人教版数学 七年级上册《整式的加减》 同步习题
七年级数学上册《第二章-整式的加减》同步练习题及答案(人教版)
七年级数学上册《第二章整式的加减》同步练习题及答案(人教版)班级姓名学号一、单选题1.下列计算正确的是( )。
A.3a+2b=5ab B.5a2-2a2=3C.7a+a=7a2D.2a2b-4a2b=-2a2b2.多项式2a4+4a3b4﹣5a2b+2a是()A.按a的升幂排列B.按a的降幂排列C.按b的升幂排列D.按b的降幂排列3.下列各组单项式中是同类项的是()A.2a2b与-3ab2B.-n3m2与3m2n3C.4xy与4x2y2D.- 1a2b与a2c64.下列去括号正确的是()A.−(a+b−c)=−a+b−c B.−(−a−b−c)=−a+b+cC.−2(a−b−c)=−2a−b−c D.−2(a+b−3c)=−2a−2b+6cx3m y n是同类项,则9m2-5mn-17的值是( )5.已知2x6y2和-13A.-1 B.-2 C.-3 D.-46.如果多项式A减去−2x+1后得3x2+7x−2,则A为()A.3x2+5x−1B.3x2−9x−3C.3x2−5x−1D.3x2+9x+37.已知单项式﹣2a2m+3b5与3a5b m﹣2n的和是单项式,则(m+n)2005=()A.1 B.﹣1 C.0 D.0或18.把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm,若记图2中阴影部分的周长为C1,图3中阴影部分的周长为C2,那么C1-C2=()A.10cm B.20cm C.30cm D.40cm二、填空题9.减去-2a等于2a2-3a-4的多项式为.10.如果13a m+5b4与5a2b3−n是同类项,那么mn= .11.已知3x﹣3•9x=272,则x的值是.12.若单项式3a3b n与−5a m+1b4所得的和仍是单项式,则m−n的值为. 13.当x=2023时,代数式(x﹣1)(3x+2)﹣3x(x+3)+10x的值为.三、计算题14.化简(1)3(2x2−y2)−2(3y2−2x2)(2)−12(5mn−2m2+3n2)+(−32mn+2m2+n22)15.已知:A=2x2+3ax−2x−1B=x2−ax+1若3A−6B的值与x的取值无关,求a的值.16.合并同类项:(1)15x+4x-10x;(2)(5a-3a2+1)-(4a3-3a2)17.先化简,再求值(-x2-5x+4)+(5x-4+2x2),其中x=2.四、解答题18.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.19.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了的多项式,形式如下:﹣(a+2b)2=a2﹣4b2(1)求所捂的多项式;(2)当a=﹣1,b=√3时求所捂的多项式的值.20.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A ,B 之间的距离为 ,B ,C 之间的距离为 ,A ,C 之间的距离为 ;(2)化简:|a+b|﹣|c ﹣b|+|b ﹣a|;(3)a 、b 、c 在数轴上的位置如图所示,且c 2=4,﹣b 的倒数是它本身,a 的绝对值的相反数是﹣2,求﹣a+2b ﹣c ﹣2(a ﹣4c ﹣b )的值.参考答案1.【答案】D2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】A7.【答案】B8.【答案】D9.【答案】2a 2-5a-410.【答案】311.【答案】312.【答案】-213.【答案】﹣214.【答案】(1)解:3(2x 2-y 2)-2(3y 2-2x 2)=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2;(2)解:-12(5mn-2m 2+3n 2)+(-32mn+2m 2+n 22)=−52mn+m 2-32n 2-32mn+2m 2+n 22=-4mn+3m 2-n 2. 15.【答案】解:3A ﹣6B=3(2x 2+3ax ﹣2x ﹣1)﹣6(x 2﹣ax+1)=6x 2+9ax ﹣6x ﹣3﹣6x 2+6ax ﹣6=(15a ﹣6)x ﹣9∵3A ﹣6B 的值与x 取值无关,∴15a ﹣6=0,∴a= 25 .16.【答案】(1)解:原式=19x −10x =9x ;(2)解:原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1.17.【答案】解:原式=-x 2-5x+4+5x-4+2x 2=-3x 2当x=2时原式=-3×22=-3×4=-12.18.【答案】解:∵a<b<0<c,|a|>|b|>|c|∴a-b<0,c-a>0,b-c<0∴原式=-a+b-c+a-b+c+a=a.19.【答案】解:(1)原式=(a2﹣4b2)+(a+2b)2=a2﹣4b2+a2+4b2+4ab=2a2+4ab;(2)当a=﹣1,b=√3时原式=2×(﹣1)2+4×(﹣1)×√3=2﹣4√3.20.【答案】(1)a﹣b;b﹣c;a﹣c (2)解:由数轴可知,c<b<0<a ∴原式=a+b+c﹣b﹣(b﹣a)=a+b+c﹣b﹣b+a=2a﹣b+c(3)解:由题意得c=﹣2,b=﹣1,a=2原式=﹣a+2b﹣c﹣2a+8c+2b=﹣3a+4b+7c当c=﹣2,b=﹣1,a=2时原式=﹣3×2+4×(﹣1)+7×(﹣2)=﹣6﹣4﹣14=﹣24。
人教版七年级数学上册 2.2 整式的加减(练习题含答案)
2.2整式的加减一、选择题1.下列各组中的两个单项式,属于同类项的是( )A.和B.与C.与D.与2.下列各式中,合并同类项结果正确的是( )A. B.C. D.3.若与是同类项,则的值是( )A. B.2 C.3 D.4、下面计算正确的是( )A .B 。
C .D 。
5、在下列单项式中,说法正确的是( )① ② ③ ④ ⑤A.没有同类项B.②与③是同类项C. ②与⑤是同类项D. ①与④是同类项6.化简的结果是( )A. B. C. D.0二、填空题6xy 6xyz 3x 3522a b 212ab -40.85xy 4y x -235325x x x +=222538mn m n m n +=660xy yx -=2232a a a -=213a x y -2b xy a b 32122233x x -=235325a a a +=33x x +=10.2504ab ab -+=36x 23xy 20.37y x -214x -213xy z (53)3(2)a a b a b --+-2a 6b -26a b -1、单项式的和是 。
2、两个单项式与的和是一个单项式,那么 , 。
3、当 时,多项式中不含项。
4、把看作一个整体,合并同类项 。
5、减去-x 2+6x-5等于4x 2+3x-5的多项式是 。
6、(1)2(x 2-2x+5)-3(2x 2-5)= .(2)4(m-3n)-5(3n-10m)-13(n-2m)= .7、电影院第一排有a 个座位,后面每排都比前一排多一个座位,第二排有 个座位,第三排有 个座位,第n 排有m 个座位,则m = 。
(用含a 、n 的代数式标示)8、某三角形第一条边长厘米,第二条边比第一条边长厘米,第三条边比第一条边的2倍少b 厘米,那么这个三角形的周长是 厘米。
三、解答题1.计算(1) (2)2.先化简,后求值:22224,6,3,a b ab a b a b --2212m a b 412n a b -m =n =k =21383x kxy xy -+-xy ()a b -7()3()2()a b a b a b -----=(2)a b -()a b +222225533y y x y y x x +-++--()()22224354ab b a ab b a ---(1),其中(2),其中。
人教版数学 七年级上册《整式的加减》 同步习题
2.2 整式的加减同步测试题一、选择题1.若m=2a-1,n=3m,则a+m+n等于()A. 9a-1B. 9a-2C. 9a-3D. 9a-42.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A. y=4n﹣4B. y=4nC. y=4n+4D. y=n23.若(x−3y)2=(x+3y)2+M,则M=()A. 6xyB. -6xyC. ±12xyD. -12xy4.下列运算正确的是()A. 2(a−1)=2a−1B. a2+a2=2a2C. 2a3−3a3=a3D. a2b−ab2=05.观察下列各式及其展开式(a+b)2=a2+2ab+ b2(a+b)3=a3+3 a2b+3a b2+ b3(a+b)4=a4+4 a3b+6 a2b2+4a b3+ b4(a+b)5=a5+5 a4b+10 a3b2+10 a2b3+5a b4+ b5……请你猜想(2x−1)8的展开式中含x2项的系数是()A. 224B. 180C. 112D. 486.若A=3x2+5x+2,B=4x2+5x+2,则A与B的大小关系是()A. A>BB. A<BC. A≥BD. A≤B7.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )A. 1985B. -1985C. 2019D. -20198.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么n条直线最多有()个交点A. 2n-3B. 2n2C. n(n−1)D. n(n-1)2二、填空题9.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n个这样的三角形需要火柴棒________根.10.已知P=m2−m,Q=m−1(m为任意实数),则P________ Q.(用不等号连接)11.已知7x m y3和−12x2y n是同类项,则n m=________.12.已知2a x+y b3与-12a2b x−y是同类项,则(x+y)(x-y)=________13.若a≠0,s1=−3a,s2=3s1,s3=3s2,s4=3s3,…,s2020=3s2019,则s2020=________.14.有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……⑴根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是________ ;⑵式子(n-1) n (n+1) (n+2)+1=________ .三、计算题15.先化简,再求值:-3(a2-2b)+5(3b+a2),其中a=-2,b= −13。
七年级数学上册《整式的加减》同步测试题
七年级数学上册?整式的加减?同步测试题【小编寄语】查字典数学网小编给大家整理了七年级数学上册?整式的加减?同步测试题,希望能给大家带来帮助!一、填空题1.假设单项式与是同类项,那么的值是.考察说明:此题考察同类项定义.答案解析:5.由同类项定义得m=3,n=2,所以m+n=3+2=5.2.一个多项式与的和等于,那么这个多项式是_________.考察说明:此题考察多项式的加减运算.答案与解析:.此题考察整式的加减,由题意列式得3.化简:= ____________考察说明:此题考察多项式的运算,涉及到运算律和去括号法那么.答案与解析:4.假设,那么的值是_______________.考察说明:此题考察利用整体思想求代数式的值.答案与解析:2021.5. 汛期降临前,滨海区决定施行“海堤加固〞工程.某工程队承包了该工程,方案每天加固60米.在施工前,得到气象部门的预报,近期有“台风〞袭击滨海区,于是工程队改变方案,每天加固的海堤长度是原方案的1.5倍,这样赶在“台风〞降临前完成加固任务.设滨海区要加固的海堤长为a米,那么完成整个任务的实际时间比原方案时间少用了___________天.考察说明:此题考察的知识点是列代数式,解题的关键是根据题意先列出原方案用的天数和实际用的天数.答案与解析:.首先由用a表示出原方案用的天数和实际用的天数再相减即是完成整个任务的实际时间比原方案时间少用的天数.由得:原方案用的天数为,,实际用的天数为,,那么完成整个任务的实际时间比原方案时间少用的天数为6.如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为___________.考察说明:此题考察整式的运算和特殊平行四边形相关的面积问题.答案与解析:.设去掉的小正方形的边长为x, 由于拼接成的是正方形,所以可得m-x=n+x,x=二、解答题7.化简求值题.,其中考察说明:此题考察多项式的运算和求代数式的值,涉及到运算律和去括号法那么.答案与解析:-12.原式=.当时,原式=-12.8小明在理论课中做了一个长方形模型,模型一边长为,另一边比它小,那么长方形模型周长为多少?考察说明:此题考察了利用多项式的加减解决实际问题的才能.答案与解析:.长方形一边长为依题意可得另一边为;根据长方形周长定义便可解得. .。
人教版七年级数学上册《2-2 第3课时 整式的加减》作业同步练习题及参考答案
第3 课时整式的加减1.计算-3(x-2y)+4(x-2y)的结果是( )A.x-2yB.x+2yC.-x-2yD.-x+2y2.若A=x3+6x-9,B=-x3-2x2+4x-6,则2A-3B 等于( )A.-x3+6x2B.5x3+6x2C.x3-6x2D.-5x3+6x23.若一个多项式与3x2+9x 的和等于3x2+4x-1,则这个多项式是( )A.-5x-1B.5x+1C.-13x-1D.13x+14.化简-3x- 4�- -9� +12-2 的结果是( )A.-16x+32B.-16x+52C.-16x-52D.10x+525.若多项式8x2-3x+5 与多项式3x3+2mx2-5x+3 相加后不含二次项,则m 等于( )A.2B.-2C.-4D.-86.若长方形的长为(a+b),宽为(a-b),则它的周长是.7.若多项式x2-7x-2 减去m 的差为3x2-11x-1,则m= .8.若mn=m+3,则2mn+3m-5nm+10= .9.化简:5(a2b-3ab2)-2(a2b-7ab2).10.已知A=2x2-9x-11,B=3x2-6x+4.求:(1)A-B;(2)1A+2B;2(3)当x=1 时,求(2)的值.11.已知(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x 所取的值无关,试求1a3-2b2- 1�3-3�2 的值.3 412.扑克牌游戏小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; 第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小明在复习课堂笔记时,发现一道题:-�2 + 3x- 1�2 −- 1�2 + 4x + ( ) =-1x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项2 2 2是( )A.3y2B.3y2C.-3y2D.-3y22 214.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)15.若A=3a2-5b+4,B=3a2-5b+7,则A B.(填“>”“<”或“=”)16.小雄的储蓄罐里存放着家长平时给他的零用钱,这些钱全是硬币,为了支援贫困地区的小朋友读书, 他将储蓄罐里所存的钱都捐献出来.经清点,一角钱的硬币有a 枚,五角钱的硬币比一角钱的3 倍多7 枚,一元钱的硬币有b 枚,则小雄一共捐献了元.17.先化简,再求值:(1)2x+7+3x-2,其中x=2;(2)已知a-b=5,ab=-1,求(2a+3b-2ab)-(a+4b+ab)-(3ab+2b-2a)的值.★18.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=1,y=-1”.甲同学把2“x=1”错抄成“x=-1”,但他计算的结果也是正确的,试说明理由,并求出这个结果.2 219.已知a,b,c满足①(a+3)2+|b-2|=0;②2xy c+2是一个七次单项式.(1)求a,b,c 的值;(2)求多项式4a2b-[a2b-(2abc-a2c-3a2b)-4a2c]-abc 的值.★20.已知实数a,b,c 的大小关系如图所示.求|2a-b|+3(c-a)-2|b-c|.★21.试说明7+a-{8a-[a+5-(4-6a)]}的值与a 的取值无关.答案与解析夯基达标1.A2.B 2A-3B=2(x3+6x-9)-3(-x3-2x2+4x-6)=2x3+12x-18+3x3+6x2-12x+18=5x3+6x2.3.A 由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.4.B5.C6.4a7.-2x2+4x-1 由题意得,m=(x2-7x-2)-(3x2-11x-1)=x2-7x-2-3x2+11x+1=-2x2+4x-1.8.19.分析先去括号,再合并同类项.解5(a2b-3ab2)-2(a2b-7ab2)=5a2b-15ab2-2a2b+14ab2=3a2b-ab2.10.解(1)A-B=(2x2-9x-11)-(3x2-6x+4)=2x2-9x-11-3x2+6x-4=-x2-3x-15.1 12 2 2 9 112 233 5(2)2A+2B=2(2x -9x-11)+2(3x -6x+4)=x -2x- 2 +6x -12x+8=7x - 2 x+2.(3)当x=1 时,原式 2 33 5=7×1 - 2 ×1+2=-7.11.解(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7.因为值与字母x 所取的值无关,所以2-2b=0,a+3=0,解得b=1,a=-3.所以1a3-2b23-3�23=1a3-2b2-1a3+3b23 413 2 13 2=12a +b =12×(-3) +15=-4.12.解设第一步每堆各有x 张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x 张牌;第三步左边有(x-2)张牌,中间有x+2+1=(x+3)张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5 张牌. 培优促能13.C -�2 + 3x- 1 �2 − 2 + 4x + (2 22 1212=-x +3xy-2y +2x -4xy-( )12 12=-2x -xy-2y -( )12 2=-2x -xy+y ,- y . 故括号处的这一项应是 3 2214.x 因为(4xy-3x 2-xy+x 2+y 2)-(3xy-2x 2+2y 2)=4xy-3x 2-xy+x 2+y 2-3xy+2x 2-2y 2=-y 2,所以多项式的值与 x无关.15.< 因为 A-B=(3a 2-5b+4)-(3a 2-5b+7)=3a 2-5b+4-3a 2+5b-7=-3,所以 A<B.16.1.6a+b+3.5 一角钱的硬币有 a 枚,共 0.1a 元;五角钱的硬币比一角钱的 3 倍多 7 枚,共 0.5(3a+7)元;一元钱的硬币有 b 枚,共 b 元,所以共捐献(1.6a+b+3.5)元.17.解 (1)2x+7+3x-2=5x+5,当 x=2 时,原式=5x+5=15.(2)(2a+3b-2ab )-(a+4b+ab )-(3ab+2b-2a )=2a+3b-2ab-a-4b-ab-3ab-2b+2a=3a-3b-6ab=3(a-b )-6ab.当 a-b=5,ab=-1 时,原式=3(a-b )-6ab=3×5-6×(-1)=15+6=21.18.解 (2x 3-3x 2y-2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y-y 3)=2x 3-3x 2y-2xy 2-x 3+2xy 2-y 3-x 3+3x 2y-y 3=-2y 3. 可以看出化简后的式子与 x 的值无关.故甲同学把 1 错抄成 1 计算的结果也是正确的.当 y=- “x=2” “x=-2”,1 时,原式=-2×(-1)3=-2×(-1)=2.19.解 (1)因为(a+3)2+|b-2|=0,(a+3)2≥0,|b-2|≥0,所以(a+3)2=0,|b-2|=0.所以 a=-3,b=2.因为 2xy c+2 是一个七次单项式,所以 1+c+2=7,所以 c=4.(2)4a 2b-[a 2b-(2abc-a 2c-3a 2b )-4a 2c ]-abc=4a 2b-(a 2b-2abc+a 2c+3a 2b-4a 2c )-abc=4a 2b-a 2b+2abc-a 2c-3a 2b+4a 2c-abc=abc+3a 2c.当 a=-3,b=2,c=4 时,原式=abc+3a 2c=84.创新应用20.解由数轴上a,b,c 的位置可知,a<0<b<c, 则2a-b<0,b-c<0.所以|2a-b|=b-2a,|b-c|=c-b.所以|2a-b|+3(c-a)-2|b-c|=(b-2a)+3(c-a)-2(c-b)=b-2a+3c-3a-2c+2b=(-2a-3a)+(b+2b)+(3c-2c)=-5a+3b+c.21.解原式=7+a-[8a-(a+5-4+6a)]=7+a-(8a-a-5+4-6a)=7+a-8a+a+5-4+6a=8,故原式的值与a 的值无关.。
人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)
人教版数学七年级上册第2章2.2整式的加减同步练习一、选择题1.下列式子正确的是()A.7m+8n=8m+7nB.7m+8n=15mnC.7m+8n=8n+7mD.7m+8n=56mn2.若a-b=2,b-c=-3,则a-c等于()A.1B.-1C.5D.-53.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.54.下列计算正确的是()A.4x-7x=3xB.5a-3a=2C.a2+a=aD.-2a-2a=-4a5.下列各组是同类项的一组是()A.a3与b3B.3x2y与-4x2yzC.x2y与-xy2D.-2a2b与ba26.若-63a3b4与81a x+1b x+y是同类项,则x、y的值为()A. B. C. D.7.去括号正确的是()A.-(3x+2)=-3x+2B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2D.-(-2x+7)=2x-7二、填空题8.计算:2(x-y)+3y= ______ .9.若x+y=3,xy=2,则(5x+2)-(3xy-5y)= ______ .10.若单项式x3y n与-2x m y2是同类项,则(-m)n= ______ .11.若2x3y2n和-5x m y4是同类项,那么m-2n= ______ .三、计算题12.先化简再求值:(2a2b-ab)-2(a2b+2ab),其中a=-2,b=-.13.先化简,再求值:x-(2x-y2+3xy)+(x-x2+y2)+2xy,其中x=-2,y=.14.先化简再求值:4x-3(3x-)+2(x-y),其中x=,y=-.人教版数学七年级上册第2章2.2整式的加减同步练习答案和解析【答案】1.C2.B3.D4.D5.D6.D7.D8.2x+y9.1110.911.-112.解:原式=2a2b-ab-2a2b-4ab=-5ab,当a=-2,b=-时,原式=-5.13.解:原式=x-2x+y2-3xy+x-x2+y2+2xy=-x2+y2-xy,当x=-2,y=时,原式=-4++1=-.14.解:原式=4x-9x+2y2+5x-2y=2y2-2y,当y=-时,原式=2y2-2y=2×(-)2-2×(-)=0.5+1=1.5.【解析】1. 解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.根据合并同类项法则解答.本题考查了合并同类项,熟记同类项的概念是解题的关键.2. 解:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1,故选B根据题中等式确定出所求即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3. 解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.4. 解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变.5. 解:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项.且与字母的顺序无关.故选(D)根据同类项的概念即可求出答案.本题考查同类项的概念,注意同类项与字母的顺序无关.6. 解:∵-63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.根据同类项的定义进行选择即可.本题考查了同类项,掌握同类项的定义是解题的关键.7. 解:A、-(3x+2)=-3x-2,故A错误;B、-(-2x-7)=2x+7,故B错误;C、-(3x-2)=-3x+2,故C错误;D、-(-2x+7)=2x-7,故D正确.故选:D.依据去括号法则判断即可.本题主要考查的是去括号,掌握去括号法则是解题的关键.8. 解:原式=2x-2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.9. 解:∵x+y=3,xy=2,∴原式=5x+2-3xy+5y=5(x+y)-3xy+2=15-6+2=11.故答案为:11.原式去括号合并后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10. 解:由单项式x3y n与-2x m y2是同类项,得m=3,n=2.(-m)n=(-3)2=9,故答案为:9.由同类项的定义可先求得m和n的值,再根据负数的偶数次幂是正数,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11. 解:∵2x3y2n和-5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m-2n=3-2×2=-1.故答案为:-1.由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.12.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.13.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.14.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.A 看B 的方向是北偏东21°,那么B 看A 的方向( )A .南偏东69° B.南偏西69° C.南偏东21° D.南偏西21°3.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( )A.1B.2C.3D.44.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。
人教版七年级数学上册《2.2.3整式的加减》同步专题练习(含参考答案)
七年级数学上册——整式的加减专题练习(满分120分,90分钟完卷)学校:班级:七()班姓名:___________1.化简:(1)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y)(4分); (2)y-{y-2x+[5x-3(y+2x)+6y]} (4分).2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(7分)3.先化简,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.(6分)4.求4x2+3xy+2y2与x2-5xy+2y2的差.(6分)5.已知A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.(7分)6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.(6分)1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为()(4分)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是()(4分)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=()(4分)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是() (4分)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于() 4分)A.9a-4B.9a-1C.9a-2D.9a-36 (2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是()(4分)A.A>BB.A=BC.A<BD.无法确定7.(4分)(2016·湖南株洲中考)计算:3a-(2a-1)=.8.(4分)(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=.9.(4分)(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为.10.(4分)2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.(6分)12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(8分)(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?13. (2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(8分)(1)求A; (2)若|a+1|+(b-2)2=0,计算A的值.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(9分)(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.15.已知A=2x2-3x-1,B=x2-3x-5, (1)计算2A+3B; (2)通过计算比较A与B的大小.(9分)七年级数学上册——整式的加减专题练习(参考答案)1.化简:-2(x+y)-5(x-y)+4(x+y)+3(x-y); (2)y-{y-2x+[5x-3(y+2x)+6y]}.x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y) (2)y-{y-2x+[5x-3(y+2x)+6y]}=3(x-y)-5(x-y)+3(x-y)-2(x+y)+4(x+y)=y-[y-2x+(5x-3y-6x+6y)]=(x-y)+2(x+y)=x-y+2x+2 =y-(y-2x+5x-3y-6x+6y)y=3x+y. =y-y+2x-5x+3y+6x-6y=3x-3y.2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(2m-4)岁,小华的年龄为岁,则这三名同学的年龄的和为m+(2m-4)+=m+2m-4+(m-2+1)=4m-5(岁).答:这三名同学的年龄的和是(4m-5)岁.,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.y+2x)-[3x-(x-y)]-2x=3y+6x-3x+x-y-2x=2(x+y).因为x,y互为相反数,所以x+y=0.所以3(y+2x)-[3x-(x-y)]-2x=2(x+y)=2×0=0.4x2+3xy+2y2与x2-5xy+2y2的差.x2+3xy+2y2)-(x2-5xy+2y2)=4x2+3xy+2y2-x2+5xy-2y2=3x2+8xy.A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.A+B-(A-B)=4A+B-A+B=3A+2B.∵∴∴3A+2B=5x2+xy+5y2=(x2+3xy+4y2)+(4x2-2xy+y2)=2+3=5.∴4A+B-(A-B)=5.6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)=(2m-m+4m+6-1)x+6=(5m+5)x+6.因为它的值与x的取值无关,所以5m+5=0,所以m=-1.因为m2+(4m-5)+m=m2+5m-5,所以当m=-1时,m2+(4m-5)+m=(-1)2+5×(-1)-5=-9.1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为(B)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是(A)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=(C)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是(D)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于(A)A.9a-4B.9a-1C.9a-2D.9a-36.导学号19054071(2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是(A)A.A>BB.A=BC.A<BD.无法确定7.(2016·湖南株洲中考)计算:3a-(2a-1)=a+1.8.(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=1.9.(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为-3x2y+xy2.10.导学号19054072(2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为8.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.A+B=9x2-2x+7,B=x2+3x-2,∴A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9.∴A-B=8x2-5x+9-(x2+3x-2)=8x2-5x+9-x2-3x+2=7x2-8x+11.12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?解(1)根据题意得40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品后的总销售额为(88a+88b)元;(2)根据题意,得88a+88b-100a=-12a+88b(元),则销售100件这种商品后共盈利(-12a+88b)元.13.导学号19054073(2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(1)求A;(2)若|a+1|+(b-2)2=0,计算A的值.解(1)由题意得A=2(-4a2+6ab+7)+7a2-7ab=-8a2+12ab+14+7a2-7ab=-a2+5ab+14.(2)根据题意及绝对值与平方的非负性可得a=-1,b=2,故A=-a2+5ab+14=3.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.解(1)A-2B=2x2+3xy+2y-1-2=2x2+3xy+2y-1-2x2+2xy-2x+1=5xy+2y-2x;(2)由(1)得A-2B=5xy+2y-2x=(5y-2)x+2y,因为A-2B的值与x的取值无关,所以5y-2=0,即y=.15.导学号19054074已知A=2x2-3x-1,B=x2-3x-5,2A+3B; (2)通过计算比较A与B的大小.解(1)因为A=2x2-3x-1,B=x2-3x-5,所以2A+3B=2(2x2-3x-1)+3(x2-3x-5)=4x2-6x-2+3x2-9x-15=7x2-15x-17;(2)因为A-B=(2x2-3x-1)-(x2-3x-5)=2x2-3x-1-x2+3x+5=x2+4≥4>0,所以A>B.。
新课标-最新人教版七年级数学上学期《整式的加减》同步练习题及答案-经典试题
整式的加减同步练习一选择题1、多项式x3-2x2+x-4与2x3-5x+6的和是( ) A 、3x3+2x2-4x+2 B 、3x3-2x2-4x+2 C 、-3x3+2x2-4x+2 D 、3x3-2x2-4x-22、若A 是一个四次多项式,且B 也是一个四次多项式,则A-B 一定是( ) A 、八次多项式 B 、四次多项式C 、三次多项式D 、不高于四次的多项式或单项式 3、代数式9x2-6x-5与10x2-2x-7的差是( ) A 、x2-4x-2 B 、-x2+4x+2 C 、-x2-4x+2 D 、-x2+4x-2 4、把下式化简求值,得( )(a3—3a2+5b)+(5a2—6ab)—(a3—5ab+7b),其中a=—1,b=—2 A 、4 B 、48 C 、0 D 、205、一个多项式A 与多项式B=2x2-3xy -y2的差是多项式C=x2+xy +y2,则A 等于( ) A 、x2-4xy -2y2 B 、-x2+4xy +2y2 C 、3x2-2xy -2y2 D 、3x2-2xy6、若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( ) A 、三次多项式 B 、四次多项式 C 、七次多项式 D 、四次七项式 7.当a=5时,则(a 2-a)-( a 2-2a+1)的值为( ) A. 4 B. -4 C. -14 D. 18.东升二中组织若干师生到龙潭大峡谷进行社会实践活动,若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租2辆,且最后一辆没坐满,则最后一辆60座客车的人数是( )A .200-60x B.140-15x C.200-15x D.140-60x 二.填空题9、已知多项式12334-+-=x x x A 与另一个多项式B 的和是273524+-+x x x ,则B=___________________________。
人教版七年级上册数学2.2整式的加减同步练习及答案
人教版七年级上册数学2.2整式的加减同步练习一、选择题1.下列各组中的两项不是同类项的是()A. 1和0B. −4xy2z和−4x2yz2C. −x2y和2yx2D. −a3和4a32.下列去括号中,正确的是()A. −(x−y+z)=−x+y−zB. x+2(y−z)=x+2y−zC. a2−34(a+2)=a2−34a+32D. a−(x−y+z)=a−x+y+z3.若单项式23x2y n与−2x m y3是同类项,则m−n的值是()A. 2B. 1C. −1D. −24.若x2+ax−2y+7−(bx2−2x+9y−1)的值与x的无关,则−a−b的值为()A. 3B. 1C. −2D. 25.−(2x−y)+(−y+3)去括号后的结果为()A. −2x−y−y+3B. −2x+3C. 2x+3D. −2x−2y+36.已知A=3x2+5y2+6z2,B=2x2−2y2−8z2,C=2z2−5x2−3y2,则A+B+C的值为()A. 0B. x2C. y2D. z27.如果a2b3−2a m b n是同类项,则3m−2n等于()A. −1B. 0C. 2D. 38.一个多项式加上−2a−4等于3a2+a−2,则这个多项式是()A. 3a2−3a−2B. 3a2+3a+2C. 3a2−a−6D. −3a2−a−29.下列各组式子中说法正确的是()A. 3xy与−2yz是同类项B. 5xy与6yx是同类项C. 2x与x2是同类项D. 2x2y与2xy2是同类项10.化简a−[−2a−(a−b)]等于()A. −2aB. 2aC. 4a−bD. 2a−2b第 1 页11.设A=x2+1,B=−2x+x2,则2B−3A可化简为()A. 4x2+1B. −x2−4x−3C. x2−4x−3D. x2−312.下列计算正确的有()(1)5a3−3a3=2;(2)−10a3+a3=−9a3;(3)4x+(−4x)=0;(4)(−27xy)−(+57xy)=−37xy;(5)−3mn−2nm=−5mn.A. 1个B. 2个C. 3个D. 4个二、填空题13.三个连续偶数中,中间的一个为2n,这三个数的和为______ .14.一个多项式与−2x2−4x+5的和是2x2+x−1,那么这个多项式是______ .15.单项式14a x+1b4与9a2x−1b4是同类项,则x=______ .16.若2a3m−1b3与14a5b2n+1的和仍是单项式,则5m+6n的值为______ .17.写出−23a2b的一个同类项:______.18.当k=______ 时,3kx2y与25x k y是同类项,它们合并后的结果为______ .19.已知代数式2a3b n+1与−3a m−1b2的和是−a3b2,则m−5n=______ .20.−a+2bc的相反数是______,|3−π|=______,最大的负整数是______.21.如果m、n是两个不相等的实数,且满足m2−2m=1,n2−2n=1,那么代数式2m2+4n2−4n+1994=______ .22.若m2+mn=−3,n2−3mn=18,则m2+4mn−n2的值为______.三、计算题23.先化简,再求值:2x2−4x+1−2x2+2x−5,其中x=−1.第 3 页24. 先化简,再求值:4a 2b −2ab 2+3−(−2ab 2+4a 2b −2),其中:a =2,b =3.25. 化简:(−x 2+3xy −y 2)−(−3x 2+5xy −2y 2),并求当x =12,y =−12时的值.26. 若m 2+3mn =10,求5m 2−[5m 2−(2m 2−mn)−7mn +5]的值.27. 先化简,再求值:4(x −13y 2)−(x −13y 2),其中x =−13,y =−1.28. 化简:(3x 2−xy −2y 2)−2(x 2+xy −2y 2)29.有一道题目,是一个多项式减去x2+14x−6,小强误当成了加法计算,结果得到2x2−x+3,正确的结果应该是多少?四、解答题B)]的值,30.已知A=x3−5xy2+3y2,B=2x3+4y2−7xy2,求A−[2A−3(A−13其中x=2,y=−1.第 5 页答案和解析【答案】1. B2. A3. C4. B5. B6. A7. B8. B 9. B 10. C 11. B 12. C13. 6n14. 4x 2+5x −6 15. 2 16. 1617. a 2b(答案不唯一) 18. 2;325x 2y 19. −120. a −2bc ;π−3;−1 21. 2019 22. −2123. 解:原式=−2x −4,当x =−1时,原式=2−4=−2.24. 解:原式=4a 2b −2ab 2+3+2ab 2−4a 2b +2=5, 当a =2,b =3时,原式=5.25. 解:原式=−x 2+3xy −y 2+3x 2−5xy +2y 2=2x 2−2xy +y 2,当x =12,y =−12时,原式=12+12+14=54.26. 解:原式=5m 2−5m 2+2m 2−mn +7mn −5=2(m 2+3mn)−5,把m 2+3mn =10代入得:原式=20−5=15.27. 解:原式=4x −43y 2−x +13y 2=3x −y 2,当x =−13,y =−1时,原式=−1−1=−2.28. 解:原式=3x 2−xy −2y 2−2x 2−2xy +4y 2=3x 2−2x 2−xy −2xy −2y 2+4y 2=x 2−3xy +2y 229. 解:这个多项式为:(2x2−x+3)−(x2+14x−6)=x2−15x+9所以(x2−15x+9)−(x2+14x−6)=−29x+15正确的结果为:−29x+15.B)]30. 解:∵A−[2A−3(A−13=A−[−A+B],=2A−B,∵A=x3−5xy2+3y2,B=2x3+4y2−7xy2,∴原式=2x3−10xy2+6y2−(2x3+4y2−7xy2),=−3xy2+2y2,把x=2,y=−1代入得:−3×2×1+2×1=−4.。
人教版 七年级数学上册 2.2整式加减 同步测试习题(含答案)
2.2整式的加减同步练习一、选择题1.下列计算正确的是 ( )A .a -2(b +c )=a -2b -2cB .a -2b -c -4d =a -c -2(b +4d )C .-12(a +b )+(3a -2b )=52a -b D .(3x 2y -xy )-(yx 2-3xy )=3x 2y -yx 2-4xy 2.化简4a -+a -4的结果是( )A .2a -8B .8-2aC .2a -8或0D .2a -8或8-2a-3.设M 是关于x 的五次多项式,N 是关于x 的三次多项式,则 ( )A .M +N 是关于x 的八次多项式B .M -N 是关于x 的二次多项式C .M +N 是不超过8次的多项式D .以上都不对4.(xyz 2-4xy -1)+(-3xy +z 2yx -3)-(2xyz 2+xy )的值 ( )A .与x 、y 、z 的大小无关B .与x 、y 的大小有关,而与z 的大小元关C .与x 的大小有关,而与y 、z 的大小无关D .与x 、y 、z 的大小都有关5.多项式4n -2n 2+2+6n 2减去3(n 2+2n 3-1+3n )(n 为自然数)的差一定是( ) A .奇数 B .偶数 C .5的倍数 D .以上答案都不对6.下列代数式的值一定是正数的有 ( )①(m +n )2,②x +2,③x 2+1,④x 2+y 2,⑤a 2+1b +A .1个B .2个C .3个D .4个7.已知多项式A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则C 为() A .5x 2-y 2-z 2 B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 28.当x>0,y<0且x <y 时,化简2333x y x y --+等于 ( )A .5xB .-5xC .6yD .-6y二、填空题1.多项式-8xy 2+3x 2y 与-2x 2y +5xy 2的和是_______.2.多项式2x -3y +5z 与-2x +4y -6z 的差是__________。
七年级数学上册《第二章 整式的加减》同步练习题及答案(人教版)
七年级数学上册《第二章整式的加减》同步练习题及答案(人教版)姓名班级学号一、单选题1.在下列各组中,是同类项的是()A.9a2x和9a2B.a2和2a C.2a2b和3ab2D.4x2y和﹣yx2 2.下列去括号正确的是().A.x2−(x−3y)=x2−x−3y B.x2−3(y2−2xy)=x2−3y2+2xyC.m2−4(m−1)=m2−4m+4 D.a2−2(a−3)=a2+2a−63.下列各式中,合并同类项正确的是()A.2x+x=2x2B.2x+x=3x C.a2+a2=a4D.2x+3y=5xy4.已知2x6y2和-13x3m y n是同类项,则2m+n的值是()A.6 B.5 C.4 D.25.如果a,b,c满足ba =cb=√5−12,则a,b,c之间的关系是()A.a=b+c B.a>b+c C.a<b+c D.a2=b2+c2 6.若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.5 C.4 D.38.将多项式2a3+ 13a2b﹣b3﹣5ab2按字母b的降幂排列是()A.2a3﹣b3﹣5ab2+ 13a2b B.13a2b﹣b3﹣5ab2+2a3C.﹣b3﹣5ab2+ 13a2b +2a3D.﹣b3+ 13a2b﹣5ab2+2a3二、填空题9.长方形的长为2a+3b,周长为6a+4b,则该长方形的宽为.10.当m=时,- x3b m与14x3b是同类项.11.一个多项式加上2x2﹣x+5等于4x2﹣6x﹣3,则这个多项式为.12.若关于x、y的单项式x a+7y5与﹣2x3y3b﹣1的和仍是单项式,则ab的值是.13.如图,将面积分别为39、29的矩形和圆叠放在一起,两个空白部分的面积分别为m,n(m>n),则m﹣n的值为.三、解答题14.合并同类项(1)x3﹣2x2﹣x3﹣5+5x2+4;(2)2(a2b﹣3ab2)﹣3(2ab2﹣5a2b).615.化简与求值(1)2x2−5x+x2+4x;(2)(a2b−3ab2)−(a2b−7ab2);(3)先化简,再求值:4(x−1)−2(x2+1)+(4x2−2x),其中x=−3 .16.有理数a,b,c在数轴上的位置如图所示。
人教版七年级数学上册第二章 整式的加减同步练习(含答案)
第二章 整式的加减一、单选题1.代数式225a b -,用语言叙述准确的是( )A .a 与5b 的平方差B .a 的平方减5乘b 的平方C .a 的平方与b 的平方的5倍的差D .a 与5b 的差的平方 2.单项式-3πxy²z³的系数和次数分别是(). A .-3π,5 B .-3,6C .-3π,6D .-3,7 3.关于整式的概念,下列说法正确的是() A .3267x y π-的系数是67-B .233xy 的次数是6C .3是单项式D .27xy xy -+-是5次三项式 4.已知62m n -与25y x m n 是同类项,则() A .2x =,1y = B .1x =,3y =C .32x =,6y =D .3x =,1y =5.下列计算正确的是( )A .-2a +5b =3abB .-22+│-3│=7C .3ab 2-5b 2a =-2ab 2D .-5÷3×(-13)=5 6.下列各题去括号错误的是( )A .m a b c m a b cB .m a b c m a b cC .()m a b c m a b c ---+=-+-D .m a b c m a b c7.当多项式()()225x 21231m x n x ---+--不含二次项和一次项时,mn 的值为( ) A .4 B .43- C .34 D .38.如果22622,63M x x N x x =++=-+-,那么M 与N 的大小关系是( ) A .M N > B .M N < C .M N D .无法确定 9.观察下列图形中点的个数,若按其规律再画下去,可以得到第5个图形中所有点的个数为( )A .16个B .25个C .36个D .49个10.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个A .1B .2C .3D .4二、填空题 11.单项式2527x y -的系数是m ,次数是n ,则mn =_______. 12.若单项式12m xy -与232n x y --的和为0,则m n -的值是_____.13.多项式M 加上237x x -+的和为2524,x x +-则这个多项式M 为_________. 14.如图,四张大小不一的四方形纸片分别放置于矩形的四个角落,其中①和②纸片既不重。
人教版七年级数学上册:整式的加减同步测试题
人教版七年级数学上册:整式的加减同步测试题x一.选择题1.化简(2x-3y)-3(4x-2y)结果为()A.-10x-3y B.-10x+3y C.10x-9y D.10x+9y2.ab减去a2-ab+b2等于()A.a2+2ab+b2B.-a2-2ab+b2C.-a2+2ab-b2D.-a2+2ab+b23.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6a+b B.6a C.3a D.10a-b4.若多项式3x2-2xy-y2减去多项式M所得的差是-5x2+xy-2y2,则多项式M是()A.-2x2-xy-3y2B.2x2+xy+3y2C.8x2-3xy+y2D.-8x2+3xy-y25.若代数式2x3-8x2+x-1与代数式3x3+2mx2-5x+3的和不含x2项,则m等于()A.2 B.-2 C.4 D.-46.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式二.填空题7.一个多项式减去x2+14x-6,结果得到2x2-x+3,则这个多项式是.8.多项式与m2+m-2的和是m2-2m.9.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树棵.10.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=-2,mn=-4,则2(mn-3m)-3(2n-mn)的值为.三.解答题11.已知A=3a2b-2ab2+abc,小明错将“2A-B”看成“2A+B”,算得结果C=4a2b-3ab2+4abc.(1)计算B的表达式;(2)求正确的结果的表达式;(3)小强说(2)中的结果的大小与c 的取值无关,对吗?若a=18 ,b=15 ,求(2)中代数式的值.12.已知A=2x 2+3xy-2x-1,B=-x 2+xy-1:(1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.答案:1.B 解析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.原式=2x-3y-12x+6y=-10x+3y .2.C3.B 解析:根据题意,长方形周长=2[(2a +b )+(a-b )]=2(2a+b+a-b )=2×3a=6a .4.C 解析:根据题意得:M=3x 2-2xy-y 2-(-5x 2+xy-2y 2)=3x 2-2xy-y 2+5x 2-x y+2y 2=8x 2-3xy+y 2.5.C 解析:2x 3-8x 2+x-1+3x 3+2mx 2-5x+3=5x 3+(2m-8)x 2-4x+2,又两式之和不含平方项,故可得:2m-8=0,m=4.6.C 解析:A ﹨B 都为五次多项式,则它们的和的最高次项必定不高于5.7.3x 2+13x-3解析:由题意得,(x 2+14x-6)+(2x 2-x+3)=x 2+14x-6+2x 2-x+3=3x 2+13x-3.8.-3m+2解析:根据题意得:(m 2-2m )-(m 2+m-2)=m 2-2m-m 2-m+2=-3m+2.9.4x+610.-8解析:∵m+n=-2,mn=-4,∴原式=2mn-6m-6n+3mn=5mn-6(m+n )=-20+12=-8.11.解:(1)∵2A+B=C ,∴B=C-2A=4a 2b-3ab 2+4abc-2(3a 2b-2ab 2+abc )=4a 2b-3ab 2+4abc-6a 2b+4ab 2-2abc=-2a 2b+ab 2+2abc ;(2)2A-B=2(3a 2b-2ab 2+abc )-(-2a 2b+ab 2+2abc )=6a 2b-4ab 2+2abc+2a 2b-ab 2-2abc=8a 2b-5ab 2;(3)对,与c 无关,将a=18 ,b=15 代入,得:8a 2b-5ab 2=8×(18 )2×15 -5×18 ×(15 )2=0. 12.解:(1)3A+6B=3(2x 2+3xy-2x-1)+6(-x 2+xy-1)=6x 2+9xy-6x-3-6x 2+6xy-6=15xy-6x-9;(2)原式=15xy-6x-9=(15y-6)x-9要使原式的值与x 无关,则15y-6=0,解得:y=25 .。
人教版七年级数学上册整式的加减同步练习题
第二章整式加减第3课时整式的加减一、选择题1.下列各式中是多项式的是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
2.下列说法中正确的是()A.错误!未找到引用源。
的次数是0B.错误!未找到引用源。
是单项式C.错误!未找到引用源。
是单项式D.错误!未找到引用源。
的系数是53.如图1,为做一个试管架,在错误!未找到引用源。
cm长的木条上钻了4个圆孔,每个孔直径2cm,则错误!未找到引用源。
等于()图1A.错误!未找到引用源。
cmB.错误!未找到引用源。
cmC.错误!未找到引用源。
cmD.错误!未找到引用源。
cm4.错误!未找到引用源。
( )A. 错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D. 错误!未找到引用源。
5.只含有错误!未找到引用源。
的三次多项式中,不可能含有的项是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
6.化简错误!未找到引用源。
的结果是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.一台电视机成本价为错误!未找到引用源。
元,销售价比成本价增加了错误!未找到引用源。
,因库存积压,所以就按销售价的错误!未找到引用源。
出售,那么每台实际售价为()A.错误!未找到引用源。
元 B.错误!未找到引用源。
元C.错误!未找到引用源。
元D.错误!未找到引用源。
元8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.错误!未找到引用源。
错误!未找到引用源。
,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A .错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D .错误!未找到引用源。
9.用棋子摆出下列一组三角形,三角形每边有错误!未找到引用源。
枚棋子,每个三角形的棋子总数是错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 整式的加减同步测试题
一、选择题
1.若m=2a-1,n=3m,则a+m+n等于()
A. 9a-1
B. 9a-2
C. 9a-3
D. 9a-4
2.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()
A. y=4n﹣4
B. y=4n
C. y=4n+4
D. y=n2
3.若(x−3y)2=(x+3y)2+M,则M=()
A. 6xy
B. -6xy
C. ±12xy
D. -12xy
4.下列运算正确的是()
A. 2(a−1)=2a−1
B. a2+a2=2a2
C. 2a3−3a3=a3
D. a2b−ab2=0
5.观察下列各式及其展开式
(a+b)2=a2+2ab+ b2
(a+b)3=a3+3 a2b+3a b2+ b3
(a+b)4=a4+4 a3b+6 a2b2+4a b3+ b4
(a+b)5=a5+5 a4b+10 a3b2+10 a2b3+5a b4+ b5
……
请你猜想(2x−1)8的展开式中含x2项的系数是()
A. 224
B. 180
C. 112
D. 48
6.若A=3x2+5x+2,B=4x2+5x+2,则A与B的大小关系是()
A. A>B
B. A<B
C. A≥B
D. A≤B
7.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )
A. 1985
B. -1985
C. 2019
D. -2019
8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么n条直线最多有()个交点
A. 2n-3
B. 2n2
C. n(n−1)
D. n(n-1)
2
二、填空题
9.如图,依次用火柴棒拼三角形:
照这样的规律拼下去,拼n个这样的三角形需要火柴棒________根.
10.已知P=m2−m,Q=m−1(m为任意实数),则P________ Q.(用不等号连接)
11.已知7x m y3和−1
2
x2y n是同类项,则n m=________.
12.已知2a x+y b3与-1
2
a2b x−y是同类项,则(x+y)(x-y)=________
13.若a≠0,s1=−3a,s2=3
s1,s3=3
s2
,s4=3
s3
,…,s2020=3
s2019
,则s2020=
________.
14.有一系列等式:
1×2×3×4+1=52=(12+3×1+1)2,
2×3×4×5+1=112=(22+3×2+1)2,
3×4×5×6+1=192=(32+3×3+1)2,
4×5×6×7+1=292=(42+3×4+1)2,
……
⑴根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是________ ;
⑵式子(n-1) n (n+1) (n+2)+1=________ .
三、计算题
15.先化简,再求值:-3(a2-2b)+5(3b+a2),其中a=-2,b= −1
3。
16.合并同类项:
(1)5m+2n−m−3n
(2)3a2−1−2a−5+3a−a2
17.化简
(1)3(5
3
x2−4x+3)−5(x2−3x+2)
(2)-2x2−[−3x2−2(5
2x−3
2
)+5x]
四、解答题
18.一个多项式加上3x2y−3xy2的和为x3−3x2y,求这个多项式。
19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x= 1
2
,
y=﹣1”,甲同学把x= 1
2错看成x=﹣1
2
,但计算结果仍正确,你说是怎么一回事?
20.已知:M=x2−2x−1,N=x2−3x−1,求6M-4N的值,其中x=1
.
2
答案
1. D
2. B
3. D
4. B
5. C
6. D
7. B
8. C
9. 2n+1
10. ≥
11. 9
12. 6
13. −1
a
14. 11881;(n2+n−1)2
15. 解:原式=-3a2+6b+15b+5a2
=2a2+21b
a=-2.b= −1
3
时
原式=2×(-2)2+21×( −1
3
)
=8-7
=1
16. (1)解:5m+2n−m−3n=4m−n
(2)解:3a2−1−2a−5+3a−a2=2a2+a−6
17. (1)解:原式= 5x2−12x+9−5x2+15x−10
=3x−1
(2)解:原式= -2x2−(−3x2−5x+3+5x)
=x2−3.
18. 解:x3-3x2y-(3x2y-3xy2)=x3-3x2y+3xy2=x3-6x2y+3xy2
19.解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,
∴与x的取值无关.
∴甲同学把x= 1
2错看成x=﹣1
2
,但计算结果仍正确
20. 解:6M−4N
=6(x2−2x−1)−4(x2−3x−1) =6x2−12x−6−4x2+12x+4 =2x2−2
当x=1
2时,原式= -3
2
1、在最软入的时候,你会想起谁。
20.9.179.17.202009:1009:10:55Sep-2009:10
2、人心是不待风吹儿自落得花。
二〇二〇年九月十七日2020年9月17日星期四
3、有勇气承担命运这才是英雄好汉。
09:109.17.202009:109.17.202009:1009:10:559.17.202009:109.17.2020
4、与肝胆人共事,无字句处读书。
9.17.20209.17.202009:1009:1009:10:5509:10:55
5、若注定是过客,没何必去惊扰一盏灯。
Thursday, September 17, 2020September 20Thursday, September 17,
20209/17/2020
6、生的光荣,活着重要。
9时10分9时10分17-Sep-209.17.2020
亲爱的用户:
相识是花结成蕾。
在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。