函数的单调性奇偶性训练题20130117
函数的单调性、奇偶性练习
函数的单调性,奇偶性,最值 练习一、三维目标:1、理解函数单调性,奇偶性,最值的概念。
2、渗透数形结合的数学思想,培养学生发现问题、分析问题、解决问题的能二、重点、函数单调性,奇偶性,最值的概念。
难点、函数单调性,奇偶性,最值的应用。
三、知识链接:1.增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1) f (x 2),那么就说f (x )在区间D 上是 .2.减函数:设函数y =f (x )的定义域为I ,如果对于属于I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时都有f(x 1) f(x 2).那么就是f(x)在这个区间上是 .3.单调区间:如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f (x )的________________.4.最大值定义:设函数y =f (x )的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f (x )≤M ;存在x 0∈I ,使得f (x 0) = M . 那么,称M 是函数y =f (x )的_________(Max)5.最小值的定义:设函数y =f (x )的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f (x ) M ;存在x 0∈I ,使得f (x 0) = M . 那么,称M 是函数y =f (x )的最小值(Min)6.偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有 ,那么函数()f x 叫偶函数7.奇函数:一般地,对于函数()f x 定义域内的任意一个x ,都有 ,那么函数()f x 叫奇函数.8.奇函数、偶函数的定义域关于 对称,奇函数图象关于 对称,偶函数图象关于 对称.9.若奇函数的定义域包含数0,则f (0)= . 四、课例分析探究(独立、合作、点评),例1 画出下列函数的图象,指出它们的单调区间(1)()32f x x =-+; (2)2()2f x x x =-- (2)1()f x x=五、合作探究(小组讨论、合作学习)1.一次函数)0(≠+=k b kx y 的单调性 (1)0>k ________,0<k ___________.(2)若函数n x m x f +-=)12()(在),(+∞-∞上是减函数,则m 的取值范围是______.(3)函数f(x)=-2x+1在[-1,2]上的最大值和最小值分别是 ( ) (A )3,0 (B )3,-3 (C )2,-3 (D )2,-22.二次函数)0(2≠++=a c bx ax y 的单调性(1)0>a 时,在_______________单调递增,在_____________单调递减; 0<a 时,在_______________单调递增,在_____________单调递减;(2)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,在(,2]-∞-上是减函数,则实数m 的值为 ;(3)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,则实数m 的取值范围为 ;(4)若函数2()45f x x mx m =-+-的单调递增区间为[2,)-+∞,则实数m 的值为 . 3.反比例函数()0≠=k xky ,当k>0时,它有____区间为_______________________________.当k<0时,它有____区间为_________________________________. 4.xy 1=在区间(]1,2--上有最 值为 5.函数2(1)2,[0,1]y x x =++∈的最小值为 ,最大值为 .6.已知函数1)(2-+=mx x x f ,且f(-1)= -3,求函数f(x)在区间[2,3]内的最值。
函数的单调性及奇偶性(含答案)
函数的单调性及奇偶性一、单选题(共10道,每道10分)1.已知函数是上的增函数,若,则下列不一定正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数单调性的定义2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数单调性的定义3.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数单调性的定义4.函数的单调递减区间是( )A. B.C. D.无减区间答案:A解题思路:试题难度:三颗星知识点:含绝对值函数的单调性5.函数的单调递减区间是( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递增区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含绝对值函数的单调性7.若是奇函数,则实数a的值为( )A.1B.-1C.0D.±1答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质8.若是定义在上的偶函数,则a的值为( )A.±1B.1C.-1D.-3答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( )A.[-1,2]B.C.(0,1)D.答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合10.已知是定义在上的奇函数,且在上单调递增,若,则不等式的解集为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:奇偶函数图象的对称性。
(完整版)函数的单调性与奇偶性练习题基础
1 函数单调性(一) (一)选择题 1.函数xx f 3)(=在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1B .x y 2=C .y =x 2-4x +5D .y =|x -1|+23.设函数y =(2a -1)x 在R 上是减函数,则有 A .21≥a B .21≤a C .21>a D .21<a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( )A .必是增函数B .不一定是增函数C .必是减函数D .是增函数或减函数 (二)填空题5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______.6.若函数xax f =)(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)43(f 的大小关系是______。
*9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______.(三)解答题10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断:甲说f (x )在定义域上是增函数;乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。
11.已知函数.21)(-=xx f (1)求f (x )的定义域;(2)证明函数f (x )在(0,+∞)上为减函数.12.已知函数||1)(x x f =. (1)用分段函数的形式写出f (x )的解析式;(2)画出函数f (x )的图象,并根据图象写出函数f (x )的单调区间及单调性.2 函数单调性(二)(一)选择题1.一次函数f (x )的图象过点A (0,3)和B (4,1),则f (x )的单调性为( ) A .增函数 B .减函数 C .先减后增 D .先增后减 2.已知函数y =f (x )在R 上是增函数,且f (2m +1)>f (3m -4),则m 的取值范围是( ) A .(-∞,5)B .(5,+∞)C .),53(+∞D .)53,(-∞3.函数f (x )在区间(-2,3)上是增函数,则下列一定是y =f (x )+5的递增区间的是( ) A .(3,8) B .(-2,3) C .(-3,-2) D .(0,5) 4.已知函数f (x )在其定义域D 上是单调函数,其值域为M ,则下列说法中 ①若x 0∈D ,则有唯一的f (x 0)∈M ②若f (x 0)∈M ,则有唯一的x 0∈D③对任意实数a ,至少存在一个x 0∈D ,使得f (x 0)=a ④对任意实数a ,至多存在一个x 0∈D ,使得f (x 0)=a 错误的个数是( ) A .1个 B .2个 C .3个 D .4个 (二)填空题5.已知函数f (x )=3x +b 在区间[-1,2]上的函数值恒为正,则b 的取值范围是_____. 6.函数])2,1[(12∈-=x xx y 的值域是______. *7.已知函数f (x )的定义域为R ,且对任意两个不相等的实数x ,y ,都有)()(<--yx y f x f 成立,则f (x )在R 上的单调性为________(填增函数或减函数或非单调函数).8.若函数y =ax 和x by -=在区间(0,+∞)上都是减函数,则函数1+=x ab y 在(-∞,+∞)上的单调性是______(填增函数或减函数或非单调函数).9.若函数⎩⎨⎧<-≥+=)1(1)1(1)(2x ax x x x f 在R 上是单调递增函数,则a 的取值范围是______.(三)解答题10.某同学在求函数]4,1[,)(∈+=x x x x f 的值域时,计算出f (1)=2,f (4)=6,就直接得值域为[2,6].他的答案对吗,他这么做的理由是什么?11.用max {a ,b }表示实数a ,b 中较大的一个,对于函数f (x )=2x ,xx g 1)(=,记F (x )=max {f (x ),g (x )},试画出函数F (x )的图象,并根据图象写出函数F (x )的单调区间.*12.已知函数f (x )在其定义域内是单调函数,证明:方程f (x )=0至多有一个实数根.3 函数的奇偶性 (一)选择题1.下列函数中:①y =x 2(x ∈[-1,1]) ; ②y =|x |; ;1)(xx x f +=③ ④y =x 3(x ∈R ) 奇函数的个数是( ) A .1个 B .2个 C .3个 D .4个 2.对于定义域为R 的任意奇函数f (x )一定有( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )<0 D .f (x )·f (-x )≤03.函数⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x fA .是奇函数不是偶函数B .是偶函数不是奇函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 4.下面四个结论中,正确命题的个数是( ) ①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ) A .1 B .2 C .3 D .4 (二)填空题5.下列命题中, ①函数xy 1=是奇函数,且在其定义域内为减函数; ②函数y =3x (x -1)0是奇函数,且在其定义域内为增函数; ③函数y =x 2是偶函数,且在(-3,0)上为减函数;④函数y =ax 2+c (ac ≠0)是偶函数,且在(0,2)上为增函数; 真命题是______.6.若f (x )是偶函数,则=--+)211()21(f f ______.7.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )=______.8.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)=_______. 9.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,则f (-2)与f (a 2-2a +3)(a∈R )的大小关系是______.(三)解答题10.判断下列函数的奇偶性:(1)2413)(xx x f += (2)xxx x f -+-=11)1()( (3)x x x f -+-=11)( (4)2211)(x x x f -+-=11.函数f (x ),g (x )都不是常值函数,并且定义域都是R .①证明:如果f (x ),g (x )同是奇函数或同是偶函数,那么f (x )·g (x )是偶函数;②“如果f (x )·g (x )是偶函数,那么f (x ),g (x )同是奇函数或同是偶函数”的说法是否成立,为什么?*12.已知定义在[-2,2]上的奇函数f (x )是增函数,求使f (2a -1)+f (1-a )>0成立的实数a 的取值范围.答案 1 函数单调性(一)1.C 2.D 3.D 4.B 5.-8 6.a <0 7.[2,+∞),(-∞,2]8.f (a 2-a +1))43(f ≤ 9.a ∈(-∞,0]10.甲错,乙和丙都对11.(1)解:f (x )的定义域是{x ∈R |x ≠0}; (2)证明:设x 1,x 2是(0,+∞)上的两个任意实数,且x 1<x 2, 则∆x =x 1-x 2<0,∆211221112111)21(21)()(x x x x x x x x x f x f y -=-=---=-=. 因为x 2-x 1=-∆x >0,x 1x 2>0,所以∆y >0. 因此21)(-=xx f 是(0,+∞)上的减函数. 12.解:(1)⎪⎪⎩⎪⎪⎨⎧<->=)0(1)0(1)(x xx xx f(2)图象如图所示,在区间(-∞,0)上是增函数,在区间(0,+∞)上是减函数。
函数的单调性、奇偶性测试题(附答案)
函数的单调性、奇偶性测试一、选择题1.设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则()7.5f 等于 ( ) A .0.5B .0.5-C .1.5D . 1.5-2.设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ (a R ∈)的大小关系是 ( ) A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f aa -+D .与a 的取值无关 3.若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有( ) A .()f x 0> B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0>4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是 ( ) A .a ≤3-B .a ≥-3C .a ≤5D .a ≥35.已知函数()()0f x x a x a a =+--≠,()(1g x x =-,()()()2200x xx h x x x x ⎧-+>⎪=⎨+≤⎪⎩,则 ()()(),,f x g x h x 的奇偶性依次为 ( ) A .奇函数,偶函数,奇函数 B .奇函数,奇函数,偶函数C .奇函数,奇函数,奇函数D .奇函数,非奇非偶函数,奇函数6.已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+ 成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ( ) A .10b -<< B .2b >C .12b b <->或D .不能确定7.已知函数()()2223f x x x =+-,那么 ( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数8.函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的 是 ( )A .()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭ B .()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭9.设函数()f x 是R 上的奇函数,且当0x >时,()23xf x =-,则()2f -等于( ) 1-1111-10.函数()y f x =与()y g x =的定义域相同,且对定义域中任何x 有()()0f x f x -+=,()()1g x g x -=,若()1g x =的解集是{}0,则函数()()()()21f x F x f xg x =+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数二、填空题:请把答案填在题中横线上。
函数的单调性+奇偶性(含答案)
函数的单调性+奇偶性(含解析)一、单选题1.函数1()lg(21)f x x =-的定义域为( ) A .1|2x x ⎧⎫>⎨⎬⎩⎭ B .12x x ⎧≥⎨⎩且}1x ≠ C .12x x ⎧⎨⎩且}1x ≠ D .1|2x x ⎧⎫≥⎨⎬⎩⎭2.函数()f x = ) A .1,3⎛⎫-+∞ ⎪⎝⎭ B .1,13⎛⎫- ⎪⎝⎭ C .1,13⎡⎫-⎪⎢⎣⎭ D .1,3⎛⎫-∞- ⎪⎝⎭3.已知函数,若方程有两个实数根,则实数k 的取值范围是( ) A .(−1,−12] B .[−12,0) C .[−1,+∞) D .[−12,+∞) 4.设函数()1,02,0x x x f x b x +≥⎧=⎨+<⎩是R 上的单调增函数,则实数b 的取值范围为( ) A .(),1-∞ B .[)0,+∞ C .(],0-∞ D .(]1,1- 5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A .12x y ⎛⎫= ⎪⎝⎭B .23y x -=C .1y x x =-D .()2ln 1y x =+ 6.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f =( ) A .-2B .2C .5D .267.集合{|,P x y =={|,Q y y ==U =R ,则()U P Q ⋂是( ) A .[)1,+∞B .∅C .[)0,1D .[)1,1- 8.函数x x x f 431)(3-=的单调递减区间是( )A .)2,(--∞B .)2,2(-C .),2(∞+D .),2()2,(+∞⋃--∞9.已知集合214A x x ⎧⎫=⎨⎬⎩⎭∣,集合{B y y ==∣,则A B =( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[1,1]- C .[0,1] D .1[0,]210.若函数()f x 满足()2f x x =+,则()32f x +的解析式是( )A .()3298f x x +=+B .()3232f x x +=+C .()3234f x x +=--D .()3234f x x +=+11.函数f (x )是定义域为R 的奇函数,当x>0时,f (x )=x+1,则当x<0时,f (x )的 表达式为( )A .1)(+-=x x fB .1)(--=x x fC .1)(+=x x fD .1)(-=x x f12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5二、多选题13.已知函数()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =-C .()34f x x =-+D .()34f x x =-- 14.已知函数2,[1,2)x y x ∈-=,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为(0,2)15.下列函数中,与y x =是同一个函数的是( ) A .3log 3x y = B.3log 3x y = C.y = D .2y = 16.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合-{}1,1,2,4M =-,{}1,2,4,16N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .2y x =B .2y x =+C .2x y =D .2y x三、填空题17.函数()f x =_______.18.偶函数()f x 满足当0x >时,()34f x x =+,则()1f -=_____.19.已知定义在R 上的偶函数()f x 在(0,)+∞上单调递增,则()f x 在(,0)-∞上的单调性是________.20.设,0()ln ,0x e x g x x x ⎧≤=⎨>⎩则1()2g g ⎡⎤=⎢⎥⎣⎦____________.四、解答题21.已知()222f x x x =-+.(1)画出()f x 的图象.(2)根据图象写出()f x 的单调区间和值域.22.用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数. 23.求解下列函数的定义域(1)(2) 24.求函数1,01(),12x f x x x x ⎧<<⎪=⎨⎪⎩的最值25.已知函数1(),f x a x=-其中0a >。
函数的单调性与奇偶性-练习题-基础
函数的单调性与奇偶性-练习题-基础1 函数单调性(一)(一)选择题 1.函数xx f 3)(=在下列区间上不是..减函数的是( )A .(0,+∞)B .(-∞,0)C .(-∞,0)∪(0,+∞) D .(1,+∞)2.下列函数中,在区间(1,+∞)上为增函数的是( )A .y =-3x +1B .xy 2=C .y =x 2-4x +5 D .y =|x -1|+23.设函数y =(2a -1)x 在R 上是减函数,则有A .21≥aB .21≤a C .21>a D .21<a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( )A .必是增函数B .不一定是增函数C .必是减函数D .是增函数或减函数(二)填空题5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______.6.若函数xa x f )(在(1,+∞)上为增函数,则实数a 的取值范围是______.7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______.8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)43(f 的大小关系是______。
*9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______.(三)解答题10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断:甲说f (x )在定义域上是增函数;乙说f (x )在定义域上不是增函数,但有增区间,丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c )请你判断他们的说法是否正确,并说明理由。
11.已知函数.21)(-=x x f (1)求f (x )的定义域;(2)证明函数f (x )在(0,+∞)上为减函数.12.已知函数||1)(x x f =. (1)用分段函数的形式写出f (x )的解析式; (2)画出函数f (x )的图象,并根据图象写出函数f (x )的单调区间及单调性.2 函数单调性(二) (一)选择题1.一次函数f (x )的图象过点A (0,3)和B (4,1),则f (x )的单调性为( )A .增函数B .减函数C .先减后增D .先增后减2.已知函数y =f (x )在R 上是增函数,且f (2m +1)>f (3m -4),则m 的取值范围是( )A .(-∞,5)B .(5,+∞)C .),53(+∞D .)53,(-∞3.函数f (x )在区间(-2,3)上是增函数,则下列一定是y =f (x )+5的递增区间的是( )A .(3,8)B .(-2,3)C .(-3,-2)D .(0,5)4.已知函数f (x )在其定义域D 上是单调函数,其值域为M ,则下列说法中①若x 0∈D ,则有唯一的f (x 0)∈M ②若f (x 0)∈M ,则有唯一的x 0∈D ③对任意实数a ,至少存在一个x 0∈D ,使得f (x 0)=a④对任意实数a ,至多存在一个x 0∈D ,使得f (x 0)=a错误的个数是( )A .1个B .2个C .3个D .4个 (二)填空题5.已知函数f (x )=3x +b 在区间[-1,2]上的函数值恒为正,则b 的取值范围是_____.6.函数])2,1[(12∈-=x x x y 的值域是______. *7.已知函数f (x )的定义域为R ,且对任意两个不相等的实数x ,y ,都有0)()(<--yx y f x f 成立,则f (x )在R 上的单调性为________(填增函数或减函数或非单调函数).8.若函数y =ax 和xb y -=在区间(0,+∞)上都是减函数,则函数1+=x a b y 在(-∞,+∞)上的单调性是______(填增函数或减函数或非单调函数).9.若函数⎩⎨⎧<-≥+=)1(1)1(1)(2x ax x x x f 在R 上是单调递增函数,则a 的取值范围是______.(三)解答题10.某同学在求函数]4,1[,)(∈+=x x x x f 的值域时,计算出f (1)=2,f (4)=6,就直接得值域为[2,6].他的答案对吗,他这么做的理由是什么?11.用max {a ,b }表示实数a ,b 中较大的一个,对于函数f (x )=2x ,x x g 1)(=,记F (x )=max {f (x ),g (x )},试画出函数F (x )的图象,并根据图象写出函数F (x )的单调区间.*12.已知函数f (x )在其定义域内是单调函数,证明:方程f (x )=0至多有一个实数根.3 函数的奇偶性 (一)选择题 1.下列函数中:①y =x 2(x ∈[-1,1]) ; ②y =|x |;;1)(xx x f +=③ ④y =x 3(x ∈R)奇函数的个数是( )A .1个B .2个C .3个D .4个 2.对于定义域为R 的任意奇函数f (x )一定有( )A .f (x )-f (-x )>0B .f (x )-f (-x )≤0C .f (x )·f (-x )<0D .f (x )·f (-x )≤03.函数⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x fA .是奇函数不是偶函数B .是偶函数不是奇函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数4.下面四个结论中,正确命题的个数是( )①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R)A .1B .2C .3D .4(二)填空题 5.下列命题中,①函数xy 1=是奇函数,且在其定义域内为减函数;②函数y =3x (x -1)0是奇函数,且在其定义域内为增函数;③函数y =x 2是偶函数,且在(-3,0)上为减函数;④函数y =ax 2+c (ac ≠0)是偶函数,且在(0,2)上为增函数;真命题是______. 6.若f (x )是偶函数,则=--+)211()21(f f ______.7.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )=______.8.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)=_______.9.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,则f (-2)与f (a 2-2a +3)(a ∈R)的大小关系是______.(三)解答题10.判断下列函数的奇偶性: (1)2413)(x x x f +=(2)xx x x f -+-=11)1()((3)xx x f -+-=11)( (4)2211)(x x x f -+-=11.函数f (x ),g (x )都不是常值函数,并且定义域都是R .①证明:如果f (x ),g (x )同是奇函数或同是偶函数,那么f (x )·g (x )是偶函数;②“如果f (x )·g (x )是偶函数,那么f (x ),g (x )同是奇函数或同是偶函数”的说法是否成立,为什么?*12.已知定义在[-2,2]上的奇函数f (x )是增函数,求使f (2a -1)+f (1-a )>0成立的实数a 的取值范围.答案 1 函数单调性(一)1.C 2.D 3.D 4.B 5.-8 6.a<0 7.[2,+∞),(-∞,2]8.f (a 2-a +1))43(f ≤ 9.a ∈(-∞,0] 10.甲错,乙和丙都对11.(1)解:f (x )的定义域是{x ∈R |x ≠0};(2)证明:设x 1,x 2是(0,+∞)上的两个任意实数,且x 1<x 2,则∆x =x 1-x 2<0,∆211221112111)21(21)()(x x x x x x x x x f x f y -=-=---=-=.因为x 2-x 1=-∆x >0,x 1x 2>0,所以∆y >0. 因此21)(-=xx f 是(0,+∞)上的减函数. 12.解:(1)⎪⎪⎩⎪⎪⎨⎧<->=)0(1)0(1)(x x x x x f(2)图象如图所示,在区间(-∞,0)上是增函数,在区间(0,+∞)上是减函数。
函数的奇偶性和单调性综合训练
偶函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=f(x)$,则 称$f(x)$为偶函数。
奇函数和偶函数的性质
奇函数的图像关于原点对称,即当$x$取任意值时,其对应的$y$ 值都是关于原点对称的。
偶函数的图像关于y轴对称,即当$x$取任意值时,其对应的$y$ 值都是关于y轴对称的。
利用奇偶性和单调性解题
利用奇偶性求函数值
对于奇函数,有$f(-x) = -f(x)$;对于偶函数, 有$f(-x) = f(x)$。
利用单调性比较函数值大小
在单调递增区间内,如果$x_1 < x_2$,则$f(x_1) < f(x_2)$;在单调递减区间内,如果$x_1 < x_2$,则 $f(x_1) > f(x_2)$。
奇偶性的判断方法
定义法
根据奇偶函数的定义来判断。
图像法
通过观察函数的图像来判断。
代数法
通过代入特殊值来判断。
单调性的定义
单调递增
如果对于函数$f(x)$的定义域内的任意两个数$x_1$和$x_2$($x_1<x_2$),都有$f(x_1)<f(x_2)$,则 称函数$f(x)$在定义域内单调递增。
函数的奇偶性和单调性综合训 练
目
CONTENCT
录
• 函数的奇偶性 • 函数的单调性 • 奇偶性与单调性的关系 • 综合训练题 • 总结与回顾
01
函数的奇偶性
奇函数和偶函数的定义
奇函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=-f(x)$, 则称$f(x)$为奇函数。
100%
导数法
通过求函数的导数并判断导数的正 负来判断。如果导数大于0,则为 增函数;如果导数小于0,则为减 函数。
(完整版)函数单调性、奇偶性检测(含答案解析)
函数单调性、奇偶性练习一、选择题1.若函数f (x )=x (x ∈R ),则函数y =-f (x )在其定义域内是( ) A .单调递增的偶函数 B .单调递增的奇函数 C .单调递减的偶函数D .单调递减的奇函数2.下列函数中是奇函数且在(0,1)上递增的函数是( ) A .f (x )=x +1x B .f (x )=x 2-1xC .f (x )=1-x 2D .f (x )=x 33.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )上的表达式为( )A .y =x (x -2)B .y =x (|x |+2)C .y =|x |(x -2)D .y =x (|x |-2)4.(2012·泉州高一检测)f (x )是定义在[-6,6]上的偶函数,且f (3)>f (1),则下列各式一定成立的是( )A .f (0)<f (6)B .f (3)>f (2)C .f (-1)<f (3)D .f (2)>f (0)5.已知奇函数f (x )在区间[0,+∞)上是单调递增的,则满足f (2x -1)<f (13)的x 的取值范围是( )A .(-∞,23)B .[13,23)C .(12,23)D .[23,+∞)6.已知函数f (x )和g (x )均为奇函数,h (x )=af (x )+bg (x )+2在区间(0,+∞)上有最大值5,那么h (x )在(-∞,0)上的最小值为( )A .-5B .-1C .-3D .57.(曲师大附中2011~2012高一上期末)若函数f(x)是定义在R 上的偶函数,在(-∞,0]上是减函数,且f(3)=0,则使得f(x)<0的x的取值范围是()A.(-∞,3)∪(3,+∞)B.(-∞,3)C.(3,+∞)D.(-3,3)8.(胶州三中2011~2012高一模块测试)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f(x)-f(-x)x<0的解集为()A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)第8题第9题二、填空题9.函数y=f(x)的图象如图所示,则函数f(x)的单调递增区间是________.10.(2012·大连高一检测)函数f(x)=2x2-mx+3在[-2,+∞)上是增函数,在(-∞,-2]上是减函数,则m=________.11.(上海大学附中2011~2012高一期末考试)设函数f(x)=(x+1)(x+a)x为奇函数,则a=________.12.偶函数f (x )在(0,+∞)上为增函数,若x 1<0,x 2>0,且|x 1|>|x 2|,则f (x 1)与f (x 2)的大小关系是______.三、解答题13.设函数f (x )=ax 2+1bx +c 是奇函数(a 、b 、c ∈Z ),且f (1)=2,f (2)<3,求a 、b 、c 的值.14.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ). (1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围. [分析] (1)题需分情况讨论.(2)题用定义证明即可.详解答案 1[答案] D 2[答案] D[解析] ∵对于A ,f (-x )=(-x )+1(-x )=-(x +1x )=-f (x );对于D ,f (-x )=(-x )3=-x 3=-f (x ),∴A 、D 选项都是奇函数.易知f (x )=x 3在(0,1)上递增. 3[答案] D[解析] 当x <0时,-x >0, ∴f (-x )=x 2+2x .又f (x )是奇函数, ∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.∴f (x )=x (|x |-2).故选D. 4[答案] C 5[答案] A[解析] 由图象得2x -1<13,∴x <23,选A.6[答案] B[解析] 解法一:令F (x )=h (x )-2=af (x )+bg (x ), 则F (x )为奇函数.∵x ∈(0,+∞)时,h (x )≤5, ∴x ∈(0,+∞)时,F (x )=h (x )-2≤3. 又x ∈(-∞,0)时,-x ∈(0,+∞),∴F (-x )≤3⇔-F (x )≤3 ⇔F (x )≥-3.∴h (x )≥-3+2=-1,选B. 7[答案] D[解析] ∵f (x )为偶函数,f (3)=0,∴f (-3)=0,又f (x )在(-∞,0]上是减函数,故-3<x ≤0时,f (x )<0.x <-3时,f (x )>0,故0<x <3时,f (x )<0,x >3时,f (x )>0,故使f (x )<0成立的x ∈(-3,3).[点评] 此类问题画示意图解答尤其简便,自己试画图解决. 8[答案] D[解析] 奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,f (x )-f (-x )x =2f (x )x <0.由函数的图象得解集为(-1,0)∪(0,1). 9[答案] (-∞,1)、(1,+∞) 10[答案] -8 11[答案] -1[解析] f (x )=1x (x +1)(x +a )为奇函数⇔g (x )=(x +1)(x +a )为偶函数, 故g (-1)=g (1),∴a =-1. 12[答案] f (x 1)>f (x 2) [解析] ∵x 1<0,∴-x 1>0, 又|x 1|>|x 2|,x 2>0,∴-x 1>x 2>0,∵f (x )在(0,+∞)上为增函数,∴f (-x 1)>f (x 2), 又∵f (x )为偶函数,∴f (x 1)>f (x 2).此类问题利用奇偶函数的对称特征画出示意图一目了然. 13[解析] 由条件知f (-x )+f (x )=0, ∴ax 2+1bx +c +ax 2+1c -bx=0, ∴c =0又f (1)=2,∴a +1=2b ,∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得:-1<a <2,∴a =0或1,∴b =12或1,由于b ∈Z ,∴a =1、b =1、c =0.14[解析] (1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞),f (-x )=(-x )2=x 2=f (x ). ∴f (x )为偶函数.当a ≠0时,f (x )=x 2+ax(a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0, 即f (-1)≠-f (1),f (-1)≠f (1),∴函数f (x )既不是奇函数,也不是偶函数. (2)设2≤x 1<x 2,则有f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=x 1-x 2x 1x 2·[x 1x 2(x 1+x 2)-a ],要使函数f (x )在[2,+∞)上为增函数,则需f (x 1)-f (x 2)<0恒成立.∵x 1-x 2<0,x 1x 2>4,∴只需使a <x 1x 2(x 1+x 2)恒成立. 又∵x 1+x 2>4, ∴x 1x 2(x 1+x 2)>16,故a 的取值范围是(-∞,16].。
高中数学函数的单调性与函数的奇偶性测试题及答案-word文档资料
高中数学函数的单调性与函数的奇偶性测试题及答案高二数学函数的单调性与函数的奇偶性苏教版【本讲教育信息】一. 教学内容:函数的单调性与函数的奇偶性二. 教学目标:(1)理解函数单调性的定义,会用函数单调性解决一些问题。
(2)掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题。
三. 教学重点:函数单调性的判断和函数单调性的应用。
函数奇偶性的定义及应用。
四. 教学难点:函数单调性与奇偶性的运用。
五. 知识归纳:(一)概念1. 函数单调性的定义:对于函数的定义域内某个区间上的任意两个自变量的值,⑴若当时,都有,则说在这个区间上是增函数;⑵若当时,都有,则说在这个区间上是减函数.2. 函数奇偶性的定义:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x) ,那么函数f(x)就叫做奇函数。
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
3. 奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;4. 为偶函数 .5. 若奇函数的定义域包含,则 .(二)主要方法:1. 讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2. 判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数.3. 注意函数单调性的应用;4. 判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;5. 牢记奇偶函数的图象特征,有助于判断函数的奇偶性;6. 判断函数的奇偶性有时可以用定义的等价形式:,。
7. 设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶偶+偶=偶,偶偶=偶,奇偶=奇. 【典型例题】例1. 判断下列各函数的奇偶性:(1);(2);(3) .解:(1)由,得定义域为,关于原点不对称为非奇非偶函数。
(完整版)函数的性质练习(奇偶性、单调性、周期性、对称性)(附答案)
函数的性质练习(奇偶性,单调性,周期性,对称性)1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(=x f 在区间[6,6-]上的根的个数可能是A.0B.1C.3D.52、f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是( )A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(-x f ,那么=)3120(fA.0B.2C. 2-D.2± 4、已知112)(-+=x x x f ,那么=+++++-+-+-)8()6()4()2()0()2()4()6(f f f f f f f f A.14 B.15 C. 16- D.165、已知)(x f 的定义域为R ,若)1()1(+-x f x f 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(+x fD.)3(+x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(--=+x f x f ,则下列结论一定成立的是A.)(x f 的周期为4B. )(x f 的周期为6C. )(x f 的图像关于直线1=x 对称D. )(x f 的图像关于点(1 , 0) 对称 7、定义在R 上的函数)(x f 满足:)()(x f x f -=-,)1()1(x f x f -=+,当∈x [1-, 1] 时,3)(x x f =,则=)2013(fA.1-B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f -=+,并且)1(+x f 为 偶函数. 若3)1(=f ,那么=)101(fA.1B.2C.3D.49、已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于( )A.12 B .1 C.32 D .2 10、若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32 等于( )A .0B .1 C.12 D .-1211、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12、设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则 ()7.5f 等于 ( )A .0.5B .0.5-C .1.5D . 1.5-13、设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ (a R ∈)的大小关系是 ( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f aa -+D .与a 的取值无关14、若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有 ( )A .()f x 0>B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0> 15、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a ≤5D .a ≥317、已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+ 成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ( ) A .10b -<< B .2b >C .12b b <->或 D .不能确定 18、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数19、函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的 是 ( ) A .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭20、设函数()f x 是R 上的奇函数,且当0x >时,()23xf x =-,则()2f -等于( )A .1-B .114C .1D .114-21、设函数)(x f 是R 上的偶函数,且在()+∞,0上是减函数,且12210x x x x >>+,,则 A.)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.不能确定23、已知函数=)(x f ⎩⎨⎧<-≥-0,10,sin x e x x x x ,若)()2(2a f a f >-,则实数a 取值范围是A. (1,-∞-)),2(+∞YB. (1,2-)C. (2,1-)D. (2,-∞-)+∞,1(Y )A .0B .1C .2D .3二、填空题:24、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为25、已知()f x 为偶函数,()g x 是奇函数,且()f x ()22g x x x -=+-,则()f x 、()g x 分别为 ; 26、定义在()1,1-上的奇函数()21x mf x x nx +=++,则常数m = ,n = ;28、.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+.(1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.29、若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.30.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
函数单调性及奇偶性练习(含答案)(精品文档)_共4页
1、已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =031=a 2、已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y=x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2)3、函数是( )1111)(22+++-++=x x x x x f A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数4、若,g (x )都是奇函数,在(0,+∞)上有最大值5,)(x ϕ2)()(++=x bg a x f ϕ则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-35、已知是偶函数,,当时,为增函数,若,且()f x x R ∈0x >()f x 120,0x x <>,12||||x x <则 ( ). .A 12()()f x f x ->-B 12()()f x f x -<- . . C 12()()f x f x ->-D 12()()f x f x -<-6、定义在(-1,1)上的函数f(x)是奇函数,并且在(-1,1)上f(x)是减函数,求满足条件f(1-a)+f(1-a2)<0的a取值范围. ( ) A.(0,1) B.(-2,1) C.[0,1] D.[-2,1]7、已知函数f(x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,如果不等式f(1-m)<f(m)成立,求实数m的取值范围.( )A. B.[1,2] C.[-1,0] D.()1[1,2-11,2-8、已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是( ) A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞9、已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________10、已知偶函数y =f(x)在区间[0,4]上是单调增函数,则f(-3)与f(π)的大小关系是__________11、若定义在R 上的函数f(x)满足:对任意x 1、x 2∈R 有f(x 1+x 2)=f(x 1)+f(x 2)+1,则下列说法一定正确的序号是__________.①f(x)为奇函数 ;②f(x)为偶函数 ;③f(x)+1为奇函数 ;④f(x)+1为偶函数12、若是奇函数,则___(1)()()x x a f x x++=a =13、已知f(x)是奇函数,定义域为{x|x R 且x 0},又f(x)在(0,+)上是增函数,且∈≠∞f(-1)=0,则满足f(x)>0的x 取值范围是.________14、已知是偶函数,当时,;若当时,)(x f y =0>x 2)1()(-=x x f ⎥⎦⎤⎢⎣⎡--∈21,2x 恒成立,则的最小值为m x f n ≤≤)(n m -15、 设函数y =f (x )(x R 且x ≠0)对任意非零实数x 1、x 2满足∈f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.16、设函数f(x)=是定义在(-1,1)上的奇函数,且f()=,(1)确定函数f(x)21x b ax ++2152的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f ( t -1)+ f (t) < 0。
函数的单调性奇偶性与周期性练习一-6页word资料
例1.已知函数f (x)=的图像关于原点对称,其中m,n 为实常数。
(1) 求m , n 的值;(2)(2)试用单调性的定义证明:()f x 在区间[2,2]-上是单调函数.例2.设 f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足,22(25)(21)f a a f a a -+-<++求实数a 的取值范围。
例3.判断下列函数的奇偶性:例4.(1))(x f 是定义在R 上的奇函数,它的最小正周期为T, 则)2(Tf -的值为(2)定义在实数集R 上的函数()f x 满足()()2()()f x y f x y f x f y ++-=,(0)0f ≠,且(1)0f =,则()f x 是以 为一个周期的周期函数.(3)已知定义在R 上的函数y= f (x )满足f (2+x )= f (2-x ),且f (x )是偶函数,当x ∈[0,2]时,f (x )=2x -1,当x ∈[-4,0]时,f (x )的表达式为.___________练习题一、选择题1.若函数1()21xf x =+, 则该函数在(,)-∞+∞上是 A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值2.若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)0,则使得f (x )<0的x 的取值范围是 A .(¥,2)B.(2,¥)C .(¥,2)U (2,¥) D . (2,2)3.给出下列函数:①3x x y -=,②x x x y cos sin +⋅=,③x x y cos sin ⋅=, ④x x y -+=22,其中是偶函数的有 A .1个B .2个C .3个D .4个4.函数f (x )、f (x +2)均为偶函数,且当x ∈[0,2 ]时,f (x )是减函数,设),21(log 8f a =b=f (7.5),c= f (-5),则a 、b 、c 的大小是A .a > c > bB .a >b>cC .b>a > cD .c> a >b5.若f (x )是奇函数,且在(0,+∞)上是增函数, 又(3)0f -=,则x ·f (x )<0的解集是 A .{x |-3<x <0或x >3} B .{x |x <-3或0<x <3} C. {|33}x x x -<>或 D.{|303}x x x -<<<<或06.如果f (x )是定义在R 上的偶函数,它在),0[+∞上是减函数,那么下述式子中正确的是 A .)1()43(2+-≥-a a f f B .)1()43(2+-≤-a a f f C .)1()43(2+-=-a a f f D .以上关系均不确定7.)(x f 是定义在R 上,以2为周期的偶函数,]0,1[,)(,]3,2[-∈=∈x x x f x 则当时 时,)(x f 的表达式为A .4+xB .x +-2C .2|1|++xD .3|1|++-x8.对于函数f x ()=1gxx-+11的奇偶数性,下列判断中正确的是 A .是偶函数 B .是奇函数 C .既奇又偶函数 D .非奇非偶函数 9.奇函数y = f (x )(x ≠0),当x ∈(0,+∞)时,f (x )= x -1,则函数f (x -1)的图象为10.设f (x )为奇函数,对任意x ∈R ,均有f (x +4)=f (x ),已知f (-1)=3,则f (-3)等于A .3B .-3C .4D .-4 11.设函数f (x )是定义在R 上以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则 A .a <23 B .a <23且a ≠-1 C .a >23或a <-1 D.-1<a <2312.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 A .()sin f x x = B .()1f x x =-+ C .()1()2x x f x a a -=+ D .2()ln 2xf x x-=+ 二、填空题13.设偶函数f (x )在),0[+∞上为减函数,则不等式f (x )> f (2x+1) 的解集是 14.若函数f (x )=4x 3-ax +3的单调递减区间是)21,21(-,则实数a 的值为 . 15.若函数)2(log )(22a x x x f a ++=是奇函数,则a =16.设f (x )是定义在R 上的奇函数,且y=f (x )的图象关于直线21=x 对称,则f (1)+ f (2)+f (3)+ f (4)+ f (5)=_________.三、解答题17.已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )= f (x )+)(1x f ,讨论F (x )的单调性,并证明你的结论。
函数的单调性及奇偶性(含答案)
函数的单调性及奇偶性一、单选题(共10道,每道10分)1.已知函数是上的增函数,若,则下列不一定正确的是( )..答案:D解题思路:试题难度:三颗星知识点:函数单调性的定义]2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )..答案:C解题思路:试题难度:三颗星知识点:函数单调性的定义3.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )..答案:B、解题思路:试题难度:三颗星知识点:函数单调性的定义4.函数的单调递减区间是( )..无减区间答案:A解题思路:试题难度:三颗星知识点:含绝对值函数的单调性5.函数的单调递减区间是( ) (A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递增区间是( )..答案:B解题思路:#试题难度:三颗星知识点:含绝对值函数的单调性7.若是奇函数,则实数a的值为( )D.±1答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质8.若是定义在上的偶函数,则a的值为( )A.±1~答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( )A.[-1,2]B.C.(0,1)D.答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合10.已知是定义在上的奇函数,且在上单调递增,若,则不等式的解集为( )..答案:D解题思路:试题难度:三颗星知识点:奇偶函数图象的对称性。
【高三数学】函数的单调性和奇偶性练习1(共5页)
函数的单调性和奇偶性练习一、选择题1.奇函数f(x)在R 上递减,对于实数a 有0)()(2>+a f a f ,则a 的取值范围是() A .(-∞,-1)B .(1,+∞)C .(0,1)D .(-1,0)2.已知函数y=f(x)是偶函数,又当x<0时,f(x)是增函数,又对于01<x 、02>x 时有||||21x x <,则()A .)()(21x f x f -<-B .)()(21x f x f -=-C .)()(21x f x f ->-D .大小关系不定二、解答题3.试判断函数21)(x x f -=在(-1,0)内的单调性。
4.已知函数),,(1)(2Z c b a c bx ax x f ∈++=是奇函数,又f(1)=2,f(2)<3,求a 、b 、c 、的值。
5.设函数21)(2++=x x x f 的定义域是[n ,n+1](n ∈N ),求f(x)的值中共有多少个整数。
6.已知函数f(x)对任意x ,y ∈R 都有f(x+y)+f(x-y)=2f(x)·f(y)且f(0) ≠0,求证:f(x)是偶函数。
7.已知1)(2+++=bx x a x x f 是奇函数,且x ∈[-1,1],试判断它的单调性,并证明你的结论。
8.已知⎪⎩⎪⎨⎧<+≥+-=)0( )0( )(22x x x x x x x f ,求证f(x)是奇函数。
9.求证:21x y -=在[-1,1]上不是单调函数。
10.研究函数))2,2((4)(2-∈-=x x ax x f 的单调性。
11.已知定义在(-∞,+∞)上的函数f(x)的图象关于直线x=a 和x=b (a>b )成轴对称。
求证f(x)是周期函数。
12.已知函数f(x)对一切x 、y 都有f(x+y)=f(x)+f(y)(1)求证:f(x)是奇函数;(2)若f(-3)=a ,试用a 表示f(12)。
(完整版)函数的单调性和奇偶性练习题
—函数的单调性和奇偶性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在(0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈[-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
函数的单调性及奇偶性(含答案)
函数的单调性及奇偶性(含答案)函数的单调性及奇偶性1.已知函数$f(x)=x^2+2x+1$,则$f(x)$在$(-\infty,+\infty)$上是上的增函数,若$x>0$,则下列不一定正确的是()答案:D解题思路:$f(x)$在$(-\infty,+\infty)$上单调递增,所以选项D不一定正确。
2.已知定义在$(-\infty,+\infty)$上的函数$f(x)$满足:对任意不同的$x_1$,$x_2$,都有$f\left(\frac{x_1+x_2}{2}\right)\leq\frac{f(x_1)+f(x_2)}{2}$。
若$f(x)=ax^2+bx+c$,则实数$a$的取值范围是()答案:C解题思路:根据题目中的条件可知$f(x)$是下凸函数,即$a>0$,$b^2-4ac<0$,所以$a$的取值范围是$(0,+\infty)$,选项C正确。
3.已知定义在$(-\infty,+\infty)$上的函数$f(x)$满足:对任意不同的$x_1$,$x_2$,都有$f\left(\frac{x_1+x_2}{2}\right)\leq\frac{f(x_1)+f(x_2)}{2}$。
若$f(x)$在$(0,+\infty)$上单调递增,则实数$a$的取值范围是()答案:B解题思路:根据题目中的条件可知$f(x)$是下凸函数,且在$(0,+\infty)$上单调递增,所以$a>0$,$b^2-4ac<0$,且$b\geq0$,所以$a\leq\frac{1}{4}$,选项B正确。
4.函数$f(x)=\frac{1}{x+1}+\frac{1}{x+2}$的单调递减区间是()答案:A解题思路:求出$f'(x)$,令其小于0,解得$x\in(-\infty,-2)\cup(-1,-\frac{3}{2})$,即$f(x)$在$(-\infty,-2)\cup(-1,-\frac{3}{2})$上单调递减,选项A正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性奇偶性训练题
一、选择题
1. 下列函数中,在区间
上为增函数的是( ).
A .
B .
C .
D .
2.函数
的增区间是( )。
A .
B .
C .
D .
3.
在
上是减函数,则a 的取值范围是( )。
A .
B .
C .
D .
4 已知函数2()3f x ax bx a b =+++是偶函数,且其定义域为[1,2a a -],则( )
A .3
1=a ,b =0 B .1a =-,b =0 C .1a =,b =0 D .3a =,b =0 5.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关系是
A )2()3()(->->f f f π
B )3()2()(->->f f f π
C )2()3()(-<-<f f f π
D )3()2()(-<-<f f f π
6.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3f 的x 取值范围是
A .(13,23)
B .(∞-,23)
C .(12,23)
D .⎪⎭
⎫ ⎝⎛+∞,32 7. 已知函数()y f x =是偶函数,(2)y f x =-在[0,2]上是单调减函数,则( )
A .(0)(1)(2)f f f <-<
B . (1)(0)(2)f f f -<<
C. (1)(2)(0)f f f -<<
D. (2)(1)(0)f f f <-<
128. ()|log (1)|(
)f x x =-的单调递减区间为
A .(0,2]
B .(1,2]
C .(-1,0]
D .(1,+∞)
9. 已知f(x)=x 5+ax 3+bx-8,若f(-2)=10,那么f(2)等于( )
A.-26
B.-18
C.-10
D.10
10. 若(31)41()log 1a a x a x f x x x -+≤⎧=⎨
>⎩是R 上的减函数,那么a 的取值范围是( ) A.(0,1) B.1
(0,)3 C.11
[,)73 D.1
[,1)7
二、填空题
11.函数
,当
时,是增函数,则f(1)的范围为___________
12 已知()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则0x <时()f x =___________
13. 若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.
14、若f(x)=a +
1
41+x 为奇函数,a=_______ 三、解答题
15.求下列函数的单调递减区间.
(1)
(2)26y x x =-- (3)26y x x =--
16. 用定义证明函数x x x f 3)(3+=在),(+∞-∞上是增函数
17 已知()f x 是偶函数,()g x 是奇函数,若11)()(-=
+x x g x f ,求()f x ,()g x 的解析式
18.若奇函数()f x 是定义在(1-,1)上的增函数,试解关于a 的不等式:2(2)(4)0f a f a -+-<.
19.已知函数x
x x f a -+=11log )( (a >0且a ≠1) (1)求函数f (x )的定义域;
(2)判定函数f (x )的奇偶性,并予以证明;
(3)当0<a <1时,求使f (x )>0的x 的取值范围.
思考题
1. 设 是定义在 上的增函数, ,且 ,求满足不等式
的x 的取值范围.
2. 函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1.
(1)求证:f(x)是R 上的增函数;
(2)若f(4)=5,解不等式f(3m 2-m-2)<3.。