面P AC ∩平面ABC =AC ,∴ BO ⊥平面P AC ,----------------------------------------------3分 ∴ BO ⊥PC ,------------------------------------------------------4分 又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;---------------------------------------------6分 (2)解法1:∵△HAO 与△HOC 面积相等,∴A BOH B HAO B HOC V V V ---==,∵BO ⊥平面P AC , ∴13B HOC OHC V S OB -∆=⋅, -------------------------------------------------8分∵OH =,∠HOC=30° ∴1HC =,∴122OHC S CH OH ∆=⋅=,-----------------------------------------------------------------------10分∴1132B OCHV -==,即12A BOH V -=.----------------------------------------------------12分 【其它解法请参照给分】19.解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时) ----------------------------------------2分2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)----------------------------------------4分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;---------------------------------------------6分(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=,--------------------------------------------------7分 来自乙组的人数为:620430⨯=,----------------------------------------------------------------8分 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取 2人的不同方法数有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,)b c b d b e b f ,(,),(,),(,)c d c e c f ,(,),(,),(,)d e d f e f ,共15种,----------------------------------------------10分其中至少有1人来自甲组的有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,),b c b d b e b f 共9种,故所求的概率93155P ==.----------------------------------------------------------------------12分 20.解:(1)依题意知(,0)A a ,(0,)B b -,------------------------------------------------------------------1分 ∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点,∴1222a b =-=-,即1a b ==,--------------------------------3分 ∴椭圆的方程为2213x y +=.-----------------------------------------4分 (2)由(1)知(0,1)B -,依题意知直线BN 的斜率存在且小于0,设直线BN 的方程为1(0)y kx k =-<,则直线BM 的方程为:11y x k=--,------------------------------------------------------------5分由2233,1.x y y kx ⎧+=⎨=-⎩消去y 得22(13)60k x kx +-=,----------------------------------------------6分解得:2613N kx k=+,1N N y kx =-,---------------------------------------------------------------7分∴||BN =|N x ==∴|||N B BN x x =-26||13k k =+,------------------------------------------------8分【注:学生直接代入弦长公式不扣分!】在11y x k=--中,令0y =得x k =-,即(,0)M k -∴||BM =-----------------------------------------------------------------------------------9分在Rt △MBN 中,∵∠BMN=60°,∴|||BN BM =,26||13k k=+23|10k k -+=,解得||k =0k <,∴k =,------------------------------------------------------11分∴点M 的坐标为3.---------------------------------------------------------------------------12分 21.解:(1)()()()21x f x x e '=--,-----------------------------------------------------------------1分令()0f x '<,得2010x x e -<⎧⎨->⎩或2010x x e ->⎧⎨-<⎩,-----------------------------------------------------2分由2010x x e -<⎧⎨->⎩得02x <<,而不等式组2010x x e ->⎧⎨-<⎩的解集为φ-----------------------------3分∴函数()f x 的单调递减区间为()0,2;----------------------------------------------------------4分 (2)依题意得()()()()()221x g x f x ax x x e ax ''=+-=-+-,显然()20g '=,---5分记()1xh x e ax =+-,x R ∈,则()00h =,当0a =时,()110h e =->;当0a ≠时,110a h e a ⎛⎫=> ⎪⎝⎭;由题意知,为使2x =是函数()g x 唯一的极值点,则必须()0h x ≥在R 上恒成立;----------7分只须()min 0h x ≥,因'()xh x e a =+,①当0a ≥时,'()0xh x e a =+>,即函数()h x 在R 上单调递增,而()1110h a e-=--<,与题意不符; --------------------------------------------------------8分 ②当0a <时,由()0h x '<,得()ln x a <-,即()h x 在()(),ln a -∞-上单调递减,由()0h x '>,得()ln x a >-,即()h x 在()()ln ,a -+∞上单调递增,故()()()min ln h x h a =-, ------------------------------------------------------------------------10分 若1a =-,则()()min ()00h x h x h ≥==,符合题意;------------------------------------11分 若1a ≠-,则()()()min 00()ln h h x h a =≥=-,不合题意;综上所述,1a =-.----------------------------------------------------------------------------------12分 【或由()min 0h x ≥,及(0)0h =,得()min (0)h h x =,∴()ln 0a -=,解得1a =-. -----------------------------------------------------------------12分】 22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=, 所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] --------------------------3分 2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=,同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,--------------------------------------------------7分 ∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅∵02πα<<∴0απ<<,∴8cos sin OAB S αα∆=⋅16sin 2α=16≥, ----------------9分 △OAB 的面积的最小值为16,此时sin 21α=,得22πα=,∴4πα=. -------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分 ②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<<,--------------------------------------------------------------------------------------2分③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,---------------------------------------------------------------------------------------------3分上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞U ;-----------------------------------5分(2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,------------6分 设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需(2)0(2)0g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,----------------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤----------------------------------7分①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分 ②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min61(2)22a x ≤-+=-+,综上知,12a ≤-.----------------------------------------------------------------10分】。

相关文档
最新文档