小学数学三年级速算与巧算技巧资料讲解

合集下载

小学三年级学生的速算口诀

小学三年级学生的速算口诀

小学三年级学生的速算口诀一、加法口诀1、两位数加两位数,相同数位要对齐。

个位对个位,十位对十位。

先从个位加起,满十进一要牢记。

例如:34+56,个位4+6=10,向十位进1,十位3+5=8 再加上进位的1 得9,结果为90。

2、凑十法加法口诀看大数,分小数,凑成十,加剩数。

例如:8+6,看大数8,把小数6 分成2 和4,8+2=10,10+4=14。

二、减法口诀1、两位数减两位数,相同数位要对齐。

个位减个位,十位减十位。

不够减时要借位,借一当十别忘记。

例如:53-28,个位3 不够减8,向十位借1 当10,13-8=5,十位5 被借走1 剩4,4-2=2,结果为25。

2、破十法减法口诀减九加一,减八加二,减七加三,减六加四,减五加五,减四加六,减三加七,减二加八,减一加九。

例如:13-9,把13 分成10 和3,先用10-9=1,再用1+3=4。

三、乘法口诀1、乘法口诀要记牢,一一得一,一二得二…… 九九八十一。

这个是基础,需要反复背诵和练习。

2、乘数是一位数的乘法口诀个位乘个位,十位乘十位,数位要对齐,进位别忘记。

例如:23×4,先算3×4=12,个位写2 向十位进1,再算2×4=8,加上进位的1 得9,结果为92。

四、除法口诀1、除法运算看除数,除数一位看一位,一位不够看两位。

除到哪位商哪位,余数要比除数小。

例如:78÷3,先看7 够3 除,7÷3 商2 余1,再把1 和8 组成18,18÷3=6,结果为26。

2、想乘法做除法口诀做除法,想乘法,乘法口诀来帮忙。

例如:48÷6,想6×8=48,所以48÷6=8。

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。

⑵在连除时,可以交换除数的位置,商不变。

⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。

⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。

②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。

添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。

竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。

小学数学速算与巧算方法例解

小学数学速算与巧算方法例解

小学数学速算与巧算方法例解一、加法求和巧算方法1.加数相等巧算法:如果两个数相加,且这两个数的个位数字相等、并且这两个数的十位数字之和也相等,那么,这时候只需将个位数字相加再将两个十位数字相加,然后组合即可。

例如:48+58=?个位相加8+8=16,十位相加4+5=9,所以:48+58=9162.数根巧算法:对于一个两位数相加求和的问题,有时候我们可以通过拆解成个位数和十位数的方法来快速计算。

这就是数根巧算法。

3.数位和巧算法:对于一个两位数相加求和的问题,如果两个数的个位上的数以及十位上的数之和都是10的倍数,那么这个求和问题就可以通过个位数、十位数的和直接求得。

例如:27+73=?7+3=10,所以这个求和问题的答案为100。

二、减法巧算方法1.差作差法:对于一个两位数相减的问题,我们可以通过差作差法来快速计算。

如果两个数的个位数相减的结果是个位数内,十位数相减的结果是个位数,则可以通过直接进行个位数与十位数的相减求得。

例如:69-48=?9-8=1,6-4=2,所以这个减法问题的答案为212.退位法:对于一个两位数相减的问题,有时候我们需要进行退位计算。

当被减数的个位数小于减数的个位数时,我们需要将被减数的十位数减1,并且在被减数的个位数上加上10。

例如:63-58=?63的个位数小于58的个位数,所以我们需要先将63的十位数减1,得到的结果为5,然后再在63的个位数上加上10,即13、接下来,我们就可以进行个位数和十位数的相减,得到的结果为5,所以这个减法问题的答案为5三、乘法巧算方法1.九乘法口诀:九乘法口诀是指利用数字之间的规律,通过一定的计算方法来快速计算乘法的方法。

例如:9乘以4,答案等于4的前一位数字是3,4减去3得到1,则这个乘法问题的答案为362.十倍定律:对于两个数中的一个数乘以10的倍数的问题,我们只需在这个数的末尾加上相应的0即可。

例如:32×10=?这个乘法问题的答案为320。

三年级数学速算和巧算

三年级数学速算和巧算

三年级数学速算和巧算在小学三年级的数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?店铺在此整理了三年级数学速算和巧算,供大家参阅,希望大家在阅读过程中有所收获!三年级数学速算和巧算方法在熟练掌握计算法则和运算顺序的前提下,可以根据题目本身的特点,运用速算和巧算,化繁为简,化难为易,算得又快又准确。

“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。

(2)53+36+47=53+47+36 =(53+47)+36=100+36=136因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。

2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111把15分拆成15=4+11,这是因为96+4=100,可凑整先算。

(2)52+69=(21+31)+69 =21+(31+69)=21+100=121因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。

3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。

(2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84因为28+2=30可凑整,但最后要把多加的三个2减去。

改变运算顺序在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44加18减19的结果就等于减1。

三年级 速算与巧算

三年级 速算与巧算

例6:25×125×4
=25×4×125
=100×125 =12500
凑整找好朋友:乘积是整十、 整百、整千的先计算 2×5=10, 4×25=100,8×125=1000,...
这题用了乘法交换律、结合律
例7:888×125
=111×(8×125)
=111×1000 =111000
没有好朋友怎么办:先拆分, 再找能凑整的好朋友 888拆成8×111
第一讲 速算与巧算
模块一 加减法速算 模块二 乘法的简便运算
模块一 加减法速算
1.加法运算定律. (1)加法交换律:两个加数交换位置,和不变.
字母公式:A+B=B+A;
(2)加法结合律:先把前两个数相加,或者先把后两个数相加,和 不变.
字母公式:(A+B)+C=A+(B+C).
2.凑整法和基准数法求和.
课后作业 p11 作业1.2.3.4
明天见!
=268-100-100 =68
观察减数之间的特点; 存在可以凑成整十整 百的数,先将其相加, 再用被减数减去它们 的和。 注意添上括号后,符 号需要变化。
例4:300-9-19-29-39-49-59
=300-(10+20+30+40+50+60-1-1-1-1-1-1)
=300-(210-6) =300-210+6 =96
加减法同级运算,括号外面是减号的,添上或去掉括号,括号里 的符号:加号要变成减号、减号要变成加号.当所有括号都去掉后,可 以将数与前面的符号一起移动,第一个数前面为加号.
例14:(1225÷8)×(8÷4)×(4÷1)
=1225÷8×8÷4×4 =1225÷(8÷8)÷(4÷4)

小学数学速算巧算

小学数学速算巧算

小学数学速算与巧算方法例解一、加法中的巧算速算(一)“凑整”法1、互补数先加法两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10, 2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100, 22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如: 87655→12345, 46802→53198, 87362→12638,…例:53+36+47 = 53+47+36 = 136巧算下面各题:36+87+64 99+136+101 1361+972+639+282、补数来先加后减法例:96+15 = (96+4) + (15-4) = 100+11 = 111巧算下列各题52+69 63+18+19 28+28+28188+873 548+996 9898+203(二)找基准数法例:23+20+19+22+18+21 =(20+3)+ 20 +(20-1)+(20+2)+ (20-2)+(20+1)= 20+20+20+20+20+20+3-1+2-2+1 = 120 + 3 = 123巧算下列各题37+42+39+40+38+41 102+100+99+101+98 209+213+210+208+212+211(三)等差数列求和法相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5, 1,3,5,7,9 3,6,9,12,15 4,8,12,16,201. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,例: 1+3+5+7+9 = 中间数是5 共有5个数 5×5=25巧算下列各题2+4+6+8+10 3+6+9+12+15 4+8+12+16+201+2+3+4+5+6+7+8+9 102+100+99+101+982. 等差连续数的个数是偶数时,它们的和等于最小数与最大数之和乘以个数的一半,例:1+2+3+4+5+6+7+8+9+10= 共10个数,个数的一半是5,最小数是1,最大数是10.(1+10)×5=11×5=55巧算下列各题23+20+19+22+18+21 3+5+7+9+11+13+15+172+4+6+8+10+12+14+16+18+20 37+42+39+40+38+41二、减法中的巧算(一).把几个互为“补数”的减数先加起来,再从被减数中减去。

小学三年级数学奥数知识点速算与巧算

小学三年级数学奥数知识点速算与巧算

1.快速计算乘法口诀表在小学三年级,学生已经开始学习乘法口诀表。

熟练掌握乘法口诀表是进行速算和巧算的基础。

学生应该掌握1乘以任意数等于该数本身,以及0乘以任意数等于0的原则。

另外,在计算乘法的过程中,还可以利用一些巧妙的方法,如利用乘法交换律和结合律,简化计算的步骤。

2.快速计算除法在小学三年级,学生已经开始学习除法运算。

为了进行快速计算除法,学生需要熟悉乘法和除法之间的关系。

例如,学生可以通过将除法问题转化为乘法问题来进行计算。

另外,学生还需要熟悉常见的除法口诀,如9除以任意数的口诀。

3.快速计算加法与减法在小学三年级,学生已经开始学习加法和减法运算。

为了进行速算和巧算,学生可以借助一些技巧。

例如,学生可以利用补数进行计算,将加法问题转化为减法问题或将减法问题转化为加法问题。

另外,在计算的过程中,学生还可以利用进位和借位的方法简化计算的步骤。

4.快速计算小数在小学三年级,学生已经开始学习小数的运算。

为了进行快速计算小数,学生需要熟悉小数的基本概念,如小数点的意义和小数的大小比较。

另外,在计算小数的过程中,学生还可以利用近似计算和适当舍入的方法简化计算的步骤。

5.快速计算整数问题在小学三年级,学生已经开始学习整数的运算。

为了进行速算和巧算,学生需要熟悉整数的基本概念,如正数、负数和零的概念。

另外,在计算整数的过程中,学生还可以利用相反数的概念简化计算的步骤。

6.快速计算组合问题在小学三年级,学生已经开始学习组合的概念。

为了进行快速计算组合问题,学生需要熟悉排列组合的基本原理,如乘法原理和加法原理。

另外,在计算组合的过程中,学生还可以利用化简问题和分类讨论的方法简化计算的步骤。

7.快速计算面积和周长问题在小学三年级,学生已经开始学习面积和周长的计算。

为了进行速算和巧算,学生需要熟悉面积和周长的基本公式,如长方形的面积和周长的计算公式。

另外,在计算面积和周长的过程中,学生还可以利用化简问题和近似计算的方法简化计算的步骤。

三年级奥数第一讲:速算与巧算

三年级奥数第一讲:速算与巧算

第1讲速算与巧算专题简析:在进行加减运算时,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。

加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千.......的数看作所接近的整数进行简算。

进行加减巧算时,凑整之后,对于原数与整十、整百、整千......相差的数,要根据“多加要再加,多减要再减”的原则进行处理。

另外可以结合加法交换律、加法结合律以及减法的性质进行凑整,从而达到简算的目的。

知识点、重点、难点:1、加法的简便运算:(1)A+B=B+A (加法交换律)(2)(A+B)+C=A+(B+C)(加法结合律)2、减法的简便运算:(1)A-B-C=A-(B+C)(2)A-B+C=A-(B-C)注意:加减法同级运算,括号外面是减号的,添上或去掉括号,括号里的符号:加号要变成减号、减号要变成加号。

当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号。

王牌例题1在小学奥数中计算中,凑整是一种方法,更是一种解题思想。

凑整只是手段,简算才是目的。

凑整法:1、你有好方法迅速算出下面各题的结果吗?(1)23+45+67= (2)25+53+75+78+47=(3)872+284-272= (4)537-142-58=思路导航:先把加在一起为整十、整百、整千......的数相加,再与其他数相加。

举一反三1用简便方法计算下面各题。

1、(1)487+321+113+479= (2)723-251+177=(3)773+368+227= (4)34+47+53+66=2、(1)89+123+11+177= (2)235-125+65=(3)483+254-183= (4)271+97-171=(5)425-172-28=王牌例题2你有好办法迅速算出下面各题的结果吗?(1)199+74 (2)347+102(3)784-297 (4)1384-501思路导航:计算时,先将接近整十、整百、整千的数看作整十、整百、整千来计算,对于原数与整十、整百、整千......相差的数,要根据“多加要再加,多减要再减”的原则进行处理。

第三章 速算与巧算(讲义)

第三章 速算与巧算(讲义)

第三章速算与巧算(讲义)小学数学第三章速算与巧算(讲义)的教案一、教学目标1. 知识与技能:(1)掌握速算技巧,学习简便计算方法;(2)学习加减乘除的运算规律和性质。

2. 思维和能力:(1)发展快速计算能力,提高口算速度和准确性;(2)培养学生观察分析、归纳整理等思维能力。

3. 情感态度:(1)培养学生善于发现问题、善于总结、善于思考、勇于创新的良好学习态度;(2)培养学生乐观、自信、勇于挑战数学难题的良好心态。

二、教学内容及重点1. 教学内容本章节通过速算技巧的学习,帮助学生更好、更快地掌握加减乘除的计算方法,加深对数学运算规律和性质的理解。

2. 教学重点(1)掌握加减乘除的计算方法;(2)学习速算技巧,积累巧算方法。

三、教学方法1. 返回教学法:通过教师讲解、展示样例、学生讨论、实践演习等方式进行教学。

2. 活动教学法:通过游戏等形式进行教学,提高学生的兴趣和教学效果。

四、教学准备1. 教师教材及讲义;2. 学生教材;3. 教学研究资料。

五、教学过程1. 导入引导学生复习前面所学知识,了解本章的重点内容。

2. 教学主体(1)掌握加减乘除的计算方法注重学生计算基本的加减乘除运算,培养学生日常生活中快速计算的能力。

同时,通过多次练习来加深对数字的认识和加减乘除的基本规律。

(2)学习速算技巧,积累巧算方法通过速算技巧的学习,引导学生学会用不同的方式来算一道数学题。

在教师的引导下,学生按照例题模仿实践,掌握速算方法,并尝试在日常生活中应用。

注重在学习巧算方法中要培养学生良好的思维能力和发现问题的能力。

学生要注重在问题发现、运算规律归纳和运算方法总结等方面进行深入学习。

3. 实践演习在教师的指导下,学生进行速算、巧算的实践演习,加深对所学知识的理解和掌握。

4. 总结在教学的最后,教师带领学生总结本章学习的重点和难点,让学生对所学知识进行归纳整理,提高知识运用能力。

六、教学总结通过本章的学习,学生掌握了速算技巧和巧算方法,加深对加减乘除的理解和掌握。

三年级数学专题讲义第一讲 速算与巧算

三年级数学专题讲义第一讲 速算与巧算

第一讲速算与巧算〖内容概述〗计算是数学学习的根本,任何问题到最终都要归结为数的计算,从而得到最终结果。

而计算的方法的好坏直接决定我们的解题速度。

一个好的计算方法,往往使得原本计算量很大计算简化,从而节省我们的时间。

在本讲里我们主要向大家介绍一些常规的计算技巧,其中包括凑整构造法,拆分法构造法,分组构造法,推理计算及等差数列法等。

〖经典例题〗例1.计算768674232++=。

解析:本题数字比较大,如果我们按顺序计算的话,会发现非常的麻烦,但可以发现768和232的个位数字的和为10,我们考虑先将这两个数进行运算。

768674232(768232)6741674++=++=。

例2.计算39655+=。

解析:和上个例题不一样的是,本题就有两个数相加,而且这两个数的个位数字和并不是10,这时我们要发展进攻方略,将396拆成400-4,从而得到我们想要的东西。

39655400554451+=+-=.例3.计算9999+999+99+9= 。

解析:如果直接计算难度会较大,所以我们要寻找一种简单的解题方法来解决此题。

不难发现每个数如果加上1后就会凑成整十、整百、整千,因此我们用凑正法计算。

9999+999+99+9=10000-1+1000-1+100-1+10-1=11110-4=11106。

〖方法总结〗上面各题我们用到的是凑整法。

在这里要引入“补数”的概念:互为补数的两个数个位数之和是10,其他对应位上的数字之和是9。

这样,我们在计算加法时,尾数互补先相加,如例1;当没有尾数互补的数时,我们也可以拆将接近整十、整百的凑成整十、整百相加后再减去补数。

,如例2和例3。

〖巩固练习〗第 1 页共 11 页1.计算858683767882+++++2.计算188+8733.计算9898+2034.计算100000-85426〖经典例题〗例4.计算6324555--= 。

解析:观察本题,算式的两个减数的个位数字的和为10,因此我们想让这两个数先运算。

(完整版)三年级-速算与巧算

(完整版)三年级-速算与巧算

速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

即:a+b=b+a (2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。

即:a+b+c=(a+b)+c=a+(b+c) 2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。

相反,一个数减去几个数的和,等于连续减去这几个数。

即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。

如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。

如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。

如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。

例如:1+9=10,1叫做9的补数。

判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。

小学常用的巧算和速算方法

小学常用的巧算和速算方法

小学常用的巧算和速算方法一、巧算方法:1.凑整法:将一个数调整到一个更容易处理的数。

例如:17+4,可以将4拆分成2+2,然后17+2+2=19+2=212.倍数法:将一个数按照倍数进行运算。

例如:23×5,可以将23拆分成20+3,然后20×5=100,3×5=15,最后100+15=1153.分解法:将一个数分解成更容易计算的数。

例如:36+28,可以将28拆分成20+8,然后36+20+8=56+8=644.倒算法:将一个数转化为与其相加减的数。

例如:80-27,可以将27转化为73,然后80-73=75.移项法:将一个式子中的数移动到另一边进行运算。

例如:8+5=15,可以转化为15-8=76.换位运算法:将两个数的位置进行调换再运算。

例如:78-35,可以调换顺序为35-78,然后将结果取负数得到-43二、速算方法:1.竖式计算法:将两个数竖直排列后进行运算。

例如:27×13,将27和13竖直排列,然后分别计算个位和十位,最后将结果相加得到3512.快速乘法:使用乘法表以及对称性进行快速计算。

例如:78×6,可以先计算78×3,然后将结果翻倍得到234×2=468,最后78×6=468+468=9363.快速除法:使用除法表以及对称性进行快速计算。

例如:56÷7,可以先计算56÷2,然后将结果翻倍得到28×2=56,最后56÷7=284.快速减法:使用对称性和调整变形进行快速计算。

例如:245-97,可以先计算245-100,然后将结果加上3,最后245-97=1455.快速加法:使用进位和调整变形进行快速计算。

例如:789+143,可以先计算700+100=800,然后分别计算80+40=120和9+3=12,最后800+120+12=932三、其他常用的巧算和速算方法:1.快速平方:使用平方公式或对称性进行快速计算。

三年级春季班总结(第一讲速算与巧算)

三年级春季班总结(第一讲速算与巧算)

第一讲:速算与巧算乘法运算1、 乘法交换律:a×b= b×a2、 乘法结合律:(a×b)×c = a×(b×c)3、 乘法分配律:(a±b)×c = a×c ± b×c复习2×5=104×25=100 牢记,并灵活运用8×125=100017×4×25 125×19×8=17×(4×25) =125×8×19=17×100 =1000×19=1700 =19000125×(40+8) (100-4)×25=125×40+125×8 =100×25-4×25=5000+1000 =2500-100=6000 =2400一、乘5、15、25、1251、乘5:减半添02、乘15:加半添03、乘25:×100÷44、乘125:×1000÷8186×5用“减半添0” 原式=186÷2×10 =93×10 =930 =186×5×2÷2=186×10÷2=1860÷2=930如果是单数×5,怎么减半呢?121×5想120的一半是60,121的一半就是60.5,再添0,即扩大10倍,等于605。

186×15 用“加半添0”原式=(186+186÷2)×10=(186+93)×10=2790=186×(10+5) =186×10+186×5 =1860+930 =279024×25=24×100÷4 (如果该数可以被4整除,可用该数÷4,再×100)=2400÷4 =24÷4×100=600 =60096×125=96×1000÷8 (如果该数可以被8整除,可用该数÷8,再×1000)=96000÷8 =96÷8×1000=12000 =12000拓展:学会灵活“拆数”84×75=84×25×3 =84×5×15 =420×15 =(420+210)×10 =6300 =84×(100-25) =84×100-84×25 =8400-2100=6300=84×100÷4×3 =2100×3 =6300二、乘9、99、999……1、位数与9的个数相同:去1添补2、9的个数多:去1添补,中间隔9(少几位,就隔几个9)3、9的个数少:用凑整方法另一乘数的位数与9的个数相同:去1添补12×99 12×99 = 118812去1是1112的补数是88=12×(100-1) =1200-12 =1188122×999 122×999 = 121878122去1是121122的补数是878=122×(1000-1) =122000-122 =1218789的个数多:去1添补,中间隔9(少几位,就隔几个9)12×999 12×999 = 1198812去1是1112的补数是88999比12多1位数,所以中间隔1个9=12×(1000-1) =12000-12 =1198812×9999 12×999 = 11998812去1是1112的补数是889999比12多2位数,所以中间隔2个9 =12×(10000-1) =120000-12 =1199889的个数少:用“凑整”的思想12×9=12×(10-1)=120-12=108122×99=122×(100-1)=12200-122=12078拓展:灵活掌握“凑整”思想123×998=123×(1000-2)=123000-246=122754三、乘11、101、1001……1、乘11:两头一拉,中间相加2、乘101、1001等:坐椅子1.乘11:45×11 4 54 9 55 66 1 6(进1)=45×(10+1) =450+45 =49556×11 =56×(10+1) =560+56 =6162222×112 2 2 22 4 4 4 4=2222×(10+1) =22220+2222 244422.乘101、1001等:79×101 有2把椅子,每把椅子宽度是2=79×(100+1)=7900+79=797923×10101 有3把椅子,每把椅子宽度是2=23×(10000+100+1)=230000+2300+23=232323123×1001 有2把椅子,每把椅子宽度是3=1231233985×100010001 有3把椅子,每把椅子宽度是4=39853985398523×1001001 有3把椅子,每把椅子宽度是3,椅子宽,用零补=23023023拓展:灵活掌握“凑整”思想123×1002003=123×(1000000+2000+3)=123×1000000+123×2000+123×3=123000000+246000+369=123246369小结:上述几类乘法速算其实都是用了凑整的思想。

三年级速算与巧算

三年级速算与巧算

三年级速算与巧算对于三年级的小朋友们来说,数学学习中的速算与巧算可是一项非常有趣且实用的技能。

掌握了速算与巧算的方法,不仅能让计算变得更加轻松快捷,还能提高解题的效率和准确性,培养良好的数学思维。

一、加法的速算与巧算1、凑整法这是加法速算中最常用的方法。

比如:28 + 72 = 100,36 + 64 =100 等等。

在计算时,如果能把相加能凑成整十、整百、整千的数先加起来,会让计算变得简单许多。

例如:34 + 57 + 66我们可以先把 34 和 66 相加,得到 100,再加上 57,结果就是 157。

2、加法交换律和结合律加法交换律:两个数相加,交换加数的位置,和不变。

比如:3 +5 = 5 + 3。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

比如:(2 + 3) + 4 = 2 +(3 + 4)。

在计算中,灵活运用这两个定律,可以使计算更简便。

例如:25 + 18 + 75可以先交换 18 和 75 的位置,变成 25 + 75 + 18,然后先计算 25+ 75 = 100,再加上 18 得到 118。

3、基准数法当相加的数都比较接近某一个数时,可以把这个数作为基准数,然后把每个数都看作基准数加上或减去一个数,最后再进行计算。

比如:92 + 95 + 88 + 91 + 87观察这些数,都接近 90,可以把 90 作为基准数。

原式=(90 + 2) +(90 + 5) +(90 2) +(90 + 1) +(90 3)= 90×5 +(2 + 5 2 + 1 3)= 450 + 3= 453二、减法的速算与巧算1、凑整法与加法类似,在减法中,如果减数可以凑成整十、整百、整千的数,先把它们相加,再进行计算。

例如:100 38 22可以先把 38 和 22 相加,得到 60,然后用 100 减去 60,结果是 40。

2、减法的性质一个数连续减去两个数,等于这个数减去这两个数的和。

三年级整数的速算与巧算

三年级整数的速算与巧算

整数的速算与巧算(一)知识框架一、加减法中的速算与巧算速算巧算的核心思想和本质:凑整。

常用的思想方法总结如下:(1)分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.(2)加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.(3)数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.(4)“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)二、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=⨯=,81251000⨯=,520100⨯=(去8数,重点记忆)123456799111111111⨯⨯=(三个常用质数的乘积,重点记忆)711131001理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)三、乘、除法混合运算的性质(1)商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:÷=⨯÷⨯=÷÷÷≠,0()()()()0a b a n b n a m b m mn≠(2)在连除时,可以交换除数的位置,商不变.即:a b c a c b÷÷=÷÷(3)在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a⨯÷=÷⨯=÷⨯(4)在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即 ()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷(5) 两个数之积除以两个数之积,可以分别相除后再相乘.即()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷上面的三个性质都可以推广到多个数的情形.例题精讲一、加减速算【例 1】 计算:(1)117+229+333+471+528+622(2)(1350+249+468)+(251+332+1650)(3)756-248-352(4)894-89-111-95-105-94【考点】分组凑整 【难度】☆ 【题型】解答【解析】在这个例题中,主要让学生掌握加、减法分组凑整的方法。

3年级数学巧算讲解

3年级数学巧算讲解

3年级数学巧算讲解以3年级数学巧算讲解为题,本文将介绍一些适合3年级学生的数学巧算方法。

这些巧算方法可以帮助学生更快、更准确地进行数学计算,培养他们的数学思维能力和计算技巧。

一、加法巧算1. 个位数相加:当两个个位数相加时,可以先算出十位数,再算出个位数。

例如:23+17,先算出20+10=30,再算出3+7=10,所以答案是30+10=40。

2. 十位数相同的数相加:当两个十位数相同的数相加时,可以将十位数保持不变,只计算个位数的和。

例如:46+48,十位数相同为4,个位数相加得到6+8=14,所以答案是4十1十4。

3. 十位数相加为10的倍数:当两个十位数相加为10的倍数时,可以将两个数的个位数相加,并将十位数保持不变。

例如:34+76,个位数相加得到4+6=10,所以答案是1十1十0。

二、减法巧算1. 个位数相减:当两个个位数相减时,可以先算出十位数,再算出个位数。

例如:35-17,先算出30-10=20,再算出5-7=-2,所以答案是20-2=18。

2. 十位数相同的数相减:当两个十位数相同的数相减时,可以将十位数保持不变,只计算个位数的差。

例如:58-38,十位数相同为5,个位数相减得到8-8=0,所以答案是2十0。

3. 十位数相减为10的倍数:当两个十位数相减为10的倍数时,可以将两个数的个位数相减,并将十位数保持不变。

例如:73-43,个位数相减得到3-3=0,所以答案是3十0。

三、乘法巧算1. 乘10的倍数:当一个数乘以10的倍数时,只需要在原数的末尾加上相应数量的0。

例如:34×10=340,将34后面加上一个0即可。

2. 乘法分配律:当一个数乘以两个数的和时,可以先将这个数分别乘以这两个数,再将两个积相加。

例如:6×(3+4),可以先计算6×3=18,再计算6×4=24,最后将18和24相加得到42。

3. 平方巧算:当一个数的平方以5结尾时,可以使用下面的方法进行巧算。

完整版)小学数学三年级速算与巧算技巧

完整版)小学数学三年级速算与巧算技巧

完整版)小学数学三年级速算与巧算技巧12+13观察:数字没有明显规律,符号也没有周期重新排队分组:1+3+5+7+9-2-4-6-8+11-10+13-1225分组法是一种常见的速算方法,适用于有一定规律的加减混合运算。

关键是观察数字和符号的规律,找到周期,进行分组计算。

需要注意的是,不要忘记第一个数的符号,分组有剩余时要特别处理,复杂分组需要按照符号周期和数目进行划分。

如果数字和符号的规律不好用,可以重新观察并排队分组。

二、倍数法适用于乘法和除法中大数相乘、除以小数的情况,通过变形转化为较小的乘法或除法,从而简化计算。

观察:1、有数可以拆分成较小的数2、有数是另一个数的倍数方法:找倍数,变形计算。

1、拆分成较小的数例:36×2536×(20+5)720+1809002、除以小数例:420÷0.4420÷(4÷10)420×2.51050倍数法是一种适用于乘法和除法中的速算方法,可以将大数变形为较小的乘法或除法,从而简化计算。

关键是找到数的倍数和可以拆分成较小的数的情况,进行变形计算。

例如,可以将乘法转化为加法,将除法转化为乘法。

需要注意的是,拆分成较小的数时要注意乘法分配律的运用,除以小数时要将小数转化为分数进行计算。

三、近似法适用于加减乘除中的数值较大或较复杂,通过略去小数或估算近似值,从而简化计算。

观察:1、数值较大或较复杂2、可以略去小数或估算近似值方法:略去小数或估算近似值。

1、略去小数例:3.9×4.64×4=162、估算近似值例:187+396+623+894200+400+600+9002100近似法是一种适用于加减乘除中的速算方法,可以通过略去小数或估算近似值,简化计算。

关键是观察数值的大小和复杂程度,选择略去小数或估算近似值的方法。

需要注意的是,略去小数时要保证误差不会太大,估算近似值时要注意取整和舍去的方法。

三年级思维拓展-速算与巧算(一)

三年级思维拓展-速算与巧算(一)

速算与巧算(一)☜知识要点在我们的日常生活和学习中,离不开数字计算。

为了做到计算又快速又准确,需要掌握一些速算技巧和方法。

本章主要介绍如何运用一定的方法,来进行加减法的简便计算。

一、加法运算定律1. 加法交换律:两个数相加,交换加数的位置,他们和不变。

即:a+b=b+a。

2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,他们的和不变。

即:(a+b)+c=a+(b+c)。

在整数的加法运算中,我们常常可以利用加法交换律和结合律把能凑成整十、整百、整千……的数先相加,然后再加上剩下的数,从而让计算简单。

二、加减混合运算中的巧算技巧1. 带着符号搬家:在加减混合运算中,可以交换加数、减数的位置。

但必须在交换位置时,连同前面的运算符号一起“搬家”,运算的结果不会改变。

2. 去括号:加减混合运算中,如果括号前面是“+”号,去掉括号的时候不改变括号里面的符号;如果括号前面是“—”号,去掉括号的时候括号里面的符号要改变:即“+”变“—”,“—”变“+”。

3. 添括号:加减混合运算中,可通过添加括号来改变运算顺序,添加括号时,如果括号前面是“+”号,不改变括号里面的符号;如果括号前面是“—”号,括号里面的符号要改变:即“+”变“—”,“—”变“+”。

三、补数如果两个数的和恰好可以凑成整十、整百、整千……的数,那么其中一个数叫做另一个数的“补数”。

例如;1+9=10,1叫做9的补数。

而一个数的个位数字和它的补数的个位数字之和是10,其他位的数字之和是9。

☜精选例题☝【例1】:请用简便方法计算下列各题。

(1)19+128+72(2)82+354+18(3)64+97+103+36☝思路点拨:运用加法的交换律和结合律,先计算互为补数的两个数,可使计算简单。

☝答案:(1)19+128+72 (2)82+354+18 =19+(128+72)=82+18+354=19+200 =100+354=219 =454(3)64+97+103+36=(64+36)+(97+103)=100+200=300✌活学巧用1.口算43+57= 237+63= 1358+642= 2347+7653= 100-28= 1000-367= 10000-4523= 4000-1238=2. 请用简便方法计算下列各题。

小学三年级数学速算技巧

小学三年级数学速算技巧

一、加法速算技巧1.加法交换律:两个数相加,可以交换位置,结果不变。

例如:3+5=5+3=82.加法合并律:可以先合并其中的一部分数再计算。

例如:3+4+5=(3+4)+5=7+5=123.加法逆元:一个数与其相反数相加,结果为0。

例如:8+(-8)=0。

4.加法经验法则:如果两个数字之和除以一定的数余1,则这两个数字之和的最后一位数一定是1、例如:58+37=95,95除以10余5,则58和37的和的最后一位数是55.结合法则:可以先计算其中两个数相加,再与第三个数相加。

例如:5+7+3=(5+7)+3=12+3=156.进位技巧:如果两个数相加时出现进位,可以将进位数放在结果的前一位上。

例如:24+17=30+11=417.补数法:如果一个数距离一些十位数较远,可以找到距离该数相近的十位数,然后通过补数的方式进行计算。

例如:37+18=37+20-2=57-2=55二、减法速算技巧1.减法的定义:减去一个数可以看作是加上该数的相反数。

例如:8-3=8+(-3)=52.减法的交换律:两个数相减,不能交换位置,结果会改变。

例如:8-3≠3-83.减法的合并律:可以先合并其中一部分数再计算。

例如:10-3-2=(10-3)-2=7-2=54.减法的逆元:减去一个数与该数相反数相加,结果为0。

例如:8-(-8)=8+8=165.进位技巧:如果被减数的其中一位小于减数的对应位,需要向高位借位。

例如:24-7=24-6-1=18-1=176.减去9的技巧:将被减数的个位数减去9,再将十位数减1、例如:62-9=(62-2)-7=60-7=537.分解法:可以将减数拆分成几个部分,再进行计算。

例如:56-26=(50-20)+(6-6)=30。

三、乘法速算技巧1.乘法的交换律:两个数相乘,可以交换位置,结果不变。

例如:3×7=7×3=212.乘法的分配律:可以先计算其中一部分数再相乘。

3年级:速算与巧算,看完这篇你能提高解题速度90%

3年级:速算与巧算,看完这篇你能提高解题速度90%

【内容概述】各种加法和减法的速算与巧算方法,如凑整,运算顺序的改变,数的组合与分解,利用基准数等.【典型问题】挑战级数:⭐1.计算:9998+998+99+9+6[分析与解]9998+ 998+ 99+9+(2+2+1+1)=(998+2)+(998+2)+(99+1)+(9+1)=10000+1000+100+10=11110挑战级数:⭐2.计算:1966+1976+1986+1996+2006;[分析与解] (1986-20)+(1986-10)+1986+(1986+10)+(1986+20)=1986×5=9930.挑战级数:⭐⭐⭐3.计算:1234+2341+3412+4123.[分析与解] 先计算千位,为1+2+3+4=10,于是对应为10×1000=10000;再计算百位,为2+3+4+1=10,对应为10×100=1000;再计算十位,为3+4+1+2=10,对应为10×10=100;再计算个位,为4+1+2+3=10,对应为10×1=10;所以这4个数的和为10000+1000+100+10=11110.挑战级数:⭐⭐4.计算:123+234+345-456+567-678+789-890.[分析与解] 先计算百位,为1+2+3-4+5-6+7-8=0;再计算十位,为2+3+4-5+6-7+8-9=2;最后计算个位,为3+4+5-6+7-8+9-0=14;所以,这些数计算的结果为2×10+14=34.挑战级数:⭐⭐5.计算:569+384+147-328-167-529.[分析与解] 原式=(569-529)+384-328+147-(147+20)=40+56-20=76.挑战级数:⭐⭐⭐6.计算:6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)[分析与解] 6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)=6472-4476+2480+5319-3323+1327+9354-7358+5362+6839-4843+2847 =(6472+2480+5319+1327+9354+5362+6839+2847)-(4476+3323+7358+4843) =40000-20000=20000.挑战级数:⭐⭐⭐7.计算:93+87+88+79+100+62+75+95+85+69+72+98+89+77+54+75+92+85+83+76+65+60+79+86+100+49+97+97+80+78.[分析与解] 先计算百位,1+1=2;再计算十位,9+8+8+7+0+6+7+9+8+6+7+9+8+7+5+7+9+8+8+7+6+6+7+8+0+4+9+9+8+7=207;再计算个位,3+7+8+9+0+2+5+5+5+9+2+8+9+7+4+5+2+5+3+6+5+0+9+6+0+9+7+7+0+8=155;所以这些数的和2×100+207×10+155=2425.挑战级数:⭐⭐⭐8.(1) 在加法算式中,如果一个加数增加50,另一个加数减少20,计算和的增加或减少量.(2) 在减法算式中,如果被减数增加50,差减少20,那么减数应如何变化?[分析与解] (1) 50-20=30,所以计算和增加了30;(2) 50+20=70,即减数增加了70.挑战级数:⭐⭐⭐9.图1-1的30个格子中各有一个数.最上面一横行和最左面一竖列中的数已经填好.其余每个格子中的数等于同一横行最左面数与同一竖行最上面之和(例如a=14+17=31) .问这30个数的总和等于多少?图1-1[分析与解] 由于未填的每个格子中的数等于同一横行最左面数与同一竖行最上面数之和,因此每一行未填的空格,它们对总和贡献就有一个11+13+15+17+19,每一列未填空格,它们就要使总和增加12+14+16+18,未填的格子构成一个四行五列的方阵.因此它们对总和的贡献有4个11+13+15+17+19和5个12+14+16+18.总和为(11+13+15+17+19)×5+(12+14+16+18)×6+10=15×50-5=750-5=745.挑战级数:⭐⭐⭐10.计算:1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,1+2+3+4+5+4+3+2+1,根据上面四式计算结果的规律,求1+2+3+…+192+193+192+…+3+2+1的值.[分析与解] 1+2+1=2×2=4,1+2+3+2+1=3×3=9,1+2+3+4+3+2+1=4×4=16,1+2+3+4+5+4+3+2+1=5×5=25,……………………所以有1+2+3+4+…+192+193+192+191+…+3+2+1=193×193=37249.挑战级数:⭐⭐⭐11.如图1-2,教室里有4个书柜,每个书柜里都有4格书,每格上都标明了书的册数.一天,老师问小钢和小明:“不许用加法计算,你们能很快告诉我,这4格书柜里,哪一个书柜里的书多一些吗?”两个人看了看书柜上的数,想了想齐声说:“4个书柜的书是同样多!”老师高兴地说:“完全正确!”请你说一说他们是怎样想出来的?图1-2[分析与解] 因为每个书柜放书的个位数都是:1+2+5+6=14,十位数字都是:3+4+7+8=22,所以总和为22×10+14=234.挑战级数:⭐⭐12.请从3,7,9,11,21,33,63,77,99,231,693,985这12个数中选出5个数,使它们的和等于1995.[分析与解] 985+693+231+77+9=1995.挑战级数:⭐⭐⭐13.有24个整数:112,106,132,118,107,102,189,153,142,134,116,254,168,119,126,445,135,129,113,251,342,901,710,535,问:当将这些整数从小到大排列起来时,第12个数是多少?[分析与解] 从小到大依次排列为:102、106、107、112、113、116、118、119、126、129、132、134、135、142、153、168、189、251、254、342、445、535、710、901,所以第12个数是:134.挑战级数:⭐⭐⭐14.从1999这个数里减去253后,再加上244,然后再减去253,再加上244,…,这样一直减下去,减到第多少次,得数恰好等于0?[分析与解] 1999-253+244-253+244-253+244-253+244…-253+244-253+244-253=1999-(253-244)-(253-244)-…-(253-244)-253=1999-253-9-9-…-9=1746-(9+9+9+ (9)=0,而1746÷9=194,所以需减到194+1=195次,得数恰好等于0.挑战级数:⭐⭐⭐15.在134+7,134+14,134+21,…,134+210这30个算式中,每个算式的计算结果都是三位数,求这些三位数的百位数字之和.[分析与解] 134+7=141,134+14=148 ,134+21=155 ,134+28=162,134+35=169 ,134+42=176,134+49=183,134+56=190,134+63=197,134+70=204,…,134+210=344.所以得到:141、148、155、162、169、176、183、190、197、204、 (302)309、316、323、330、337、344.其中百位数字为1有9个数,百位数字为3的有7个,百位数字为2的有30-9-7=14个,所以这些三位数的百位数字之和为9×1+14×2+7×3=58.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲:速算与巧算
关键培养孩子的思维习惯:遇到计算题先观察,再思考,然后选择适合的速算方法!
所谓“一看”“二想”“三选择”
一、分组法
适用于有一定规律的加减混合运算,通过加减重新组合,将原有计算转变为较小数或相同数的计算,从而简便计算过程。

观察:1、数字有一定规律
2、符号有一定规律
方法:看符号,找周期。

根据符号的规律划分周期,进行分组计算。

切记不要忘了第一个数的符号!
1、简单分组
例:10 -9 +8 -7 +6 -5 +4 -3 +2 -1
+-+-+-+-+-
(符号周期为+、-,两个数为一组)
则原式=(10-9)+(8-7)+(6-5)+(4-3)+(2-1)
=1+1+1+1+1
=5
2、分组有剩余
例:20 + 19 –18 + 17 –16 + 15 –14 + 13 –12 + 11 –10
++-+-+-+-+-
(符号周期为+、-,两个数一组,但第一个数多余出来了)
则原式=20 +(19-18)+(17-16)+(15-14)+(13-12)+(11-10)
=20+1+1+1+1+1
=25
3、复杂分组
例:48 + 47 - 46 -45 + 44 + 43 –42 –41 + 40 + 39 –38 –37 + 36 ++--++--++--+(符号周期为+、+、-,-,四个数一组)
则原式=(48 + 47 - 46 -45)+(44 + 43 –42 –41)+(40 + 39 –38 –37)+ 36 =4+4+4+36
=48
例:15 + 14 –13 + 12 + 11 –10 + 9 + 8 –7 + 6 + 5 –4 + 3 + 2 - 1
++-++-++-++-++-
(符号周期为+、+、-,三个数一组)
则原式=(15 + 14–13)+(12 + 11–10)+(9 + 8–7)+(6 + 5 –4)+(3 + 2–1)=16+13+10+7+4 (这里提醒孩子也要善于观察,每组后两个数先做运算得1,再加第一个数比较简便)
=(16+4)+(13+7)+10
=20+20+10
=50
4、重新分组(即符号或数字的规律不好用,需要观察重新“排队”分组)
例:1-2+3-4+5-6+7-8+9-10+11
经观察,数字和符号都是有规律的,可是按照(1-2)+(3-4)……这样分组的话,每个括号里都不够减。

怎么办,这时我们可以利用“带符号搬家”给数字重新排队,将原式变成11-10+9-8+7-6+5-4+3-2+1
这样小朋友们一定就会做了,最后结果等于6。

例:(11+13+15+17+19)-(10+12+14+16+18)
5 个加数减5个减数,可以去括号,重新排队。

原式=11+13+15+17+19-10-12-14-16-18
=(11-10)+(13-12)+(15-14)+(17-16)+(19-18)
=1+1+1+1+1
=5
例:66 + 94 + 72 + 86 -(70 + 64 + 92 + 84)
本题虽然数字有大有小,似乎没有什么规律,不过仔细观察,4 个加数减去4 个减数,且每个加数都对应着一个跟它差不多的减数,那就可以用分组法试试啦!
则原式= 66 + 94 + 72 + 86 - 70 - 64 - 92 –84(先去括号)
= 66 + 86 + 72 + 94 –64 –70 –84 - 92(按大小重新排序,便于观察)
=(66-64)+(72-70)+(86-84)+(94-92)
= 2+2+2+2
=8
二、“金字塔数列”求和
认识“金字塔数列”:从1 开始连续加到某一个数后又倒着加回到1
方法:中间数×中间数
图示:
1 +
2 +
3 +
4 + 3 + 2 + 1 = 4 × 4
注意:中间数也是最大的那个数,且只会出现一次
1、标准型:
例:1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1
=10×10
=100
2、缺角型:先补成标准金字塔型,再把补上的数减出去
例:1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4
=1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1-3-2-1
=10×10 -(3+2+1)
=100-6
=94
三、等差数列求和:
1、高斯公式:(第一个数+最后一个数)×个数÷2
例:1+2+3+4+5+6+7+8+…+99+100
=(1+100)×100÷2
=101×50
=5050
2、当个数是奇数个的等差数列求和时:中间数×个数
这是因为高斯公式中(第一个数+最后一个数)÷2 正好等于中间数,所以当是奇数个的等差数列时,可直接简化为“中间数×个数”。

由于公式多了孩子容易混,建议家长一定让孩子把高斯公式记熟用熟了,因为高斯公式是任何等差数列都适用的。

例:2+4+6+8+10+12+14
=8×7 (中间数是8)
=156
例:在括号里填上5 个连续的自然数,使等式成立。

()+()+()+()+()=40
方法一:5 个连续的自然数是个数为单数的等差数列,它们的和等于中间数×个数,那么中间数就是40÷5=8,则原式为:6+7+8+9+10=40
方法二:很多小朋友都喜欢尝试,先填出5 个连续的自然数,比如1+2+3+4+5,这个结果=15,怎么办呢?说明填的数填小了,要把它们变大,变大多少呢?先算一共少了多少:40-15=25,25 平均分给5个数,25÷5=5,每个数应该再增大5,所以最后结果是5+6+7+8+9=40。

相关文档
最新文档