习题精选精讲不等式性质的应用

合集下载

7.1《不等式及其基本性质》典型例题精析

7.1《不等式及其基本性质》典型例题精析

7.1 不等式及其基本性质1.能正确理解不等式的概念,会用不等式表示生活中的不等关系.2.理解掌握不等式的性质,能灵活运用不等式性质进行不等式变形.1.不等式的概念(1)定义:用不等号(>、≥、<、≤或≠)表示不等关系的式子,叫做不等式.像v≤40,t≥6 000,3x>5,q<p+2,x≠3等这样的式子都是不等式.①符号“≤”表示小于或等于,也可以表示不大于;②符号“≥”表示大于或等于,也可以表示不小于.在用“≥”表示的不等式中,只要“>”或“=”两个关系中有一个成立,该不等式就成立,例如,不等式3≥2成立,不等式2≥2也成立;用“≤”表示的不等式道理也一样.【例1】在下列数学表达式中,不等式的个数是( ).①-2 013<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3.A .5B .4C .3D .2解析:运用不等式的定义进行判断,③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B .答案:B本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.不等式的基本性质(1)不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.字母表示:如果a >b ,那么a +c >b +c ,a -c >b -c ;同样有,如果a <b ,那么a +c <b +c ,a -c <b -c .(2)不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.字母表示:如果a >b ,c >0,那么ac >bc ,a c >b c;同样有,如果a <b ,c >0,那么ac <bc ,a c <b c . (3)不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.字母表示:如果a >b ,c <0,那么ac <bc ,a c <bc;同样有,如果a <b ,c <0,那么ac >bc ,a c >b c . (1)不等式的变形中,只有当两边都乘以(或除以)一个负数时,不等号的方向改变.(2)不等式的两边不能都乘以零,乘以零后不等式变为等式.(4)如果a >b ,那么b <a .例如,由12<x ,可得x >12. 不等式的这个基本性质类似于等式的基本性质中的“若a =b ,则b =a ”.(5)如果a >b ,b >c ,那么a >c .不等式的这个基本性质类似于等式中的“若a =b ,且b =c ,则a =c ”.【例2-1】如果m <n ,用“>”或“<”填空,并说明你的理由.(1)5m ________5n ;(2)m 2________n 2; (3)-2m ______-2n ;(4)-m 2______-n2. 解析:(1)<;由m <n 两边都乘以5得到;(2)<;由m <n 两边都乘以12(或除以2)得到; (3)>;由m <n 两边都乘以-2得到;(4)>;由m <n 两边都乘以-12(或除以-2)得到. 答案:(1)< (2)< (3)> (4)>【例2-2】若a <b ,则下列各式中一定成立的是( ).A .a -1<b -1B .a 3>b 3C .-a <-bD .ac <bc解析:在不等式的三条基本性质中要特别注意“不等式两边同时乘以或除以同一个负数时,不等号的方向要改变”,因为已知a <b ,由不等式基本性质1得a -1<b -1,故选A .由不等式基本性质2知B 选项错误,应为a 3<b 3,由不等式基本性质3知C 选项中不等号方向要改变.由于c 可取任意实数,故D 项中不等式不一定成立.答案:A 解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一条性质.3.根据数量关系列出不等式根据题意用不等号表示数量间的不等关系,就是列不等式.(1)用不等式表示数量关系是研究不等式的基础,在用不等式表示数量关系时,一定要抓住关键词,然后把关键词用正确的不等号表示出来.(2)寻找题目中的不等量关系式第一步:寻找具有比较性质的关键词.如:“大于”“小于”“不大于”“不小于”“最多”“至少”“超过”“低于”等.第二步:寻找比较的两个量.即“谁大于谁”“谁小于谁”即可.(3)根据不等量关系式列出不等式找到不等量关系式之后,只需把不等量关系式中的量用式子表示出来即可.列不等式时除找出关键词确定不等关系外,还需明确以下常用的不等关系.(1)a 是正数表示为a >0;a 是负数表示为a <0.(2)a 是非负数表示为a ≥0;a 是非正数表示为a ≤0.(3)a ,b 同号表示为ab >0或者a b>0;a ,b 异号表示为ab <0或者a b<0. 【例3】用适当的符号表示下列关系:(1)x 的13与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300 m ;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%.分析:(1)先表示出x 的13与x 的2倍,再求13x 与2x 的和,最后列出不等式13x +2x ≤0,注意非正数表示的是负数或零,即小于或等于0的数.(2)(3)(4)需先设未知数,然后用代数式表示问题中的各量,并根据题目中的不等关系列出不等式:一枚炮弹的杀伤半径不小于300 m ,即炮弹的杀伤半径≥300 m; 总价钱不高于268元,即总价钱≤268元;明天下雨的可能性不小于70%,即明天下雨的可能性≥70%.解:(1)13x +2x ≤0. (2)设炮弹的杀伤半径为r m ,则有r ≥300.(3)设每件上衣为a 元,每条长裤是b 元,则有3a +4b ≤268.(4)用P 表示明天下雨的可能性,则有P ≥70%.4.用不等式的基本性质将不等式化成“x >a ”或“x <a ”的形式将不等式化成“x >a ”或“x <a ”的形式,是不等式基本性质的一个重要应用.将不等式化成“x >a ”或“x <a ”的形式,要依据不等式的三条基本性质,进行合理的变形,这是解不等式的基础.在变形中,要用到去分母、去括号、移项、合并同类项、系数化为1等,每一步都要依据不等式的基本性质.利用不等式的基本性质变形的步骤:(1)观察不等式的变化前后的规律;(2)适当选择不等式的基本性质1,2或3;利用不等式的基本性质3时,注意不等号方向的改变情况;(3)根据选择的基本性质变形.【例4】根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式:(1)x -2<3;(2)6x >5x -1;(3)-4x >4;(4)14x ≤9. 分析:适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.解:(1)由不等式的基本性质1可知,不等式的两边都加上2,不等号的方向不变,所以x -2+2<3+2,即x <5.(2)由不等式的基本性质1可知,不等式的两边都减去5x ,不等号的方向不变,所以6x -5x >5x -1-5x ,即x >-1.(3)由不等式的基本性质3可知,不等式的两边都除以-4,不等号的方向改变,所以x <-1.(4)根据不等式的基本性质2,在不等式14x ≤9的两边都乘以4,得x≤36.解决这类问题,要观察题中不等式与所要得到的不等式在形式上的差别,从而采用适当的方法进行变形.5.根据实际问题列不等式根据实际问题列不等式的步骤可总结为:(1)认真审题,找出题目中的数量关系和关键字词;(2)列出相应的代数式,根据关键字词确定不等关系;(3)用不等号连接,列出不等式.解决这类问题的关键在于把题目中所给的数量关系中的“大于”,“小于”,“不大于”,“不小于”,“是负数”,“是正数”,“是非负数”,“至少”等文字语言正确地用数学符号表示出来,把不等关系转化为不等式.【例5-1】小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x个月后小刚至少有280元,则可得到不等式为( ).A.30x+50>280 B.30x-50≥280C.30x-50≤280 D.30x+50≥280解析:此题的不等关系:已存的钱与每月节省的钱数之和至少为280元.至少即大于等于,根据题意,得50+30x≥280.故选D.答案:D【例5-2】冬天到了,小华准备用自己平时节省的30元钱为乡下的爷爷奶奶和自己买手套与袜子.已知一副手套5元钱,一双袜子4元钱,他先买了3双袜子.如果设他还能买x副手套,那么根据题意,可得到不等式________.解析:此题的不等关系:3双袜子的总价+x副手套的总价不大于30元,根据题意可以列出不等式.答案:3×4+5x≤306.与不等式及其性质有关的拓展创新题不等式在新型题目中的应用常见于新定义型题、探究题以及图表信息题,主要是以不等式及其性质为知识背景.拓展题主要是不等式基本性质的逆向应用,逆向运用公式或性质,可以从另一个角度考查我们对定义、性质、公式的理解,发散我们的思维.另外,逆向运用公式或性质,有时可以有效地简化计算,收到意想不到的效果.逆向应用不等式的基本性质时,关键是要看变形中,不等号的方向是否改变,从而判断变形中是否根据了不等式的基本性质 3.进一步可判断未知系数的正负性.逆用不等式的基本性质解题,多数考查的应该是不等式的基本性质3.【例6-1】现规定一种新的运算:a△b=a·b-a+b+1,如3△4=3×4-3+4+1.请比较下列两式的大小:(-3)△4________4△(-3)(填“<”“>”或“=”).解析:先根据规定的运算方法,将两式化简,然后进行大小比较.(-3)△4=(-3)×4-(-3)+4+1=-4;4△(-3)=4×(-3)-4+(-3)+1=-18.因-4>-18,故(-3)△4>4△(-3).答案:>【例6-2】已知关于x的不等式2<(1-a)x的解集为x<21-a,则a的取值范围是( ).A.a>0 B.a>1C.a<0 D.a<1解析:对照两个不等式可以发现,已知不等式左、右两边经过变形后位置发生了改变(即2在原不等式的左边,经过变形后在右边,含x的项在已知不等式的右边,经过变形后在左边),因此应先将2<(1-a)x变形为(1-a)x>2,再根据不等式的性质确定a的取值范围.根据不等式的性质3,得1-a<0,即a>1.故选B.答案:B。

不等式的基本性质__习题精选(二)

不等式的基本性质__习题精选(二)

考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │§06. 不 等 式 知识要点1. 不等式的基本概念(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a <⇔>(对称性) (2)c a c b b a >⇒>>,(传递性) (3)c b c a b a +>+⇒>(加法单调性) (4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,.(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除)11(10),0a b ab a b>>⇒<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈aa R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么.2a b ab +≤(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.3,3a b c a b c R abc +++∈≥(4)若、、则(当仅当a=b=c 时取等号) 0,2b aab a b>+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么222.1122a b a b ab a b++≤≤≤+(当仅当a=b 时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数):特别地,222()22a b a b ab ++≤≤(当a = b时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫⎝⎛+++≥++ ⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ 注:例如:22222()()()ac bd abcd +≤++. 常用不等式的放缩法:①21111111(2)1(1)(1)1n nn n n n n n n n-==-≥++-- ②11111(1)121n n n n n n n nn n +-==--≥+++-(2)柯西不等式: 时取等号当且仅当(则若nn n n n n n n b a b a b ab a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ 332211223222122322212332211321321))(();,,,,,,,,(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或 则称f(x)为凸(或凹)函数. 5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法. 6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩(3)无理不等式:转化为有理不等式求解 ○1()0()()()0()()f x f x g x g x f x g x ⎧≥⎫⇒⎪⎬>⇔≥⎨⎭⎪>⎩定义域○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f(4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>(5)对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 ⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为 注:常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)12423(1)()223279x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x xxx+=+≥与同号,故取等不等式的基本性质习题精选(二)一、选择题1.若a > b ,c>0 ,则下列四个不等式成立的是()A.ac>bcB.a b c c <C.a c b c-<-D.a c<b+c+2.已知a < -1 ,则下列不等式中错误的是()A.4a<-4B.4a<-4-C.a21+<D.2a3->3.若a< b ,则下列不等式中成立的个数是()(1)-3 + a < -3 + b (2)-3a < -3b(3)-3a -1 < -3b - 1 (4)-3a +1 > -3b + 1 A.1个B.2个C.3个D.4个4.若x < y ,则ax > ay ,则a满足的条件是()A.a≥0B.a≤0C.a>0D . a<05.已知a > b 且a < 0 .则下列各不等式成立的个数是( ) (1)2a ab > (2)2ab>b (3)a b 0-< (4)22a b > A .1个 B .2个 C .3个 D .4个 二、填空题1.若x < y ,则22a x<a y ,那么一定有a ________ 。

不等式的基本性质--习题精选(一)

不等式的基本性质--习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ; 5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。

不等式应用题解法

不等式应用题解法

不等式应用题解法不等式是数学中的重要概念之一,它与等式一样,是一种数学关系。

不等式中的符号包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。

不等式应用题是基于不等式概念的实际问题的解题过程,通过使用适当的不等式解法,可以得到问题的解答。

本文将介绍一些常见的不等式应用题解法。

I. 一元一次不等式一元一次不等式是最基本的不等式类型,解一元一次不等式的方法与解一元一次方程类似。

例题1:解不等式2x + 3 > 7解法:1. 首先,将不等式转化为等价的形式:2x + 3 = 72. 接着,解得x = 23. 最后,根据解得的x值,可得原不等式的解为x > 2例题2:解不等式3x - 5 ≤ 4x + 2解法:1. 首先,将不等式转化为等价的形式:3x - 5 = 4x + 22. 将未知数x的项移到一边,整数项移到另一边得到:-5 - 2 ≤ 4x -3x3. 化简后得到-7 ≤ x4. 根据等价关系,可得原不等式的解为x ≥ -7II. 一元二次不等式一元二次不等式的解法与一元二次方程类似,通常需要进行因式分解或利用二次函数的性质进行求解。

例题3:解不等式x^2 - 4x > 3解法:1. 首先,将不等式转化为等价的形式:x^2 - 4x = 32. 将式子移项并整理:x^2 - 4x - 3 > 03. 根据二次函数开口方向的正负关系,可以得到解为:x < 1 或 x > 3III. 绝对值不等式绝对值不等式是以绝对值表达的不等式,解绝对值不等式通常需要分情况讨论。

例题4:解不等式|2x - 1| > 3解法:1. 首先,列出两种可能情况:2x - 1 > 3 或 2x - 1 < -32. 分别解出两个不等式:2x > 4 或 2x < -23. 根据解得的x值,可得原不等式的解为x > 2 或 x < -1IV. 系统不等式系统不等式是多个不等式组成的方程组,解系统不等式需要找到满足所有不等式的解。

不等式的性质及应用(高中数学)

不等式的性质及应用(高中数学)

01 不等式的性质及应用【知识分析】不等式的性质及应用是不等式的一个基础内容,高考中主要以客观题形式呈现,难度不大,分值5分,复习时注意不等式的等价变形,特别是不等式两边同乘以或同除以一个数时,不等式的方向变化. 【经典例题】(1)已知a ,b ,c ,d 均为实数,有下列命题: ①若ab >0,bc -ad >0,则c a -db >0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3(2)不等式组⎩⎪⎨⎪⎧x +y≥1,x -2y≤4的解集记为D.有下面四个命题:p 1:∀(x ,y)∈D ,x +2y≥-2, p 2:∃(x ,y)∈D ,x +2y≥2, p 3:∀(x ,y)∈D ,x +2y≤3, p 4:∃(x ,y)∈D ,x +2y≤-1. 其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 3【解析】 (1)对于①,∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab >0,∴①正确;对于②,∵ab >0,又c a -db >0,即bc -ad ab >0,∴bc -ad >0,∴②正确;对于③,∵bc -ad >0,又c a -db >0,即bc -ad ab>0,∴ab >0,∴③正确.(2)设x +2y =m(x +y)+n(x -2y),则⎩⎪⎨⎪⎧1=m +n ,2=m -2n ,解得⎩⎨⎧m =43,n =-13.∵⎩⎪⎨⎪⎧x +y≥1,x -2y≤4,∴43(x +y)≥43,-13(x -2y)≥-43,∴x +2y =43(x +y)-13(x -2y)≥0.故命题p 1,p 2正确,p 3,p 4错误. 【答案】 (1)D (2)B题(1)实质为ab >0,bc -ad >0,c a -db >0三个结论之间的轮换,知二推一,利用不等式的性质判断.(2)利用不等式组求x +2y 的范围,注意性质应用的条件,以免扩大取值范围.判断关于不等式的命题真假的三种方法(1)直接运用不等式的性质:把要判断的命题和不等式的性质联系起来考虑,找到与命题相近的性质,然后进行推理判断.(2)利用函数的单调性:当直接利用不等式性质不能比较大小时,可以利用指数函数、对数函数、幂函数的单调性等进行判断.(3)特殊值验证法:给要判断的几个式子中涉及的变量取一些特殊值,然后进行比较、判断.利用不等式的性质求取值范围的方法由a <f(x ,y)<b ,c <g(x ,y)<d 求F(x ,y)的取值范围,可利用待定系数法解决,即设F(x ,y)=mf(x ,y)+ng(x ,y),用恒等变形求得m ,n ,再利用不等式的性质求得F(x ,y)的取值范围. 【针对训练】1.若a >b >0,c <d <0,则一定有( ) A.a c >b a B.a c <b d C.a d >b c D.a d <b c1.D 方法一:c<d<0⇒cd>0⇒c cd <d cd <0⇒1d <1c<0⇒⎭⎪⎬⎪⎫-1d >-1c >0a>b>0⇒-a d >-b c ⇒a d <b c .方法二:依题意取a =2,b =1时,c =-2,d =-1,代入验证得A ,B ,C 均错,只有D 正确. 2.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________. 2.【解析】 方法一:由题意知,实数x ,y 均为正数,则条件可化为lg 3≤lg x +2lg y≤lg 8,lg 4≤2lg x -lg y≤lg 9.令lg x =a ,lg y =b ,则有⎩⎪⎨⎪⎧lg 3≤a +2b≤3lg 2,2lg 2≤2a -b≤2lg 3.设t =x 3y 4,则lg t =3lg x -4lg y =3a -4b.令3a -4b =m(a +2b)+n(2a -b),解得m =-1,n =2,故lg t =-(a +2b)+2(2a -b)≤-lg 3+4lg 3=lg 27.所以x 3y 4的最大值为27.方法二:将4≤x 2y ≤9两边平方,得16≤x 4y2≤81.①由3≤xy 2≤8,得18≤1xy 2≤13.②由①②,得2≤x 3y 4≤27,即x 3y 4的最大值是27.【答案】 27, 【测试】1.设a ,b 为实数,命题甲:ab >b 2,命题乙:1b <1a <0,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知a <0,-1<b <0,那么下列不等式成立的是( ) A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a2.D 由-1<b <0,得b <b 2<1.又∵a <0,∴ab >ab 2>a. 3.已知0<a<b<1,则( ) A.1b >1aB.⎝⎛⎭⎫12a <⎝⎛⎭⎫12bC .(lg a)2<(lg b)2 D.1lg a >1lg b3.D 因为0<a<b<1,所以1b -1a =a -b ab<0.可得1b <1a ,⎝⎛⎭⎫12a >⎝⎛⎭⎫12b,(lg a)2>(lg b)2,lg a<lg b<0.由lg a<lg b<0得1lg a >1lg b,因此只有D 项正确.思路点拨:利用不等式的性质和指数函数、对数函数的单调性求解.4.已知△ABC 的三边长分别为a ,b ,c ,且满足b +c≤3a ,则ca 的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)4.B 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >ba ,∴⎩⎨⎧1<b a +ca≤3,-1<c a -ba <1,两式相加得,0<2×ca<4,∴ca 的取值范围为(0,2),故选B. 5.对于0<a <1,给出下列四个不等式:①log a (1+a)<log a ⎝⎛⎭⎫1+1a ; ②log a (1+a)>log a ⎝⎛⎭⎫1+1a ; ③a 1+a <a1+1a ; ④a 1+a >a1+1a .其中成立的是( )A .①③B .①④C .②③D .②④6.已知实数x ,y 满足⎩⎪⎨⎪⎧1≤x +y≤3,-1≤x -y≤1,则4x +2y 的取值范围是________.6.【解析】 方法一:∵1≤x +y≤3,① -1≤x -y≤1,②由①+②,得0≤2x≤4,③ ③×2得0≤4x≤8,④ 由①-②,得2≤2y≤2,⑤ 由④+⑤得2≤4x +2y≤10.方法二:令4x +2y =m(x +y)+n(x -y),则⎩⎪⎨⎪⎧m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 即4x +2y =3(x +y)+(x -y), ∵1≤x +y≤3, ∴3≤3(x +y)≤9, 又∵-1≤x -y≤1, ∴2≤3(x +y)+(x -y)≤10. ∴2≤4x +2y≤10. 【答案】 [2,10] 【点击高考】1.已知x ,y ∈R ,且x>y>0,则( ) A.1x -1y>0 B .sin x -sin y>0 C.⎝⎛⎭⎫12x-⎝⎛⎭⎫12y<0 D .ln x +ln y>02.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 32.D 因为0<a <1,a x <a y ,所以x >y.对于选项A ,取x =2,y =1,则1x 2+1<1y 2+1,显然A 错误;对于选项B ,取x =-1,y =-2,则ln(x 2+1)<ln(y 2+1),显然B 错误;对于选项C ,取x =π,y =π2,则sinπ2>sin π,显然C 错误;对于选项D ,若x >y ,则x 3>y 3一定成立,故选D. 3.设[x]表示不大于x 的最大整数,则对任意实数x ,y ,有( ) A .[-x]=-[x] B .[2x]=2[x] C .[x +y]≤[x]+[y] D .[x -y]≤[x]-[y]4.如果a<b<0,那么下列不等式成立的是( ) A.1a <1bB .ab<b 2C .-ab<-a 2D .-1a <-1b4.D 方法一(利用不等式性质求解):A 项,由a<b<0,得b -a>0,ab>0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;B 项,由a<b<0,得b(a -b)>0,ab>b 2,故B 项错误;C 项,由a<b<0,得a(a -b)>0,a 2>ab ,即-ab>-a 2,故C 项错误;D 项,由a<b<0,得a -b<0,ab>0,故-1a -⎝⎛⎭⎫-1b =a -b ab <0,-1a <-1b 成立.故D 项正确.方法二(特殊值法):令a =-2,b =-1,则1a =-12>-1=1b ,ab =2>1=b 2,-ab =-2>-4=-a 2,-1a =12<1=-1b.故A ,B ,C 项错误,D 项正确.5.若a ,b ∈R ,且ab>0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b≥2ab C.1a +1b >2ab D.b a +a b≥2 5.D A 项,当a =b =1时,满足ab>0,但a 2+b 2=2ab ,所以A 错误;B ,C 项,当a =b =-1时,满足ab>0,但a +b<0,1a +1b <0,而2ab>0,2ab >0,显然B ,C 错误;D 项,当ab>0时,由基本不等式得b a +a b ≥2b a ·ab=2,所以D 正确. 6.若a ,b 为实数,则“0<ab<1”是“a<1b 或 b>1a ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.A 当0<ab<1时,若b>0,则有a<1b ;若b<0,则a<0,从而有b>1a ,故“0<ab<1”是“a<1b 或b>1a ”的充分条件.反之,取b =1,a =-2,则有a<1b 或b>1a ,但ab<0,故选A.02 一元二次不等式的应用【知识分析】解一元二次不等式及分式不等式一般为容易题,主要以选择题、填空题出现.常与集合的交、并、补结合,难度不大.在平时复习中应熟练掌握图象法解一元二次不等式的方法,注重分式不等式、绝对值不等式转化为一元二次不等式(组)的等价过程,书写时注意解集写成集合或区间的形式. 【典型例题】1(1)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) (2)不等式-x 2-3x +4>0的解集为________.(用区间表示)(3)已知f(x)是定义在R 上的奇函数.当x >0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.【解析】 (1)不等式x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x≤1,∴不等式的解集为⎝⎛⎦⎤-12,1. (2)由-x 2-3x +4>0得x 2+3x -4<0, 即(x +4)(x -1)<0,解得-4<x <1. (3)当x >0时,f(x)=x 2-4x , 令x <0,则-x >0, ∴f(-x)=x 2+4x.∵f(x)是定义在R 上的奇函数,∴f(-x)=-f(x), ∴-f(x)=x 2+4x ,即x <0时,f(x)=-x 2-4x.f(x)>x ,即⎩⎪⎨⎪⎧x >0,x 2-4x >x 或⎩⎪⎨⎪⎧x <0,-x 2-4x >x 或⎩⎪⎨⎪⎧x =0,0>x. 解得-5<x <0或x >5,∴不等式f(x)>x 的解集为(-5,0)∪(5,+∞). 【答案】 (1)A (2)(-4,1) (3)(-5,0)∪(5,+∞),解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax 2+bx +c>0(a>0)或ax 2+bx +c<0(a>0)的形式; (2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应的二次函数的图象,写出不等式的解集.分式不等式的解法(1)f (x )g (x )>0(<0) ⇔f(x)·g(x)>0(<0); (2)f (x )g (x )≥0(≤0) ⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0(≤0),g (x )≠0. 注意:求解分式不等式,关键是对原不等式进行恒等变形,转化为整式不等式(组)求解.解题时要注意含有等号的分式不等式在变形为整式不等式后,及时去掉分母等于0的情形.含参数的一元二次不等式问题是高考的热点,主要出现在综合题中,常与函数、导数联系在一起,难度较大,复习时要加强此知识点的强化训练. 【典型例题】2(1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152(2)已知函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞),若关于x 的不等式f(x)<m 的解集为(n ,n +10),则实数m 的值为( )A .25B .-25C .50D .-50【解析】 (1)方法一:由条件知,x 1和x 2是方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,所以(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=4a 2+32a 2=36a 2=152.又a >0,所以a =52.方法二:由x 2-2ax -8a 2<0,得(x +2a)(x -4a)<0.因为a >0,所以不等式的解集为(-2a ,4a).又不等式的解集为(x 1,x 2),所以x 1=-2a ,x 2=4a ,从而x 2-x 1=6a =15,解得a =52.(2)由函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞)知,Δ=b 2-8c =0,所以c =b 28.不等式f(x)<m 即2x 2+bx +b 28<m ,即2x 2+bx +b 28-m <0的解集为(n ,n +10).设方程2x 2+bx +b 28-m =0的两根为x 1,x 2,则x 1+x 2=-b 2,x 1x 2=b 216-m2,所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-b 22-4⎝⎛⎭⎫b 216-m 2=2m.由题意知|x 1-x 2|=|n +10-n|=10,所以m =50. 【答案】 (1)A (2)C,(1)方法一利用不等式的解集以及根与系数的关系得到两根关系式,然后与已知条件化简求解a 的值;方法二注意因式分解的恰当应用会给解题带来意想不到的效果.(2)二次函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞)等价于Δ=0;f(x)<m 的解集为(n ,n +10)转化为两交点间的距离|x 1-x 2|=10.解含参数的一元二次不等式的步骤(1)二次项系数若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式. 一元二次不等式恒成立问题也是高考的一个考点,主要考查根据一元二次不等式的恒成立求参数的范围、求最值等,一般以选择题或填空题的形式出现,试题难度不大. 【典型例题】3(1)已知函数f(x)=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________.(2)已知函数y =f(x)(x ∈R ).对函数y =g(x)(x ∈I),定义g(x)关于f(x)的“对称函数”为函数y =h(x)(x ∈I),y =h(x)满足:对任意x ∈I ,两个点(x ,h(x)),(x ,g(x))关于点(x ,f(x))对称.若h(x)是g(x)=4-x 2关于f(x)=3x +b 的“对称函数”,且h(x)>g(x)恒成立,则实数b 的取值范围为________.(2)由已知得h (x )+4-x 22=3x +b ,所以h(x)=6x +2b -4-x 2.因为h(x)>g(x)恒成立,所以6x +2b -4-x 2>4-x 2, 即3x +b>4-x 2恒成立.在同一坐标系中画出y =3x +b 及半圆y =4-x 2的图象,如图所示.当直线3x -y +b =0与半圆相切时,d =b10=2,此时,b =210. 结合图象可知,b 的取值范围为(210,+∞). 【答案】 (1)⎝⎛⎭⎫-22,0 (2)(210,+∞) 【名师点拨】(1)结合二次函数的图象及性质只需满足f(m)<0且f(m +1)<0即可;(2)先根据“对称函数”的定义,求出h(x),然后在同一坐标系下,画出整理后的两个函数的图象,利用数形结合的思想求解.一元二次不等式恒成立问题的解题方法(1)图象法:对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.(2)更换主元法:如果不等式中含有多个变量,这时选准“主元”往往是解题的关键,即需要确定合适的变量或参数,能使函数关系更加清晰明朗.一般思路为:将已知范围的量视为变量,而待求范围的量看作是参数,然后借助函数的单调性或其他方法进行求解.(3)分离参数法:如果欲求范围的参数能够分离到不等式的一边,那么这时可以通过求出不等式另一边式子的最值(或范围)来得到不等式恒成立时参数的取值范围.一般地,a≥f(x)恒成立时,应有a≥f(x)max ,a≤f(x)恒成立时,应有a≤f(x)min .对任意的k ∈[-1,1],函数f(x)=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________.【针对训练】1.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A .(-∞,2) B .(-∞,2] C .(-2,2) D .(-2,2]1.D 当a -2=0,即a =2时,-4<0,恒成立;当a -2≠0时,则⎩⎪⎨⎪⎧a -2<0,4(a -2)2+16(a -2)<0,解得-2<a <2, ∴-2<a≤2. 故选D.2.在R 上定义运算⊗:x ⊗y =x(1-y),若对任意x >2,不等式(x -a)⊗x≤a +2都成立,则实数a 的取值范围是( )A .[-1,7]B .(-∞,3]C .(-∞,7]D .(-∞,-1]∪[7,+∞)2.C 由题意可知,不等式(x -a)⊗x≤a +2可化为(x -a)(1-x)≤a +2,即x -x 2-a +ax≤a +2,则a≤x 2-x +2x -2对x >2都成立,即a≤⎝ ⎛⎭⎪⎫x 2-x +2x -2min (x ∈(2,+∞)), 由于x 2-x +2x -2=(x -2)+4x -2+3≥2(x -2)·4x -2+3=7(x >2),当且仅当x -2=4x -2,即x =4时,等号成立,∴a≤7,故选C.3.“已知关于x 的不等式ax 2+bx +c >0的解集为(1,2),解关于x 的不等式cx 2+bx +a >0.”给出如下的一种解法: 解:由ax 2+bx +c >0的解集为(1,2),得a ⎝⎛⎭⎫1x 2+b ⎝⎛⎭⎫1x +c >0的解集为⎝⎛⎭⎫12,1,即关于x 的不等式cx 2+bx +a >0的解集为⎝⎛⎭⎫12,1.参考上述解法:若关于x 的不等式b x +a +x +b x +c <0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式bx -a-x -bx -c >0的解集为( ) A .(-1,1)B.⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1 C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,1 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,+∞ 3.B 根据题意, 由bx +a +x +b x +c<0的解集为 ⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,得b-x +a +-x +b -x +c<0的解集为 ⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1,即b x -a -x -b x -c>0的解集为 ⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1.故选B.4.已知函数f(x)=⎩⎪⎨⎪⎧x 2+1,x≥0,1,x <0则满足不等式f(1-x 2)>f(2x)的x 的取值范围是________.4.【解析】 当x =-1时,无解.当-1<x <0时,1-x 2>0,f(1-x 2)>f(2x)化为(1-x 2)2+1>1,恒成立.当0≤x≤1时,1-x 2≥0,2x≥0,f(1-x 2)>f(2x)化为(1-x 2)2+1>(2x)2+1,即1-x 2>2x ,(x +1)2<2,∴0≤x <2-1.当1-x 2<0时,无解. 综上可知-1<x <2-1. 【答案】 (-1,2-1)5.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________. 5.【解析】 因为不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立, 所以Δ=64sin 2α-32cos 2α≤0, 即64sin 2α-32+64sin 2α≤0, 解得-12≤sin α≤12.因为0≤α≤π.所以α∈⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π. 【答案】 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 6.已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a 对一切非负实数x 恒成立,则a 的最大值为________.6.【解析】 原不等式可化为x 2a ≥1+x 2-1+x ,令1+x =t ,t≥1,则x =t 2-1.所以(t 2-1)2a ≥1+t 2-12-t=t 2-2t +12=(t -1)22对t≥1恒成立,所以(t +1)2a ≥12对t≥1恒成立.又a 为正的常数,所以a≤[2(t +1)2]min=8,故a 的最大值是8. 【答案】 8 【点击高考】1.设集合A ={x|x 2-4x +3<0},B ={x|2x -3>0},则A∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,32.设集合S ={x|(x -2)(x -3)≥0},T ={x|x>0},则S∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞) D .(0,2]∪[3,+∞)2.D S ={x|x≤2或x≥3},T ={x|x>0},∴S∩T =(0,2]∪[3,+∞). 3.设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.A 由|x -2|<1⇔-1<x -2<1⇔1<x <3. 由x 2+x -2>0⇔x <-2或x >1. 而(1,3)(-∞,-2)∪(1,+∞),所以“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,故选A.4.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x<-1或x>12,则f(10x )>0的解集为( ) A.{}x |x<-1或x>-lg 2 B.{}x |-1<x<-lg 2 C.{}x |x>-lg 2 D.{}x |x<-lg 24.D ∵f(x)<0的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪x<-1或x>12,∴f(x)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x<12. ∴由f(10x )>0得,-1<10x <12,解得x<-lg 2.5.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]6.已知函数f(x)=x(1+a|x|),设关于x 的不等式f(x +a)<f(x)的解集为A.若⎣⎡⎦⎤-12,12⊆A ,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1-52,0B.⎝ ⎛⎭⎪⎫1-32,0C.⎝⎛⎭⎪⎫1-52,0∪⎝⎛⎭⎪⎫0,1+32D.⎝⎛⎭⎪⎫-∞,1-52 6.A 由题意可得0∈A ,即f(a)<f(0)=0,所以a(1+a|a|)<0,当a>0时无解,所以a<0,此时1-a 2>0,所以-1<a<0.抛物线的对称轴x =12a ,x =-12a 之间的距离大于1,而[x +a ,x]的区间长度小于1,所以不等式f(x +a)<f(x)的解集是⎝⎛⎭⎫12a -a 2,-12a -a2,所以 ⎣⎡⎦⎤-12,12⊆⎝⎛⎭⎫12a -a 2,-12a -a 2, 所以⎩⎨⎧12a -a 2<-12,-12a -a 2>12,即⎩⎪⎨⎪⎧a 2-a -1<0,a 2+a +1>0, 解得1-52<a<1+52,又-1<a<0,所以实数a 的取值范围是⎝⎛⎭⎪⎫1-52,0.7.设a ∈R ,若x >0,均有[(a -1)x -1]·(x 2-ax -1)≥0,则a =________.7.【解析】 (1)当a =1时,不等式可化为对∀x ,x>0时均有x 2-x -1≤0,由二次函数的图象知,显然不成立, ∴a≠1.(2)当a<1时,∵x>0,∴(a -1)x -1<0,则不等式可化为x>0时均有x 2-ax -1≤0.∵二次函数y =x 2-ax -1的图象开口向上,∴不等式x 2-ax -1≤0在x ∈(0,+∞)上不能恒成立,∴a<1不成立.(3)当a>1时,令f(x)=(a -1)x -1,g(x)=x 2-ax -1,两函数的图象均过定点(0,-1).∵a>1,∴f(x)在x ∈(0,+∞)上单调递增,且与x 轴交点为⎝⎛⎭⎫1a -1,0,即当x ∈⎝⎛⎭⎫0,1a -1时,f(x)<0,当x ∈⎝⎛⎭⎫1a -1,+∞时,f(x)>0.又∵二次函数g(x)=x 2-ax -1的对称轴为x =a2>0,则只需g(x)=x 2-ax -1与x 轴的右交点与点⎝⎛⎭⎫1a -1,0重合, 如图所示,则命题成立,即⎝⎛⎭⎫1a -1,0在g(x)图象上,所以有⎝⎛⎭⎫1a -12-a a -1-1=0,整理得2a 2-3a =0,解得a =32,a=0(舍去). 综上可知a =32.【答案】 3203 基本不等式利用基本不等式求最值利用基本不等式求最值是基本不等式的考点,高考主要求最值、判断不等式、解决不等式有关的问题,试题难度不大,主要是以选择题、填空题形式出现,有时解答题中也会利用基本不等式求最值.在复习时,注意利用基本不等式判断不等式是否成立(比较大小),一般将所给不等式变形,使一侧为常数,另一侧利用基本不等式求解后判断. 【典例】1(1)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94D .3(2)设f(x)=ln x ,0<a<b ,若p =f(ab),q =f ⎝⎛⎭⎫a +b 2,r =12(f(a)+f(b)),则下列关系式中正确的是( )A .q =r<pB .p =r<qC .q =r>pD .p =r>q【解析】 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2. 所以xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤12x y ·4y x-3=1,当且仅当x y =4yx ,即x =2y 时取等号,此时z =2y 2,⎝⎛⎭⎫xy z max =1, 则2x +1y -2z =22y +1y -2xy =2y ⎝⎛⎭⎫1-1x =2y⎝⎛⎭⎫1-12y ≤4⎝ ⎛⎭⎪⎫12y +1-12y 22=1. (2)方法一:由题意知,p =f(ab)=ln ab ,q =f ⎝⎛⎭⎫a +b 2=ln ⎝⎛⎭⎫a +b 2,r =12(f(a)+f(b))=12(ln a +ln b)=12ln ab =ln ab.又∵b >a >0,∴a +b2>ab >0.∵函数f(x)=ln x 为增函数,∴p =r <q ,故选B. 方法二(特值法):令a =1,b =2,∴p =f(2)=ln 2, q =f ⎝⎛⎭⎫a +b 2=f ⎝⎛⎭⎫32=ln 32,r =12(ln 1+ln 2)=ln 2.∵2<32,∴ln 2<ln 32,∴p =r<q.【答案】 (1)B (2)B 【名师点睛】(1)含有三个变量,可以把其中一个变量用另两个变量来代替,借助基本不等式求最值; 解(2)时注意利用不等式与对数函数相结合,方法二是不等式常用的方法,特殊值法应灵活应用.利用基本不等式求最值的类型及方法(1)若已经满足基本不等式的条件,则直接应用基本不等式求解.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等.(3)多次使用基本不等式求最值,此时要注意只有同时满足等号成立的条件才能取得等号,若等号不成立,一般利用函数单调性求解.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5C 将(1,1)代入直线x a +y b =1得1a +1b=1,a >0,b >0,故a +b =(a +b)⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2=4,等号当且仅当a =b 时取到,故选C. 基本不等式的实际应用高考中利用基本不等式解决实际问题,关键是把实际问题转化为代数问题,列出函数关系式,再利用基本不等式求最值. 【典例】2(1)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).(2)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k>0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. ①求炮的最大射程;②设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.【解析】 (1)设池底长为x m ,宽为y m ,则xy =4,所以y =4x ,则总造价为f(x)=20xy +2(x +y)×1×10=80+80x +20x=20⎝⎛⎭⎫x +4x +80,x ∈(0,+∞). 所以f(x)≥20×2x·4x +80=160,当且仅当x =4x,即x =2时,等号成立.所以最低总造价是160元. (2)①令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知x>0,k>0, 故x =20k 1+k 2=20k +1k ≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.②因为a>0,所以炮弹可以击中目标等价于存在k>0, 使3.2=ka -120(1+k 2)a 2成立,故关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以有判别式Δ=(-20a)2-4a 2(a 2+64)≥0,即a≤6. 所以当a 不超过6千米时,炮弹可以击中目标., 【名师点睛】解(1)关键是列出函数关系式f(x)=20⎝⎛⎭⎫x +4x +80,利用基本不等式求最值; 题(2)①求炮的最大射程即求y =kx -120(1+k 2)x 2(x >0)与x 轴的横坐标,求出后应用基本不等式求解;②求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.利用基本不等式解决实际问题的步骤(1)根据题意设出相应变量,一般把要求最值的变量设为函数;(2)建立相应的函数关系式,确定函数的定义域; (3)在定义域内,求函数的最值;(4)回到实际问题中去,写出实际问题的答案. 【针对训练】1.若正数a ,b 满足1a +1b =1,则4a -1+16b -1的最小值为( )A .16B .25C .36D .49 1.A 因为a ,b >0,1a +1b =1,所以a +b =ab ,所以4a -1+16b -1=4(b -1)+16(a -1)(a -1)(b -1)=4b +16a -20ab -(a +b )+1=4b +16a -20.又4b +16a =4(b +4a)=4(b +4a)·⎝⎛⎭⎫1a +1b =20+4⎝⎛⎭⎫b a +4a b ≥20+4×2b a ·4ab=36, 当且仅当b a =4a b 且1a +1b =1,即a =32,b =3时取等号.所以4a -1+16b -1≥36-20=16.2.函数y =log a (x +3)-1(a >0,且a≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n 的最小值为( )A .2 2B .4 C.52 D.923.已知直线ax +by +c -1=0(b ,c>0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .23.A 圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C(0,1).因为直线ax +by +c -1=0经过圆心C , 所以a×0+b×1+c -1=0,即b +c =1.因此4b +1c =(b +c)⎝⎛⎭⎫4b +1c =4c b +b c +5. 因为b ,c>0, 所以4c b +b c≥24c b ·b c=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 4.已知x >0,y >0,若2y x +8xy>m 2+2m 恒成立,则实数m 的取值范围是________.【答案】 (-4,2)5.若当x>-3时,不等式a≤x +2x +3恒成立,则a 的取值范围是________.5.【解析】 设f(x)=x +2x +3=(x +3)+2x +3-3,因为x>-3,所以x +3>0, 故f(x)≥2(x +3)×2x +3-3=22-3,当且仅当x =2-3时等号成立, 所以a 的取值范围是(-∞,22-3]. 【答案】 (-∞,22-3]6.已知实数x ,y 满足x -x +1=y +3-y ,则x +y 的最大值为________. 6.【解析】 ∵x -x +1=y +3-y. ∴x +y =x +1+y +3≤2x +y +42,则(x +y)2≤2(x +y +4),解得-2≤x +y≤4.∴x +y 的最大值为4. 【答案】 47.如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体的沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A ,B 孔的面积忽略不计)?7.解:方法一:设y 为流出的水中杂质的质量分数, 则y =kab ,其中k 为比例系数,且k>0.根据题意有,4b +2ab +2a =60(a>0,b>0), 所以b =30-a2+a (0<a<30).所以ab =a×30-a 2+a =30a -a 22+a=-a +32-642+a=34-⎝⎛⎭⎫a +2+64a +2≤34-2(a +2)·64a +2=18.当a +2=64a +2时取等号,y 达到最小值.此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 方法二:设y 为流出的水中杂质的质量分数, 则y =kab ,其中k 为比例系数,且k>0.根据题意有,4b +2ab +2a =60(a>0,b>0), 即2b +ab +a =30.因为a +2b≥22ab , 所以30-ab =a +2b≥22ab. 所以ab +22ab -30≤0. 因为a>0,b>0,所以0<ab≤18, 当a =2b 时取等号,ab 达到最大值18. 此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 【点击高考】1.(3-a )(a +6)(-6≤a≤3)的最大值为( ) A .9 B.92 C .3 D.3222.已知两条直线l 1:y =m 和l 2:y =82m +1(m>0),l 1与函数y =|log 2x|的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x|的图象从左至右相交于点C ,D.记线段AC 和BD 在x 轴上的投影长度分别为a ,b.当m 变化时,ba的最小值为( )A .16 2B .8 2C .834D .4342.B 在平面直角坐标系中作出函数y =|log 2x|的图象如图所示,不妨设点A(x 1,m),B(x 2,m),C ⎝⎛⎭⎫x 3,82m +1,D ⎝⎛⎭⎫x 4,82m +1,则0<x 1<1<x 2,0<x 3<1<x 4,此时有-log 2x 1=m ,log 2x 2=m ,-log 2x 3=82m +1,log 2x 4=82m +1,解得x 1=⎝⎛⎭⎫12m ,x 2=2m ,x 3=⎝⎛⎭⎫1282m +1,x 4=282m +1,线段AC 与BD 在x 轴上的投影长度分别为a =|x 1-x 3|=,b =|x 2-x 4|=⎪⎪⎪⎪2m -282m +1, 则ba==2m +82m +1,令t =m +82m +1(m >0),则t =m +4m +12=⎝⎛⎭⎫m +12+4m +12-12≥4-12=72,当且仅当⎝⎛⎭⎫m +122=4,即m =32时,t 取最小值为72,此时b a的最小值为8 2.3.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.3.【解析】 ∵x 2+2y 2≥2x 2·2y 2=22·xy =22,当且仅当x =2y 时等号成立,∴x 2+2y 2的最小值为2 2. 【答案】 2 24.(2013·天津,14,易)设a +b =2,b >0,则当a =________时,12|a|+|a|b取得最小值. 4.【解析】 ∵a +b =2, ∴12|a|+|a|b =24|a|+|a|b =a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b ≥a4|a|+2b 4|a|×|a|b =a4|a|+1. 当且仅当b 4|a|=|a|b 且a <0,即b =-2a ,a =-2时,12|a|+|a|b 取得最小值.【答案】 -25.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物需建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x +5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值. 5.解:(1)由题设,建筑物每年能源消耗费用为C(x)=k3x +5,由C(0)=8,得k =40,∴C(x)=403x +5. 而隔热层建造费用为C 1(x)=6x , ∴f(x)=20C(x)+C 1(x)=20×403x +5+6x =8003x +5+6x(0≤x≤10).(2)方法一:f(x)=8003x +5+6x=1 6006x +10+6x +10-10 ≥21 6006x +10×(6x +10)-10=70,当且仅当1 6006x +10=6x +10,即x =5时取等号.∴当隔热层修建厚度为5 cm 时,总费用最小,最小值为70万元. 方法二:f′(x)=6- 2 400(3x +5)2,令f′(x)=0,即2 400(3x +5)2=6,解得x =5或x =-253(舍去).当0<x<5时,f′(x)<0;当5<x<10时,f′(x)>0.故x =5是f(x)的最小值点,对应的最小值为f(5)=6×5+80015+5=70.当隔热层修建厚度为5 cm 时,总费用达到最小,最小值为70万元.04 函数与方程函数零点的求解与判断 【知识分析】高考中对函数零点个数和所在区间的考查中“函数”往往是由基本初等函数(幂函数、指数函数、对数函数、二次函数等)或三角函数组合而成的,题目常以选择题或填空题的形式出现,体现数形结合思想的运用,难度不大. 【典例】1(1)若a<b<c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间( ) A .(a ,b)和(b ,c)内 B .(-∞,a)和(a ,b)内 C .(b ,c)和(c ,+∞)内 D .(-∞,a)和(c ,+∞)内(2)函数f(x)=4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为________. 【解析】(1)易知f(a)=(a -b)(a -c),f(b)=(b -c)(b -a),f(c)=(c -a)(c -b).又a<b<c ,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别在(a ,b)和(b ,c)内. (2)令4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -||ln (x +1)=0. ∴2sin x ⎝⎛⎭⎫2cos 2x2-1=||ln (x +1), 即sin 2x =||ln (x +1). 令y 1=sin 2x ,y 2=||ln (x +1). 如图画出y 1,y 2的图象,结合图象可得y 1与y 2有两个交点, ∴方程有2个根. ∴函数f(x)有2个零点.【答案】 (1)A (2)2【名师点睛】解题(1)的依据是零点存在性定理;解题(2)的关键是将零点个数问题转化为两个函数图象的交点个数问题,数形结合求解.1.函数f(x)=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.设函数f(x)(x ∈R )满足f(-x)=f(x),f(x)=f(2-x),且当x ∈[0,1]时,f(x)=x 3.又函数g(x)=|xco s(πx)|,则函数h(x)=g(x)-f(x)在⎣⎡⎦⎤-12,32上的零点个数为( ) A .5 B .6 C .7 D .82.B ∵f(-x)=f(x),f(x)=f(2-x),∴f(-x)=f(2-x),∴f(x)的周期为2.如图画出f(x)与g(x)的图象,它们共有6个交点,故h(x)在⎣⎡⎦⎤-12,32上的零点个数为6.故选B.,判断函数在某个区间上是否存在零点的方法(1)解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上; (2)利用零点存在性定理进行判断;(3)画出函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断.判断函数零点个数的方法(1)直接法:解方程f(x)=0,方程有几个解,函数f(x)就有几个零点;(2)图象法:画出函数f(x)的图象,函数f(x)的图象与x 轴的交点个数即为函数f(x)的零点个数;(3)将函数f(x)拆成两个常见函数h(x)和g(x)的差,从而f(x)=0⇔h(x)-g(x)=0⇔h(x)=g(x),则函数f(x)的零点个数即为函数y =h(x)与函数y =g(x)的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式Δ来判断. 函数零点的应用高考对函数零点的应用的考查多以选择题或填空题的形式出现,主要考查利用零点的个数或存在情况求参数的取值范围及利用零点的性质求其和、比较大小等问题,难度较大. 【典例】2.已知函数f(x)=⎩⎪⎨⎪⎧2-|x|,x≤2,(x -2)2,x >2,函数g(x)=b -f(2-x),其中b ∈R .若函数y =f(x)-g(x)恰有4个零点,则b 的取值范围是( )A.⎝⎛⎭⎫74,+∞B.⎝⎛⎭⎫-∞,74C.⎝⎛⎭⎫0,74D.⎝⎛⎭⎫74,2 【解析】 由已知条件可得g(x)=⎩⎪⎨⎪⎧b -2+|2-x|,x≥0,b -x 2,x <0.函数y =f(x),y =g(x)的图象如图所示: 要使y =f(x)-g(x)恰有4个零点,只需y =f(x)与y =g(x)的图象恰有4个不同的交点,需满足⎩⎪⎨⎪⎧y =2+x ,y =b -x 2在x <0时有两个不同的解,即x 2+x +2-b =0有两个不同的负根,则⎩⎪⎨⎪⎧Δ=1-4(2-b )>0,2-b >0,解得74<b <2;同时要满足{y =(x -2)2,y =b -2+x -2在x >2时有两个不同的解,即x 2-5x +8-b =0有两个大于2的不同实根,令h(x)=x 2-5x +8-b ,需⎩⎪⎨⎪⎧h (2)>0,h ⎝⎛⎭⎫52<0,即⎩⎪⎨⎪⎧2-b >0,8-254-b <0,解得74<b <2.综上所述,满足条件的b 的取值范围是74<b <2.【答案】 D,已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【针对训练】1.函数f(x)=ln x +x -12,则函数的零点所在区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,34C.⎝⎛⎭⎫34,1 D .(1,2)1.C 函数f(x)=ln x +x -12的图象在(0,+∞)上连续,且f ⎝⎛⎭⎫34=ln 34+34-12=ln 34+14<0,f(1)=ln 1+1-12=12>0,故f(x)的零点所在区间为⎝⎛⎭⎫34,1. 2.设函数f(x)的零点为x 1,g(x)=4x +2x -2的零点为x 2,若|x 1-x 2|≤0.25,则f(x)可以是( ) A .f(x)=x 2-1 B .f(x)=2x -4 C .f(x)=ln(x +1) D .f(x)=8x -23.偶函数f(x)满足f(x -1)=f(x +1),且当x ∈[0,1]时,f(x)=-x +1,则关于x 的方程f(x)=lg(x +1)在x ∈[0,9]上解的个数是( ) A .7 B .8 C .9 D .103.C 依题意得f(x +2)=f(x),所以函数f(x)是以2为周期的函数.在平面直角坐标系中画出函数y =f(x)的图象与y =lg(x +1)的图象(如图所示),观察图象可知,这两个函数的图象在区间[0,9]上的公共点共有9个,因此,当x ∈[0,9]时,方程f(x)=lg(x +1)的解的个数是9.4.定义在R 上的奇函数f(x),当x≥0时,f(x)=⎩⎪⎨⎪⎧log 12(x +1),x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数F(x)=f(x)-a(0<a <1)的所有零点之和为( )A .2a -1B .2-a -1 C .1-2-a D .1-2a5.已知函数f(x)满足f(x)=f ⎝⎛⎭⎫1x ,当x ∈[1,3]时,f(x)=ln x ,若在区间⎣⎡⎦⎤13,3内,曲线g(x)=f(x)-ax 与x 轴有三个不同的交点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B.⎝⎛⎭⎫0,12e C.⎣⎡⎭⎫ln 33,1e D.⎣⎡⎭⎫ln 33,12e5.C 当x ∈⎣⎡⎦⎤13,1时,1x ∈[1,3],f(x)=f ⎝⎛⎭⎫1x =-ln x ,∴f(x)=⎩⎪⎨⎪⎧ln x ,x ∈[1,3],-ln x ,x ∈⎣⎡⎭⎫13,1,作出其图象,如图所示.设直线y =a 0x 与y =ln x(x ∈[1,3])的图象相切,其切点为(x 0,y 0)(x 0∈[1,3],y 0∈[0,ln 3]), 则1x 0=a 0⎝⎛⎭⎫a 0∈⎣⎡⎦⎤13,1, ∴x 0=1a 0,∴y 0=1,∴1=ln1a 0,∴a 0=1e.又点(3,ln 3)与原点连线的斜率为ln 33,故曲线g(x)=f(x)-ax 与x 轴有三个不同的交点,可知实数a 的取值范围是⎣⎡⎭⎫ln 33,1e ,故选C.6.已知函数f(x)=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a ,b 满足2a =3,3b =2,则n =________. 6.【解析】 a =log 23>1,b =log 32<1,令f(x)=0,得a x =-x +b.在同一平面直角坐标系中画出函数y =a x 和y =-x +b 的图象,如图所示,由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f(x)在区间(-1,0)内有零点,所以n =-1. 【答案】 -17.若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是________.7.【解析】 令f(x)=x 2+ax +2b ,∵方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,∴⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧b >0,a +2b <-1,a +b >-2.根据该约束条件作出可行域(如图),b -2a -1表示可行域内点与点(1,2)的连线的斜率,可知14<b -2a -1<1.【答案】 ⎝⎛⎭⎫14,1 【点击高考】1.已知函数f(x)=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x<0,log a (x +1)+1, x≥0(a>0,且a≠1)在R 上单调递减,且关于x 的方程|f(x)|=2-x 恰有两个不相等的实数解,则a 的取值范围是( ) A.⎝⎛⎦⎤0,23 B.⎣⎡⎦⎤23,34 C.⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34 D.⎣⎡⎭⎫13,23∪⎩⎨⎧⎭⎬⎫341.C 由y =log a (x +1)+1在[0,+∞)上递减,知0<a<1. 又由f(x)在R 上单调递减,知⎩⎪⎨⎪⎧02+(4a -3)·0+3a≥f (0)=1,3-4a 2≥0⇒13≤a≤34. 由图象可知,在[0,+∞)上,|f(x)|=2-x 有且仅有一个解,故在(-∞,0)上,|f(x)|=2-x 同样有且仅有一个解.当3a>2,即a>23时,令|x 2+(4a -3)x +3a|=2-x , ∴x 2+(4a -3)x +3a =2-x.又Δ=(4a -2)2-4(3a -2)=0,解得a =34或a =1(舍).当1≤3a≤2时,由图象可知,符合条件. 综上,a ∈⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34.选C.2.函数f(x)=2x |log 0.5x|-1的零点个数为( ) A .1 B .2 C .3 D .4 2.B方法一:f(x)=2x |log 0.5x|-1=⎩⎪⎨⎪⎧2x log 0.5x -1,0<x≤1,-2x log 0.5x -1,x>1=⎩⎪⎨⎪⎧-2x log 2x -1,0<x≤1,2x log 2x -1,x>1. ∵f(x)=-2x log 2x -1在(0,1]上递减且x 接近于0时,f(x)接近于正无穷大,f(1)=-1<0,∴f(x)在(0,1]上有1个零点.又∵f(x)=2x log 2x -1在(1,+∞)上递增,且f(2)=22×log 22-1=3>0, ∴f(x)在(1,+∞)上有1个零点, 故f(x)共有2个零点.方法二:易知函数f(x)=2x |log 0.5x|-1的零点个数⇔方程|log 0.5x|=12x =⎝⎛⎭⎫12x 的根的个数⇔函数y 1=|log 0.5x|与y 2=⎝⎛⎭⎫12x 的图象的交点个数.作出两个函数的图象如图所示,由图可知两个函数图象有2个交点.3.函数f(x)=xcos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .74.已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x 2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.4.【解析】 当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x 2-2x +12=⎪⎪⎪⎪(x -1)2-12,由f(x)是周期为3的函数,作出f(x)在[-3,4]上的图象,如图.由题意知方程a =f(x)在[-3,4]上有10个不同的根. 由图可知a ∈⎝⎛⎭⎫0,12.。

不等式的基本性质-习题精选(一)

不等式的基本性质-习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35 C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a -b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.(注:文档可能无法思考全面,请浏览后下载,供参考。

不等式的性质及应用

不等式的性质及应用

反证法
定义:反证法是一种通过假设相反的结论成立,然后推导出 矛盾的结论,从而证明原结论正确的方法。
步骤
1. 假设相反的结论成立。
2. 推导出矛盾的结论。
3. 得出原结论正确的结论。
例子:例如,要证明一个数不能被3整除,可以先假设它可 以被3整除,然后推导出一些矛盾的结论,从而证明原结论 正确。
放缩法
不等式的性质及应用
2023-11-09
contents
目录
• 不等式的基本性质 • 不等式的证明方法 • 不等式的应用 • 不等式在数学竞赛中的应用 • 不等式的实际应用
01
不等式的基本性质
传递性
总结词
不等式的传递性是指如果a>b且c>d,那么ac>bd。
详细描述
不等式的传递性是基于实数的有序性质,即如果a>b且c>d ,那么ac>bd。但需要注意的是,不等式的传递性不适用于 所有的数学对象,例如在复数域上就不一定成立。
详细描述
不等式的乘法单调性是指当两个数a和b满足a>b且c>0时,那么a与c的乘积大于 b与c的乘积。这个性质在解决一些实际问题时非常有用,例如在经济学中的收益 问题。
正值不等式与严格不等式
总结词
正值不等式是指a>b时,称a>b;严格不等式是指a>b且a≠b时,称a>b。
详细描述
正值不等式是指当a大于b时,我们称a大于b;严格不等式是指当a大于b且a不等于b时,我们称a大于b。在数学 中,我们通常使用严格不等式来描述两个数之间的关系,以保证它们之间没有相等的情况。
利用不等式解决其他问题竞赛题
总结词
不等式在数学竞赛中还可以用来解决其他问题,如最 优化问题、数列问题、解析几何问题等。

不等式常见题型及解析题

不等式常见题型及解析题

不等式常见题型及解析题一、一元一次不等式1.问题描述解不等式$a x+b>c$,其中$a>0$。

2.解法分析根据不等式的性质,我们可以将不等式转化为等价的形式:$$ax+b=c$$然后确定不等式的解集。

(1)当$a>0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。

此时,对于任意一个满足$c-b>0$的$x$,都可以使得$a x+b>c$,所以解集为$\le ft(\fr ac{c-b}{a},+∞\ri gh t)$。

(2)当$a<0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。

此时,对于任意一个满足$c-b<0$的$x$,都可以使得$a x+b<c$,所以解集为$\le ft(-∞,\f r ac{c-b}{a}\r igh t)$。

(3)当$a=0$时此时,不等式退化为$b>c$或$b<c$,没有变量$x$,所以不存在解。

二、一元二次不等式1.问题描述解不等式$a x^2+bx+c>0$,其中$a>0$。

2.解法分析和一元一次不等式类似,我们可以将不等式转化为等价的形式:$$ax^2+b x+c=0$$然后确定不等式的解集。

(1)当$a>0$时判断二次函数$a x^2+b x+c$的图像与$x$轴的交点数:-当判别式$Δ=b^2-4a c$大于0时,二次函数与$x$轴有两个交点,此时不等式的解集为$\le ft(-∞,x_1\ri gh t)\c up\le ft(x_2,+∞\ri g ht)$,其中$x_1$和$x_2$分别为二次方程$a x^2+b x+c=0$的两个根。

-当判别式$Δ=b^2-4a c$等于0时,二次函数与$x$轴有一个交点,此时不等式的解集为$\ma th bb{R}$,即全体实数的集合。

-当判别式$Δ=b^2-4a c$小于0时,二次函数与$x$轴没有交点,此时不等式的解集为空集。

基本不等式实际应用题

基本不等式实际应用题
基本不等式实际应用
• 基本不等式的概念和性质 • 基本不等式的应用场景 • 基本不等式的解题技巧 • 基本不等式的实际应用案例 • 基本不等式的扩展和深化
01
基本不等式的概念和性质
基本不等式的定义
定义
基本不等式是数学中常用的一个不等 式,它表示两个正数的平均数总是大 于或等于它们的几何平均数。
总结词:代数变换技巧是基本不等式 解题中的重要技巧之一,通过代数运 算对项进行变换,可以简化计算过程, 提高解题效率。
放缩法技巧
放缩法技巧是指通过放缩不等式的两边,使不等式更易于解 决。例如,在利用基本不等式求最值时,可以通过放缩法技 巧将问题转化为更容易求解的形式。
总结词:放缩法技巧是基本不等式解题中的重要技巧之一, 通过放缩不等式的两边,可以将问题转化为更容易求解的形 式,提高解题效率。
构造函数技巧
构造函数技巧是指根据题目的特点,构造一个函数来解决问题。例如,在利用基本不等式求最值时,可以通过构造函数技巧 将问题转化为求函数的最值问题。
总结词:构造函数技巧是基本不等式解题中的重要技巧之一,通过构造函数可以将问题转化为求函数的最值问题,简化计算 过程,提高解题效率。
04
基本不等式的实际应用案例
VS
详细描述
在资源有限的条件下,如何合理分配资源 以达到最优效果是资源分配问题的核心。 基本不等式可以用来解决这类问题,例如 在农业生产、资金分配等方面,通过优化 资源配置,可以提高整体效益。
最短路径问题
总结词
在交通、通信和工程领域,最短路径问题至关重要,基本不等式为寻找最短路径提供了 理论支持。
极值问题
在极值问题中,基本不等式可以用来确定函数的极值点,以及极值的大小。
优化问题的求解

不等式的基本性质习题精选

不等式的基本性质习题精选

不等式的基本性质习题精选不等式作为初中数学的重要内容之一,是一个被广泛应用的数学工具。

不同于等式,由于不等式符号的存在,很多时候我们的操作不再严格依照代数的规则。

因此,我们需要了解一些不等式的基本性质,并进行相应的练习。

一、不等式的基本性质1、加减移项:对于不等式a<b,若c是一个正数,则有a+c<b+c;若c是一个负数,则有a+c<b+c。

例1:已知5x-1<4x+3,将常数项移到左边,得到5x-4x<-1+3。

因为x是任意实数,所以我们可以得出:x<2。

即,不等式的解集为x∈(-∞,2)。

2、乘除移项:对于不等式a<b,若c是一个正数,则c×a<c×b;若c是一个负数,则c×a>c×b。

但是在将不等式两边同时乘上一个负数的时候,不等式的方向发生了改变。

例2:已知2x+3>5,将常数项移到左边,得到2x>2。

因为x是任意实数,所以得到x>1。

即,不等式的解集为x∈(1,+∞)。

3、绝对值的基本性质:a. 对于任何实数x,|x|≥0。

当x≠0时,|x|>0。

b. 对于任何实数x,|-x|=|x|。

c. 对于任何实数x和y,|xy|=|x|×|y|。

d. 对于任何实数x和y,|x+y|≤|x|+|y|。

例3:已知|x-5|>3,我们可以将其拆解成两个不等式:x-5>3或x-5<-3。

解得其解集为x∈(-∞,2)并x∈(8,+∞),即x∈(-∞,2)∪(8,+∞)。

二、不等式的练习题1、解不等式 |2x-3|+1<4。

我们可以将式子进行拆解,得到|2x-3|<3,即-3<2x-3<3。

解得x∈(0,3)。

2、已知0<x<1,求证:1/(1-x)>1+x。

将题目中的不等式进行变形,得到1/(1-x)-1>x。

两边同乘以1-x,得到:1-x>x(1-x)1>x^2因为0<x<1,得到x^2<1,所以不等式成立。

基本不等式及其应用 习题及解析

基本不等式及其应用 习题及解析

基本不等式及其应用习题及解析基本不等式及其应用一、选择题(共15小题)1.已知$x,XXX{R}$,$x+y+xy=315$,则$x+y-xy$的最小值是()A。

35B。

105C。

140D。

2102.设正实数$x,y$满足$x>1,y>1$,不等式$\frac{x}{y-1}+\frac{y}{x-1}\geq 4$的最小值为()A。

2B。

4C。

8D。

163.已知$a>0,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$,当且仅当()A。

$a=b$B。

$a=b=1$XXX 1$D。

$a\neq b$4.已知$x,y$都是非负实数,且$x+y=2$,则$xy$的最大值为()A。

0B。

$\frac{1}{4}$C。

$\frac{1}{2}$D。

15.已知$x,y,z$为正实数,则$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$的最大值为()A。

3B。

4C。

5D。

66.若$a,b\in\mathbb{R},ab\neq 0$,且$a+b=1$,则下列不等式中,XXX成立的是()A。

$ab\leq \frac{1}{4}$XXX{1}{4}$XXX{1}{8}$D。

$ab\geq \frac{1}{8}$7.设向量$\vec{OA}=(1,-2),\vec{OB}=(a,-1),\vec{OC}=(-b,2)$,其中$O$为坐标原点,$a>0,b>0$,若$A,B,C$三点共线,则$\vec{AB}+\vec{BC}+\vec{CA}$的最小值为()A。

4B。

6C。

8D。

98.若$x>0,y>0,x+y=1$,则$\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{xy}}$的最小值为()A。

2B。

3C。

4D。

59.在下列函数中,最小值是2的是()A。

$y=x^2+1$B。

$y=2-x^2$C。

人教版高中数学精讲精练必修一2.1 等式与不等式的性质(精讲)(解析版)

人教版高中数学精讲精练必修一2.1 等式与不等式的性质(精讲)(解析版)

2.1等式与不等式的性质(精讲)一.关于实数a ,b 大小比较的基本事实1.两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .2.依据:a >b ⇔a -b >0;a =b ⇔a -b =0;a <b ⇔a -b <03.结论:要比较两个实数的大小,可以转化为比较它们的差与0的大小二.等式的性质性质1如果a =b ,那么b =a ;性质2如果a =b ,b =c ,那么a =c ;性质3如果a =b ,那么a ±c =b ±c ;性质4如果a =b ,那么ac =bc ;性质5如果a =b ,c ≠0,那么a c =bc.三.不等式的性质性质1如果a >b ,那么b <a ;如果b <a ,那么a >b .即a >b ⇔b <a .性质2如果a >b ,b >c ,那么a >c ,即a >b ,b >c ⇒a >c .性质3如果a >b ,那么a +c >b +c .性质4如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc .性质5如果a>b,c>d,那么a+c>b+d.性质6如果a>b>0,c>d>0,那么ac>bd.性质7如果a>b>0,那么a n>b n(n∈N,n≥2).一.将不等关系表示成不等式(组)1.读懂题意,找准不等式所联系的量.2.用适当的不等号连接.3.多个不等关系用不等式组表示.二.常见的文字语言与符号语言之间的转换文字语言大于,高于,超过小于,低于,少于大于等于,至少,不低于小于等于,至多,不超过符号语言><≥≤三.作差法比较两个实数(代数式)大小(“三步一结论”)1.作差:对要比较大小的两个实数(或式子)作差;2.变形:对差进行变形①将差式进行因式分解转化为几个因式相乘.②将差式通过配方转化为几个非负数之和,然后判断.3.判断差的符号:结合变形的结果及题设条件判断差的符号;4.作出结论.四.利用不等式的性质求取值范围1.建立待求范围的整体与已知范围的整体的关系,最后利用一次不等式的性质进行运算,求得待求的范围.2.同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.3.求解这种不等式问题要特别注意不能简单地分别求出单个变量的范围,再去求其他不等式的范围.考点一用不等式(组)表示不等关系【例1】(2023·四川眉山)将一根长为5m 的绳子截成两段,已知其中一段的长度为x m ,若两段绳子长度之差不小于1m ,则x 所满足的不等关系为()A .25005x x ->⎧⎨<<⎩B .251x -≥或521x -≥C .52105x x -≥⎧⎨<<⎩D .25105x x ⎧-≥⎨<<⎩【答案】D【解析】由题意,可知另一段绳子的长度为()5m x -.因为两段绳子长度之差不小于1m ,所以()5105x x x ⎧--≥⎪⎨<<⎪⎩,化简得:25105x x ⎧-≥⎨<<⎩.故选:D 【一隅三反】1.(2022秋·西藏林芝·高一校考期中)下列说法正确的是()A .某人月收入x 不高于2000元可表示为“x <2000”B .某变量y 不超过a 可表示为“y ≤a ”C .某变量x 至少为a 可表示为“x >a ”D .小明的身高x cm ,小华的身高y cm ,则小明比小华矮表示为“x >y ”【答案】B【解析】对于A ,某人收入x 不高于2000元可表示为2000x ≤,A 错误;对于B ,变量y 不超过a 可表示为y a ≤,B 正确;对于C ,变量x 至少为a 可表示为x a ≥,C 错误;对于D ,小明身高cm x ,小华身高cm y ,小明比小华矮表示为x y <,D 错误.故选:B.2.(2023·黑龙江双鸭山)完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x 人,瓦工y 人,则请工人满足的关系式是()A .54200x y +<B .54200x y +≥C .54200x y +=D .54200x y +≤【答案】D【解析】依题意,请工人满足的关系式是50402000x y +≤,即54200x y +≤.故选:D3.(2022秋·甘肃庆阳·高一校考阶段练习)在开山工程爆破时,已知导火索燃烧的速度是每秒0.5厘米,人跑开的速度为每秒4米,距离爆破点150米以外(含150米)为安全区.为了使导火索燃尽时人能够跑到安全区,导火索的长度x (单位:厘米)应满足的不等式为()A .41500.5x⨯<B .41500.5x⨯≥C .41500.5x⨯≤D .41500.5x⨯>【答案】B【解析】由题意知导火索的长度x (单位:厘米),故导火索燃烧的时间为0.5x秒,人在此时间内跑的路程为40.5x ⎛⎫⨯ ⎪⎝⎭米,由题意可得41500.5x ⨯≥.故选:B.4.(2022秋·内蒙古呼和浩特·高一呼市二中校考阶段练习)我国经典数学名著《九章算术》中有这样的一道题:今有出钱五百七十六,买竹七十八,欲其大小率之,向各几何?其意是:今有人出钱576,买竹子78根,拟分大、小两种竹子为单位进行计算,每根大竹子比小竹子贵1钱,问买大、小竹子各多少根?每根竹子单价各是多少钱?则在这个问题中大竹子每根的单价可能为()A .6钱B .7钱C .8钱D .9钱【答案】C【解析】依题意可设买大竹子x ,每根单价为m ,购买小竹子78x -,每根单价为1m -,所以()()576781mx x m =+--,即78654m x +=,即()610913x m =-,因为078x ≤≤,所以()10910913013610913789613m m m m⎧≤⎪-≥⎧⎪⇒⎨⎨-≤⎩⎪≤⎪⎩961091313m ⇒≤≤,根据选项8m =,30x =,所以买大竹子30根,每根8元.故选:C考点二实数(式)的比较大小【例2-1】(2023·江苏·高一假期作业)已知1a ≥,试比较M =和N =.【答案】M N<【解析】(方法1)因为1a ≥,所以0,0M N =>=>.所以M N ==0>>,所以1MN<,即M N <;(方法2)所以0,0M N =>=>,又11,M N =,所以110M N>>,所以M N <.【一隅三反】1.(2023·全国·高一假期作业)已知c >1,且x y ,则x ,y 之间的大小关系是()A .x >yB .x =yC .x <yD .x ,y 的关系随c 而定【答案】C【解析】由题设,易知x ,y >0,又1x y ==<,∴x <y .故选:C.2.(2023·北京)设()227M a a =-+,()()23N a a =--,则有()A .M N >B .M N ≥C .M N <D .M N≤【答案】A【解析】()()222213247561024M N a a a a a a a ⎛⎫-=-+--+=++=++> ⎪⎝⎭,∴M N >.故选:A.3.(2023·全国·高三对口高考)设实数a ,b ,c 满足①2643b c a a +=-+,②244c b a a -=-+,试确定a ,b ,c 的大小关系.【答案】c b a ≥>,当且仅当2a =时c b =.【解析】因()224420c b a a a -=-+=-≥,所以c b ≥,当且仅当2a =时,b c =,()()()()22222643442b b c c b a a a a a =+--=-+-+=+-,所以21b a =+,22131024b a a a a ⎛⎫-=-+=-+> ⎪⎝⎭,所以b a >,综上可知:c b a ≥>,当且仅当2a =时c b =.考点三利用不等式的性质判断命题的真假【例3】(2023秋·河南省直辖县级单位)下列命题中正确的是()A .若a b >,则22ac bc >B .若a b >,c d <,则a bc d>C .若a b >,c d >,则a c b d ->-D .若0ab >,a b >,则11a b<【答案】D【解析】A 选项,当0c =时,22ac bc =,故A 错误;B 选项,当1a =,0b =,2c =-,1d =-时,1,02a b c d =-=,a bc d<,故B 错误;C 选项,当1a =,0b =,1c =,0d =时,a c b d -=-,故C 错误;D 选项,若0ab >,a b >,则110b a a b ab--=<,即11a b <,故D 正确.故选:D.【一隅三反】1.(2023春·江苏扬州·高一统考开学考试)对于实数a ,b ,c ,下列命题正确的是()A .若a b >,则22ac bc >B .若a b >,则22a b >C .若a b >,则||||a a b b >D .若0a b c >>>,则b ca b a c<--.【答案】C【解析】A 选项,()2220ac bc a b c -=-≥,故A 错误;B 选项,()()22a b a b a b -=-+,因不清楚a b +的正负情况,故B 错误;C 选项,当0a b >>时,()()22||||0a a b b a b a b a b -=-=-+>;当0a b >>时,22||||0a a b b a b -=+>,当0a b >>时,()()22||||0a a b b a b b a a b -=-+=-+>,综上||||a a b b >,故C 正确;D 选项,()()()0a b c b ca b a c a b a c --=>----,故D 错误.故选:C 2.(2023春·上海宝山)下列命题中正确的是()A .若a b >,则22a b >B .若a b >,则22a b >C .若a b >,则22a b >D .若22a b >,则a b>【答案】B【解析】取2,2a b ==-,则a b >,但是22a b =,A 错误,a b >,但是22a b =,C 错误,取3,2a b =-=,则22a b >,但是a b <,D 错误,由a b >,可得0a b >≥,所以()220a b >≥,故22a b >,B 正确,故选:B.3.(2023·全国·高一假期作业)下列命题为真命题的是()A .若0a b <<,则22ac bc <B .若0a b <<,则22a ab b <<C .若a b >,c d >,则ac bd >D .若0a b c >>>,则c ca b<【答案】D【解析】对于A :当0c =时,220ac bc ==,A 错误;对于B :当0a b <<时,22a ab b >>,B 错误;对于C :取2,1,2,3a b c d ===-=-满足a b >,c d >,而4,3ac bd =-=-,此时ac bd <,C 错误;对于D :当0a b >>时,则0ab >,所以1a b ab ab 1⋅>⋅,即11a b <,又0c >,所以c ca b<,D 正确.故选:D.考点四利用不等式的性质证明不等式【例4】(2023·云南)(1)已知a b c <<,且0a b c ++=,证明:a a a c b c<--.(2<.(3)a ≥【答案】(1)证明见解析;(2)证明见解析【解析】证明:(1)由a b c <<,且0a b c ++=,所以0a <,且0,a c b c -<-<所以()()0a c b c -->,所以()()a c a c b c -<--()()b ca cbc ---,即1b c -<1a c -;所以a b c ->a a c -,即a a c -<ab c-.(2<,(3)a ≥+<,即证(3)(1)(2)a a a a +-+<-+-+;<即证(3)(1)(2)a a a a -<--;即证02<,显然成立;<【一隅三反】1.(2023·内蒙古呼和浩特)证明不等式.(1)0bc ad -≥,bd >0,求证:a b c db d++≤;(2)已知a >b >c >0,求证:b b c a b a c a c>>---.【答案】(1)见详解(2)见详解【解析】(1)证明:()()a b d b c d a b c d ad bcb d bd bd+-+++--==,因为,0bc ad -≥,所以,0ad bc -≤,又bd >0,所以,0ad bc bd -≤,即a b c db d++≤.(2)证明:因为a >b >c >0,所以有,b c -<-,0a b a c <-<-,0b c ->,则,()()()()()()()0b a c b a b b b c b b a b a c a c a b a c a b -----==>------,即有,b ba b a c>--成立;因为,0a c ->,所以,10a c >-,又b c >,所以,b c a c a c >--成立.所以,有b b ca b a c a c>>---.2.(2022·高一课时练习)设a ,b ,c ∈R ,0a b c ++=,<0abc ,证明:1110a b c++>.【答案】证明见解析【解析】证明:因为0a b c ++=,所以2222220a b c ab ac bc +++++=.又0abc ≠,所以2220a b c ++>,所以0ab bc ca ++<.因为111ab bc caa b c abc++++=,<0abc ,0ab bc ca ++<,所以1110a b c++>.考点五利用不等式的性质求范围【例5】(2023·海南)已知11,11a b a b -≤+≤-≤-≤,求23a b +的取值范围__________.【答案】[3,3]-【解析】设23()()a b a b a b λμ+=++-,则2,3,λμλμ+=⎧⎨-=⎩解得5,21.2λμ⎧=⎪⎪⎨⎪=-⎪⎩故5123()()22a b a b a b +=+--,由11a b -≤+≤,故555()222a b -≤+≤,由1a b -≤-1≤,故111()222a b -≤--≤,所以23[3,3]a b +∈-.故答案为:[3,3]-.【一隅三反】1.(2022秋·贵州贵阳·高一校联考期中)已知13a <<,21b -<<,则2+a b 的取值范围是______.【答案】()3,5-【解析】∵21b -<<,∴422b -<<,∵13a <<,∴325a b -<+<.故答案为:()3,5-.2.(2022秋·湖北荆州·高一沙市中学校考阶段练习)已知14a b -≤+≤,23a b ≤-≤,则32a b -的取值范围为_________【答案】919[,]22【解析】令()()32m a b n a b a b ++-=-,则()()32m n a m n b a b ++-=-,所以32m n m n +=⎧⎨-=-⎩,可得1252m n ⎧=⎪⎪⎨⎪=⎪⎩,故1532()()22a b a b a b -=++-,而11515()[,2],()[5,]2222a b a b +∈--∈,故91932[,]22a b -∈.故答案为:919[,]223.(2023·福建)若13a b -<+<,24a b <-<,23t a b =+,则t 的取值范围为______.【答案】91322t -<<【解析】设()()()()t x a b y a b x y a x y b =++-=++-,则23x y x y +=⎧⎨-=⎩,解得5212x y ⎧=⎪⎪⎨⎪=-⎪⎩.因为()5515222a b -<+<,()1212a b -<--<-,所以()()951132222a b a b -<+--<,即91322t -<<.故答案为:91322t -<<.。

(完整word版)不等式的基本性质__习题精选(一).docx

(完整word版)不等式的基本性质__习题精选(一).docx

不等式的基本性质习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果 a>b,那么a+c____b+c, a- c____b- c.不等式的基本性质2:如果 a>b,并且 c>0,那么 ac_____bc.不等式的基本性质3:如果 a>b,并且 c<0,那么 ac_____bc.2.设 a<b,用“ <或”“ >填”空.(1) a- 1____b- 1;(2) a+1_____b+1 ;(3) 2a____2b;( 4)- 2a_____- 2b;a b a b5)-2_____-2;(6)2____ 2.3.根据不等式的基本性质,用“ <或”“ >填”空.(1)若 a- 1>b- 1,则 a____b;( 2)若 a+3>b+3,则 a____b;( 3)若 2a>2b,则 a____b;(4)若- 2a>- 2b,则 a___b.4.若 a>b, m<0,n>0 ,用“ >或”“ <填”空.(1) a+m____b+m ;(2) a+n___b+n;( 3) m- a___m- b;(4) an____bn;a b a b(5)m ____ m;( 6)n _____ n;5.下列说法不正确的是()A .若 a>b,则 ac 2 >bc 2( c 0) B.若 a>b,则 b<aC.若 a>b,则- a>- bD .若 a>b, b>c,则 a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或 x>a 的形式:(1) x- 3>1;( 2)-2x> - 1;( 3) 3x<1+2x ;( 4) 2x>4 .3[学科综合]7.已知实数 a、b、c 在数轴上对应的点如图13-2- 1 所示,则下列式子中正确的是()A . bc>ab B.ac>ab C. bc<ab D .c+b>a+b28.已知关于 x 的不等式( 1- a)x>2 变形为 x< 1-a,则 1-a 是 ____数.9.已知△ ABC 中三边为 a、 b、c,且 a>b,那么其周长p 应满足的不等关系是()A . 3b<p<3aB. a+2b<p<2a+bC. 2b<p<2 ( a+b)D. 2a<p<2( a+b)[创新思维](一)新型题10.若 m>n,且 am<an,则 a 的取值应满足条件()A . a>0B. a<0C. a=0D. a 0(二)课本例题变式题11.(课本 p6 例题变式题)下列不等式的变形正确的是()3xA .由 4x- 1>2 ,得 4x>1B .由 5x>3,得 x> 5C.由2>0,得 x>2D.由- 2x<4 ,得 x< - 2(三)易错题12.若 a>b,且 m 为有理数,则am 2 ____bm 2.13.同桌甲和同桌乙正在对 7a>6a 进行争论,甲说:“ 7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题2x+y=k+114.若方程组x+2y=-1的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1 变为 x>a 或 x<a 的形式.[数学在学校、家庭、社会生活中的应用]16.如图 13- 2- 2 所示,一个已倾斜的天平两边放有重物,其质量分别为 a 和 b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买, 也可到乙商店购买, 已知两商店的标价都是每本1 元,但甲商店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%卖,乙商店的优惠条件是:从第 1 本开始就按标价的 85%卖.( 1)小明要买 20 本时,到哪个商店购买较省钱?( 2)写出甲商店中收款 y (元)与购买本数 x (本)( x>10)之间的关系式.( 3)小明现有 24 元钱,最多可买多少本?[自主探究]18.命题: a ,b 是有理数,若a>b ,则 a 2 >b 2 .( 1)若结论保持不变,那么怎样改变条件,命题才能正确?; ( 2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5 个苹果的重量大于 4 个苹果的重量,设每个苹果的重量为x 则有 5x>4x .乙说:这肯定是正确的.甲接着说:设 a 为一个实数,那么 5a 一定大于 4a ,这对吗?乙说:这与 5x>4x 不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a 或 x<a 的形式:1x(1) 2>- 3;( 2)- 2x<6 .解:( 1)不等式的两边都乘以 2,不等式的方向不变,所以1 x 2>-3 22,得 x> - 6.(2)不等式两边都除以-2,不等式方向改变,所以-2x > 6-2 -2 ,得 x>- 3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较 a+b 与 a - b 的大小.[ 典名 ,提升自我] [中考 接]22.( 2004 ·山 淄博)如果m<n<0 ,那么下列 中 的是()1 >1mA . m - 9<n -9B .- m>- nC .nmD . n>123.( 2004 ·北京海淀)若 a - b<0 , 下列各 中一定成立的是()aA . a>bB .ab>0C . b >0D .- a>-b[奥 析]24.要使不等式 ⋯<a 7 <a 5 <a 3 <a<a 2 <a 4 <a 6 <⋯ 成立,有理数 a 的取 范 是()A . 0<a<1B . a<- 1C .- 1<a<0D . a>1[趣味数学]25.( 1) A 、 B 、 C 三人去公园玩 板,如 13- 2- 3①中, 判断 三人的 重. (2) P 、 Q 、 R 、 S 四人去公园玩 板,如13- 2- 3②, 判断 四人的 重.答案1.>> > <2.( 1) <( 2) <( 3)<( 4) >( 5) >( 6) < 3.( 1) >( 2) >( 3)>( 4) <4.( 1) >( 2) >( 3)<( 4) >( 5) <( 6) >5.C 点 : Q a>b ,不等式的两 同 乘以- 1,根据不等式的基本性 3,得- a<- b ,所以 C 不正确.6.解:( 1)x - 3>1 , x - 3+3>1+3 ,(根据不等式的基本性 1) x>4 ;22333(2)-3 x> -1,-3 x·(-2) <- 1·(-2),(根据不等式的基本性质3) x< 2;( 3) 3x<1+2x ,3x- 2x<1+2x - 2x,(根据不等式的基本性质1)x<1 ;2x > 4(4) 2x>4 ,2 2 ,(根据不等式的基本性质2) x>2.7.A8.负9. D10. B22 11. B12.错解: am>bm错因分析: m 2应为大于或等于0 的数,忽略了m 等于 0 的情况正解:: am 2bm213.错解 1:甲对,因为 7>6 ,两边同乘以一个数a,由不等式的基本性质2,可得 7a>6a.错解 2:乙对,因为 a 为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为 a 为正数或负数,实际 a 为任意数,有三种情况:a 为负数, a 为正数, a 为 0,应全面考察各种.正解:两人的观点都不对,因为 a 的符号没有确定:①当a>0 时,由性质 2 得 7a>6a,②当a<0 时,由性质 3 得 7a<6a,③当 a=0 时,得 7a=6a=0.14.1<x+y<2 点拨:两方程两边相加得Q,即 3<3( x+y)<6, 1<x+y<2.3( x+y )=k . 3<k<615.解法 1: 2x+5<4x - 1, 2x+5 - 5<4x- 1- 5, 2x<4x - 6, 2x- 4x<4x -6- 4x,- 2x<--2x > -66,-2-2 ,x>3.6 < 2x解法 2: 2x+5<4x - 1,2x+5 - 2x<4x - 1-2x, 5+1<2x - 1+1 ,6<2x ,2 2 ,3<x,即x>3 .16.解:从图中可看出 a>b,存在这样一个不等式,两边都加上 c,根据不等式的基本性质 1,则 a+c>b+c ,所以,盘子仍然像原来那样倾斜.17.解:( 1)若到甲商店购买,买20 本共需 10+170% 10=17(元),到乙商店购买 20本,共需 1 0. 85 220=17 元,因为到甲、乙两个商店买20 本都需花 17 元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款 y(元)与购买本数 x(本)( x>10)之间的关系式为 y=10+0 . 7(x -10),即 y=0 . 7x+3 (其中 x>10 ).(3)小明有 24 元,若到甲商店,可以得到方程 24=0 .7x+3 ,解得 x=30(本).若到乙商店,可24÷( 1 0. 85)≈ 28(本).Q 30>28,故小明最多哥 30 本.18.解:( 1) a, b 是有理数,若a>b>0,a2>b2(2) a, b 是有理数,若a>b, a+1>b+1.19.解:乙同学的回答不正确, 5a 不一定大于 4a.当 a>0 ,5a>4a>0;当 a=0 ,5a=4a=0;当 a<0 ,5a<4a<0.20.解:里的形与方程中的“将未知数的系数化1”相似,但是也有所不同;不等式的两都乘以(或除以)同一个正数,不等号的方向不,不等式的两都乘以(或除以)同一个数,不等号的方向改.21.解: a+b-( a- b)=2b ,当 b>0 , a+b>a- b;当 b=0 , a+b=a- b;当 b<0 ,a+b<a- b.22. C23. D24.B点: a 的奇数次方一定小于 a 的偶数次方,a是数,且 a2 <a 4 <a 6 <0 ⋯,个数一定小于-1,故 B.25.解:( 1)三人由到重排列序是 B 、 A 、 C.(2)四人由到重排列序是Q、P、 S、R.。

不等式易错习题精选精讲

不等式易错习题精选精讲

不等式易错题练习1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0ab c d >><<,则a bc d>);(3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则nn ab >>(4)若0,ab a b >>,则11a b<;若0,ab a b <>,则11a b>.如(1) (2)已知11,13x y x y -≤+≤≤-≤,则3x y -的取值围是______(答:137x y ≤-≤); (3)已知a b c >>,且0a b c ++=则c a 的取值围是______(答:12,2⎛⎫-- ⎪⎝⎭)2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商(常用于分数指数幂的代数式); (3)分析法; (4)平方法;(5)分子(或分母)有理化; (6)利用函数的单调性; (7)寻找中间量或放缩法 ;(8)图象法。

其中比较法(作差、作商)是最基本的方法。

如 (1)设01,0aa t >≠>且,比较11log log 22a a t t +和的大小答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11log log 22a a t t +≥(1t =时取等号));(2)设24212,,22a a a p a q a -+->=+=-,2a >,试比较,p q 的大小(答:p q >); (3)比较1log 3x +与()2log 201x x x >≠且的大小.答:当01x <<或43x >时,1log 32log 2x x +>;当413x <<时,1log 32log 2x x +<;当43x =时,1log 32log 2x x += 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。

不等式性质的应用

不等式性质的应用

不等式性质的应用灵活运用不等式的性质,对快速、准确地解题至关重要,下面通过几个例子看看不等式的性质在解题中的应用.一、不等式变形例1 根据不等式的性质,把下列不等式化成“x>a ”或“x<a ”的形式:(1)4x>3x+6;(2)﹣2x<4;(3)5x>10;(4)x ﹣3<7.分析:根据不等式的特点适当地选用不等式的性质对所给不等式进行变形,对于不等式(1)、(4)运用性质1进行变形;对于不等式(2)运用性质3进行变形;对于不等式(3)运用性质2进行变形.解:(1)由不等式的基本性质1可知,不等式的两边都减去3x ,不等号的方向不变,所以4x ﹣3x>3x+6﹣3x ,即x>6;(2)由不等式的基本性质3可知,不等式的两边都除以﹣2,不等号的方向改变,所以-2x -2 >4-2 ,即x>﹣2;(3)由不等式的基本性质2可知,不等式的两边都除以5,不等号的方向不变,所以5x 5 >105 ,即x>2;(4)由不等式的基本性质1可知,不等式的两边都加上3,不等号的方向不变,所以x ﹣3+3<7+3,即x<10.点评:解决这类问题,要观察题中不等式与所要得到的不等式在形式上的差别,从而适当选用不等式的性质进行变形,在运用中一定要注意不等式的基本性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.二、判断正误例2 判断正误:(1)若m>n ,则mz>nz ;(2)若m>n ,则mz 2>nz 2;(3)若m+z>n+z ,则m>n ;(4)若mz 2>nz 2,则m>n.分析:解这类题的关键是对照不等式的基本性质,观察和分析从条件到结论到底运用了哪一个性质,运用不等式的基本性质的条件是否具备.解:(1)是在m>n 两边同乘以z ,而z 是什么数并没有确定,若z>0,由不等式的基本性质2知,mz>nz ;若z<0,由不等式的基本性质3知,mz<nz ;若z=0,mz=nz ,故(1)是错误的;(2)当z=0时,mz 2=nz 2,故(2)是错误的;(3)由不等式的基本性质1知,不等式的两边同减去z,不等号方向不变,知(3)正确;(4)是在mz2>nz2两边同除以z2,而z2>0,由不等式的基本性质2知(4)是正确的.点评:不等式两边同乘以一个字母或代数式时,要分三种情况讨论,即大于0或小于0或等于0三种情况.三、确定不等式成立的条件例3 根据不等式的基本性质,写出下列不等式成立时m应满足的条件:(1)由a>b,得到am<bm;(2)由a>b,得到am≥bm;(3)由a<b,得到am2<bm2.分析:本题是不等式的基本性质的逆用,即根据结论,补充已知,由于所给出的不等式中均为字母,更要注意字母的正负与不等号方向之间的关系.解:(1)由a>b得到am<bm,是在不等式两边同乘以m得来的,而不等号方向改变了,根据不等式的基本性质3知m<0.(2)由a>b得到am≥bm,是在不等式两边同乘以m得来的,而不等号方向没改变,根据不等式的基本性质2知m≥0.(3)由a<b得到am2<bm2,是在不等式两边同乘以m2得来的,而不等号方向没变,根据不等式的基本性质2知m2>0,但因任意一非零数的平方一定是正数,所以只需m≠0.点评:对于给出的不等式,逆用不等式的基本性质进行推理,判断一组新不等式是否成立,也是中考中常考题型之一.在解题过程中一定要注意“≥”“≤”号中不要忘记取“=”.四、比较大小例4 数a、b、c在数轴上对应点的位置如图所示,试比较bc,ab,ac,a+b 的大小.分析:由数轴上对应点的位置,可以确定a、b、c之间的大小关系及正负性,再根据不等式的基本性质逐一进行比较.解:由图知﹣2<c<﹣1<0<b<1<a.所以|b|<|c|.因为b>0,a>0,根据不等式的基本性质1,得a+b>a.因为0<b<1,a>1,所以ab<a.因为c<a,根据不等式的基本性质2,得bc<ab.因为a>b,c<0,根据不等式的基本性质3,得ac<bc.所以ac<bc<ab<a+b.点评:此题的难点是既要能从数轴上看出a、b、c的大小关系及正负性,还要考虑运用不等式的基本性质,另外本题还运用了不等式的另一重要性质——传递性,即若a>b,b>c,则a>c.。

不等式经典例题

不等式经典例题

不等式经典例题一、一元一次不等式例1:解不等式2x + 3>5x - 11. 移项- 将含有x的项移到一边,常数项移到另一边。

- 得到2x-5x > - 1 - 3。

2. 合并同类项- 计算得-3x>-4。

3. 求解x的范围- 两边同时除以-3,因为除以一个负数,不等式要变号。

- 所以x <(4)/(3)。

二、一元一次不等式组例2:解不等式组x + 3>2x - 1 2x - 1≥(1)/(2)x1. 解第一个不等式x + 3>2x - 1- 移项可得x-2x > - 1 - 3。

- 合并同类项得-x>-4。

- 两边同时除以-1,不等式变号,解得x < 4。

2. 解第二个不等式2x - 1≥(1)/(2)x- 移项得到2x-(1)/(2)x≥1。

- 合并同类项(3)/(2)x≥1。

- 两边同时乘以(2)/(3),解得x≥(2)/(3)。

3. 综合两个不等式的解- 所以不等式组的解集为(2)/(3)≤x < 4。

三、一元二次不等式例3:解不等式x^2-3x + 2>01. 因式分解- 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)>0。

2. 分析不等式的解- 要使(x - 1)(x - 2)>0成立,则有两种情况:- 情况一:x - 1>0 x - 2>0,即x>1 x>2,取交集得x>2。

- 情况二:x - 1<0 x - 2<0,即x<1 x<2,取交集得x<1。

- 所以不等式的解集为x < 1或x>2。

不等式性质的应用

不等式性质的应用
在信号处理和通信系统中,利用不等式进行信号的调制、解调以 及信道容量的分析。
集成电路设计
在集成电路设计中,利用不等式优化电路的性能参数,减小功耗 和提高电路的可靠性。
06
不等式在数学建模中的应用
线性规划
01
线性规划是应用不等式性质解决 实际问题的典型例子,通过建立 线性不等式约束和目标函数,可 以求解最优解。
不等式性质的应用
contents
目录
• 不等式的性质 • 不等式在数学中的应用 • 不等式在实际生活中的应用 • 不等式在科学实验中的应用 • 不等式在工程领域的应用 • 不等式在数学建模中的应用
01
不等式的性质
定义与性质
定义
不等式是数学中表示两个数或表达 式大小关系的式子,用“<”, “>”,“≤”或“≥”连接。
等。
多目标规划
多目标规划是不等式性质在解决多目标决策问题中的应用,它涉及到多个相互冲突 的目标和约束条件。
多目标规划问题通常需要权衡不同目标之间的利益关系,找到一个平衡点或一组满 意解。
多目标规划在环境保护、城市规划、交通管理等领域有广泛应用,例如环境影响评 价、土地利用规划、交通流量分配等。
THANK YOU
药物浓度与疗效关系
在药物研究中,药物的疗效与其浓度之间存在一定的关系,通过实 验可以验证这种关系,从而确定最佳的药物浓度。
生物种群数量变化
在生态学研究中,生物种群的数量变化与环境因素之间存在不等式 关系,通过实验可以验证这些关系。
物理实验
1 2 3
热力学实验
在热力学实验中,通过测量物质的热容、熵等物 理量,可以建立不等式关系,从而确定物质的热 力学性质。
电磁学实验

不等式的性质习题精选三

不等式的性质习题精选三

不等式的性质习题精选(三) 不等式的性质是代数学中的重要概念,对于解决实际问题和证明数学命题都非常有用。

在此,我们将介绍一些常见的不等式性质,并提供一些习题供你练习。

1.加法性质:如果 a > b,那么对于任意的 c,有 a + c > b + c。

这意味着在不等式两边同时加上相同的数,不等式的大小关系不变。

例如,如果 3 > 2,则对于任意的正数 c,都有 3 + c > 2 + c。

2.减法性质:如果 a > b,那么对于任意的 c,有 a - c > b - c。

这意味着在不等式两边同时减去相同的数,不等式的大小关系不变。

例如,如果 5 > 3,则对于任意的正数 c,都有 5 - c > 3 - c。

3.乘法性质:如果 a > b,且 c > 0,那么有 ac > bc。

这意味着在不等式两边同时乘以正数,不等式的大小关系不变。

例如,如果 4 > 2,则对于任意的正数 c,都有 4c > 2c。

4.除法性质:如果 a > b,且 c > 0,那么有 a/c > b/c。

这意味着在不等式两边同时除以正数,不等式的大小关系不变。

例如,如果 6 > 3,则对于任意的正数 c,都有 6/c > 3/c。

5.反号性质:如果 a > b,那么 -a < -b。

这意味着在不等式两边同时取反号,不等式的大小关系反转。

例如,如果 5 > 3,则 -5 < -3。

6.同侧性质:如果对于任意的 c,有 a > b,那么对于任意的 c > 0,有ac > bc;对于任意的 c < 0,有 ac < bc。

这意味着在不等式两边同时乘以同号的数,不等式的大小关系不变;在不等式两边同时乘以异号的数,不等式的大小关系反转。

例如,如果 2 > 1,则对于任意的正数 c,都有2c > c;对于任意的负数 c,都有 2c < c。

不等式基本性质 习题精选

不等式基本性质  习题精选

不等式基本性质习题精选1.按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:(1)m>n,两边都减去3;(2)m>n,两边同乘以3;(3)m>n,两边同乘以-3;(4)m>n,两边同乘以-3;(5)m>n,两边同乘以m.2.在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则 a ______12;(2)若-a<10,则a______ -10;3.已知a<0,用不等号填空:(1)a+2 ______ 2;(2)a-1 ______ -1;(3)3a______ 0;(4)a-1______0;(8)|a|______0.4.判断下列各题的推导是否正确?为什么?(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b;(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a.5.按照下列条件,写出仍能成立的不等式:(1)由-2<-1,两边都加-a;(2)由7>5,两边都乘以不为零的-a.6.用不等号填空:(1)当a-b<0时,a______ b;(2)当a<0,b<0时,ab ______0;(3)当a<0,b>0时,ab ______0;(4)当a>0,b<0时,ab ______ 0;(5)若a ______ 0,b<0,则ab>0;(6)若b<0,则a+b ______ a;(7)b <a <2,则(a-2)(b-2)______0;(2-a )(2-b )______ ;(2-a )(a-b )______.7.若0a b <<,则下列式子:①12a b +<+; ②1ab >;③a b ab +<; ④11a b <中,正确的有() A .1个 B .2个C .3个D .4个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题精选精讲不等式性质的应用不等式的性质是解不等式、证明不等式的基础和依据。

教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。

教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。

只有理解好,才能牢固记忆及正确运用。

1.不等式性质成立的条件运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。

对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。

例1:若0<<b a ,则下列不等关系中不能成立的是( ) A .b a11> B .ab a 11>- C .||||b a > D .22b a >解:∵0<<b a ,∴0>->-b a 。

由ba-<-11,ba11>,∴(A )成立。

由0<<b a ,||||b a >,∴(C )成立。

由0>->-b a ,22)()(b a ->-,22b a >,∴(D )成立。

∵0<<b a ,0<-b a ,0<-<b a a ,0>->-a b a , )(11b a a--<-,ba a->11,∴(B )不成立。

故应选B 。

例2:判断下列命题是否正确,并说明理由。

(1)若0<<b a ,则0<<b a ;(2)若0<<b a ,则0<<b a ;(3)0<<b a ,0<<b a ,则0<<b a ;(4)若0<<b a ,则0<<b a 。

分析:解决这类问题,主要是根据不等式的性质判定,其实质就是看是否满足性质所需要的条件。

解:(1)错误。

当0=c 时不成立。

(2)正确。

∵02≠c 且02>c ,在22cb ca >两边同乘以2c ,不等式方向不变。

∴b a >。

(3)错误。

ba b a 11<⇔>,成立条件是0>ab 。

(4)错误。

b a >,bd ac d c >⇔>,当a ,b ,c ,d 均为正数时成立。

2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232>-+x x 与0432>-+x x (2)138112++>++x x x 与82>x (3)357354-+>-+x x x 与74>x(4)023>-+xx 与0)2)(3(>-+x xA .(2)B .(3)C .(4)D .(2)(3)解:(1)04322322>-+⇒>-+x x x x 。

(2)482>⇒>x x ,44,1138112>⇒>-≠⇒++>++x x x x x x 。

(3)47357354>⇒-+>-+x x x x 且3≠x ,4774>⇒>x x 。

(4)不等式的解均为}23|{<<-x x ∴应选B 。

3.利用不等式性质证明不等式利用不等式的性质及其推论可以证明一些不等式。

解决此类问题一定要在理解的基础上,记准、记熟不等式的八条性质并注意在解题中灵活准确地加以应用。

例4:若0>>b a ,0<<d c ,0<e ,求证:db e ca e ->-。

分析:本题考查学生对不等式性质的掌握及灵活应用。

注意性质的使用条件。

解:∵0<<d c ,0>->-d c ,又0>>b a ∴0>->-d b c a ,故db ca -<-11。

而0<e ,∴db e ca e ->-4.利用不等式性质求范围利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径。

例5:若二次函数)(x f 图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围。

解:设c axx f +=2)((0≠a )。

⎩⎨⎧+=+=c a fc a f4)2()1(⎪⎪⎩⎪⎪⎨⎧-=-=⇒3)2()1(43)1()2(f f c f f a 3)1(5)2(83)2()1(4)1(3)2(39)3(f f f f f f c a f -=-+-=+=∵2)1(1≤≤f ,4)2(3≤≤f ,∴10)1(55≤≤f ,32)2(824≤≤f ,27)1(5)2(814≤-≤f f , ∴93)1(5)2(8314≤-≤f f ,即9)3(314≤≤f 。

5.利用不等式性质,探求不等式成立的条件不等式的性质是不等式的基础,包括五个性质定理及三个推论,不等式的性质是解不等式和证明不等式的主要依据,只有正确地理解每条性质的条件和结论,注意条件的变化才能正确地加以运用,利用不等式的性质,寻求命题成立的条件是不等式性质的灵活运用。

例6:已知三个不等式:①0>ab ;②bd a c >;③ad bc >。

以其中两个作条件,余下一个作结论,则可组成_____________个正确命题。

解:对命题②作等价变形:0>-⇔>abad bc b d a c于是,由0>ab ,ad bc >,可得②成立,即①③⇒②; 若0>ab ,0>-ab ad bc ,则ad bc >,故①②⇒③; 若ad bc >,0>-abad bc ,则0>ab ,故②③⇒①。

∴可组成3个正确命题。

例7:已知b a >,bb a a 11->-同时成立,则ab 应满足的条件是__________。

解:∵abab b a b b a a )1)(()1()1(+-=---,由b a >知0)1(>+abab ,从而0)1(>+ab ab ,∴0>ab 或1-<ab 。

不等式的证明不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 222≥+的变式应用。

常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。

1、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。

1 已知a,b,c 均为正数,求证:ac cb ba cba+++++≥++111212121证明:∵a,b 均为正数, ∴0)(4)(44)()(14141)(2≥+=+-+++=+-+-b a ab b a ab abb a a b a b ba bab a同理0)(414141)(2≥+=+-+-c b bc cb cbc b ,0)(414141)(2≥+=+-+-c a ac ac aca c三式相加,可得0111212121≥+-+-+-++ac cb b ac ba∴ac c b b a c b a +++++≥++111212121 2、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。

2 a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++cb a证:2222)(1)(3c b a c b a ++=≥++⇔∴2222)()(3c b a c b a ++-++)()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a3 设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++证:∵ 22442b a b a >+ 22442c b c b >+ 22442a c a c >+∴ 222222444a c c b b a c b a ++>++∵ c ab cb b ac b b a 22222222222=⋅>+同理:a bc a c c b 222222>+b ca b a ac 222222>+ ∴ )(222222c b a abc a c c b b a ++>++4 知a,b,c R ∈,求证:)a b c ++证明:∵222222222()2()ab ab a b a b a b a b +≥∴+≥++≥+即2()222a b a b ++≥()2ba b ≥++≥同理可得)2b c +)(2222a c ac+≥+三式相加,得)a b c ++ 5),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。

证:)1)(1()11)(11(yy x xy x y x ++++=++)(25)2)(2(y x x y yx x y ++=++=9225=⋅+≥6已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 策略:由于的背后隐含说明1,,4121,,2=+∈≤⇒⎪⎩⎪⎨⎧⎪⎭⎫⎝⎛+≤=+∈++b a R b a ab b a ab b a R b a .41 ≤ab 着一个不等式证明:411,,≤∴=+∈+ab b a R b a 。

.91111.981211111111111 ≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∴=+≥+=+++=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+b a ab ab ab b a ab b a b a 而3、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7已知a 、b 、c 为正数,求证:)3(3)2(23abc cb a ab b a -++≤-+证:要证:)3(3)2(23abc cb a ab b a -++≤-+只需证:332abc c ab -≤-即:332abc ab c ≥+∵ 3333abc ab abc ab ab c =≥++成立∴ 原不等式成立 8),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。

相关文档
最新文档