湖南省常德市2021版中考数学试卷(I)卷

合集下载

【真题】湖南省常德市中考数学试卷含答案解析()

【真题】湖南省常德市中考数学试卷含答案解析()

湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.21 / 21。

2021年湖南省常德市数学中考试题(含答案)

2021年湖南省常德市数学中考试题(含答案)

2021年常德市初中毕业学业考试数学试题考生注意:1、请考生在试题卷首填写好准考证号及姓名. 2、请将答案填写在答题卡上,填写在试题卷上的无效. 3、本学科试题卷共 4页,七道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试.一、选择题(本大题8个小题,每小题3分,满分24分)1.等于A .2B .C .D .2.如图1所示的几何体的主视图是3.下列各数:,其中无理数的个数是A .1个B .2个C .3个D .4个4是同类二次根式的是AB CD5.如图2,已知AC ∥BD ,∠CAE =30°,∠DBE =45,则∠AEB 等于A .30° B .45°C .60°D .75°6.某班体育委员记录了7位女生1分钟仰卧起坐的个数分别为28,38,38,35,35,38,48,这组数据的中位数和众数分别是A .35,38 B .38,35 C .38,38 D .35,357.下面分解因式正确的是A .B .C .D.8.阅读理解:如图3,在平面内选一定点,引一条有方向的射线,再选定一个单位长度,那么平面上任一点M的位置可由的度数与的长度m 确定,有序数对(,m )称为点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图4的极坐标系下,如果正六边形的边长为2,有一边OA在射线上,则正六边形的顶点C 的极坐标应记为A .(60°,4)B .(45°,4)C .(60)D .(50)2-2-1212-,p 13221(2)1x x x x ++=++23(4)4x x x x -=-()ax bx a b x +=+2222()m mn n m n -+=+O Ox MOx ÐθOM θM Ox 图1 A . B . C . D .图2图3 图4二、填空题(本大题8个小题,每小题3分,满分24分)9在实数范围内有意义,则的取值范围是________________.10.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000000=_______________.11.下列关于反比例函数的三个结论:①它的图象经过点(7,3)。

2021年湖南省常德市中考数学试题(含答案)

2021年湖南省常德市中考数学试题(含答案)

常德市初中毕业学业考试 数学试题卷解析准考证号___________ 姓名______考生注意∶1.请考生在试题卷首填写好准考证号及姓名2.请将答案填写在答题卡上,填写在试题卷上无效3.本学科试题卷共4页,七道大题,满分120分,考试时量120分钟。

4.考生可带科学计算机参加考试一、填空题(本大题8个小题,每小题3分,满分24分﹚1、若向东走5米记作+5米,则向西走5米应记作_____米。

知识点考察:有理数的认识;正数与负数,具有相反意义的量。

分析:规定向东记为正,则向西记为负。

答案:-5点评:具有相反意义的一对量在日常生活中很常见,若一个记为“+”,则另一个 记为“-”。

2、我国南海海域的面积约为3500000㎞2,该面积用科学计数法应表示为_____㎞2。

知识点考察:科学计数法。

分析:掌握科学计数的方法。

)10(10≤<⨯a a n答案:3.5×106点评:掌握科学计数的定义与方法,科学计数分两种情况:①非常大的数,②很小的 数,要准确的确定a 和n 的值。

3、分解因式:=22-n m _____。

知识点考察:因式分解。

分析:平方差公式分解因式。

答案:()()n m n m -+点评:因式分解是把一个多项式分解为几个整式积的形式。

要注意运用“一提、二套、 三分组”的方法。

4、如图1,在Rt △ABC 中,∠C=90º,AD 是∠BAC 的平分线,DC=2,则D 到AB 边的 距离是_____。

知识点考察:①点到直线的距离,②角平分线性质定理,③垂直的定义。

分析:准确理解垂直的定义,判断AC 与BC 的位置关系, 然后自D 向AB 作垂线,并运用角平分线性质定理。

答案:2点评:自D 向AB 作垂线是做好该题关键的一步。

5、函数4-x y =中自变量x 的取值范围是_____。

知识点考察:①二次根式的定义,②一元一次不等式的解法。

分析: 根据二次根式被开方式是非负数列不等式,再解不等式。

湖南省常德市2021年中考数学真题试卷(Word版,含答案与解析)

湖南省常德市2021年中考数学真题试卷(Word版,含答案与解析)

湖南省常德市2021年中考数学试卷一、单选题(共7题;共14分)1.若a>b,下列不等式不一定成立的是()A. a−5>b−5B. −5a<−5bC. ac >bcD. a+c>b+c【答案】C【考点】不等式及其性质【解析】【解答】解:A.在不等式a>b两边同时减去5,不等式仍然成立,即a−5>b−5,故答案为:A不符合题意;B. 在不等式a>b两边同时除以-5,不等号方向改变,即−5a<−5b,故答案为:B不符合题意;C.当c≤0时,不等得到ac >bc,故答案为:C符合题意;D. 在不等式a>b两边同时加上c,不等式仍然成立,即a+c>b+c,故答案为:D不符合题意;故答案为:C.【分析】利用不等式的性质1,可对A作出判断;利用不等式的性质3,可对B作出判断;利用不等式的性质2,可对C作出判断;利用不等式的性质1,可对D作出判断.2.一个多边形的内角和是1800°,则这个多边形是()边形.A. 9B. 10C. 11D. 12【答案】 D【考点】多边形内角与外角【解析】【解答】根据题意得:(n﹣2)×180 °=1800 °,解得:n=12.故答案为:D.【分析】利用n边形的内角和定理,可得到关于n的方程,解方程求出n的值.3.下列计算正确的是()A. a3⋅a2=a6B. a2+a2=a4C. (a3)2=a5D. a3a2=a(a≠0)【答案】 D【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】A、a3⋅a2=a5原计算错误,该选项不符合题意;B、a2+a2=2a2原计算错误,该选项不符合题意;C、(a3)2=a6原计算错误,该选项不符合题意;D、a3a2=a(a≠0)正确,该选项符合题意;故答案为:D.【分析】利用同底数幂相乘,底数不变,指数相加,可对A作出判断;利用合并同类项的法则,可对B 作出判断;利用幂的乘方法则,可对C作出判断;利用同底数幂相乘的法则,可对D作出判断.4.舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A. ②→③→①→④ B. ③→④→①→②C. ①→②→④→③D. ②→④→③→①【答案】 D【考点】折线统计图,收集数据的过程与方法【解析】【解答】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.③按统计表的数据绘制折线统计图;①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;所以,正确统计步骤的顺序是②→④→③→①故答案为:D.【分析】利用折线统计图的制作步骤,可得答案.5.计算:(√5+12−1)⋅√5+12=()A. 0B. 1C. 2D. √5−12【答案】C【考点】二次根式的混合运算【解析】【解答】解:(√5+12−1)⋅√5+12= √5−12⋅√5+12= 5−12=2.故答案为:C.【分析】先算括号里的运算,再利用二次根式的乘法法则进行化简.6.如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A. BE=12AE B. PC=PD C. ∠EAF+∠AFD=90° D. PE=EC 【答案】C【考点】正方形的性质,三角形全等的判定(SAS)【解析】【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵已知F、E分别是正方形ABCD的边AB与BC的中点,∴BE= 12BC= 12AB< 12AE,故A选项错误,不符合题意;在△ABE和△DAF中,{AB=DA∠ABE=∠DAF=90°BE=FA,∴△ABE≌△DAF(SAS),∴∠BAE=∠ADF,∵∠ADF+∠AFD=90°,∴∠BAE+∠AFD =90°,∴∠APF=90°,∴∠EAF+∠AFD=90°,故C选项正确,符合题意;连接FC,同理可证得△CBF≌△DAF(SAS),∴∠BCF=∠ADF,∴∠BCD-∠BCF=∠ADC-∠ADF,即90°-∠BCF=90°-∠ADF,∴∠PDC=∠FCD>∠PCD,∴PC>PD,故B选项错误,不符合题意;∵AD>PD,∴CD>PD,∴∠DPC>∠DCP,∴90°-∠DPC<90°-∠DCP,∴∠CPE<∠PCE,∴PE> CE,故D选项错误,不符合题意;故答案为:C.【分析】利用正方形的性质可证得AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°,;利用线段中点的定义可对A作出判断;再利用SAS证明△ABE≌△DAF,利用全等三角形的性质可证得∠BAE=∠ADF,由此可证得∠EAF+∠AFD=90°,可对C作出判断;连接FC,利用SAS证明△CBF≌△DAF,利用全等三角形的性质可得到∠BCF=∠ADF,由此可推出∠PDC=∠FCD>∠PCD,可得到PC>PD,可对B作出判断;然后证明∠CPE<∠PCE,利用大角对大边,可对D作出判断.7.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④【答案】C【考点】勾股数【解析】【解答】∵7=1+6或2+5或3+4∴7不是广义勾股数,即①正确;∵13=4+9=22+32∴13是广义勾股数,即②正确;∵5=12+22,10=12+32,15不是广义勾股数∴③错误;∵5=12+22,13=22+32,65=5×13,且65不是广义勾股数∴④错误;故答案为:C.【分析】如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,再对各选项逐一判断即可.二、填空题(共8题;共8分)8.求不等式2x−3>x的解集________.【答案】x>3【考点】解一元一次不等式【解析】【解答】解:2x−3>x,移项解得:x>3,故答案是:x>3.【分析】先移项,再合并同类项,可求出不等式的解集.9.今年5月11日,国家统计局公布了第七次全国人口普查的结果,我国现有人口141178万人.用科学计数法表示此数为________人.【答案】1.41178×109【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:141178万=1411780000=1.41178×109.故答案为:1.41178×109.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.10.在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是________班.【答案】甲【考点】分析数据的波动程度,分析数据的集中趋势【解析】【解答】解:甲、乙两个班参赛人数都为45人,由甲、乙两班成绩的中位数可知,甲班的优生人数大于等于23 人,乙班的小于等于22人,则甲班的优生人数较多,故答案为:甲.【分析】利用中位数的意义及甲乙两班的中位数,可作出判断.11.分式方程1x +1x−1=x+2x(x−1)的解为________.【答案】x=3【考点】解分式方程【解析】【解答】解:1x+1x−1=x+2x(x−1)通分得:2x−1x(x−1)=x+2x(x−1),移项得:x−3x(x−1)=0,∴x−3=0,解得:x=3,经检验,x=3时,x(x−1)=6≠0,∴x=3是分式方程的解,故答案是:x=3.【分析】将分式方程转化为整式方程,求出整式方程的解,再进行检验,可得方程的解.12.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=80°,则∠BCD的度数是________.【答案】140°【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵∠BOD=80°,∴∠A=40°,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°-40°=140°,故答案为140°.【分析】利用一条弧所对圆周角等于圆心角的一半,可求出∠A的度数;再利用圆内接四边形的对角互补,可求出∠BCD的度数.13.如图.在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若CD=3,BD=5,则BE的长为________.【答案】4【考点】勾股定理,三角形全等的判定(AAS)【解析】【解答】解:由题意:AD平分∠CAB,DE⊥AB于E,∴∠CAD=∠EAD,∠AED=90°,又∵AD为公共边,△ACD≌△AED(AAS),∴CD=DE=3,在Rt△DEB中,BD=5,由勾股定理得:BE=√BD2−DE2=√52−32=4,故答案是:4.【分析】利用角平分线的定义及垂直的定义可证得∠CAD=∠EAD,∠AED=∠C=90°,利用AAS证明△ACD≌△AED,利用全等三角形的性质可求出DE的长;再利用勾股定理求出BE的长.14.刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有________个.【答案】21【考点】简单事件概率的计算【解析】【解答】解:设弹珠的总数为x个, 蓝珠有y个,根据题意得,{16x +14x +8+y =x ①x ≤50②, 由①得, x =96+12y 7 , 结合②得, 96+12y 7≤50 解得, y ≤2116所以,刘凯的蓝珠最多有21个.故答案为:21.【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据题意列出关于x ,y 的方程,根据总数不超过50个,可知x≤50,由此可求出y 的最大整数解.15.如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有 1×1 个正方形,所有线段的和为4,第二个图形有 2×2 个小正方形,所有线段的和为12,第三个图形有 3×3 个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为________.(用含n 的代数式表示)【答案】 2n 2+2n【考点】探索图形规律【解析】【解答】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数 S 1=4×1=2×2×1,第2个图案由4个小正方形组成,共用的木条根数 S 2=6×2=2×3×2,第3个图案由9个小正方形组成,共用的木条根数 S 3=8×3=2×4×3,第4个图案由16个小正方形组成,共用的木条根数 S 4=10×4=2×5×4,…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数 S n =2(n +1)·n =2n 2+2n,故答案为:2n 2+2n.【分析】观察图形,分别求出第1个图案共用的木条根数 ;第2个图案共用的木条根数 ;第3个图案共用的木条根数 ;第4个图案共用的木条根数 … , 由此可得到第n 个网格所有线段的和.三、解答题(共10题;共95分)16.计算: 20210+3−1⋅√9−√2sin45° .【答案】 解: 20210+3−1⋅√9−√2sin45°=1+33−√2×√22=1+1−1=1【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,特殊角的三角函数值【解析】【分析】先算乘方和开方运算,同时代入特殊角的三角函数值;再算乘法运算,然后利用有理数的加减法法则进行计算.17.解方程:x2−x−2=0【答案】解:由原方程,得:(x+1)(x﹣2)=0,解得:x1=2,x2=﹣1【考点】因式分解法解一元二次方程【解析】【分析】观察方程的特点:右边为0,左边可以分解因式,因此利用因式分解法求出方程的解.18.化简:(aa−1+5a+9a2−1)÷a+3a−1【答案】解:(aa−1+5a+9a2−1)÷a+3a−1=(a2+aa2−1+5a+9a2−1)×a−1a+3=a2+6a+9(a+1)(a−1)×a−1a+3=(a+3)2(a+1)(a−1)×a−1a+3=a+3a+1【考点】分式的混合运算【解析】【分析】将括号里的分式通分计算,再将分式除法转化为乘法运算;然后约分化简.19.如图,在Rt△AOB中,AO⊥BO. AB⊥y轴,O为坐标原点,A的坐标为(n,√3),反比例函数y1=k1x 的图象的一支过A点,反比例函数y2=k2x的图象的一支过B点,过A作AH⊥x轴于H,若△AOH的面积为√32.(1)求n的值;(2)求反比例函数y2的解析式.【答案】(1)解:∵A (n,√3),且AH⊥x轴∴AH= √3,OH=n又△AOH的面积为√32.∴12AH·OH=√32,即12×√3×n=√32解得,n=1(2)解:由(1)得,AH= √3,OH=1∴AO=2如图,∵AO⊥BO,AB⊥y轴,∴∠AEO=∠AOB=90°,四边形AHOE是矩形,∴AE=OH=1又∠BAO=∠OAE∴ΔAOE∼ΔABO∴AOAB =AEAO,即:2BE+1=12解得,BE=3∴B(-3,1)∵B在反比例函数y2=k2x的图象上,∴k2=−3×1=−3∴y2=−3x【考点】待定系数法求反比例函数解析式,相似三角形的判定与性质,反比例函数图象上点的坐标特征【解析】【分析】(1)利用点A的坐标可得到AH,OH的长,利用三角形的面积公式建立关于n的方程,解方程可求出n的值.(2)利用已知条件可证得四边形AHOE是矩形,利用矩形的性质可证得AE=OH,再利用有两组对应角相等的两个三角形相似,可得到△AOE∽△ABO,利用相似三角形的对应边成比例可求出BE的长,即可得到点B的坐标;再利用待定系数法求出反比例函数y2的解析式.20.某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?【答案】(1)解:设每台A型车的利润为x万元,每台B型车的利润为y万元,根据题意得,{2x +5y =3.1x +2y =1.3解得, {x =0.3y =0.5答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元(2)解:因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m)台,根据题意得,12m +15×(22−m)≤300∴−3m ≤−30,解得, m ≥10∵m 是整数,∴m 的最小整数值为10,即,最少需要采购A 型新能源汽车10台.【考点】一元一次不等式的应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)2×每一辆A 型车的利润+5×每一辆A 型车的利润=3.1;1×每一辆A 型车的利润+2×每一辆A 型车的利润=1.3;再设未知数,列方程组,然后求出方程组的解.(2)此题的等量关系为:A 新能源汽车的数量+B 两种新能源汽车的数量=22;不等关系为:该公司准备的资金≤300;设未知数,列出不等式,然后求出不等式的最小整数解.21.今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A 处测得国旗D 处的仰角为 45° ,站在同一队列B 处的小刚测得国旗C 处的仰角为 23° ,已知小明目高 AE =1.4 米,距旗杆 CG 的距离为15.8米,小刚目高 BF =1.8 米,距小明24.2米,求国旗的宽度 CD 是多少米?(最后结果保留一位小数)(参考数据: sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245 )【答案】 解:由题意得,四边形GAEM 、GBFN 是矩形,∴ME=GA=15.8(米),FN=GB=GA+BA=15.8+24.2=40(米),MG=AE=1.4(米),NG=BF=1.8(米), 在Rt △DME 中, ∠DME =90°,∠DEF =45°∴ ∠EDM =45°∴ DM =ME =15.8 (米),∴DG=DM+MG=15.8+1.4=17.2(米);在Rt△CNF中,∠CNF=90°,∠CFN=23°∴tan23°=CN,即CN=FN·tan23°=40×0.4245≈17.0(米),FN∴CG=CN+NG=17.0+1.8=18.8(米),∴CD=CG−DG=18.8−17.2=1.6(米)答:国旗的宽度CD是1.6米。

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

专题06 不等式与不等式组一、单选题1.(2021·湖南常德市·中考真题)若a b >,下列不等式不一定成立的是( )A .55a b ->-B .55a b -<-C .a b c c >D .a c b c +>+ 【答案】C【分析】根据不等式的性质逐项进行判断即可得到答案.【详解】解:A .在不等式a b >两边同时减去5,不等式仍然成立,即55a b ->-,故选项A 不符合题意;B . 在不等式a b >两边同时除以-5,不等号方向改变,即55a b -<-,故选项B 不符合题意;C .当c ≤0时,不等得到a b c c>,故选项C 符合题意; D . 在不等式a b >两边同时加上c ,不等式仍然成立,即a c b c +>+,故选项D 不符合题意; 故选:C .【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键.2.(2021·湖南株洲市·中考真题)不等式组2010x x -≤⎧⎨-+>⎩的解集为( ) A .1x <B .2x ≤C .12x <≤D .无解 【答案】A【分析】先解不等式组中的每一个不等式,再利用不等式组解集的口诀“同小取小”得出解集.【详解】解:2010x x -≤⎧⎨-+>⎩①②由①,得:x ≤2,由②,得:x <1,则不等式组的解集为:x <1,故选:A .【点睛】本题主要考查了一元一次不等式组解集的求法,关键在于根据解集的特点确定解集:同大取大、同小取小、大小小大中间找、大大小小无解得到.3.(2021·湖南岳阳市·中考真题)已知不等式组1024x x -<⎧⎨≥-⎩,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】解不等式组要先求出两个不等式的解集,然后依据解集口诀:同大取大,同小取小,大小小大中间找,大大小小无处找,确定不等式组解集,在数轴上表示;注意带有等号的数在数轴上用实心表示,没有等号用空心圈表示,即可得出选项.【详解】解:1024x x -<⎧⎨≥-⎩①②, 解不等式①得:1x <,解不等式②得:2x ≥-,∴不等式组的解集为:21x -≤<,在数轴上表示为:故选:D .【点睛】题目主要考察求解不等式解集、不等式组解集以及解集在数轴上的表示,难点是对在数轴上表示实心点和空心圈的区分.4.(2021·湖南怀化市·中考真题)不等式组211112x x x +-⎧⎪⎨->-⎪⎩的解集表示在数轴上正确的是( ) A . B .C .D .【答案】C【分析】 分别解两个不等式,将它们的解集表示在同一数轴上即可求解;带等于号的用实心点,不带等于号的用空心点.【详解】解不等式211x x +-得:2x ≥-, 解不等式112x ->- 得:2x <,故不等式组的解集为:-2≤x <2,在数轴上表示为:故选C .【点睛】本题考查了一元一次不等式组的解法,一元一次不等式的解集在数轴上的表示方法;依次解不等式,注意空心点和实心点的区别是解题关键.5.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( ) A .B .C .D .【答案】A【分析】 根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1,解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示,故选:A .【点睛】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键.6.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-2【答案】A【分析】先求出不等式组的解集,再从中找出整数求和即可.【详解】51341233x x x x ->-⎧⎪⎨-≤-⎪⎩①②, 解①得32x >-, 解②得x≤1, ∴213x -<≤, ∴整数解有:0,1,∴0+1=1.故选A.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.7.(2021·湖南永州市·中考真题)一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是( ) A .4B .5C .6D .7 【答案】C【详解】∵解不等式210x +>得:12x >-, 解不等式50x -≤,得:x≤5, ∴不等式组的解集是152x -<≤, 整数解为0,1,2,3,4,5,共6个,故选C .考点:一元一次不等式组的整数解.二、填空题8.(2021·湖南常德市·中考真题)求不等式23x x ->的解集_________.【答案】3x >【分析】直接移项合并同类项即可得出.【详解】解:23x x ->,移项解得:3x >,故答案是:3x >.【点睛】本题考查了解一元一次不等式,解题的关键是:熟练掌握移项合并同类项等步骤.9.(2021·湖南中考真题)已知x 满足不等式组120x x >-⎧⎨-≤⎩,写出一个符合条件的x 的值________. 【答案】1(答案不唯一)【分析】求出不等式组的解集即可得.【详解】解:120x x >-⎧⎨-≤⎩①②, 解不等式②得:2x ≤,则不等式组的解集为12x -<≤,因此,一个符合条件的x 值是1,故答案为:1(答案不唯一).【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.10.(2021·湖南张家界市·中考真题)不等式2217x x >⎧⎨+≤⎩的正整数解为______. 【答案】3【分析】直接解出各个不等式的解集,再取公共部分,再找正整数解即可.【详解】解:由217x +≤,解得:3x ≤,由2x >,∴原不等式的解集是:23x <≤.故不等式2217x x >⎧⎨+≤⎩的正整数解为:3, 故答案是:3.【点睛】本题考查了解一元一次不等式组的解集和求不等式组的正整数解,解题的关键是:掌握解不等式组的基本运算法则,求出解集后,找出满足条件的正整数解即可.11.(2021·湖南常德市·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个. 【答案】21【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x 个, 蓝珠有y 个,根据题意得,1186450x x y x x ⎧+++=⎪⎨⎪≤⎩①②, 由①得,96127y x +=, 结合②得,9612507y +≤ 解得,1216y ≤ 所以,刘凯的蓝珠最多有21个.故答案为:21.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.三、解答题12.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的1330.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)0.85千米.【分析】(1)设开通后的长益高铁的平均速度为x 千米/分钟,从而可得某次长益城际列车的平均速度为1330x 千米/分钟,再根据“路程=速度⨯时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工y 千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得.【详解】解:(1)设开通后的长益高铁的平均速度为x 千米/分钟,则某次长益城际列车的平均速度为1330x 千米/分钟, 由题意得:1360164030x x ⨯-=, 解得4x =,则16464⨯=(千米),1313606041043030x ⨯=⨯⨯=(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为7647794010⨯=+(千米), 乙工程队每天对其施工的长度9649794010⨯=+(千米), 设甲工程队后期每天施工y 千米, 则979(4053)()64()5101010y --+≥-+⨯, 解得1720y ≥, 即0.85y ≥,答:甲工程队后期每天至少施工0.85千米.【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键. 13.(2021·湖南娄底市·中考真题)为了庆祝中国共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生.已知购买1个甲种纪念品和2个乙种纪念品共需20元,购买2个甲种纪念品和5个乙种纪念品共需45元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元;(2)若要购买这两种纪念品共100个,投入资金不少于766元又不多于800元,问有多少种购买方案?并求出所花资金的最小值.【答案】(1)购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)共有7种进货方案;所花资金的最小值为770元.【分析】(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据“购买1个甲种纪念品和2个乙种纪念品共需20元;购买2个甲种纪念品和5个乙种纪念品共需45元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,根据总价=单价×数量得到w 关于m 的函数解析式,结合进货资金不少于766元且不超过800元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再由m 为整数即可找出各进货方案,利用一次函数的性质从而得出答案.【详解】解:(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据题意得:2202545x y x y +=⎧⎨+=⎩, 解得:105x y =⎧⎨=⎩; 答:购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,∴()1051005500w m m m =+-=+,根据题意得:55007665500800m m +≥⎧⎨+≤⎩, 解得:53.2≤m ≤60.∵m 为整数,∴m =54、55、56、57、58、59或60.∴共有7种进货方案;∵5>0,∴w 随m 的增大而增大,∴m =54时,w 有最小值,最小值为770元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数量间的关系,正确列出w 关于m 的函数解析式和一元一次不等式组. 14.(2021·湖南常德市·中考真题)某汽车贸易公司销售A 、B 两种型号的新能源汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)求销售一台A 型、一台B 型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A 、B 两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?【答案】(1)销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)最少需要采购A 型新能源汽车10台.【分析】(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意中的数量关系列出二元一次方程组,解方程组即可;(2)先求出每台A 型车和每台B 型车的采购价,根据“用不超过300万元资金,采购A 、B 两种新能源汽车共22台”列出不等式求解即可.【详解】解:(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意得,25 3.12 1.3x y x y +=⎧⎨+=⎩ 解得,0.30.5x y =⎧⎨=⎩答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m )台,根据题意得,1215(22)300m m +⨯-≤330,m ∴-≤-解得,10m ≥∵m 是整数,∴m 的最小整数值为10,即,最少需要采购A 型新能源汽车10台.【点睛】本题主要考查了一元一次不等式的应用和二元一次方程组的应用,解答此题的关键是找出题中的数量关系.15.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元预算资金为1700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...预算资金且购买A 奖品的资金不少于...720元,A ,B 两种奖品共100件.求购买A ,B 两种奖品的数量,有哪几种方案?【答案】(1)A ,B 奖品的单价分别是40元,15元;(2)购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【分析】(1)设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元,根据“购买B 奖品的数量是A 奖品的3倍”,列出分式方程,即可求解;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,列出一元一次不等式组,即可求解.【详解】(1)解:设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元, 由题意得:8001700800325x x-⨯=+,解得:x =15, 经检验:x =15是方程的解,且符合题意,15+25=40,答:A ,B 奖品的单价分别是40元,15元;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,由题意得:400.8150.8(100)1700400.8720a a a ⨯+⨯-≤⎧⎨⨯≥⎩,解得:22.5≤a ≤25, ∵a 取正整数,∴a =23,24,25,答:购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【点睛】本题主要考查分式方程以及一元一次不等式组的实际应用,找准数量关系,列出方程和不等式组,是解题的关键.16.(2021·湖南长沙市·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题? (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了x 道题,从而可得该参赛同学一共答错了(251)x --道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,从而可得参赛者答错了(25)y -道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了x 道题,则该参赛同学一共答错了(251)x --道题,由题意得:4(251)86x x ---=,解得22x =,答:该参赛同学一共答对了22道题;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则参赛者答错了(25)y -道题,由题意得:4(25)90y y --≥,y ,解得23答:参赛者至少需答对23道题才能被评为“学党史小达人”.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,正确列出方程和不等式是解题关键.。

2021年湖南省常德市中考数学模拟试卷(解析版)

2021年湖南省常德市中考数学模拟试卷(解析版)

2021年湖南省常德市中考数学模拟试卷一、选择题:(每小题3分,共计24分)1.(3分)|﹣2|的相反数为()A.2B.﹣2C.D.﹣2.(3分)已知三角形中,某两条边的长分别为4和9,则另一条边的长可能是()A.4B.5C.12D.133.(3分)若函数y=(k+1)x+2中,y的值随x值的增大而减小,则k的取值范围为()A.k<0B.k>0C.k<1D.k<﹣14.(3分)若实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是()A.|c|>|a|B.bc>0C.b+c<0D.a+c<05.(3分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别为S甲2=26.5,S乙2=29,则两组成绩的稳定性是()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定6.(3分)如图,矩形ABCD中,O为BD的中点,过点O作EF⊥BD分别交AB、CD于点E、F,若AD=2,AB=4,则DE的长为()A.2B.C.D.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)已知实数a≠1,我们把称为a的差倒数,如:﹣2的差倒数是的差倒数是.如果a1=﹣1,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,则a1+a2+…+a100=()A.48.5B.49.5C.50D.51.5二、填空题:(每题3分,共24分)9.(3分)﹣27的立方根等于.10.(3分)一个多边形的内角和是1080°,这个多边形的边数是.11.(3分)为防疫新冠病毒,我国的口罩产能大幅提升,今年四月初我国日产口罩达到210000000只,将210000000用科学记数法表示为.12.(3分)5个正整数中,中位数是6,唯一的众数是8,则这5个数的和的最大值为.13.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣1,则另一个根是.14.(3分)如图,要用纸板制作一个母线长为8cm,底面圆半径为6cm的圆锥形漏斗,若不计损耗,则所需纸板的面积是cm2.15.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为.16.(3分)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.三.(每小题5分,共10分)17.(5分)计算:.18.(5分)解不等式组.四、(每小题4分,共12分)19.(4分)先化简,再求值:,其中,.20.(4分)如图Rt△OAB的面积为6,∠OBA=90°,反比例函数的图象经过点A.(1)求反比例函数的解析式;(2)从M(1,6),N(3,4),P(﹣1,12),Q(﹣6,﹣2)四个点中任取两个点,请用树状图或列表法,求恰有一个点在反比例函数图象上的概率.五、(每小题7分,共14分)21.(7分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?22.(7分)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠P AC=90°,AB=2,求PD的长.六、(每小题8分,共16分)23.(8分)某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.24.(8分)在日常生活中,我们经常看到一些窗户上安装着遮阳篷,如图(a),现在要为一个面向正南的窗户设计安装一个遮阳篷,已知该地区冬天正午太阳最低时,光线与水平线的夹角为30°;夏天正午太阳最高时,光线与水平线的夹角为60°.把图(a)画成图(b),其中AB表示窗户的高,BCD表示直角形遮阳篷.(1)遮阳篷BCD怎样设计,才能正好在冬天正午太阳最低时光线最大限度地射入室内,而夏天正午太阳最高时光线刚好不射入室内?请在图(c)中画图表示;(2)已知AB=150cm,在(1)的条件下,求出BC,CD的长度.七、(每小题10分,共20分)25.(10分)如图,已知抛物线y=ax2+bx+c经过点B(﹣4,﹣3),与x轴交于A(﹣5,0),C(﹣1,0)两点,D为顶点,P为抛物线上一动点(与点B、C不重合).(1)求该抛物线的解析式;(2)当点P在直线BC的下方运动时,求△PBC的面积的最大值;(3)该抛物线上是否存在点P,使∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.26.(14分)已知四边形ABCD是菱形,∠ABC=60°,∠EAF的两边分别与射线CB、DC 相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,求证:AE =EF;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上时,设AF交BC于点G,求证:AG•CF=AF•CG.2021年湖南省常德市中考数学模拟试卷参考答案与试题解析一、选择题:(每小题3分,共计24分)1.(3分)|﹣2|的相反数为()A.2B.﹣2C.D.﹣【分析】先计算|﹣2|,再写出它的相反数.【解答】解:|﹣2|=2,2的相反数时﹣2,所以|﹣2|的相反数是﹣2故选:B.2.(3分)已知三角形中,某两条边的长分别为4和9,则另一条边的长可能是()A.4B.5C.12D.13【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:9+4=13,9﹣4=5,所以第三边在5到13之间,只有C中的12满足.故选:C.3.(3分)若函数y=(k+1)x+2中,y的值随x值的增大而减小,则k的取值范围为()A.k<0B.k>0C.k<1D.k<﹣1【分析】根据一次函数y=(k+1)x+2的增减性列出不等式k+1<0,通过解该不等式即可求得k的取值范围.【解答】解:∵一次函数y=(k+1)x+2图象是函数值y随自变量x的值增大而减小,∴k+1<0,解得,k<﹣1;故选:D.4.(3分)若实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是()A.|c|>|a|B.bc>0C.b+c<0D.a+c<0【分析】根据a、b、c在数轴上的位置即可得到答案.【解答】解:A、|c|<2,|a|>2,则|c|<|a|,故A不符合题意,B、b<0,c>0,则bc<0,故B不符合题意,C、b<0,c>0,且|c|>|b|,则b+c>0,故C不符合题意,D、a<0,c>0,且|c|<|a,则a+c<0,故D符合题意,故选:D.5.(3分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别为S甲2=26.5,S乙2=29,则两组成绩的稳定性是()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定【分析】根据方差的意义求解即可.【解答】解:∵S甲2=26.5,S乙2=29,∴S甲2<S乙2,∴甲组比乙组的成绩稳定,故选:A.6.(3分)如图,矩形ABCD中,O为BD的中点,过点O作EF⊥BD分别交AB、CD于点E、F,若AD=2,AB=4,则DE的长为()A.2B.C.D.【分析】根据题意可得EF垂直平分BD,EB=ED,再根据勾股定理即可求出DE的长.【解答】解:根据题意可知:EF垂直平分BD,∴EB=ED,∴AE=AB﹣BE=AB﹣ED=4﹣DE,根据勾股定理,得DE2=AE2+AD2,∴DE2=(4﹣DE)2+22,解得DE=.故选:B.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.8.(3分)已知实数a≠1,我们把称为a的差倒数,如:﹣2的差倒数是的差倒数是.如果a1=﹣1,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,则a1+a2+…+a100=()A.48.5B.49.5C.50D.51.5【分析】先求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,用100除以3,从而可以求得答案.【解答】解:∵a1=﹣1,∴a2==,a3==2,a4==﹣1,∴这列数是以﹣1,,2依次循环,且﹣1++2=,∵100÷3=33…1,∴a1+a2+…+a100=33×﹣1=48.5;故选:A.二、填空题:(每题3分,共24分)9.(3分)﹣27的立方根等于﹣3.【分析】根据立方根的定义求出即可.【解答】解:﹣27的立方根是﹣3.故答案为:﹣3.10.(3分)一个多边形的内角和是1080°,这个多边形的边数是8.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.11.(3分)为防疫新冠病毒,我国的口罩产能大幅提升,今年四月初我国日产口罩达到210000000只,将210000000用科学记数法表示为 2.1×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108,故答案为:2.1×108.12.(3分)5个正整数中,中位数是6,唯一的众数是8,则这5个数的和的最大值为31.【分析】根据中位数和众数的定义分析可得答案.【解答】解:因为五个正整数从小到大排列后,其中位数是6,这组数据的唯一众数是8,所以这5个数据分别是x,y,6,8,8,其中x=3或4,y=4或5.所以这5个数的和的最大值是4+5+6+8+8=31.故答案为:31.13.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣1,则另一个根是﹣2.【分析】设方程的另一个根为t,利用两根之积为﹣2得到﹣1×t=2,然后解方程即可.【解答】解:设方程的另一个根为t,根据题意得﹣1×t=2,解得t=﹣2,即方程的另一个根为﹣2.故答案为﹣2.14.(3分)如图,要用纸板制作一个母线长为8cm,底面圆半径为6cm的圆锥形漏斗,若不计损耗,则所需纸板的面积是48πcm2.【分析】根据圆锥的侧面展开是扇形,即求扇形的面积,根据圆锥的母线长即扇形的半径,再由扇形的面积公式S=lR即可得出答案.【解答】解:∵l=2×6×π=12π(cm),∴S=lR=×12π×8=48π(cm2).故答案为:48π.15.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为y=﹣(x+1)2+3.【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线y=﹣x2顶点坐标为(0,0),向左平移1个单位,然后向上平移3个单位后,顶点坐标为(﹣1,3),根据抛物线的顶点式可求平移后抛物线的解析式.【解答】解:根据题意,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,3),∴平移后抛物线解析式为:y=﹣(x+1)2+3.故答案为:y=﹣(x+1)2+3.16.(3分)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.【分析】由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.【解答】解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为:1三.(每小题5分,共10分)17.(5分)计算:.【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=﹣1+1+3﹣3×=﹣1+1+3﹣=3.18.(5分)解不等式组.【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.(12分)由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4(4分)∴原不等式组的解集为:1≤x<4.四、(每小题4分,共12分)19.(4分)先化简,再求值:,其中,.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算即可.【解答】解:原式=•=•=,当时,原式=.20.(4分)如图Rt△OAB的面积为6,∠OBA=90°,反比例函数的图象经过点A.(1)求反比例函数的解析式;(2)从M(1,6),N(3,4),P(﹣1,12),Q(﹣6,﹣2)四个点中任取两个点,请用树状图或列表法,求恰有一个点在反比例函数图象上的概率.【分析】(1)直接利用反比例函数的性质得出函数解析式;(2)直接利用树状图得出所有的可能,进而求出答案.【解答】解:(1)∵Rt△OAB的面积为6,∴k=12,∴反比例函数的解析式为y=;(2)如图所示:,∵只有N(3,4),Q(﹣6,﹣2)在反比例函数图像上,∴恰有一个点在反比例函数图象上的有8种情况,故恰有一个点在反比例函数图象上的概率为:=.五、(每小题7分,共14分)21.(7分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?【分析】(1)设篮球的单价为x元,则排球的单价为x元.根据等量关系“单价和为80元”,列方程求解;(2)设购买的篮球数量为n个,则购买的排球数量为(36﹣n)个.根据不等关系:①买的篮球数量多于25个;②不超过1600元的资金购买一批篮球和排球.列不等式组,进行求解.【解答】解:(1)设篮球的单价为x元,∵篮球和排球的单价比为3:2,则排球的单价为x元.依题意,得:x+x=80,解得x=48,∴x=32.即篮球的单价为48元,排球的单价为32元.(2)设购买的篮球数量为n个,则购买的排球数量为(36﹣n)个.∴,解,得25<n≤28.而n为整数,所以其取值为26,27,28,对应的36﹣n的值为10,9,8.所以共有三种购买方案:方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.22.(7分)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠P AC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形P AC和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△P AC中,∠P AC=90°,∠APC=60°,AC=2,∴AP==.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=2.∴PD=AD﹣AP=.六、(每小题8分,共16分)23.(8分)某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于或等于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)30支笔在购买时每支笔同时购买9个笔芯所需费用的平均数为:27+=,30支笔在购买时每支笔同时购买10个笔芯所需费用的平均数为:30+=,而,∴购买一支水彩笔的同时应购买9个笔芯的费用最省.24.(8分)在日常生活中,我们经常看到一些窗户上安装着遮阳篷,如图(a),现在要为一个面向正南的窗户设计安装一个遮阳篷,已知该地区冬天正午太阳最低时,光线与水平线的夹角为30°;夏天正午太阳最高时,光线与水平线的夹角为60°.把图(a)画成图(b),其中AB表示窗户的高,BCD表示直角形遮阳篷.(1)遮阳篷BCD怎样设计,才能正好在冬天正午太阳最低时光线最大限度地射入室内,而夏天正午太阳最高时光线刚好不射入室内?请在图(c)中画图表示;(2)已知AB=150cm,在(1)的条件下,求出BC,CD的长度.【分析】(1)夏天,光线最高经过点A,冬天,光线最低经过点B.应过点A作与水平线成60°的角,过B作∠CBD=60°与前一个60°的角交于点D,过D向AB引垂线,垂足为C即可;(2)根据题意可知:∠BDA=∠BAD=30°,根据30度角的直角三角形可得结果.【解答】解:(1)根据题意画出图形:(2)根据题意可知:∠BDA=∠BAD=30°,∴∠CBD=60°,∴∠CDB=30°,∴BD=AB=150cm,∴BC=BD=75(cm),∴CD=BC=75(cm);答:BC、CD长度分别为.七、(每小题10分,共20分)25.(10分)如图,已知抛物线y=ax2+bx+c经过点B(﹣4,﹣3),与x轴交于A(﹣5,0),C(﹣1,0)两点,D为顶点,P为抛物线上一动点(与点B、C不重合).(1)求该抛物线的解析式;(2)当点P在直线BC的下方运动时,求△PBC的面积的最大值;(3)该抛物线上是否存在点P,使∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)由待定系数法即可求解;(2)由,即可求解;(3)证明△BCD是直角三角形,且.①当点P在直线BC下方时,求出直线BH的表达式为,进而求解,②当点P在直线BC上方时,BP∥CD求出直线BP的表达式为y=2x+5,进而求解.【解答】解:(1)∵抛物线过A(﹣5,0),C(﹣1,0)两点,可设为y=a(x+5)(x+1),又过点B(﹣4,﹣3),∴﹣3=a(﹣4+5)(﹣4+1),∴a=1,∴解析式为y=x2+6x+5;(2)由点B、C的坐标得:直线BC的解析式为:y=x+1,过点P作x轴的垂线,交BC于点Q,设点P的横坐标为t,则点P的坐标为(t,t2+6t+5),点Q的坐标为(t,t+1),∴PQ=t+1﹣(t2+6t+5)=﹣t2﹣5t﹣4,∴,∵,﹣4<1<﹣1.∴当时,△PBC的面积最大,最大值为;(3)存在.理由:由抛物线的表达式知,点D的坐标为(﹣3,﹣4),连接BD,则BD2=2,CD2=20,BC2=18,∴BD2+BC2=CD2,∴△BCD是直角三角形,且.①当点P在直线BC下方时,设CD的中点为H,则H(﹣2,﹣2),且点P为直线BH与抛物线的交点(不与点B重合)易得直线BH的表达式为,令,解得x=﹣4(舍去)或,∴此时P的坐标为;②当点P在直线BC上方时,BP∥CD.由C、D的坐标得:直线CD的表达式为y=2x+2,则可设直线BP的表达式为y=2x+c,将点B(﹣4,﹣3)代入y=2x+c,解得c=5故直线BP的表达式为y=2x+5.令2x+5=x2+6x+5,解得x=﹣4或x=0,∴此时点P的坐标为(0,5),综上所述,点P的坐标为或(0,5).26.(14分)已知四边形ABCD是菱形,∠ABC=60°,∠EAF的两边分别与射线CB、DC 相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,求证:AE =EF;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上时,设AF交BC于点G,求证:AG•CF=AF•CG.【分析】(1)连接AC,可得△ABE≌△ACF,进而判断出△AEF是等边三角形,即可得出结论;(2)连接AC,可得△ABE≌△ACF,进而得出结论;(3)由已知可得△AEG~△CFG,进而得出,再判断出AE=AF,即可得出结论.【解答】(1)证明:如图1,连接AC,∵四边形ABCD是菱形,∴AB=BC,∠BCD=120°,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠ACD=60°=∠ABC,∵∠EAF=60°=∠BAC,∴∠BAE+∠CAE=∠CAF+∠CAE,∴∠BAE=∠CAF,∴△ABE≌△ACF(ASA).∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形,∴AE=EF;(2)如图2,连接AC,∵四边形ABCD是菱形,∴AB=BC,∠BCD=120°,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠ACD=60°=∠ABC,∵∠EAF=60°=∠BAC,∴∠BAE+∠CAE=∠CAF+∠CAE,∴∠BAE=∠CAF,∴△ABE≌△ACF(ASA).∴BE=CF;(3)由(1)知,∠FCG=60°=∠EAF,∵∠AGE=∠FGC,∴△AEG~△CFG,∴,同(1)知,△AEF为等边三角形,∴AE=AF,∴即.。

2021年湖南省常德市中考数学试卷及答案

2021年湖南省常德市中考数学试卷及答案

2021年湖南省常德市中考数学试卷及答案2021年湖南省常德市中考数学试卷及答案一、选择题(本大题8个小题,每小题3分,满分24分) 1.(3分)﹣2的相反数是() A.2B.﹣2 C.2﹣1 D.﹣2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是() A.1B.2C.8D.113.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b| C.ab>0 D.﹣a>b4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0 D.k<05.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适() A.甲 B.乙 C.丙 D.丁6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.37.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()第1页(共18页)A. B. C. D.8.(3分)阅读理解:a,b,c,d是实数,我们把符号并且规定:=a×d﹣b×c,例如:称为2×2阶行列式,=3×(﹣2)﹣2×(﹣1)=﹣6+2=的解可以利用2×2阶行列式表示为:﹣4.二元一次方程组;其中D=,Dx=,Dy=.问题:对于用上面的方法解二元一次方程组() A.D=C.Dy=27=﹣7B.Dx=﹣14时,下面说法错误的是D.方程组的解为二、填空题(本大题8个小题,每小题3分,满分24分) 9.(3分)﹣8的立方根是. 10.(3分)分式方程﹣=0的解为x= .11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为千米.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是(只写一个).14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为.视力x 4.0≤x<4.3 第2页(共18页)频数 204.3≤x<4.6 4.6≤x<4.9 4.9≤x≤5.2 5.2≤x<5.5 40 70 60 10 15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.三、(本大题2个小题,每小题5分,满分10分) 17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.18.(5分)求不等式组的正整数解.四、(本大题2个小题,每小题6分,满分12分) 19.(6分)先化简,再求值:(+)÷,其中x=.(k2≠0)20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=的图象交于A(4,1),B(n,﹣2)两点.第3页(共18页)(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)六、(本大题2个小题,每小题8分,满分16分)第4页(共18页)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD 的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x 轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求第5页(共18页)M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC?AC.第6页(共18页)2021年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分) 1.【解答】解:﹣2的相反数是:2.故选:A. 2.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3, 4<x<10,故选:C. 3.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误, ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D. 4.【解答】解:由题意,得 k﹣2>0,解得k>2,故选:B.第7页(共18页)5.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A. 6.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3故选:D. 7.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D. 8.【解答】解:A、D=B、Dx=C、Dy==﹣7,正确;,=﹣2﹣1×12=﹣14,正确; =2×12﹣1×3=21,不正确;==2,y===﹣3,正确;D、方程组的解:x=故选:C.第8页(共18页)二、填空题(本大题8个小题,每小题3分,满分24分) 9.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2. 10.【解答】解:去分母得:x+2﹣3x=0,解得:x=1,经检验x=1是分式方程的解.故答案为:1 11.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108. 12.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1. 13.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6. 14.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,第9页(共18页)则视力在4.9≤x<5.5这个范围的频率为:故答案为:0.35. 15.=0.35.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°. 16.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.三、(本大题2个小题,每小题5分,满分10分) 17.【解答】解:原式=1﹣(2=1﹣2=﹣2. 18.第10页(共18页)﹣1)+2﹣4,+1+2﹣4,【解答】解:解不等式①,得x>﹣2,解不等式②,得x≤,,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.四、(本大题2个小题,每小题6分,满分12分) 19.【解答】解:原式=[==x﹣3,把x=代入得:原式=﹣3=﹣. 20.【解答】解:(1)∵反比例函数y2=∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,(k2≠0)的图象过点A(4,1),×(x﹣3)2+]×(x﹣3)2∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函第11页(共18页)数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.五、(本大题2个小题,每小题7分,满分14分) 21.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:解得:.,答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元. 22.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7.第12页(共18页)∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.六、(本大题2个小题,每小题8分,满分16分) 23.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=补全条形统计图如下:×100%=28%,(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;第13页(共18页)(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率= 24.(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,【解答】证明:∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D 四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,=.∴△BAD≌△CAF,∴BD=CF.第14页(共18页)七、(本大题2个小题,每小题10分,满分20分) 25.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a?8?2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,,解得,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣S△NOM =?4?t﹣?t?t =﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,第15页(共18页)。

2021年全国中考数学真题分类汇编--数与式:分式(含答案)

2021年全国中考数学真题分类汇编--数与式:分式(含答案)

中考真题分类汇编(数与式)----分式一、选择题1.(2021•江苏省苏州市)已知两个不等于0的实数a、b满足a+b=0,则+等于()A.﹣2B.﹣1C.1D.2【分析】先把所求式子通分,然后将分子变形,再根据两个不等于0的实数a、b满足a+b =0,可以得到ab≠0,再将a+b=0代入化简后的式子即可解答本题.【解答】解:+===,∵两个不等于0的实数a、b满足a+b=0,∴ab≠3,当a+b=0时,原式=,故选:A.2.(2021•江西省)计算的结果为()A.1B.﹣1C.D.【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式===1,故选:A.3.(2021•山东省临沂市)计算(a﹣)÷(﹣b)的结果是()A.﹣B.C.﹣D.【分析】根据分式的减法和除法法则可以化简题目中的式子.【解答】解:(a﹣)÷(﹣b)=÷==﹣,故选:A.4.(2021•四川省眉山市)化简(1+)÷的结果是()A.a+1B.C.D.【分析】分式的混合运算,先算小括号里面的,然后算括号外面的.【解答】解:原式==,故选:B.5.(2021•四川省南充市)下列运算正确的是()A.•=B.÷=C.+=D.﹣=【分析】根据分式的乘除法和加减法可以计算出各个选项中式子的正确结果,从而可以解答本题.【解答】解:=,故选项A错误;==,故选项B错误;==,故选项C错误;===,故选项D正确;故选:D .6. (2021•天津市)计算33a ba b a b---的结果是( ) A. 3 B. 33a b +C. 1D.6aa b- 【答案】A 【解析】【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a ba b-=-, 3()a b a b-=-3=.故选A .7.(2021•贵州省铜仁市)下列等式正确的是( ) A. 3tan 452-+︒=- B. ()5510x xy x y ⎛⎫÷= ⎪⎝⎭C. ()2222a b a ab b -=++ D. ()()33x y xy xy x y x y -=+-【答案】D8. (2021•浙江省宁波市)要使分式12x +有意义,x 的取值应满足( ) A. 0x ≠ B. 2x ≠-C. 2x ≥-D. 2x >-【答案】B 【解析】【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】解:分式12x +有意义, 20,x ∴+≠2.x ∴≠-故选:.B9. 2021•黑龙江省大庆市)已知b >a >0,则分式a b 与a +1b +1的大小关系是( )AA . a b <a +1b +1B . a b =a +1b +1C . a b >a +1b +1D . 不能确定二.填空题1. (2021•湖南省衡阳市)计算:= 1 .【分析】根据同分母的分式加减法则进行计算即可. 【解答】解:原式==1.故答案为:1.2. (2021•岳阳市)要使分式51x -有意义,则x 的取值范围为_________. 【答案】x ≠13. (2021•四川省南充市)若=3,则+=.【分析】利用分式化简,得出n =2m ,代入即可求解.【解答】解:∵,∴n =2m , ∴+=+=+4=,故答案为:.4. (2021•四川省自贡市)化简:22824a a -=-- _________. 【答案】22a + 【解析】【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】解:22824a a --- ()()28222a a a =--+- ()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+, 故答案为:22a +. 5. (2021•福建省)已知非零实数x ,y 满足y =,则的值等于 .【答案】4 【解析】【分析】由条件1xy x =+变形得,x -y =xy ,把此式代入所求式子中,化简即可求得其值. 【详解】由1xy x =+得:xy +y =x ,即x -y =xy ∴3344x y xy xy xy xyxy xy xy-++===故答案为:4三、解答题1. (2021•湖南省常德市)化简:2593111aa a a a a ++⎛⎫+÷ ⎪---⎝⎭【答案】31a a ++ 【解析】【分析】直接将括号里面的分式,通分运算进而结合分式的混合运算法则,计算得出答案. 详解】2593111aa a a a a ++⎛⎫+÷⎪---⎝⎭222591=113a a a a a a a ++-⨯--+(+) 2691=(1)(1)3a a a a a a ++-⨯+-+ 2(3)1=(1)(1)3a a a a a +-⨯+-+ 31a a +=+故答案为:31a a ++. 2. (2021•怀化市)先化简,再求值:,其中x =.【分析】直接利用分式的混合运算法则化简,再把已知数据代入得出答案. 【解答】解:原式=+•=+=+= = =,当x =+2时, 原式===.3. (2021•湖南省邵阳市)先化简,再从﹣1,0,1,2,+1中选择一个合适的x 的值代入求值.(1﹣)÷.【分析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x 的取值,代入求值即可. 【解答】解:原式==,又∵x ≠±1,∴x 可以取0,此时原式=﹣1; x 可以取2,此时原式=1; x 可以取,此时原式=.4. (2021•株洲市)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中22x =. 【答案】12x -+,25. (2021•江苏省南京市)计算222ab a b b ab a b a ab ab-⎛⎫-+÷ ⎪+++⎝⎭. 【答案】a ba b-+ 【解析】【分析】先对括号里的分式进行通分,将通分后的分式进行合并,将合并后的结果与最后一项分式相除,将除法运算转化为乘法运算,最后约分化简后即可得到计算结果.【详解】解:原式=()()2a bab b a b a b a a b a b ⎛⎫-+⋅ ⎪ ⎪+++-⎝⎭=()()()222a ab b ab ab a b ab a b ab a b a b ⎛⎫-+⋅ ⎪ ⎪+++-⎝⎭=()222a ab b abab a b a b-+⋅+-=()()2a b ab ab a b a b-⋅+- =a ba b-+. 6. (2021•山东省聊城市) 先化简,再求值:22212211111a a a a a a a a +--⎛⎫+÷-- ⎪+--⎝⎭,其中a =﹣32. 【答案】21aa +;6 【解析】【分析】先把分式化简后,再把a 的值代入求出分式的值即可.【详解】解:原式=22212(21)(1)(1)111a a a a a a a a a +---+-+÷+-- 2222122111a a a a aa a a +--+=+÷+-- 21111a a a +=-++ 21a a =+,当32a=-时,原式=6.7.(2021•四川省达州市)化简求值:(1﹣)÷(),其中a与2,3构成三角形的三边【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简,再结合三角形三边关系、分式有意义的条件得出a的值,求出答案即可.【解答】解:原式=•=•=﹣2(a﹣2)=﹣2a+4,∵a与2,6构成三角形的三边,∴3﹣2<a<8+2,∴1<a<4,∵a为整数,∴a=2,3或6,又∵a﹣2≠0,a﹣5≠0,∴a≠2且a≠5,∴a=3,∴原式=﹣2a+5=﹣2×3+2=﹣6+4=﹣3.8.(2021•四川省乐山市)已知2612(1)(2)A B xx x x x--=----,求A、B的值.【答案】A的值为4,B的值为-2【解析】【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案.【详解】(2)(1)12(1)(2)(1)(2)A B A x B xx x x x x x---=+------,∴(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----,∴(2)(1)26A x B x x -+-=-, 即()(2)26A B x A B x +-+=-.∴226A B A B +=⎧⎨+=⎩,解得:42A B =⎧⎨=-⎩∴A 的值为4,B 的值为2-.。

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

中考真题分类汇编(数与式)----实数的运算及大小比较一、选择题1.(2021•湖南省常德市)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④2.(2021•湖南省邵阳市)如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2B.1C.﹣1D.﹣23.(2021•长沙市)下列四个实数中,最大的数是()A. 3-B. 1-C. πD. 44.(2021•江苏省南京市)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:005.(2021•山东省泰安市)下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是()A.﹣4B.|﹣4|C.0D.﹣2.86.(2021•陕西省)计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣67.(2021•河北省)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014428.(2021•四川省南充市)数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣19.(2021•天津市)17值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间10. (2021•浙江省湖州市)已知a ,b 是两个连续整数,a <3﹣1<b ,则a ,b 分别是 A .﹣2,﹣1 B .﹣1,0 C .0,1 D .1,2 11. (2021•浙江省台州)大小在2和5之间的整数有( ) A. 0个B. 1个C. 2个D. 3个12. (2021•北京市)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a +b >0D .b ﹣a <013. (2021•北京市)已知432=1849,442=1936,452=2025,462=2116.若n 为整数且n <<n +1,则n 的值为( ) A .43B .44C .45D .4614. (2021•内蒙古包头市)下列运算结果中,绝对值最大的是( ) A. 1(4)+-B. 4(1)-C. 1(5)--D.415.(2021•四川省凉山州) 81的平方根是( )A. 3±B. 3C. 9±D. 916.(2021•贵州省贵阳市)如图,已知数轴上A ,B 两点表示的数分别是a ,b ,则计算|b |﹣|a |正确的是( )A .b ﹣aB .a ﹣bC .a +bD .﹣a ﹣b17.(2021•绥化市)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) 二.填空题1. (2021·安徽省)计算:04(1)+-=______.2. (2021•怀化市)比较大小:(填写“>”或“<”或“=”).3. (2021•湖南省邵阳市)16的算术平方根是 .4. (2021•江苏省扬州)计算:2220212020-=__________.5. (2021•山东省临沂市)比较大小:25(选填“>”、“=”、“<”).6.(2021•湖北省宜昌市)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为﹣6℃,攀登2km 后,气温下降 ℃.7. (2021•湖北省荆州市)已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= .8. (2021•湖北省荆门市)计算:|1﹣|+()﹣1+2cos45°+(﹣1)0= .9. (2021•重庆市A )计算:031_______.10. (2021•内蒙古包头市)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 三、解答题1. (2021•甘肃省定西市)计算:(2021﹣π)0+()﹣1﹣2cos45°.2. (2021•湖北省黄冈市)计算:0.3. (2021•怀化市)计算:.4. (2021•江苏省连云港)计算:23862+--.5. (2021•江苏省扬州)计算:01|33|tan603⎛⎫-+-+︒ ⎪⎝⎭;6. (2021•江西省)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;7. (2021•陕西省)计算:(﹣)0+|1﹣|﹣.8. (2021•山西省中考)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭9. (2021•山东省临沂市)计算|﹣|+(﹣)2﹣(+)2.10. (2021•四川省成都市)计算:+(1+π)0﹣2cos45°+|1﹣|.11. (2021•遂宁市)计算:()101tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭π12. 2021•浙江省金华市)计算:(﹣1)2021+﹣4sin45°+|﹣2|.13. (2021•浙江省台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量; (2)求小华从输液开始到结束所需的时间.14. (2021•浙江省温州市)计算:4×(﹣3)+|﹣8|﹣.15. (2021•江苏省盐城市)如图,点A 是数轴上表示实数a 的点. (1)用直尺和圆规在数轴上作出表示实数的的点P ;(保留作图痕迹,不写作法)(2)利用数轴比较和a 的大小,并说明理由.16. (2021•湖北省十堰市)11233-⎛⎫︒+-- ⎪⎝⎭.17. (2021•湖南省张家界市)计算:860cos 222)1(2021+--+-︒18. (2021•广西贺州市)()04123π-+-︒.。

常德市2021版中考数学试卷A卷

常德市2021版中考数学试卷A卷

常德市2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·常州) 的相反数是()A .B .C .D .2. (2分)南开校训“允公允能,日新月异”中,“日新月异”四字的经典繁方篆字体是中心对称图形的是()A .B .C .D .3. (2分)下列说法正确的是()A . 要了解全市居民对环境的保护意识,采用全面调查的方式B . 若甲组数据的方差S2甲 =0.1,乙组数据的方差S2乙 =0.2,则甲组数据比乙组稳定C . 随机抛一枚硬币,落地后正面一定朝上D . 若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次4. (2分)(2020·枣阳模拟) 下列运算正确的是()A .B .C .D .5. (2分)在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 ,再将点P1绕原点旋转90°得到点P2 ,则点P2的坐标是()A . (3,-3)B . (3,3)C . (3,3)或(-3,-3)D . (3,-3)或(-3,3)6. (2分)(2017·七里河模拟) AB为⊙O的直径,点C、D在⊙O上.若∠ABD=42°,则∠BCD的度数是()A . 122°B . 128°C . 132°D . 138°7. (2分) (2017八下·安岳期中) 如图,在▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE 的周长是()A . 7B . 10C . 11D . 128. (2分)反比例函数y= 与y= 在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A .B . 2C . 3D . 1二、填空题 (共6题;共6分)9. (1分)据《太仓日报》报道:2015年太仓港区完成规模工业产值705.48亿元,将705.48亿元用科学记数法表示为________元.10. (1分) (2017九上·凉山期末) +2sin30°-tan60°+tan45°=________.11. (1分)抛物线y=2x2+4x+m与x轴的一个交点坐标为(﹣3,0),则与x轴的另一个交点坐标为________.12. (1分)(2017·河南模拟) 如图矩形ABCD中,AD=1,CD= ,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为________.13. (1分) (2019八下·铜仁期中) 如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是________.14. (1分)(2012·内江) 由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为________.三、解答题 (共10题;共106分)15. (10分)(2020·灯塔模拟) 如图,△ABC是直角三角形,∠ACB=90°(1)利用尺规作∠ABC 的平分线,交AC 于点O,再以O 为圆心,OC 的长为半径作⊙O(保留作图痕迹,不写作法);(2)在你所作的图中,①判断AB 与⊙O 的位置关系,并证明你的结论;②若AC=12,tan∠OBC=,求⊙O 的半径.16. (10分) (2020九下·重庆月考) 计算:(1)解不等式组:(2)化简:(x-2y)2-3x(x-y)17. (5分)(2017·惠山模拟) 在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)18. (15分)(2020·衢州) 某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测。

2021年常德市中考数学试卷含答案解析(Word版)

2021年常德市中考数学试卷含答案解析(Word版)

2021年湖南省常德市中考数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分)1.下列各数中无理数为()A.B.0 C.D.﹣1【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、0是整数是有理数,选项错误;C、是分数,是有理数,选项错误;D、﹣1是整数,是有理数,选项错误.故选A.2.若一个角为75°,则它的余角的度数为()A.285°B.105°C.75°D.15°【考点】IL:余角和补角.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣75°=15°,故选D.3.一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根【考点】AA:根的判别式.【分析】先计算判别式的意义,然后根据判别式的意义判断根的情况.【解答】解:∵△=(﹣4)2﹣4×3×1=4>0∴方程有两个不相等的实数根.故选D.4.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,22【考点】W4:中位数;W2:加权平均数.【分析】此题根据中位数,平均数的定义解答.【解答】解:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选:B.5.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x【考点】51:因式分解的意义.【分析】根据因式分解的意义即可判断.【解答】解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选(C)6.如图是一个几何体的三视图,则这个几何体是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】结合三视图确定小正方体的位置后即可确定正确的选项.【解答】解:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.7.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5 B.y=2(x+3)2+5 C.y=2(x﹣3)2+5 D.y=2(x+3)2﹣5【考点】H6:二次函数图象与几何变换.【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律得到点(0,0)平移后所得对应点的坐标为(3,﹣5),然后根据顶点式写出平移得到的抛物线的解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),点(0,0)向右平移3个单位,再向下平移5个单位所得对应点的坐标为(3,﹣5),所以平移得到的抛物线的表达式为y=2(x﹣3)2﹣5.故选A.8.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()302sin60°22﹣3﹣2﹣sin45°0|﹣5|623()﹣14()﹣1 A.5 B.6 C.7 D.8【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】分析可知第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第三行为5,6,7,8,由此可得结果.【解答】解:∵第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第四行为3,4,5,6∴第三行为5,6,7,8,∴方阵中第三行三列的“数”是7,故选C.二、填空题(本小题共8小题,每小题3分,共24分)9.计算:|﹣2|﹣=0.【考点】2C:实数的运算.【分析】首先计算开方,然后计算减法,求出算式的值是多少即可.【解答】解:|﹣2|﹣=2﹣2=0故答案为:0.10.分式方程+1=的解为x=2.【考点】B3:解分式方程.【分析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解: +1=,方程两边都乘以x得:2+x=4,解得:x=2,检验:当x=2时,x≠0,即x=2是原方程的解,故答案为:x=2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:887000000=8.87×108.故答案为:8.87×108.12.命题:“如果m是整数,那么它是有理数”,则它的逆命题为:“如果m是有理数,那么它是整数”.【考点】O1:命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题:“如果m是整数,那么它是有理数”的逆命题为“如果m是有理数,那么它是整数”.故答案为“如果m是有理数,那么它是整数”.13.彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷24000千克.【考点】V5:用样本估计总体.【分析】先求出一棵枇杷树上采摘多少千克枇杷,再乘以彭山总的枇杷树的棵数,即可得出答案.【解答】解:根据题意得:200÷5×600=24000(千克),答:今年一共收获了枇杷24000千克;故答案为:24000.14.如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是0≤CD≤5.【考点】KO:含30度角的直角三角形;KP:直角三角形斜边上的中线.【分析】分点D与点E重合、点D与点A重合两种情况,根据等腰三角形的性质计算即可.【解答】解:当点D与点E重合时,CD=0,当点D与点A重合时,∵∠A=90°,∠B=60°,∴∠E=30°,∴∠CDE=∠E,∠CDB=∠B,∴CE=CD,CD=CB,∴CD=BE=5,∴0≤CD≤5,故答案为:0≤CD≤5.15.如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为y=2x2﹣4x+4.【考点】HD:根据实际问题列二次函数关系式;LE:正方形的性质.【分析】由AAS证明△AHE≌△BEF,得出AE=BF=x,AH=BE=2﹣x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.【解答】解:如图所示:∵四边形ABCD是边长为1的正方形,∴∠A=∠B=90°,AB=2.∴∠1+∠2=90°,∵四边形EFGH为正方形,∴∠HEF=90°,EH=EF.∴∠1+∠3=90°,∴∠2=∠3,在△AHE与△BEF中,∵,∴△AHE≌△BEF(AAS),∴AE=BF=x,AH=BE=2﹣x,在Rt△AHE中,由勾股定理得:EH2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4;即y=2x2﹣4x+4(0<x<2),故答案为:y=2x2﹣4x+4.16.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为﹣.【考点】F8:一次函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】由点A1、A2的坐标,结合平移的距离即可得出点A n的坐标,再由直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,即可得出点A n(4n,0)+1在直线y=kx+2上,依据依此函数图象上点的坐标特征,即可求出k值.【解答】解:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n(4n,0)在直线y=kx+2上,+1∴0=4nk+2,解得:k=﹣.故答案为:﹣.三、解答题(本题共2小题,每小题5分,共10分.)17.甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?【考点】X6:列表法与树状图法.【分析】用树状图表示出所有情况,再根据概率公式求解可得.【解答】解:用树状图分析如下:∴一共有6种情况,甲、乙两人恰好相邻有4种情况,∴甲、乙两人相邻的概率是=.18.求不等式组的整数解.【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式的解,然后根据大大取大,小小取小,大小小大中间找,大大小小解不了,的口诀求出不等式组的解,进而求出整数解.【解答】解:解不等式①得x≤,解不等式②得x≥﹣,∴不等式组的解集为:﹣≤x≤∴不等式组的整数解是0,1,2.四、解答题:本大题共2小题,每小题6分,共12分.19.先化简,再求值:(﹣)(﹣),其中x=4.【考点】6D:分式的化简求值.【分析】先根据分式的混合运算顺序和法则化简原式,再将x的值代入求解可得.【解答】解:原式=[+]•[﹣]=•(﹣)=•=x﹣2,当x=4时,原式=4﹣2=2.20.在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园2016年通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园2016年货运总量是多少万吨?(2)该物流园2016年空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据铁运的货运量以及百分比,即可得到物流园2016年货运总量;(2)根据空运的百分比,即可得到物流园2016年空运货物的总量,并据此补全条形统计图;(3)根据陆运的百分比乘上360°,即可得到陆运货物量对应的扇形圆心角的度数.【解答】解:(1)2016年货运总量是120÷50%=240吨;(2)2016年空运货物的总量是240×15%=36吨,条形统计图如下:(3)陆运货物量对应的扇形圆心角的度数为×360°=18°.五、解答题:本大题共2小题,每小题7分,共14分.21.如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB 的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【分析】(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.【解答】解:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为y=,∵A(4,m),∴m==1;(2)∵当x=﹣3时,y=﹣;当x=﹣1时,y=﹣4,又∵反比例函数y=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣.22.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.【考点】MC:切线的性质.【分析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得=,由此即可解决问题;【解答】(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=8,OC=0A=6,∴OD==10,∵OC∥BE,∴=,∴=,∴EC=4.8.六、解答题:本大题共2小题,每小题8分,共16分.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?【考点】8A:一元一次方程的应用;AD:一元二次方程的应用.【解答】解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.2(舍去).答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%;依题意得:2y+34+y=484,解得y=150所以484﹣150=334(元).24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【考点】T8:解直角三角形的应用.【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.0292,∴GM=AB=2.0292,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°==,∴FG=4.33,∴DM=FG+GM﹣DF≈5.01米,答:篮框D到地面的距离是5.01米.七、解答题:每小题10分,共20分。

2021年湖南省常德市中考数学试卷(附答案详解)

2021年湖南省常德市中考数学试卷(附答案详解)

2021年湖南省常德市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.4的倒数为()A. 14B. 2C. 1D. −42.若a>b,下列不等式不一定成立的是()A. a−5>b−5B. −5a<−5bC. ac >bcD. a+c>b+c3.一个多边形的内角和为1800°,则这个多边形的边数为()A. 10B. 11C. 12D. 134.下列计算正确的是()A. a3⋅a2=a6B. a2+a2=a4C. (a3)2=a5D. a3a2=a(a≠0) 5.舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A. ②→③→①→④B. ③→④→①→②C. ①→②→④→③D. ②→④→③→①6.计算:(√5+12−1)⋅√5+12=()A. 0B. 1C. 2D. √5−127.如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A. BE=12AEB. PC=PDC. ∠EAF+∠AFD=90°D. PE=EC8.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( )A. ②④B. ①②④C. ①②D. ①④二、填空题(本大题共8小题,共24.0分) 9. 不等式2x −3>x 的解集是______ .10. 今年5月11日,国家统计局公布了第七次全国人口普查的结果,我国现有人口141178万人.用科学记数法表示此数为______ .11. 在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是______ 班.人数 平均数 中位数 方差 甲班 45 82 91 19.3 乙班4587895.812. 分式方程1x +1x−1=x+2x(x−1)的解为______ .13. 如图,已知四边形ABCD 是圆O 的内接四边形,∠BOD =80°,则∠BCD = ______ .14. 如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于E ,若CD =3,BD =5,则BE 的长为______ .15. 刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有______ 个.16. 如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n 个网格中所有线段的和为______ .(用含n 的代数式表示)三、计算题(本大题共2小题,共10.0分)17.计算:20210+3−1⋅√9−√2sin45°.18.解方程:x2−x−2=0.四、解答题(本大题共8小题,共62.0分)19.化简:(aa−1+5a+9a2−1)÷a+3a−1.20.如图,在Rt△AOB中,AO⊥BO,AB⊥y轴,O为坐标原点,A的坐标为(n,√3),反比例函数y1=k1x 的图象的一支过A点,反比例函数y2=k2x的图象的一支过B点,过A作AH⊥x轴于H,若△AOH的面积为√32.(1)求n的值;(2)求反比例函数y2的解析式.21.某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?22.今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A处测得国旗D处的仰角为45°,站在同一队列B处的小刚测得国旗C处的仰角为23°,已知小明目高AE=1.4米,距旗杆CG的距离为15.8米,小刚目高BF=1.8米,距小明24.2米,求国旗的宽度CD是多少米?(最后结果保留一位小数)(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245)23.我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗;B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种.图1与图2是根据此次调查得到的统计图(不完整).请根据统计图回答下列问题(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.24.如图,在Rt△ABC中,∠ABC=90°,以AB的中点O为圆心,AB为直径的圆交AC于D,E是BC的中点,DE交BA的延长线于F.(1)求证:FD是圆O的切线:(2)若BC=4,FB=8,求AB的长.25.如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD的中点,B、C、D的坐标分别为(−2,0),(8,0),(13,10).(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF上;(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.26.如图1,在△ABC中,AB=AC,N是BC边上的一点,D为AN的中点,过点A作BC的平行线交CD的延长线于T,且AT=BN,连接BT.(1)求证:BN=CN;(2)在图1中AN上取一点O,使AO=OC,作N关于边AC的对称点M,连接MT、MO、OC、OT、CM得图2.①求证:△TOM∽△AOC;CM.②设TM与AC相交于点P,求证:PD//CM,PD=12答案和解析1.【答案】A【知识点】倒数【解析】解:4的倒数为14.故选:A.根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.本题主要考查倒数的意义.解题的关键是注意求倒数的方法,把分子分母互换位置.2.【答案】C【知识点】不等式的基本性质【解析】解:A.∵a>b,∴a−5>b−5,故本选项不符合题意;B.∵a>b,∴−5a<−5b,故本选项不符合题意;C.∵a>b,∴当c>0时,ac >bc;当c<0时,ac<bc,故本选项符合题意;D.∵a>b,∴a+c>b+c,故本选项不符合题意;故选:C.根据不等式的性质逐个判断即可.本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.【答案】C【知识点】多边形内角与外角【解析】解:根据题意得:(n−2)180°=1800°,解得:n=12.故选:C.n边形的内角和是(n−2)180°,根据多边形的内角和为1800°,就得到一个关于n的方程,从而求出边数.本题根据多边形的内角和定理,把求边数问题转化成为一个方程问题.4.【答案】D【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.a3⋅a2=a5,故本选项不合题意;B.a2+a2=2a2,故本选项不合题意;C.(a3)2=a6,故本选项不合题意;=a(a≠0),故本选项符合题意;D.a3a2故选:D.分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.本题考查了同底数幂的乘除法,合并同类项以及幂的乘方,熟记相关运算法则是解答本题的关键.5.【答案】D【知识点】统计图的选择、统计表、调查收集数据的过程与方法【解析】解:正确统计步骤的顺序是:从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表;按统计表的数据绘制折线统计图;从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势.故选:D.根据折线统计图的制作步骤即可求解.本题是一道统计型题目,解题的关键是熟悉折线统计图的制作步骤.6.【答案】B【知识点】二次根式的混合运算【解析】解:(√5+12−1)⋅√5+12=√5+1−22×√5+12=√5−12×√5+12=(√5)2−124=44=1.故选:B.直接利用二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确运用乘法公式计算是解题关键.7.【答案】C【知识点】矩形的性质、全等三角形的判定与性质【解析】解:∵F、E分别是正方形ABCD的边AB与BC的中点,∴AF=BE,在△AFD和△BEA中,{AF=BE∠DAF=∠ABE=90°AD=BA,∴△AFD≌△BEA(SAS),∴∠FDA=∠EAB,又∵∠FDA+∠AFD=90°,∴∠EAB+∠AFD=90°,即∠EAF+∠AFD=90°,故C正确,A、B、D无法证明其成立,故选:C.根据已知条件结合正方形性质以及全等三角形性质逐一推理即可选出答案.本题考查正方形的性质以及全等三角形的判定与性质,熟练掌握正方形的性质以及全等三角形的判定与性质,细心推理是解题的关键.8.【答案】B【知识点】勾股数【解析】解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④两个广义勾股数的积是广义勾股数,故④结论正确,∴次正确的是①②④.故选:B.根据广义勾股数的定义进行判断即可.本题考查了勾股数的综合应用,掌握勾股定理以及常见的勾股数是解题的关键.9.【答案】x>3【知识点】一元一次不等式的解法【解析】解:移项得,2x−x>3,合并得,x>3.故答案为:x>3.根据解一元一次不等式的步骤,移项、合并同类项即可.本题考查了解一元一次不等式,是基础题,比较简单,移项时注意要变号.10.【答案】1.41178×109【知识点】科学记数法-绝对值较大的数【解析】解:141178万=1.41178×109,故答案为:1.41178×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是确定a的值以及n的值.11.【答案】甲【知识点】加权平均数、中位数、方差【解析】解:∵甲班的中位数为91分,乙班的中位数为89分,∴甲班的中位数大于乙班的中位数,∴甲、乙两班中优秀人数更多的是甲班,故答案为:甲.根据中位数的意义求解即可.本题主要考查中位数,解题的关键是掌握中位数的意义.12.【答案】x=3【知识点】分式方程的一般解法【解析】解:去分母得:x−1+x=x+2,解得:x=3,检验:把x=3代入得:x(x−1)=6≠0,∴分式方程的解为x=3.故答案为:x=3.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.【答案】140°【知识点】圆内接四边形的性质【解析】解:∵∠BAD为BD⏜所对的圆周角且∠BOD=80°,∴∠BAD=12∠BOD=12×80°=40°,又∵四边形ABCD是圆O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=180°−∠BAD=180°−40°=140°,故答案为:140°.根据已知条件利用圆周角定理求出∠BAD的度数,再根据圆内接四边形对角互补即可求出∠BCD的度数.本题考查圆周角定理以及圆内接四边形的性质,熟练掌握圆周角定理并能知道圆内接四边形对角互补的性质是解题的关键.14.【答案】4【知识点】角平分线的性质【解析】解:∵AD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴DE=DC=3,∵BD=5,∴BE=√BD2−DE2=√52−32=4,故答案为4.根据角的平分线上的点到角的两边的距离相等,得DE=DC=4,再由勾股定理求得BE的长即可.本题考查了角平分线的性质.角平分线上的任意一点到角的两边距离相等.比较简单,属于基础题.15.【答案】20【知识点】有理数的混合运算【解析】解:∵16为红珠,14为绿珠,红球和绿球的数量均为正整数,且4,6的最小公倍数为12,∴四种球的总数为12的整数倍,又∵四种球的总数不超过50个,∴四种球的总数最多为48个,此时蓝珠的个数=48−48×16−48×14−8=20(个).故答案为:20.由红球、绿球占的比较及两种球的数量均为正整数,即可得出四种球的总数为12的整数倍,结合四种球的总数不超过50个,可得出四种球的总数最多为48个,再利用篮球的个数=四种球的总数−红球的个数−绿球的个数−黑球的个数,即可求出结论.本题考查了有理数的混合运算以及因数和倍数,根据各球所占比例及4,6的最小公倍数,找出四种球的总数为12的整数倍是解题的关键.16.【答案】2n(n+1)【知识点】图形规律问题【解析】解:∵第一个图形有1×1个小正方形,所有线段的和为4=2×1×2,第二个图形有2×2个小正方形,所有线段的和为12=2×2×3,第三个图形有3×3个小正方形,所有线段的和为24=2×3×4,⋅⋅⋅,按此规律,则第n个网格中所有线段的和为2n(n+1);故答案为:2n(n+1).根据每个图形可得所有线段的和,找规律可得:①这些数是偶数;②这些数是三个数的积;③三个因数中有一个数是2,另外一个与图形的序号相同,最后一个比图形的序号大1,可得第n个网格中所有线段的和为2n(n+1).本题考查数字的变化规律,总结归纳出数字的变化规律是解题的关键.17.【答案】解:20210+3−1⋅√9−√2sin45°=1+13×3−√2×√22=1+1−1=1.【知识点】特殊角的三角函数值、负整数指数幂、零指数幂、实数的运算【解析】根据公式a0=1(a≠0)、a−n=1a n(a≠0),以及二次根式的运算法则,正确计算即可.本题主要考查实数的运算相关法则,其中包括公式的运用、二次根式的运算法则以及特殊角度的三角函数,解题的关键在于要熟练运用计算法则.18.【答案】解:分解因式得:(x−2)(x+1)=0,可得x−2=0或x+1=0,解得:x1=2,x2=−1.【知识点】解一元二次方程-因式分解法【解析】方程左边分解因式后,利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解.此题考查了解一元二次方程−因式分解法,熟练掌握因式分解的方法是解本题的关键.19.【答案】解:(aa−1+5a+9a2−1)÷a+3a−1=[a(a+1)(a+1)(a−1)+5a+9(a+1)(a−1)]⋅a−1a+3 =a2+a+5a+9(a+1)(a−1)⋅a−1a+3=(a+3)2(a+1)(a−1)⋅a−1a+3=a+3a+1.【知识点】分式的混合运算【解析】根据分式的加法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.20.【答案】解:(1)S△AOH=12×OH×AH=√32,即,12n×√3=√32,∴n=1,(2)过点B作BQ⊥x轴于点Q,如图所示:∵AO⊥BO,AB⊥y轴,∴△BOQ∽△OAH,且BQ=AH=√3,∴BQOH =QOHA,即√31=√3,∴QO=3,∵点B位于第二象限,∴B的坐标(−3,√3),将点B坐标代入反比例函数y2=k2x中,k2=−3×√3=−3√3,∴反比例函数y2的解析式为:y2=−3√3x.【知识点】反比例函数系数k的几何意义、待定系数法求反比例函数解析式【解析】(1)将A的坐标为(n,√3)代入三角形AOH的面积计算公式中即可求出n的值;(2)过点B作BQ⊥x轴于点Q,利用△BOQ∽△OAH求出QO的值,表示出B点坐标,进而求出y2解析式.本题考查反比例函数k的几何意义以及待定系数法求解析式,熟练理解并掌握k的几何意义以及待定系数法求解析式的基本方法是解题的关键.21.【答案】解:(1)设销售一台A型新能源汽车的利润是x万元,销售一台B型新能源汽车的利润是y 万元,依题意得:{2x +5y =3.1x +2y =1.3, 解得:{x =0.3y =0.5. 答:销售一台A 型新能源汽车的利润是0.3万元,销售一台B 型新能源汽车的利润是0.5万元.(2)设需要采购A 型新能源汽车m 台,则采购B 型新能源汽车(22−m)台, 依题意得:(12+0.3)m +(15+0.5)(22−m)≤300,解得:m ≥121316,又∵m 为整数,∴m 可以取的最小值为13.答:最少需要采购A 型新能源汽车13台.【知识点】一元一次不等式的应用、二元一次方程组的应用【解析】(1)设销售一台A 型新能源汽车的利润是x 万元,销售一台B 型新能源汽车的利润是y 万元,根据“销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设需要采购A 型新能源汽车m 台,则采购B 型新能源汽车(22−m)台,根据总价=单价×数量,结合总价不超过300万元,即可得出关于m 的一元一次不等式,解之取其中的最小整数值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式. 22.【答案】解:作EM ⊥CG 于M ,FN ⊥CG 于N ,由题意得GB =AG +AB =15.8+24.2=40(米),则FN =GB =40米,在Rt △EDM 中,∠DEM =45°,∴DM =EM =15.8米,∵MG =AE =1.4米,∴DG =DM +MG =15.8+1.4=17.2(米),∵NG=FB=1.8米,∴DN=17.2−1.8=15.4(米),在Rt△CNF中,∠CFN=23°,∵tan∠CFN=CNFN≈0.4245,∴CN=0.4245×40≈17.0(米),∴CD−CN−DN=17.0−15.4=1.6(米)故国旗的宽度CD约为1.6米.【知识点】解直角三角形的应用【解析】先过点E作EM⊥CG于M,在Rt△DEM中,∠DAM=45°得到DM=EM=15.8米,即可求得DG=17.2米,进而求得DN=15.4米,再在Rt△ABC中,利用锐角三角函数,求得CN,即可根据CD=CN−DN求得即可.本题主要考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形,属于中考常考题型.23.【答案】解:(1)此次抽样调查的人数为:20÷10%=200(人);(2)接种B类疫苗的人数的百分比为:80÷200×100%=40%,接种C类疫苗的人数为:200×15%=30(人);(3)18000×(1−35%)=11700(人),即估计该小区所居住的18000名居民中有11700人进行了新冠疫苗接种.(4)画树状图如图:共有20种等可能的结果,恰好抽到一男和一女的结果有12种,∴恰好抽到一男和一女的概率为1220=35.【知识点】用样本估计总体、条形统计图、用列举法求概率(列表法与树状图法)【解析】(1)由B类的人数除以所占百分比即可求解;(2)由接种B类疫苗的人数除以此次抽样调查的人数得出此次抽样调查的人数所占的百分比,再由此次抽样调查的人数乘以接种C类疫苗的人数所占的百分比即可;(3)由该小区所居住的总人数乘以A、B、C三类所占的百分比即可;(4)画树状图,共有20种等可能的结果,恰好抽到一男和一女的结果有12种,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率以及条形统计图和扇形统计图.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】(1)证明:连接OD,由题可知∠ABC═90°,∵AB为直径,∴∠ADB═∠BDC═90°,∵点E是BC的中点,∴DE=12BC=BE=EC,∴∠EDC═∠ECD,又∵∠ECD+∠CBD═90°,∠ABD+∠CBD═90°,∴∠ECD═∠ABD,∵OB和OD是圆的半径,∴∠ODB═∠OBD,∴∠ODB+∠BDE═∠EDC+∠BDE═90°,即∠ODE═90°,故:FE是⊙O的切线.(2)由(1)可知BE═EC═DE═12BC═2,在Rt△FBE中,FE═√FB2+BE2═√82+22═2√17,∴FD═FE−DE═2√17−2,又∵在Rt△FDO和Rt△FBE中有:∠FDO═∠FBE═90°,∠OFD═∠EFB,∴△FDO∼△FBE,∴FDOD =FBBE,即2√17OD=82,求得OD═√17−12,∴AB═2OD═√17−1,故:AB长为√17−1.【知识点】垂径定理、切线的判定与性质、圆周角定理【解析】(1)根据直角三角形斜边上的中线等于斜边的一半,由线段之间的关系推出角的关系,再利用圆的切线判定定理求证即可;(2)利用相似三角形的对应边成比例,求得目标线段的长度.本题主要考查圆的切线的判定,以及相似三角形的性质,其解题突破口是理清各个角之间的关系.25.【答案】解:(1)过点D作x轴垂线交x轴于点H,如图所示:由题意得∠EOB=∠DHC=90°,∵AB//CD,∴∠EBO=∠DCH,∴△EBO∽△DCH,∴BOCH =EODH,∵B(−2,0)、C(8,0)、D(13,10),∴BO=2,CH=13−8=5,DH=12,∴25=EO10,解得:EO=4,∴点E坐标为(0,4),设过B、E、C三点的抛物线的解析式为:y=a(x+2)(x−8),将E点代入得:4=a ×2×(−8),解得:a =−14,∴过B 、E 、C 三点的抛物线的解析式为:y =−14(x +2)(x −8)=−14x 2+32x +4;(2)抛物线的顶点在直线EF 上,理由如下:由(1)可知该抛物线对称轴为直线x =−b 2a =−322×(−14)=3, 当x =3时,y =254,∴该抛物线的顶点坐标为(3,254),又∵F 是AD 的中点,∴F(8,10),设直线EF 的解析式为:y =kx +b ,将E(0,4),F(8,10)代入得,{4=b 10=8k +b 解得:{k =34b =4, ∴直线EF 解析式为:y =34x +4,把x =3代入直线EF 解析式中得:y =254, 故抛物线的顶点在直线EF 上;(3)由(1)(2)可知:A(3,10),设直线AB 的解析式为:y =k′x +b′,将B(−2,0),A(3,10)代入得:{0=−2k′+b′10=3k′+b′,解得:{k′=2b′=4, ∴直线AB 的解析式为:y =2x +4,∵FQ//AB ,故可设:直线FQ 的解析式为:y =2x +b 1,将F(8,10)代入得:b 1=−6,∴直线FQ 的解析式为:y =2x −6,当x =0时,y =−6,∴Q 点坐标为(0,−6),设M(0,m),直线BM 的解析式为:y =k 2x +b 2,将M 、B 点代入得:{m =b 20=−2k 2+b 2,解得:{k 2=m 2b 2=m, ∴直线BM 的解析式为:y =m 2x +m ,∵点P 为直线BM 与抛物线的交点,∴联立方程组有:{y =m 2x +m y =−14x 2+32x +4, 化简得:(x +2)(x −8+2m)=0,解得:x 1=−2(舍去),x 2=8−2m ,∴点P 的横坐标为:8−2m ,则此时,S △PBQ =12×MQ ×(|x P |+|x B |)=12×(m +6)×(8−2m +2)=−(m +12)2+1214,∵a =−1<0,∴当m =−12时,S 取得最大值,∴点P 横坐标为8−2×(−12)=9,将x =9代入抛物线解析式中y =−114,综上所述,当△PBQ 的面积最大时,P 的坐标为(9,−114).【知识点】二次函数综合【解析】(1)过点D 作x 轴垂线交x 轴于点H ,利用△EBO∽△DCH 求出E 点坐标,进而根据B 、E 、C 三点坐标即可求出抛物线解析式;(2)求出抛物线顶点坐标以及直线EF 的解析式,代入验证即可判定顶点是否在直线EF 上;(3)根据AB//FQ ,求出点Q 坐标,再设M 为(0,m)通过直线BM 与抛物线的交点表示出P 点坐标,从而可表示出△PBQ 的面积结合二次函数最值问题即可求出面积最大值时点P 的坐标.本题属于中考压轴大题,考查二次函数综合应用,涉及三角形的相似、二次函数最值等知识,熟练掌握二次函数综合性质、能数形相结合并能细心的推理运算是解题的关键. 26.【答案】证明:(1)∵AT//BC ,∴∠ATD =∠BCD ,∵点D 是AN 的中点,∴AD =DN ,在△ATD 和△NCD 中,{∠ATD =∠BCD ∠ADT =∠CDN AD =DN,∴△ATD≌△NCD(AAS),∴CN=AT,TD=DC,∵AT=BN,∴BN=CN;(2)①∵AT=BN,AT//BN,∴四边形ATBN是平行四边形,∵AB=AC,BN=CN,∴AN⊥BC,∴平行四边形ATBN是矩形,∴∠TAN=90°,∵点M,点N关于AC对称,∴CN=MC,∠ACN=∠ACM,∴AT=CM,∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠ACN=90°,∴∠OCA+∠ACM=90°=∠OCM,∴∠OCM=∠TAN,又∵AT=CM,OA=OC,∴△TAO≌△MCO(SAS),∴OT=OM,∠TOA=∠COM,∴∠TOM=∠AOC,OTOA =OMOC,∴△TOM∽△AOC;②如图2,将CM绕点M顺时针旋转,使点C落在点E上,连接AM,TE,∴EM=CM=AT,∴∠MEC=∠MCE,∵∠CAN+∠ACN=90°,∴∠CAN+∠ACM=90°,∴∠TAN+∠NAC+∠ACM=180°,∴∠TAC+∠ACM=180°,又∵∠AEM+∠CEM=180°,∴∠TAC=∠AEM,∴AT//EM,∴四边形ATEM是平行四边形,∴TP=PM,又∵TD=DC,CM.∴PD//CM,PD=12【知识点】相似形综合【解析】(1)由“AAS”可证△ATD≌△NCD,可得CN=AT=BN;(2)①由轴对称的性质可得CN=MC=AT,∠ACN=∠ACM,由“SAS”可证△TAO≌△MCO,可得OT=OM,∠TOA=∠COM,即可得结论;②将CM绕点M顺时针旋转,使点C落在点E上,连接AM,TE,由旋转的性质可得EM=CM=AT,由角的数量关系可证∠TAC=∠AEM,可得AT//EM,可证四边形ATEM 是平行四边形,可得TP=PM,由三角形中位线定理可得结论.本题是相似形综合题,考查了相似三角形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质等知识,证明四边形ATEM是平行四边形是解题的关键.。

湖南省常德市2021版数学中考一模试卷A卷

湖南省常德市2021版数学中考一模试卷A卷

湖南省常德市2021版数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017七上·确山期中) 的倒数是()A . 6B . -6C .D .2. (2分) (2019八下·北京期末) 下列图形中,不是中心对称图形的是()A .B .C .D .3. (2分) (2019七上·渭源月考) 下列结果正确的是()A .B .C .D .4. (2分) (2019九上·重庆开学考) 如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是()A .B .C .D .5. (2分)(2020·锦州) 某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁13141516人数3562则这16名队员年龄的中位数和众数分别是()A . 14,15B . 15,15C . 14.5,14D . 14.5,156. (2分)(2020·昆山模拟) 如图,点都在上,若,则()A .B .C .D .7. (2分)如果实数k,b满足kb<0,且不等式kx<b的解集是x> ,那么函数y=kx+b的图象只可能是()A .B .C .D .8. (2分)将抛物线y=x2平移得到抛物线y=x2+3,则下列平移过程正确的是()A . 向上平移3个单位B . 向下平移3个单位C . 向左平移3个单位D . 向右平移3个单位二、填空题 (共10题;共11分)9. (1分)(2020·红河模拟) 截至2020年3月11日09时,全国累计报告确诊COVID-19病例80955例,累计死亡病例3162例,累计治愈出院61567例. 将数据80955用科学记数法表示为________.10. (2分)(2011·湛江) 函数y= 中自变量x的取值范围是________,若x=4,则函数值y=________.11. (1分)(2018·潮南模拟) 正八边形一个内角的度数为________.12. (1分) (2018九上·深圳开学考) 已知方程的两个根分别是,,则________.13. (1分)(2017·无锡) 若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为________ cm2 .14. (1分)(2017·武汉模拟) 如图,将矩形纸片ABCD折叠,使边AB,CB均落在对角线BD上,得折痕BE,BF,则∠EBF=________°.15. (1分) (2020九下·江夏期中) 如图,直线y=-x+6与反比例函数 (k>0,x>0)的图象交于A、B两点,将该函数的图象平移得到的曲线是函数 (k>0,x>0)的图象,点A、B的对应点是A′、B′.若图中阴影部分的面积为8,则k的值为________ .16. (1分) (2017·黑龙江模拟) 反比例函数y= 的图象经过点(1,6)和(m+1,﹣3),则m=________.17. (1分) (2021九上·台州月考) 如图,点A,B,C,D都在⊙O上,弧CD 的度数等于84°,CA是∠OCD 的平分线,则∠ABD+∠CAO=________°18. (1分)(2017·微山模拟) 如图平行四边形ABCD中,∠ABD=30°,AB=4,AE⊥BD,CF⊥BD,且,E,F 恰好是BD的三等分点,又M、N分别是AB,CD的中点,那么四边形MENF的面积是________.三、解答题 (共10题;共102分)19. (5分)(2018·张家界) (﹣1)0+(﹣1)﹣2﹣4sin60°+ .20. (5分)(2017·常德) 先化简,再求值:(﹣)(﹣),其中x=4.21. (15分)(2018·东胜模拟) 学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)求该班学生的人数;(2)在图(1)中,将表示“步行”的部分补充完整;(3)如果全年级共600名同学,请你估算全年级步行上学的学生人数?22. (13分)(2016·钦州) 网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题组别学习时间x(h)频数(人数)A0<x≤18B1<x≤224C2<x≤332D3<x≤4nE4小时以上4(1)表中的n=________,中位数落在________组,扇形统计图中B组对应的圆心角为________°;(2)请补全频数分布直方图;(3)该校准备召开利用网络资源进行自主学习的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.23. (5分)(2018·东营) 小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.24. (7分)(2019·玉林模拟) 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2 ,直接写出旋转中心坐标________.(3)在x轴上有一点P使得PA+PB的值最小,直接写出点P的坐标________.25. (15分) (2019九上·南开月考) 已知:如图1,在平面直角坐标系中,直线1:y=﹣x+4与坐标轴分别相交于点A、B与l2:y= x相交于点C .(1)求点C的坐标;(2)若平行于y轴的直线x=a交于直线1于点E ,交直线l2于点D ,交x轴于点M ,且ED=2DM ,求a的值;(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP ,探究AP与BP之间的位置关系,并证明你的结论.26. (7分) (2016九上·鼓楼期末) 在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:x…﹣1012345…y1…0﹣3﹣4﹣30512…y2…024681012…请你根据表格信息回答下列问题,(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为________;(2)当y1>y2时,自变量x的取值范围是________;(3)请写出二次函数y1=ax2+bx+c的三条不同的性质.27. (15分) (2020九上·汽开区期末) 如图,射线AN上有一点B , AB=5,tan∠MAN=,点C从点A 出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D ,在射线CD上取点F ,使得CF=CB ,连结AF .设点C的运动时间是t(秒)(t>0).(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)(2)连结BD ,设△BCD的面积为S平方单位,求S与t之间的函数关系式.(3)当△AFD是轴对称图形时,直接写出t的值.28. (15分) (2019八下·海安月考) 直线与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.(1)请直接写出点C、点D的坐标,并求出m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与O、B重合),经过点P且平行于x轴的直线交AB于M、交CE于N.设线段MN的长度为d,求d与t之间的函数关系式(不要求写自变量的取值范围);(3)点P(0,t)是y轴正半轴上的一个动点,为何值时点P、C、D恰好能组成一个等腰三角形?参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共102分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、。

湖南省常德市2021年中考数学试卷(I)卷

湖南省常德市2021年中考数学试卷(I)卷

湖南省常德市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分)在3.5,﹣0.5,0,4这四个数中,绝对值最小的一个数是()A . 3.5B . ﹣0.5C . 0D . 42. (2分) (2019七下·新乐期中) 如图,AD是∠BAC的平分线,EF∥AC交AB于点E ,交AD于点F ,若∠1=30°,则∠AEF的度数为()A . 60°B . 120°C . 140°D . 150°3. (2分)如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A .B .C .D .4. (2分)为了了解某地区12000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()。

A . 个体是指每个考生B . 12000名考生是总体C . 500名考生的成绩是总体的一个样本D . 样本容量为500名考生5. (2分) (2019七下·合肥期中) 不等式﹣ x﹣1≤0的解集在数轴上表示为()A .B .C .D .6. (2分) (2017八下·常熟期中) 如图,已知DE是△ABC的一条中位线,F、G分别是线段BD、CE的中点,若DE=4,则FG等于()A . 5B . 6C . 7D . 87. (2分)(2019·从化模拟) 下列式子计算正确的是().A .B .C .D .8. (2分)如图1,在矩形ABCD中,AB=1,BC=.将射线AC绕着点A顺时针旋转α(0°<α≤180°)得到射线AE,点M与点D关于直线AE对称.若x=,图中某点到点M的距离为y,表示y与x的函数关系的图象如图2所示,则这个点为图1中的()A . 点AB . 点BC . 点CD . 点D9. (2分) (2020九下·西安月考) 如图,在菱形ABCD中,DE⊥AB,,AE=3,则tan∠DBE的值是()A .B . 2C .D .10. (2分)如图1,⊙O的直径AB=2,⊙O的切线CD与AB的延长线交于点C,D为切点,∠C=30°,则AD 等于()A .B . 2C . 1D .11. (2分)(2017·磴口模拟) 如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A .B .C .D .12. (2分) (2017·于洪模拟) 如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+3上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分)已知分式,当x=﹣5时,该分式没有意义;当x=﹣6时,该分式的值为0,则(m+n)2015=________ .14. (1分) (2019九下·临洮期中) 分解因式:a2b−8ab+16b=________.15. (1分) (2017九上·河口期末) 在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为________16. (1分)(2017·泰兴模拟) 如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于________度.17. (1分) (2017九上·江门月考) 如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,),则⊙C半径是________18. (1分)如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离AA′=________ .三、解答题 (共8题;共71分)19. (5分) (2019九下·常德期中) 计算:20. (5分) (2017七上·饶平期末) 先化简,再求值:2(x2+3x+1)﹣(2x2+ x﹣1)﹣6x,其中x=﹣6.21. (5分)如图,在△ABC中,AB=8,AC=6,AD=12,点D在BC的延长线上,且△ACD∽△BAD,求BD的长.22. (10分) (2015七下·绍兴期中) 修建某一建筑时,若请甲、乙两个工程队同时施工,8天可以完成,需付两队费用共3520元;若先请甲队单独做6天,再请乙队单独做12天可以完成,需付两队费用共3480元,问:(1)甲、乙两队每天费用各为多少?(2)若单独请某队完成工程,则单独请哪队施工费用较少?23. (14分) (2017八上·肥城期末) 市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲10988109________________乙10108107________________9(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.24. (9分) (2019八上·吴江期末) 初二班同学从学校出发去某自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20分钟后乘坐小轿车沿同一路线出行大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变小轿车司机因路线不熟错过了景点入口,再原路提速返回,恰好与大客车同时到达景点入口两车距学校的路程单位:千米和行驶时间单位:分钟之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________千米,大客车途中停留了________分钟, ________千米;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.25. (8分) (2017九上·潜江期中) 已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1) 如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;【答案】=|AC2+CO2=CD2(1)如图1,若点B在OP上,则①AC________OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是________;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转a(),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转a(),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式________;26. (15分)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x 轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当动点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当动点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.参考答案一、选择题. (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共71分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。

常德市2021版中考数学二模试卷(I)卷

常德市2021版中考数学二模试卷(I)卷

常德市2021版中考数学二模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)计算2﹣3的结果是()A . -5B . -1C . 1D . 52. (2分)下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有()A . 1种B . 2种C . 3种D . 4种3. (2分)如图是由一些相同的小正方体构成的立体图形的三视图。

构成这个立体图形的小正方体的个数是()A . 3B . 4C . 5D . 64. (2分)当a=2时,÷(﹣1)的结果是()A .B . ﹣C .D . ﹣5. (2分) (2019七下·江门月考) 如图所示,由已知条件推出结论正确的是()A . 由∠1=∠5,可以推出AB∥CDB . 由∠3=∠7,可以推出AD∥BCC . 由∠2=∠6,可以推出AD∥BCD . 由∠4=∠8,可以推出AD∥BC6. (2分)(2017·徐州模拟) 已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是()A . 4B . 6C . 5D . 4和67. (2分) (2017七下·常州期末) 在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有()A . 1个B . 2个C . 3个D . 4个8. (2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A . 48(1﹣x)2=36B . 48(1+x)2=36C . 36(1﹣x)2=48D . 36(1+x)2=489. (2分)给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,,并且只有一个外切三角形。

湖南省常德市2021年中考数学试题(word版含解析)

湖南省常德市2021年中考数学试题(word版含解析)

2016年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.4的平方根是()A.2 B.﹣2 C.±D.±22.下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<33.如图,已知直线a∥b,∠1=100°,则∠2等于()A.80° B.60° C.100° D.70°4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.5.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.57.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.48.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题(本大题8个小题,每小题3分,满分24分)9.使代数式有意义的x的取值范围是.10.计算:a2•a3=.11.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为.12.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.13.张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是.15.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.三、(本大题2个小题,每小题5分,满分10分)17.计算:﹣14+sin60°+()﹣2﹣()0.18.解不等式组,并把解集在是数轴上表示出来..四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:(),其中x=2.20.如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.五、(本大题2个小题,每小题7分,满分14分)21.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)六、(本大题2个小题,每小题8分,满分16分)23.今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?24.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.七、(本大题2个小题,每小题10分,满分20分)25.已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.26.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN 与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.2016年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.4的平方根是()A.2 B.﹣2 C.±D.±2【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.2.下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<3【考点】实数大小比较.【分析】根据实数比较大小的法则对各选项进行逐一分析即可.【解答】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>﹣2,故本选项错误;D、22>3,故本选项错误.故选B.3.如图,已知直线a∥b,∠1=100°,则∠2等于()A.80° B.60° C.100° D.70°【考点】平行线的性质.【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选A.4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.5.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【考点】概率的意义.【分析】根据概率的意义对各选项进行逐一分析即可.【解答】解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.5【考点】同类项.【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选C.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天【考点】二元一次方程组的应用.【分析】根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组解出即可.【解答】解:设有x天早晨下雨,这一段时间有y天,根据题意得:①+②得:2y=22y=11所以一共有11天,故选B.二、填空题(本大题8个小题,每小题3分,满分24分)9.使代数式有意义的x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴2x﹣6≥0,解得:x≥3.故答案为:x≥3.10.计算:a2•a3=a5.【考点】同底数幂的乘法.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.11.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为3.【考点】角平分线的性质.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.12.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【考点】反比例函数的性质.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.13.张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是18.【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21.位于最中间的两个数都是18,所以这组数据的中位数是18.故答案为:18.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【考点】三角形的外接圆与外心;圆周角定理;扇形面积的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.15.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【考点】平行四边形的性质.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8).【考点】点的坐标.【分析】先根据以O,A,B,C四点为顶点的四边形是“和点四边形”,判断点C为点A、B的“和点”,再根据点A、B的坐标求得点C的坐标.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”∴点C的坐标为(2﹣1,5+3),即C(1,8)故答案为:(1,8)三、(本大题2个小题,每小题5分,满分10分)17.计算:﹣14+sin60°+()﹣2﹣()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=518.解不等式组,并把解集在是数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≥﹣,由②得:x<4,∴不等式组的解集为﹣≤x<4,四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:(),其中x=2.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.20.如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得出方程组,解方程组即可;求出点C的坐标,设反比例函数的解析式为y=,把C(4,3)代入y=求出m即可.【解答】解:设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得:,解得:,∴一次函数的解析式为y=x+1;设反比例函数的解析式为y=,把C(4,n)代入得:n=3,∴C(4,3),把C(4,3)代入y=得:m=3×4=12,∴反比例函数的解析式为y=.五、(本大题2个小题,每小题7分,满分14分)21.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:第一批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)【考点】解直角三角形的应用-方向角问题.【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=25°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.六、(本大题2个小题,每小题8分,满分16分)23.今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?【考点】列表法与树状图法;用样本估计总体;条形统计图;折线统计图.【分析】(1)利用条形统计图求解;(2)利用2015年每例诈骗的损失乘以2015年收到网络诈骗举报的数量即可;(3)用2015年每例诈骗的损失减去2014年每例诈骗的损失,然后用其差除以2014年每例诈骗的损失即可;(4)画树状图(用A、B、C、D分别表示甲乙丙丁)展示所有12种等可能的结果数,再找出选中甲、乙两人的结果数,然后根据概率公式求解.【解答】解:(1)该平台2015年共收到网络诈骗举报24886例;(2)2015年通过该平台举报的诈骗总金额大约是24886×5.106≈1.27亿元;(4)画树状图为:(用A、B、C、D分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率==.24.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.【考点】切线的判定;三角形的外接圆与外心.【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OF,再用平行线分线段成比例定理求出半径R,最后用切割线定理即可.【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.七、(本大题2个小题,每小题10分,满分20分)25.已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.【考点】全等三角形的判定与性质.【分析】(1)①利用SAS证全等;②易证得:BC∥FH和CH=HE,根据平行线分线段成比例定理得BF=EF,也可由三角形中位线定理的推论得出结论.(2)作辅助线构建平行线和全等三角形,首先证明△MAE≌△DAC,得AD=AM,根据等量代换得AB=AM,根据②同理得出结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN⊥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,∴∠ACH=∠HAE,∴∠3=∠ACH,在△MAE和△DAC中,∵∴△MAE≌△DAC(ASA),∴AM=AD,∵AB=AD,∴AB=AM,∵AF∥ME,∴==1,∴BF=EF.26.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN 与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣4),然后将(0,﹣2)代入解析式即可求出a的值;(2)当△PBH与△AOC相似时,△PBH是直角三角形,由可知∠AHB=90°,所以求出直线AH的解析式后,联立一次函数与二次函数的解析式后即可求出P的坐标;(3)设M的坐标为(m,0),由∠BME=∠BDC可知∠EMC=∠MBD,所以△NCM∽△MDB,利用对应边的比相等即可得出CN与m的函数关系式,利用二次函数的性质即可求出m=时,CN有最大值,然后再证明△EMB∽△BDM,即可求出E的坐标.【解答】解:(1)∵抛物线与x轴交于A(﹣1,0),B(4,0),∴设抛物线的解析式为:y=a(x+1)(x﹣4),把(0,﹣2)代入y=a(x+1)(x﹣4),∴a=,∴抛物线的解析式为:y=x2﹣x﹣2;(2)当△PBH与△AOC相似时,∴△AOC是直角三角形,∴△PBH也是直角三角形,由题意知:H(0,2),∴OH=2,∵A(﹣1,0),B(4,0),∴OA=1,OB=4,∴∵∠AOH=∠BOH,∴△AOH∽△BOH,∴∠AHO=∠HBO,∴∠AHO+∠BHO=∠HBO+∠BHO=90°,∴∠AHB=90°,设直线AH的解析式为:y=kx+b,把A(﹣1,0)和H(0,2)代入y=kx+b,∴,∴解得,∴直线AH的解析式为:y=2x+2,联立,解得:x=1或x=﹣8,当x=﹣1时,y=0,当x=8时,y=18∴P的坐标为(﹣1,0)或(8,18)(3)过点M作MF⊥x轴于点F,设点E的坐标为(n,0),M的坐标为(m,0),∵∠BME=∠BDC,∴∠EMC+∠BME=∠BDC+∠MBD,∴∠EMC=∠MBD,∵CD∥x轴,∴D的纵坐标为﹣2,令y=﹣2代入y=x2﹣x﹣2,∴x=0或x=3,∴D(3,﹣2),∵B(4,0),∴由勾股定理可求得:BD=,∵M(m,0),∴MD=3﹣m,CM=m(0≤m≤3)∴由抛物线的对称性可知:∠NCM=∠BDC,∴△NCM∽△MDB,∴,∴,∴CN==﹣(m﹣)2+,∴当m=时,CN可取得最大值,∴此时M的坐标为(,﹣2),∴MF=2,BF=,MD=∴由勾股定理可求得:MB=,∵E(n,0),∴EB=4﹣n,∵CD∥x轴,∴∠NMC=∠BEM,∠EBM=∠BMD,∴△EMB∽△BDM,∴,∴MB2=MD•EB,∴=×(4﹣n),∴n=﹣,∴E的坐标为(﹣,0).。

2021年湖南省常德市中考数学一模试卷(附答案详解)

2021年湖南省常德市中考数学一模试卷(附答案详解)

2021年湖南省常德市安乡县中考数学一模试卷1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.下列等式成立的是()A. 2a3⋅3a2=6a5B. a8+a4=a2(a≠0)C. (a−b)2=a2−b2D. (−a2)3=a63.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A. aB. bC. cD. d4.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()A. I=3RB. I=−6RC. I=−3RD. I=6R5.测试五位学生的“1000米”跑成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将跑的最快一名学生成绩写得更快了,则计算结果不受影响的是()A. 总成绩B. 方差C. 中位数D. 平均数6.一元二次方程kx2−6x+3=0有两个不相等的实数根,则k的取值范围是()A. k<3B. k<3且k≠0C. k≤3D. k≤3且k≠07.拦水坝横断面如图所示,迎水坡AB的坡比是1:√3,坝高BC=10m,则坡面AB的长度是()A. 15mB. 20√3mC. 10√3mD. 20m8.如图1,点P从△ABC的顶点A出发,沿A−B−C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A. 10B. 12C. 20D. 249.若代数式1有意义,则实数x的取值范围是______.x10.−27的立方根是______.11.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列,行程最长,途经城市和国家最多的一趟专列全程长13000000m,将13000000用科学记数法表示应为______ .12.如图,⊙O是△ABC的外接圆,若∠ABC=35°,则∠AOC的度数为______ .13.从0,π,√2,3.14159这4个数中选一个数,选出的这个数是无理数的概率为______ .14.如图,在平行四边形ABCD中,AB=3,AD=4√2,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为______.15.某校初一年级68名师生参加社会实践活动,计划租车前往,租车收费标准如下:则租车一天的最低费用为______元.16. 观察下列等式:第1层1+2=3 第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…… 在上述数字宝塔中,从上往下数,2021在第______ 层.17. 计算:|1−√2|−(12)−1−√8+tan 260°.18. 解不等式组:{5(x −2)≤3x +6x−52<1+4x .19. 先化简再求值:(1−1x 2−2x+1)÷(x 2−2x−1−2),其中x =√2+1.20.如图,一次函数y=kx+b的图象与反比例函数y=m的图象交于点A﹙−2,x−5﹚C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=m和一次函数y=kx+b的表达式;x(2)连接OA,OC.求△AOC的面积.21.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)22.现有三张大小、形状完全一样的扑克牌,正面分别标有数字2,3,5.甲、乙二人做摸牌游戏,将三张扑克牌洗匀后背面朝上放在桌子上,甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.(1)请用列表法或画树状图的方法,求二人抽取相同数字的概率.(2)若二人抽取的数字和为2的倍数,则甲获胜,若抽取的数字和为5的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.23.机械加工需用油进行润滑以减小摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1千克,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?24.如图,AB是⊙O的直径,C是⊙O上一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且AC平分∠BAD.(1)求证:直线MN是⊙O的切线;(2)若CD=3,AC=5,求⊙O的直径.25.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,−32),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.26.如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:EPPF =PCCF.答案和解析1.【答案】D【解析】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.根据轴对称图形与中心对称图形的概念求解.本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.2.【答案】A【解析】解:选项A:2a3⋅3a2=2×3a3+2=6a5,符合题意;选项B:a8与a4不是同类项,不能进行合并,不符合题意;选项C:(a−b)2=a2−2ab+b2,不符合题意;选项D:(−a2)3=−a6,不符合题意.故选:A.分别利用单项式的乘法、合并同类项、积的乘方及完全平方公式进行计算即可判断.此题考查了完全平方公式、合并同类项、积的乘方及单项式的乘法运算等,属于基础题,解答本题的关键是掌握各部分的运算法则.3.【答案】C【解析】解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的数是c;故选:C.根据数轴上某个数与原点的距离的大小确定结论.本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.4.【答案】D【解析】解:设用电阻R表示电流I的函数解析式为I=k,R∵过(2,3),∴k=3×2=6,∴I=6,R故选:D.,再把(2,3)代入可得k的值,根据函数图象可设电阻R表示电流I的函数解析式为I=kR进而可得函数解析式.此题主要考查了待定系数法求反比例函数解析式,属于基础题.5.【答案】C【解析】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数.故选:C.根据中位数的定义解答可得.本题主要考查方差、中位数和平均数,解题的关键是掌握中位数的定义.6.【答案】B【解析】解:由题意可知:36−12k>0且k≠0,∴k≠0且k<3,故选:B.根据判别式即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.7.【答案】D【解析】解:Rt△ABC中,BC=10m,tanA=1:√3;∴AC=BC÷tanA=10√3m,∴AB=√AC2+BC2=20m.故选:D.在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.此题主要考查了解直角三角形的应用,正确利用坡比的定义求出AC的长是解题关键.8.【答案】B【解析】解:根据图象可知,点P在AB上运动时,此时AP不断增大,由图象可知:点P从A向B运动时,AP的最大值为5,即AB=5,点P从B向C运动时,AP的最小值为4,即BC边上的高为4,∴当AP⊥BC,AP=4,此时,由勾股定理可知:BP=3,由于图象的曲线部分是轴对称图形,∴PC=3,∴BC=6,×4×6=12,∴△ABC的面积为:12故选:B.根据图象可知点P在AB上运动时,此时AP不断增大,而从B向C运动时,AP先变小后变大,从而可求出BC与BC上的高.本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AB的长度.9.【答案】x≠0【解析】解:依题意得:x≠0.故答案是:x≠0.根据分式有意义的条件求出x的取值范围即可.本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.10.【答案】−3【解析】解:∵(−3)3=−27,3=−3∴√−27故答案为:−3.根据立方根的定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.11.【答案】1.3×107【解析】解:13000000=1.3×107.故答案为:1.3×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】70°【解析】解:∵⊙O是△ABC的外接圆,∠ABC=35°,∴∠AOC=2∠ABC=70°.故答案为:70°.由⊙O是△ABC的外接圆,若∠ABC=35°,根据圆周角定理,即可求得答案.此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.13.【答案】25【解析】解:∵0,π,√2,3.14159这4个数中无理数有π,√2共2个,∴这4个数中选一个数,选出的这个数是无理数的概率为2,5故答案为:2.5根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.【答案】√2【解析】【分析】本题考查相似三角形的判定定理和性质,解题的关键是相似三角形对应边成比例.由两线段平行,同位角相等,即可证出三角形相似,根据相似三角形的对应边成比例,结合已有的量即可解决本题.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD=3,BC//AD,∵E为BC上一点,∴CE//AD,∠FEC=∠FAD,∠FCE=∠D,∴△FCE∽△FDA,∴CEAD =CFDF=CFCF+CD,又∵CD=3,CF=1,AD=4√2,∴CE=√2,故答案为√2.15.【答案】1450【解析】解:依题意得:租车费用最低的前题条件是将68名师生同时送到目的地,其方案如下:①全部一种车型:小巴车26座最少3辆,其费用为:3×550=1650元,中巴车39座最少2辆,其费用为:2×800=1600元,大巴车55座最少2辆,其费用为:2×900=1800元∵1600<1650<1800,∴同种车型应选取中巴车2辆费用最少.②搭配车型:2辆26座小巴车和1辆39座中巴车,其费用为:550×2+800=1900元,1辆26座小巴车和1辆55座大巴车,其费用为:550+900=1450元,1辆39座中巴车和1辆55座大巴车,其费用为:800+900=1700元,∵1450<1700<1900,∴搭配车型中1辆26座小巴车和1辆55座大巴车最少.综合①、②两种情况,费用最少为1450元.故答案为1450.将68名师生同时送到目的地,且花费是最少,只有优化租车方案方可达到节约,从同款型和不同车型组合两方面考虑求解.本题考查了不等式的应用,主要考虑方案的可行性,正确分类并通过计算比较大小求解.16.【答案】44【解析】解:由题意可得,第n层的第1个数是n2,第n层有2n+1个数,∵442=1936,452=2025,∴2021在44层,故答案为:44.根据题目中的数据,可以发现每层第一个数的特点和每层的数的个数,然后即可得到2021在第多少层.本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点和每层的数字个数,写出数据相应的层数.17.【答案】解:原式=√2−1−2−2√2+(√3)2=√2−1−2−2√2+3=−√2.【解析】直接利用负整数指数幂的性质以及二次根式的性质、特殊角的三角函数值、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:{5(x−2)≤3x+6①x−52<1+4x②由不等式①得x≤8.由不等式②得x>−1;∴不等式组的解集为−1<x ≤8.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 此题考查的是一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答案】解:(1−1x 2−2x+1)÷(x 2−2x−1−2)=x 2−2x +1−1(x −1)2÷x 2−2−2(x −1)x −1 =x(x −2)(x −1)2⋅x −1x 2−2−2x +2 =x(x −2)x −1⋅1x(x −2)=1x−1,当x =√2+1时,原式=√2+1−1=√22.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】解:(1)把A(−2,−5)代入y =m x 得:−5=m−2,解得:m =10,则反比例函数的解析式是:y =10x,把x =5代入,得:y =105=2,则C 的坐标是(5,2).根据题意得:{−2k +b =−55k +b =2,解得:{k =1b =−3,则一次函数的解析式是:y =x −3. (2)在y =x −3中,令x =0,解得:y =−3. 则B 的坐标是(0,−3). ∴OB =3,∵点A 的横坐标是−2,C 的横坐标是5.∴S △AOC =S △AOB +S △BOC =12OB ×2×5+12×OB ×5=12×3×7=212.【解析】(1)把A(−2,−5)代入y =mx 求得m 的值,然后求得C 的坐标,利用待定系数法求得直线的解析式;(2)首先求得C 的坐标,根据S △AOC =S △AOB +S △BOC 即可求解.本题综合考查一次函数与反比例函数的图象与性质,利用反比例函数和一次函数的知识求三角形的面积,体现了数形结合的思想.21.【答案】解:在Rt △CDA 中,∠ACD =30°,CD =3000米,∴AD =CDtan∠ACD =1000√3米, 在Rt △CDB 中,∠BCD =60°, ∴BD =CDtan∠BCD =3000√3米, ∴AB =BD −AD =2000√3米. 答:此时渔政船和渔船相距2000√3米.【解析】在Rt △CDB 中求出BD ,在Rt △CDA 中求出AD ,继而可得AB ,也即此时渔政船和渔船的距离.本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,能利用已知线段及锐角三角函数值表示未知线段.22.【答案】解:(1)所有可能出现的结果如图:可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为39=13; (2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13. ∵59>13,∴甲获胜的概率大,游戏不公平.【解析】(1)根据列表法和概率的定义列式即可;(2)根据概率的意义分别求出甲、乙获胜的概率,从而得解.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】解:(1)由题意,得70×(1−60%)=70×40%=28(千克);(2)设乙车间加工一台大型机械设备润滑用油量为x千克,由题意,得x×[1−(90−x)×1.6%−60%]=12,整理,得x2−65x−750=0解得:x1=75,x2=−10(舍去),(90−75)×1.6%+60%=84%;答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克,用油的重复利用率是84%.【解析】(1)根据题意可得70×(1−60%),计算即可求解;(2)设乙车间加工一台大型机械设备润滑用油量为x千克,由“实际耗油量下降到12千克”列方程得x×[1−(90−x)×1.6%−60%]=12,解方程求解即可.此题考查了列一元二次方程在实际中的应用;同时考查了学生分析问题、解决问题的能力.分析数量关系、探究等量关系是列方程解应用题的关键.24.【答案】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠CAB=∠DAC,∴∠OCA=∠DAC,∴OC//AD.∵AD⊥MN,∴OC⊥MN.∵OC为半径,∴MN是⊙O切线.(2)解:∵∠ADC=90°,AC=5,DC=3,∴AD=√AC2−DC2=√52−32=4,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,又∵∠CAB=∠DAC,∴△ADC∽△ACB,∴ADAC =ACAB,∴45=5AB,解得:AB=254,即⊙O的直径长为254.【解析】(1)直接利用角平分线的性质结合等腰三角形的性质得出OC⊥MN,进而得出答案;(2)证明△ADC∽△ACB,利用相似三角形的判定与性质得出AB的长.本题考查了相似三角形的性质和判定,勾股定理,平行线性质和判定,等腰三角形性质,切线的判定的应用,主要考查学生的推理能力.25.【答案】解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=−1,故抛物线的表达式为:y=−x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF:S△CDF=3:2,则OF:FD=3:2,∵DH//CO,故CO:DM=3:2,则DM=23CO=2,由B、C的坐标得:直线BC的表达式为:y=−x+3,设点D(x,−x2+2x+3),则点M(x,−x+3),DM=−x2+2x+3−(−x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设PH=x,则MG=√x2+94,则△OBM中,OB2+OM2=MB2,即(√x2+94+32)2+9=(x+3)2,解得:x=2,故MG=√x2+94=52,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=−43x+4…②,联立①②并解得:x=3(舍去)或13,故点P(13,329);②当点P在x轴下方时,同理可得:点(−73,−649).【解析】(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=−1,即可求解;(2)S△COF:S△CDF=3:2,则OF:FD=3:2,DH//CO,故CO:DM=3:2,则DM=23CO=2,而DM=−x2+2x+3−(−x+3)=2,即可求解;(3)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、三角形相似、解直角三角形、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.26.【答案】解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH//ED交DF于点H,∴∠HPF=∠DEP,EPPF =DHHF,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵EPPF =DHHF,∴EPPF =PCCF.【解析】(1)由旋转的性质得出AB=AD,∠BAD=90°,△ABC≌△ADE,得出∠ADE=∠B=45°,可求出∠BDE的度数;(2)①由旋转的性质得出AC=AE,∠CAE=90°,证得∠FPD=∠FDP,由等腰三角形的判定得出结论;②过点P作PH//ED交DF于点H,得出∠HPF=∠DEP,EPPF =DHHF,证明△HPF≌△CDF(ASA),由全等三角形的性质得出HF=CF,则可得出结论.本题是相似形综合题,考查了旋转的性质,三角形内角与外角的关系,等腰三角形的判定,全等三角形的判定与性质,平行线的性质,平行线分线段成比例定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.第21页,共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省常德市2021版中考数学试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共30分)
1. (3分)(2020·西华模拟) 下列各数中比1小的数是()
A .
B . 0
C . 3
D . π
2. (3分)(2020·卧龙模拟) 如图,已知∠1=39°,∠2=39°,∠3=54°,则∠4的度数是()
A . 39°
B . 51°
C . 54°
D . 126°
3. (3分) (2017八上·东台期末) 下列图形中,不是轴对称图形的是()
A .
B .
C .
D .
4. (3分) (2020八下·苏州期末) 下列调查中,适合采用普查的是()
A . 全班学生周六晚上收看“新闻联播”的次数
B . 某品牌灯泡的使用寿命
C . 长江中现有鱼的科类
D . 公民垃圾分类的意识
5. (3分) (2019七下·孝南月考) 下列命题是真命题的是()
A . 9的平方根是﹣3
B . ﹣7是﹣49的平方根
C . ﹣5是-125的立方根
D . 8的立方根是±2
6. (3分) (2018八下·东台期中) 东台教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师
各捐款30000元,已知“……”,设乙学校教师有x人,则可得方程,根据此情景,题中用“……”表示的缺失的条件应补()
A . 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%
B . 甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%
C . 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%
D . 乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%
7. (3分)正方体的截面不可能是()
A . 四边形
B . 五边形
C . 六边形
D . 七边形
8. (3分)(2017·徐州模拟) 平面直角坐标系中,若平移二次函数y=(x﹣6)(x﹣7)﹣3的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()
A . 向左平移3个单位
B . 向右平移3个单位
C . 向上平移3个单位
D . 向下平移3个单位
9. (3分)如图,在平面直角坐标系中,点A(2,2)在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()
A . 2个
B . 3个
C . 4个
D . 5个
10. (3分) (2019七上·宁波期中) 若是不为2的有理数,则我们把称为的“哈利数”.如:3
的“哈利数”是,的“哈利数”是 .已知,是的“哈利数”,
是的“哈利数”,是的“哈利数”,… ,以此类推,则等于()
A . 3
B .
C .
D .
二、填空题 (共5题;共15分)
11. (3分)已知一元二次方程的一个根为2,则它的另一个根为________.
12. (3分) (2019七下·道里期末) 如图,图形中x的值为________.
13. (3分)点P在第二象限内,P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是_____。

14. (3分)如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.
15. (3分)(2018·德阳) 已知函数使成立的的值恰好只有个时,的值为________.
三、解答题 (共7题;共55分)
16. (6分) (2020八下·厦门期末) 计算:
(1)
(2)
17. (7.0分)(2020·抚顺模拟) (抗击疫情)为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“听课不停学”的要求,各地学校也都开展了远程网络教学,某校集中为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分
学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据结果绘制成如下两幅不完整的统计图。

(1)本次调查的人数有多少人?
(2)请补全条形图;
(3)请求出“在线答疑”在扇形图中的圆心角度数;
(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.
18. (7.0分) (2019八上·海州期中) 已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F。

(1)图中哪条线段和BE相等?为什么?
(2)若AB=6,AC=3,求BE的长。

19. (8分)(2019·百色) 如图,已知平行四边形中,点为坐标顶点,点,函数的图象经过点 .
(1)求的值及直线的函数表达式:
(2)求四边形的周长.
20. (8分)如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB ,连接AB交OC于点D .
(1)求证:AC=CD
(2)若AC=2,AO= ,求OD的长度.
21. (8.0分) (2020八下·番禺期末) 已知点A 及第一象限的动点,且,设△OPA 的面积为S.
(1)求S关于x的函数解析式,并写出x的取值范围;
(2)画出函数S的图象,并求其与正比例函数的图象的交点坐标;
(3)当S=12时,求P点坐标.
22. (11.0分)(2017·菏泽) 如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.
(1)求证:∠BAC=∠CBP;
(2)求证:PB2=PC•PA;
(3)当AC=6,CP=3时,求sin∠PAB的值.
参考答案一、单选题 (共10题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共15分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共7题;共55分)
16-1、
16-2、
17-1、
17-2、17-3、
17-4、
18-1、18-2、
19-1、
19-2、20-1、
20-2、21-1、
21-2、21-3、
22-1、
22-2、
22-3、
第11 页共11 页。

相关文档
最新文档