(精品word)两角和与差的正弦、余弦和正切公式--知识点与题型归纳(良心出品必属精品)
(完整版)两角和与差的正弦、余弦、正切公式及变形
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。
两角和与差的正弦、余弦和正切公式及二倍角公式专题复习
两角和与差的正弦、余弦和正切公式及二倍角公式专题复习一、知识要点:1.两角和与差的正弦、余弦、正切公式(1)():sin()sin cos cos cos S αβαβαβαβ±±=±;(2)():cos()cos cos sin sin C αβαβαβαβ±±= ; (3)()tan tan :tan()1tan tan T αβαβαβαβ±±±= . 2.二倍角的正弦、余弦、正切公式(1)(2):sin 22sin cos S αααα=α;(2)2222(2):cos 2cos sin 2cos 112sin C αααααα=-=-=-; (3)(2)22tan :tan 21tan T αααα=-. 3.常用的公式变形(1)tan tan tan()(1tan tan )αβαβαβ±=± ; (2)221cos 21cos 2cos ,sin 22αααα+-==;(3)221sin 2(sin cos ),1sin 2(sin cos )αααααα+=+-=-,sin cos )4πααα±=±.4.函数()sin cos (,f x a x b x a b =+为常数),可以化为())),f x x x ϕθ=+=-其中()ϕθ可由,a b 的值唯一确定.两个技巧(1)拆角、拼角技巧:(2)化简技巧:切化弦、“1”的代换等.【双基自测】1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .22cos 112π- B .2012sin 75- C.0202tan 22.51tan 22.5- D .00sin15cos15 2.0000sin 68sin 67sin 23cos68-=( )A . D .13.(2011·福建)若tan 3,α=则2sin 2cos αα=( ). A .2 B .3 C .4 D .64.已知2sin ,3α=则cos(2)πα-=( ). A..19- C.195.(2011·辽宁)设1sin(),43πθ+=则sin 2θ=( ). A .79- B .19- C.19 D.796.0000tan 20tan 4020tan 40+=________.7.若2tan(),45πα+=则tan α=t________. 考向一 三角函数式的化简与求值[例1]求值:①0000cos15sin15cos15sin15-+;②00sin 50(1). [例2]已知函数()2sin(),36x f x x R π=-∈. (1)求5()4f π的值;(2)设106,0,,(3),(32),22135f f ππαβαβπ⎡⎤∈+=+=⎢⎥⎣⎦求cos()αβ+的值. 练习:1.(1)已知3sin ,(,),52πααπ=∈则cos 2)4απα=+________. (2)(2012·济南模拟)已知α为锐角,cos 5α=则tan(2)4πα+=( ) A .3- B .17-C .43- D .7- 2.已知41,(0,),sin ,tan(),253παβααβ∈=-=-求cos β的值. 考向二 三角函数的求角问题[例3]已知113cos ,cos(),714ααβ=-=且0<β<α<2π,求β. 练习:1.已知,(,),22ππαβ∈-且tan ,tan αβ是方程240x ++=的两个根,求αβ+的值.2.(2011·南昌月考)已知11tan(),tan ,27αββ-==-且,(0,),αβπ∈α,β∈(0,π),求2αβ-的值.3.已知锐角,αβ满足sin ,cos 510αβ==求:①αβ-的值;②αβ+的值. 考向三三角函数公式的逆用与变形应用[例4](2013·德州一模)已知函数2()2cos 2x f x x =. (1)求函数()f x 的最小正周期和值域;(2)若α为第二象限角,且1(),33f πα-=求cos 21cos 2sin 2ααα+-的值. 练习:1.(1)(2012·赣州模拟)已知sin()cos 65παα++=则sin()3πα+的值为( )A.45B.35C.2D.5 (2)若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 考向四角的变换[例5](1)(2012·温州模拟)若sin cos 3,tan()2,sin cos αααβαα+=-=-则tan(2)βα-=_______. (2)(2012·江苏高考)设α为锐角,若4cos(),65πα+=则sin(2)12πα+=________. 练习:1.设21tan(),tan(),544παββ+=-=则tan()4πα+=( ) A.1318 B.1322C.322 D.162.已知0<β<2π<α<,π且12cos(),sin(),2925βααβ-=--=求cos()αβ+的值. 考向五 三角函数的综合应用【例4】►(2010·北京)已知函数2()2cos 2sin f x x x =+.(1)求()3f π的值;(2)求()f x 的最大值和最小值. 【训练4】 已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间[,]62ππ-上的最大值和最小值. 作业:1.(2012·南昌二模)已知cos()6x π-=则cos cos()3x x π+-的值是( )A .3-B .3±C .1- D .1± 2. (2012·乌鲁木齐诊断性测验)已知α满足1sin ,2α=那么sin()sin()44ππαα+-=( ) A.14 B .14- C.12 D .12-3. (2012·东北三校联考)设,αβ都是锐角,且3cos ),55ααβ=+=则cos β=( )A.25B.5255 D.5或254.已知α为第二象限角,sin cos αα+=则cos2α=( )A ..5.已知sin()sin 32ππαα++=-<α<0,求cos α的值. 6.求值:①000000sin 7sin8cos15cos 7sin8sin15+-;②0002cos10sin 20sin 70-;③000cos 20cos 40cos80. 7.已知:0<α<2π<β<4,cos()45ππβ-=. (1)求sin 2β的值;(2)求cos()4πα+的值. 8.已知,αβ都是锐角,且45cos ,cos(),513ααβ=+=-求cos β的值. 9.(2012·衡阳模拟) 函数()cos()sin(),22x x f x x R π=-+-∈.(1)求()f x 的最小正周期;(2)若()(0,),2f παα=∈求tan()4πα+的值.10.(2012·北京西城区期末)已知函数2()sin cos ,[,]2f x x x x x ππ=+∈.(1)求()f x 的零点;(2)求()f x 的最大值和最小值. 11.已知3335(,),(0,),cos(),sin(),44445413πππππαβαβ∈∈-=+=求sin()αβ+的值. 12.已知1tan()2,tan 42παβ+==. ①求tan 2α的值;②求sin()2sin cos 2sin sin cos()αβαβαβαβ+-++的值.。
两角和与差的正弦、余弦、正切公式及倍角公式(高三一轮复习)
数学 N 必备知识 自主学习 关键能力 互动探究
2.若sinπ6-α=12,则cosπ3-2α=( A )
1 A.2
B.-12
3 C. 2
D.-
3 2
解析 因为sinπ6-α=12, 所以cos3π-2α=cos2π6-α =1-2sin2π6-α=1-2×122=12.
— 9—
数学 N 必备知识 自主学习 关键能力 互动探究
3.sin 72°cos 42°-cos 72°sin 42°=( A )
1 A.2
B.
3 2
C.-12
D.-
3 2
解析 sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.
— 10 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
3+ 3×
333=-223 3
3 =-
3 3.
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 三角函数公式的逆用和变形应用
例2 (1)计算:4cos 10°-csoins 1100°°= - 3 .
(2)(2022·江苏盐城模拟)tan
9π+tan
29π+
3tan
π 9tan
命题点3 三角函数公式的灵活应用
考向1 角的变换
例3 已知cos52π-α=2cos(2π+α),且tan(α+β)=13,则tan β的值为( D )
A.-7
B.7
C.1
D.-1
解析
因为cos 52π-α =2cos(2π+α),所以sin
α=2cos
α,所以tan
α=
两角和与差的正弦、余弦和正切公式(基础知识+基本题型)(含解析)
5.5.1两角和与差的正弦、余弦和正切公式(基础知识+基本题型)知识点一、两角差的余弦公式 如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B ,则)sin ,(cos ),sin ,(cos ββαα==OB OA . 由向量数量积的定义,有)cos()cos(||||βαβα-=-=⋅OB OA OB OA ,由向量数量积的坐标表示,得βαβαsin sin cos cos +=⋅OB OA . 于是有βαβαβαsin sin cos cos )cos(+=-. 由以上的推导过程可知,βα,是任意角,则)(βα-也应为任意角,即对于任意角βα,有βαβαβαsin sin cos cos )cos(+=-,此公式称为差角的余弦公式,简记为)(βα-C【提示】(1)适用条件:公式中的βα,都是任意角,可以为常量,也可以为变角(2)公式结构:公式右端的两部分为同名三角函数的积,连接符号与左边角的连接符号相反 【拓展】(1)逆用:)cos(sin sin cos cos βαβαβα-=+(2)角变换后使用:ββαββαββααsin )sin(cos )cos(])cos[(cos +++=-+= (3)移项使用:βαβαβαsin sin )cos(cos cos --=;βαβαβαcos cos )cos(sin sin --=(4)特殊化使用导出诱导公式:ααπαπαπsin sin 2sincos 2cos)2cos(=+=-知识点二 两角和的余弦公式 运用)(βα-C 和诱导公式,有)](cos[)cos(βαβα--=+ )sin(sin )cos(cos βαβα-+-= βαβαsin sin cos cos -=,即βαβαβαsin sin cos cos )cos(-=+此公式就是两角和的余弦公式,简记作)(βα+C 提示:(1)公式中的βα,都是任意角(2)两角和与差的余弦公式右边函数名的排列顺序为:余⋅余 正⋅正,左右两边加减运算符号相反 (3)一般情况下,两角和的余弦公式不能按分配律展开,即βαβαcos cos )cos(+≠+ 【拓展】要学会顺用(从左至右,即展开)、逆用(从右至左,即化简)、变用(移项变形)公式()C αβ± (1)顺用公式()C αβ±,如:()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦;()cos 2cos 2cos sin 2sin αβαβαβ+=-,()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦(2)逆用公式()C αβ±,如:()()()()cos cos sin sin αβαβαβαβ+--+- ()()cos cos 2αβαβα=++-=⎡⎤⎣⎦(3)变用公式()C αβ±,如:()cos sin sin cos cos αβαβαβ++=; ()cos cos cos sin sin αβαβαβ--=知识点三 两角和与差的正弦公式 运用()C αβ-和诱导公式,有()()sin cos cos 22ππαβαβαβ⎡⎤⎡⎤⎛⎫+=-+=-- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦cos cos sin sin sin cos cos sin 22ππαβαβαβαβ⎛⎫⎛⎫=-+-=+ ⎪ ⎪⎝⎭⎝⎭.即()sin sin cos cos sin αβαβαβ+=+.这就是两角和的正弦公式,简记作sin cos cos sin αβαβ+()S αβ+. 在公式()S αβ+中,用β-代替β,可得()()()sin sin cos cos sin sin cos cos sin αβαβαβαβαβ+-=-+-=-⎡⎤⎣⎦,即()sin sin cos cos sin αβαβαβ-=-. 这就是两角差的正弦公式,简记作()S αβ-. 【提示】(1)公式中的,αβ均为任意角.(2)两角和与差的正弦公式右边函数名的排列顺序为:正余±余正,左右两边加减运算符号相同. (3)一般情况下,两角和与差的正弦公式不能按分配律展开,即()sin sin sin αβαβ±=±.知识点四 两角和与差的正切公式 ()()()sin sin cos cos sin tan tan tan cos cos cos sin sin 1tan tan αβαβαβαβαβαβαβαβαβ++++===+--, 即()tan tan tan 1tan tan αβαβαβ++=-.这就是两角和的正切公式,简记作()T αβ+. 以β-代替上式中β,可得 ()()()tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβ+--+-==⎡⎤⎣⎦--+,即()tan tan tan 1tan tan αβαβαβ--=+.这就是两角差的正切公式,简记作()T αβ-. (1)适用条件:公式()T αβ±只有在(),,Z 222k k k k πππαπβπαβπ≠+≠+±≠+∈时才成立,否则不成立,这是由正切函数的定义域决定的.(2)特殊情况:当tan α或tan β或()tan αβ±的值不存在时,不能使用()T αβ±处理有关问题,但可改用诱导公式或其他方法.例如,化简tan 2πβ⎛⎫- ⎪⎝⎭,因为tan 2π的值不存在,不能利用公式()T αβ-,所以改用诱导公式来解.sin cos 2tan 2sin cos 2πβπββπββ⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭. (3)公式()T αβ-也可以这样推导: ()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ---==-+若cos cos 0αβ≠,则将上式得分子、分母都除以cos cos αβ,得()tan tan tan 1tan tan αβαβαβ--=+.【拓展】(1)正切公式的逆用: ()()()tan tan tan tan 1tan tan αβααβαβαβα+-=+-=⎡⎤⎣⎦++;tantan 1tan 4tan 1tan 41tan tan 4πααπαπαα++⎛⎫==+ ⎪-⎝⎭-(2)正切公式的变形应用:()()tan tan tan 1tan tan αβαβαβ+=+-; ()()tan tan tan 1tan tan αβαβαβ-=-+; ()tan tan 1tan tan tan αβαβαβ+-=+;()tan tan 1tan tan tan αβαβαβ-+=-知识点五 辅助角公式辅助角公式:()sin cos tan b a x b x x a ϕϕ⎛⎫++= ⎪⎝⎭推导过程:sin cos a x b x x x ⎫+=+⎪⎭令cos ϕϕ==,)sin cos sin cos cos sin a x b x x x ϕϕ++()x ϕ+其中角ϕ所在象限由,a b 的符号确定,角ϕ的值由tan ba ϕ=确定或由cos ϕϕ==共同确定【提示】 (1)关于形如sin cos a x b x +(,a b 不同时为零)的式子,引入辅助角可以变形为()sin A x ϕ+的形式,有时也变形为()cos A x ϕ+的形式(2)辅助角公式能将异名三角函数式转化为同名三角函数式,它本身就是一个化简得过程,化简后,可轻松地求出函数的周期、最值、单调区间等考点一 三角函数式的化简 【例1】 化简下列各式 (1)sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒;(2)()2sin50sin101⎡⎤︒+︒︒⎣⎦;(3)()()1sin cos sin 2sin 2αβααββ+-+-⎡⎤⎣⎦ 解:(1)原式()()sin 158cos15sin8sin15cos8cos15sin8cos15sin8tan15cos 158sin15sin8cos15cos8sin15sin8sin15sin8︒-︒+︒︒︒︒-︒︒+︒︒==︒︒-︒-︒︒︒︒+︒︒-︒︒()1tan 45tan 30tan 45301tan 45tan 30︒-︒=︒-︒==+︒︒2=-(2)原式2sin 50sin10⎛=︒+︒ ⎝⎭2sin 50cos102sin10cos50cos10︒︒+︒︒⎡⎤=︒⎢⎥︒⎣⎦)sin 50cos10sin10cos50=︒︒+︒︒()5010=︒+︒== (3)原式()()()1sin cos sin sin 2αβαααβαβα=+-++-+-⎡⎤⎣⎦ ()()1sin cos 2sin cos 2αβαααβ=+-+⎡⎤⎣⎦ ()()sin cos cos sin αβααβα=+-+ ()sin sin αβαβ=+-= 化简三角函数式的标准和要求: (1)能求出值得应求出值;(2)使三角函数式的种数、项数及角的种类尽可能少; (3)使三角函数式的次数尽可能低; (4)使分母中尽量不含三角函数式和根式 考点二 三角函数的求值 【例2.】.(1)求sin105︒的值;(2)已知3sin 5θ=-,且θ是第三象限角,求cos 6πθ⎛⎫+ ⎪⎝⎭的值;(3)已知1tan ,tan 20,322ππαβαβπ⎛⎫==-<<<< ⎪⎝⎭,求()tan αβ-及αβ+的值解:(1)()sin105sin 6045︒=︒+︒sin 60cos45cos60sin 45=︒︒+︒︒ (2)因为3sin 5θ=-,且θ是第三象限角,所以4cos 5θ=-所以413cos cos cos sin sin 666525πππθθθ⎛⎫⎛⎫⎛⎫+=---⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)因为1tan ,tan 23αβ==-,所以()12tan tan 3tan 721tan tan 13αβαβαβ+--===+- ()12tan tan 3tan 121tan tan 13αβαβαβ-++===--+ 因为0,,22ππαβπ<<<<所以 322ππαβ<+<所以34παβ+=三角函数的求值问题主要包括三类:给角求值、给值求值、给值求角 (1)给角求值的求解策略求解的关键是能将所求角转化为特殊角,并注意公式的选用 (2)给值求值的求解策略已知角,αβ的某种三角函数值,求αβ±的余弦、正弦或正切的方法;先根据平方关系求出,αβ的另一种三角函数值,求解过程中应注意先根据角的范围判断所求三角函数值的符号,再根据求得的函数值和已知函数值代入和角或差角的正弦、余弦、正切公式中,求出和角或差角的正弦、余弦、正切(3)给值求角的方法解答这类题目的步骤:①求出角的某一个三角函数值;②确定角所在的范围;③求角 考点三 三角恒等式的证明 【例3】求证:()()sin 2sin 2cos .sin sin αββαβαα+-+=证明:因为sin 0α≠,()()sin 22cos sin αβαβα+-+()()=sin 2cos sin αβααβα++-+⎡⎤⎣⎦()()()sin cos cos sin 2cos sin αβααβααβα=+++-+ ()()sin cos cos sin αβααβα=+-+()sin αβα=+-⎡⎤⎣⎦ sin β=,所以()()sin 2sin 2cos sin sin αββαβαα+-+=.证明三角恒等式常用以下方法:(1)从复杂的一边入手,逐步化简,证得与另一边相等.在证明的过程中,应时刻“盯”住目标,分析其特征,向着目标“奔”去;(2)从两边入手,证得等式两边都等于同一个式子; (3)作差法,证明左边-右边=0. 考点四 辅助角公式的应用【例4】 将下列各式化成()sin A x ϕ+的形式:(1cos x x -;(2).4444x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭解:(1)12cos 2x x ⎫=-⎪⎪⎝⎭原式2cos sin sin cos 66x x ππ⎛⎫=- ⎪⎝⎭2sin .6x π⎛⎫=- ⎪⎝⎭(2)1sin cos 22424x x ππ⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦原式sin sin cos cos 26464x x ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos 246212x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭sin 2212x ππ⎛⎫=-+ ⎪⎝⎭5sin .212x π⎛⎫=+ ⎪⎝⎭ 通过引入辅助角ϕ,可以将sin cos a x b x +这种形式的三角函数式化为一个角的一种三角函数的形式.这种变形方法可解决sin cos a x b x +的许多问题,如值域、最值、周期、单调区间等.另外,(2)在解法上充分体现了角的变换和整体思想.。
高考数学一轮复习两角和与差的正弦、余弦和正切公式
(
)
A.M<N<P B.N<M<P
C.P<M<N D.P<N<M
答案:C
(2)[2023·河北石家庄模拟]已知sin α+cos β=1,cos α+sin
7
sin (α+β)=________.
18
4
解析:由于sin α+cos β=1,cos α+sin β= ,
3
16
故(sin α+cos β)2=1,(cos α+sin β)2= ,
5
6
6
100
11
D.-
100
答案:B
π
π
π
π
π
π
解析:因为cos ( +α)cos ( -α)=(cos cos α-sin ·sin α)·(cos cos α+sin sin
6
6
6
6
6
6
3
1
3
1
3
1
3
1
=( cos α- sin α)·( cos α+ sin α)= cos2α- sin2α= cos2α- (1-cos2α)
sin αcos β±cos αsin β
(1)sin (α±β)=________________.
(2)cos (α±β)=________________.
cos αcos β∓sinαsinβ
tan ±tan
1∓tantan (α±β)= Nhomakorabea_________.
(3)tan
2 + 2 sin(x+φ)
23
解析:(1+tan 1°)(1+tan 44°)=1+tan 1°+tan 44°+tan 1°tan 44°=1+tan 1°tan
两角和与差的正弦、余弦和正切公式—考点、题型、技巧精讲与精练高分突破(人教A版2019必修第一册)
两角和与差的正弦、余弦和正切公式【考点梳理】考点一两角和与差的余弦公式名称简记符号公式使用条件两角差的余弦公式C(α-β)cos(α-β)=cos αcos β+sin αsin βα,β∈R 两角和的余弦公式C(α+β)cos(α+β)=cos αcos β-sin αsin βα,β∈R考点二两角和与差的正弦公式名称简记符号公式使用条件两角和的正弦S(α+β)sin(α+β)=sin αcos β+cos αsin βα,β∈R两角差的正弦S(α-β)sin(α-β)=sin αcos β-cos αsin βα,β∈R考点三:两角和与差的正切公式名称公式简记符号条件两角和的正切tan(α+β) =tan α+tan β1-tan αtan βT(α+β)α,β,α+β≠kπ+π2(k∈Z)两角差的正切tan(α-β) =tan α-tan β1+tan αtan βT(α-β)α,β,α-β≠kπ+π2(k∈Z)考点四:二倍角的正弦、余弦、正切公式【题型归纳】题型一:两角和与差的余弦公式 一:用和差余弦公式进行化简求值1.(2022·四川泸州·高一期末)已知πcos cos 13θθ⎛⎫++= ⎪⎝⎭,则πcos 6θ⎛⎫+= ⎪⎝⎭( )A .12B .23C 3D 22.(2022·全国·高一)已知23παβ-=,且1cos cos 3αβ+=,则cos()αβ+的值为( ) A .79B .79-C .19D .19-3.(2022·全国·高一)已知()2cos 2αβ-=()2sin 2αβ-=ππ42α<<,π04β<<,则()cos αβ+=( )A .1B .0C .-1D .2二:逆用和差余弦公式进行化简求值4.(2022·全国·高一)13sin152︒︒的值为( )A 2B .2C .12D .12-5.(2022·甘肃酒泉·高一期末)cos72cos27sin72sin 27︒︒+︒︒的值是( ) A 2B 3C .12D .12-6.(2022·内蒙古·赤峰二中高一)已知1sin sin 3-=αβ,22cos cos αβ-=α,(0,)2πβ∈,则αβ-=( ) A .3π- B .6π-C .3π D .3π±7.(2022·全国·高一课时练习)已知π0π2αβ<<<<,3sin 5α=,()4cos 5αβ+=-,则sin β的值为( ) A .2425或0 B .0 C .3365D .24258.(2022·全国·高一课时练习)已知α,β均为锐角,且5sin α10cos β=αβ-的值为( ) A .π4B .π4-C .3π4D .3π4-9.(2022·陕西汉中·高一期末)已知sin sin 13πθθ⎛⎫++= ⎪⎝⎭,则tan 6πθ⎛⎫+= ⎪⎝⎭( )A 6B 3C .±2D .±2二:逆用和差正弦公式进行化简求值10.(2022·北京·中关村中学高一阶段练习)若3sin sin 10αβ-=2παβ+=,则cos α=( )A 310B .310C 10D .1010-11.(2022·重庆巴蜀中学高一期中)sin10cos50sin100cos40︒︒+︒︒=( ) A .22B 26+C 3D .1212.(2022·江苏·31cos152︒+︒的值为( ) A .12 B 3C 2D .113.(2022·全国·高一课时练习)在ABC 中,tan tan tan 33A B C ++=2tan tan tan B A C =,则角B =( ) A .30︒ B .45︒ C .60︒ D .75︒14.(2022·内蒙古·满洲里市第一中学高一期末)已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为( ) A .16B .322C .2213D .131815.(2022·辽宁抚顺·高一期末)若()tan 804sin420α+︒=︒,则()7tan 20α+︒的值为( ) A 3B .3C .3-D 3二:逆用和差正切公式进行化简求值 16.(2022·甘肃兰州·高一期末)1tan151tan15+︒=-︒( )A 3B .1C 3D .3117.(2022·江苏·金沙中学高一阶段练习)已知()()1tan 211tan 22a =+︒+︒,()()1tan 231tan 24b =+︒+︒,则( )A .2a b ==B .4ab =C .229a b +=D .2225a b =-18.(2022·陕西·榆林市第十中学高一期末)已知α,β均为锐角,且()()13134αβ=,则αβ+=( ) A .3πB .23π C .34π D .2π题型四:两角和与差的三角函数综合应用 19.(2022·全国·高一单元测试)已知1tan ,tan()222ααβ=-=. (1)求sin α的值; (2)求tan(2)βα-的值.20.(2022·云南昭通·高一期末)(1)知tan 3α=,计算2sin cos 5cos sin αααα+-;(2)已知,αβ都是锐角,()45sin ,cos 513ααβ=+=,求cos β的值.21.(2022·四川成都·高一期末)(1)已知1cos 7α=,()13cos 14αβ-=,且02πβα<<<,求β;(2)若()1cos 5αβ+=,()3cos 5αβ-=,求tan tan αβ的值.题型五:二倍角公式的运用22.(2022·江西省丰城中学高一期中)若1sin 23πα⎛⎫+= ⎪⎝⎭,则cos2cos αα+=( ).A .3132B .3132-C .49-D .7823.(2021·湖北黄石·高一期中)已知 πtan 224α⎛⎫+= ⎪⎝⎭(1)求 tan α; (2)求 1cos2sin21cos2sin2αααα++-+ 的值.24.(2022·湖北·高一期末)已知2sin cos22αα-=(1)求sin α的值;(2)若αβ,都是锐角,()3cos 5αβ+=,求sin β的值.。
两角和与差的正弦、余弦与正切公式
2
(sin
2
A.a>b>c
C.c>a>b
(2)已知
56°-cos 56°),c=
1-ta n 2 39°
,则 a,b,c 的大小关系是(
1+ta n 2 39°
B.b>a>c
D.a>c>b
π
cos(α-6 )+sin
4 3
α= 5 ,则
π
si(nα+6 )=
.
)
答案 (1)D
4
(2)
5
解析 (1)a=cos 50°cos 127°+cos 40°cos 37°
1
D.
2
.
答案 (1)B (2)D (3) 3
解析 (1)根据两角和的正弦公式展开得 sin
3
θ= sin
2
3
θ+ cos
2
θ=1,即
π
3sin(θ+ )=1,解得
6
π
θ+sin(θ+ )=sin
3
1
θ+ sin
2
π
3
sin(θ+ )= .故选
6
3
B.
(2)∵t=2sin 18°,
2cos2 27°-1
.
1+cos
5.积化和差公式
sin αcos
1
β=
2
sin( + ) + sin(-) ,
cos αsin
1
β=2
sin( + )-sin(-) ,
cos αcos
1
β=2
两角和与差的正弦、余弦和正切公式(基础)
第18讲:两角和与差的正弦、余弦和正切公式【学习目标】1.能以两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,了解它们的内在联系.2.掌握两角和与差的正弦、余弦、正切公式,并能灵活运用这些公式进行简单的恒等变换.【要点梳理】要点一:两角和的余弦函数 两角和的余弦公式:cos()cos cos sin sin αβαβαβ+=- ()C αβ+要点诠释:(1)公式中的αβ、都是任意角;(2)和差角的余弦公式不能按分配律展开,即()cos cos cos αβαβ±≠±;(3)公式使用时不仅要会正用,还要能够逆用,在很多时候,逆用更能简捷地处理问题.如:由cos50cos20sin50sin 20︒︒+︒︒能迅速地想到()cos50cos 20sin 50sin 20cos 5020cos30︒︒+︒︒=︒-︒=︒=; (4)第一章所学的部分诱导公式可通过本节公式验证;(5)记忆:公式右端的两部分为同名三角函数积,连接符号与等号左边角的连接符号相反.要点二:两角和与差的正弦函数 两角和正弦函数sin()αβ+=sin cos cos sin αβαβ+ ()S αβ+在公式()S αβ+中用β-代替β,就得到:两角差的正弦函数sin()sin cos cos sin αβαβαβ-=- ()S αβ- 要点诠释:(1)公式中的αβ、都是任意角;(2)与和差角的余弦公式一样,公式对分配律不成立,即()sin sin sin αβαβ±≠±; (3)和差公式是诱导公式的推广,诱导公式是和差公式的特例.如()sin 2sin 2cos cos2sin 0cos 1sin sin παπαπαααα-=-=⨯-⨯=-当α或β中有一个角是2π的整数倍时,通常使用诱导公式较为方便; (4)使用公式时,不仅要会正用,还要能够逆用公式,如化简()()sin cos cos sin αββαββ+-+时,不要将()sin αβ+和()cos αβ+展开,而应采用整体思想,进行如下变形:()()()sin cos cos sin sin sin αββαββαββα+-+=+-=⎡⎤⎣⎦这也体现了数学中的整体原则.(5)记忆时要与两角和与差的余弦公式区别开来,两角和与差的余弦公式的等号右端的两部分为同名三角函数积,连接符号与等号左边角的连接符号相反;两角和与差的正弦公式的等号右端的两部分为异名三角函数积,连接符号与等号左边角的连接符号相同.要点三:两角和与差的正切函数利用已有的和(差)角的正弦、余弦以及同角关系式推导.sin()sin cos cos sin tan tan tan()cos()cos cos sin sin 1tan tan αβαβαβαβαβαβαβαβαβ++++===+--sin()sin cos cos sin tan tan tan()cos()cos cos sin sin 1tan tan αβαβαβαβαβαβαβαβαβ----===-++∴tan()αβ+=tan tan 1tan tan αβαβ+- ()T αβ+tan()αβ-=tan tan 1tan tan αβαβ-+ ()T αβ-要点诠释: (1)公式成立的条件是:,,Z 2222k k k k k ππππαπβπαβπαβπ≠+≠++≠+-≠+∈或,其中;(2)公式的变形:()tan tan tan()1tan tan αβαβαβ+=+- ()tan tan tan()1tan tan αβαβαβ-=-+(3)两角和与差的正切公式不仅可以正用,也可以逆用、变形用,逆用和变形用都是化简三角恒等式的重要手段,如()tan tan tan()1tan tan αβαβαβ+=+-就可以解决诸如tan 25tan 20tan 25tan 20︒+︒+︒︒的求值问题.所以在处理问题时要注意观察式子的特点,巧妙运用公式或其变形,使变换过程简单明了.(4)公式对分配律不成立,即()tan tan tan αβαβ±≠±. 要点四:理解并运用和角公式、差角公式需注意的几个问题 1.两角和与差的正弦、余弦、正切公式之间的内在联系(1)掌握好表中公式的内在联系及其推导线索,能帮助学生理解和记忆公式,是学好本部分的关键.(2)诱导公式是两角和、差的三角函数公式的特殊情况.,αβ中若有为2π的整数倍的角时,使用诱导公式更灵活、简便,不需要再用两角和、差公式展开.2.重视角的变换三角变换是三角函数的灵魂与核心,在三角变换中,角的变换是最基本的变换,在历年的高考试题中多次出现,必须引起足够的重视.常见的角的变换有:();()ααββαββα=+-=--;(2)()ααβαβ=---;[]1()()2ααββα=+--等,常见的三角变换有:切化弦、221sin cos αα=+等.要点五:辅助角公式1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x +222222a b x x a b a b ⎫+⎪++⎭令2222cos a ba bϕϕ==++sin cos a x b x +)22sin cos cos sin a b x x ϕϕ++ 22)a b x ϕ++(其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由tan ba ϕ=确定,或由22sin a b ϕ=+和22cos a bϕ=+2.辅助角公式在解题中的应用 通过应用公式sin cos a x b x +=22)a b x ϕ++(或sin cos a x b x +=)αϕ-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一)x ϕ+)αϕ-).这种恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数,这样做有利于函数式的化简、求值等.【典型例题】类型一:两角和与差的三角函数公式的正用 例1.已知4sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭,5cos 13β=-,β是第三象限角,求cos()αβ+、sin()αβ+、sin()αβ-的值.【思路点拨】利用同角三角函数关系式确定cos α、sin β的值,然后利用两角和与差的余弦、正弦公式求值.【解析】 由4sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭得3cos 5α===-,4tan 3α=-又由5cos 13β=-,β为第三象限角得12sin 13β===-,12tan 5β=∴cos()cos cos sin sin αβαβαβ+=-354126351351365⎛⎫⎛⎫⎛⎫=-⨯--⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. sin()sin cos cos sin αβαβαβ+=+=45312()513513⎛⎫⎛⎫⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭=1665sin()sin cos cos sin αβαβαβ-=-=45312()513513⎛⎫⎛⎫⨯---⨯- ⎪ ⎪⎝⎭⎝⎭=5665-【总结升华】已知α,β的某种三角函数值,求αβ±的正弦或余弦,先要根据平方关系求出α、β的另一种三角函数值.求解过程中要注意先根据角的范围判断所求三角函数值的符号,然后再将求得的函数值和已知函数值代入和角或差角的余弦公式中,求出和角或差角的余弦. 举一反三: 【变式1】已知12sin 13θ=,θ是第二象限角,求cos 3θ⎛⎫- ⎪⎝⎭π、cos 3θ⎛⎫+ ⎪⎝⎭π、sin 3θ⎛⎫+ ⎪⎝⎭π和sin 3θ⎛⎫- ⎪⎝⎭π的值.【解析】由12sin 13θ=,θ是第二象限角,得5cos 13θ==- 所以cos 3θ⎛⎫- ⎪⎝⎭π=cos cos sin sin 33ππθθ+=5112132132⎛⎫-⨯+⨯ ⎪⎝⎭=526- cos()cos cos sin sin 333πππθθθ+=-=5112132132⎛⎫-⨯-⨯ ⎪⎝⎭=sin sin cos cos sin 333ππθθθ⎛⎫+=+ ⎪⎝⎭π=1215()132132⨯+-⨯sin 3θ⎛⎫- ⎪⎝⎭π=sin cos cos sin 33ππθθ-=1215()132132⨯--⨯=1226+ 例2.(1)21tan(),tan(),54αβαβ+=-=求tan 2α的值;(2)已知3312,,,sin(),sin(),45413ππαβπαββ⎛⎫∈+=--= ⎪⎝⎭求cos()4πα+的值.【思路点拨】(1)分析所给的两个已知角,αβαβ+-和所求的角2α之间有关系()()2αβαβα++-=.(2)()()44ππααββ+=+--.【解析】(1)[]tan()tan()tan 2tan ()()1tan()tan()αβαβααβαβαβαβ++-=++-=-+-=2113542118154+=-⨯ (2)333,,,,2,(,)42424πππππαβπαβπβ⎛⎫⎛⎫∈∴+∈-∈ ⎪ ⎪⎝⎭⎝⎭,又34sin(),cos();55αβαβ+=-∴+=125sin(),cos().413413ππββ-=∴-=-cos()cos ()()44ππααββ⎡⎤+=+--⎢⎥⎣⎦=cos()cos()sin()sin()44ππαββαββ+-++-=4531256()()51351365⨯-+-⨯=-【总结升华】此类题目重在考察所给已知角与所求角之间的运算关系,主要是指看两角之间的和、差、倍的关系,如()()44ππαββα+--=+,(),2()()ααββααβαβ=-+=++-等,找到它们的关系可以简化运算,同时在求三角函数值时应关注函数值的符号.举一反三:【变式1】已知α与β均为锐角,3cos 5=α,5cos()13+=-αβ,求cos β 【解析】由34(0)cos =,sin =255πααα∈∴,,由,(0,) +(0,)2παβαβπ∈∴∈12sin()13αβ∴+===故cos cos()cos()cos sin()sin βαβααβααβα=+-=+⋅++5312433.13513565=-⋅+⋅=类型二:两角和与差的三角函数公式的逆用及变形应用 例3.计算下列各式的值: (1)cos12cos18sin12sin18-;(2;(3)tan17tan 28tan17tan 28︒+︒+︒︒.【思路点拨】注意两角和差公式的逆用和变形. 【解析】 (1)cos12cos18sin12cos72- =cos12cos18sin12sin18- =cos(1218)+= cos30(2tan 60tan15tan(6015)tan 4511tan 60tan15︒-︒==︒-︒=︒=+︒︒.(3)∵28tan 17tan 128tan 17tan )2817tan(-+=+∴tan17︒+tan28︒=tan(17︒+28︒)(1-tan17︒tan28︒)=1- tan17︒tan28︒ ∴原式=1- tan17︒tan28︒+ tan17︒tan28︒=1【总结升华】三角变换的一般规律:看角的关系、看函数名称、看运算结构.以上题目是给角求值问题,应首先看角的关系:先从所给角的关系入手,观察所给角的和、差、倍(下一节学习)是否为特殊角,然后看包含的函数名称,以及所给三角式的结构,结合三角公式,找到题目的突破口.公式tan tan tan()1tan tan αβαβαβ++=-的变形tan tan tan()(1tan tan )αβαβαβ+=+-应予以灵活运用.举一反三:【变式1】求下列各式的值:(1)cos15°cos105°+sin15°sin105°; (2)sin xsin(x+y)+cos xcos(x+y).(3)1tan151tan15-︒+︒【解析】(1)原式=cos(15°―105°)=cos(―90°)=0; (2)原式=cos[x ―(x+y)]=cos(―y)=cosy . (3)原式=tan 45tan15tan(4515)tan 301tan 45tan153︒-︒=︒-︒=︒=+︒︒【变式2】求值:sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒【解析】原式=sin(158)cos15sin 8cos(158)sin15sin 8-+--=tan152=-类型三:两角和与差的三角函数在三角形中的应用 例4.在非直角△ABC中,(1)求证:tanA+tanB+tanC=tanAtanBtanC ;(2)若2B=A+C ,且tan tan 2A C =ABC 的三内角的大小. 【思路点拨】注意三角形内角和A B C π++=这一隐含条件的运用. 【解析】 (1)证明:∵A+B+C=180°,∴tan (A+B )=-tanC ,∴tanA+tanB+tanC=tan(A+B)·(1―tanAtanB)+tanC=―tanC(1―tanAtanB)+tanC=tanAtanBtanC.(2)∵2B=A+C ,A+B+C=180°,∴B=60°,∴A+C=120°,tan tan tan()(1tan tan )(23A C A C A C+=+-=-+=又∵tan tan 2A C =+∴tan 1tan 2A C =⎧⎪⎨=⎪⎩tan 2tan 1A C ⎧=+⎪⎨=⎪⎩,∴456075A B C =︒⎧⎪=︒⎨⎪=︒⎩,或756045A B C =︒⎧⎪=︒⎨⎪=︒⎩. 【总结升华】本题主要考查两角和正切公式的应用.三角函数式的化简与证明,主要从三方面寻求思路:一是观察函数的特点,已知和所求中包含什么函数,它们可以怎样联系;二是观察角的特点,它们之间可经何种形式联系起来(如本题中A+B+C=π);三是观察结构特点,它们之间经过怎样的变形可达到统一.举一反三:【变式1】在△ABC 中,3sin 5A =,5cos 13B =,求cosC .【证明】∵5cos 13B =<,42B ππ⎛⎫∈ ⎪⎝⎭且12sin 13B =.∵3sin 52A =<,∴30,,44A πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭. 又,42B ππ⎛⎫∈ ⎪⎝⎭,若3,4A ππ⎛⎫ ⎪⎝⎭,则3,2A B ππ⎛⎫+∈ ⎪⎝⎭与A+B+C=π矛盾, ∴3,4A ππ⎛⎫∉ ⎪⎝⎭.因此0,4A π⎛⎫∈ ⎪⎝⎭,且4cos 5A =.从而cos cos[()]cos()C A B A B π=-+=-+4531216cos cos sin sin 51351365A B A B =-+=-⨯+⨯=. 类型四:辅助角公式的应用例5.将下列各式化成sin()A x ϕ+的形式. (1)sin x+cos x ;(2cos )x x -;(3)sin 4444x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】形如sin x+cos x 、sin x-cos x cos x x -等,化成一个角的三角函数的方法:一般是逆用和差角公式,引入辅助角来处理.处理过程如下.【解析】 (1)sin cos sin cos x x x x +=⎭sin cos cos sin 444x x x πππ⎫⎛⎫=+=+⎪ ⎪⎭⎝⎭.(2cos )sin cos 22x x x x -=⋅-⋅⎭ 2sin cos cos sin 2sin 444x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.(3)sin 4444x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭sin 444x x ππ⎡⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦12sin cos 424x x ππ⎡⎛⎫⎛⎫=-⋅+-⎢ ⎪ ⎪⎝⎭⎝⎭⎣⎦sin cos cos sin 24343x x ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦77sin 243212212x x x ππππ⎛⎫⎛⎫⎛⎫=-+=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【总结升华】 运用哪个辅助角是可以选择的,如1sin cos 2424x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭,也可以化为:7sinsin cos cos cos cos sin 6464641212x x x x x ππππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+⋅-=--=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 举一反三:【变式1】求函数()sin f x x x =+的最值、周期1()sin 2sin 2f x x x x x ⎛⎫==+ ⎪ ⎪⎝⎭2sin cos cos sin 2sin 333x x x πππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.∴max [()]2f x =,min [()]2f x =-,周期T=2π. 【变式2】已知函数.,2cos 32sinR x xx y ∈+= (1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象.【解析】sin 2sin()2223x x x y π=+=+(1)当2232x k πππ+=+,即4,3x k k Z ππ=+∈时,y 取得最大值|4,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭为所求(2)2sin()2sin 2sin 232x x y y y x ππ=+−−−−−→=−−−−−−−→=右移个单位横坐标缩小到原来的2倍3sin y x −−−−−−−→=纵坐标缩小到原来的2倍【巩固练习】1.sin 20cos 40cos 20sin 40+的值等于( )A .14B .2C .12D .42.sin(15)-的值是( )A .4-B .4C .4+D .4 3. 若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3- B .3 C .13- D .134.sin 12π12π的值是. ( )A .0B . —2C . 2D . 2 sin 125π5. 已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于 ( )A .1813B .223C .2213D .1836.在△ABC 中,如果sin A =2sin C cos B .那么这个三角形是 ( )A .锐角三角形B .直角三角形C .等腰三角形D .等边三角形 7.tan 15°+tan 30°+tan 15°·tan 30°的值是( )A .1BCD 8.2cos10sin 20sin 70-的值是( )A .12B .2C D9.如果cos θ=-1312 )23,(ππθ∈,那么 cos )4(πθ+=________.10.已知βα,为锐角,且cos α=71 cos )(βα+= -1411, 则cos β=_________.11.tan20º+tan40º+3tan20ºtan40º的值是____________.12.函数y=cosx+cos(x+3π)的最大值是__________. 13.已知12cos()13αβ-=-,12cos()13αβ+=,且,2παβπ⎛⎫-∈ ⎪⎝⎭,3,22παβπ⎛⎫+∈ ⎪⎝⎭,求角β的值.14.求值:cos10(tan10sin 50︒︒︒15.若锐角α,β满足13tan tan 7αβ=,且sin()3αβ-=.(1)求cos()αβ-的值; (2)求cos()αβ+的值.16.已知函数()sin()sin()cos (,)66f x x x x a a R a ππ=++-++∈是常数.(1)求函数()f x 的最小正周期;(2)若,22x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值为1,求a 的值.【答案与解析】 1.【答案】B【解析】sin 20cos 40cos 20sin 40+sin(2040)sin 60=︒+︒=︒= 2.【答案】D【解析】原式=()sin15sin(4530)sin 45cos30cos 45sin30-=--=--=43.【答案】D 【解析】tan tan 1tan()1tan tan 3αβαβαβ--==-4.【答案】B【解析】原式=12sin 21212ππ⎛⎫ ⎪ ⎪⎝⎭=2cos sin sin cos 312312ππππ⎛⎫- ⎪⎝⎭=2sin()4π-=5.【答案】B【解析】tan()tan()34tan()tan[()()]44221tan()tan()4παββππααββπαββ+--+=+--==-+- 6.【答案】C【解析】∵ A +B +C=π,∴ A=π -(B +C ).由已知可得:sin(B +C )=2sin C cos B ⇒sin B cos C +cos B sin C =2sin C cos B ⇒sin B cos C -cos B sin C=0⇒sin(B -C )=0. ∴ B =C ,故△ABC 为等腰三角形. 7.【答案】A【解析】 原式tan(1530)(1tan15tan 30)tan15tan 30=+-+tan 45(1tan15tan 30)tan15tan 301=-+=. 8.【答案】C解析:原式2cos(3020)sin 20sin70--=2(cos30cos 20sin 30sin 20)sin 20sin 70⋅+⋅-=203cos 20==9.【答案】2627-【解析】 因为cos θ=-1312)23,(ππθ∈,所以5sin 13θ=-,所以原式=125cos cossin sin()()441313ππθθ-=---=2627-.10.【答案】21【解析】∵ α为锐角,且1cos 7α=,∴ sin α==.又∵ α、β均为锐角,∴ 0<α+β<π,且11cos()14αβ+=-, ∴ sin()αβ+==. 则cos cos[()]βαβα=+-cos()cos sin()sin αβααβα=+++111()147=-⨯+12= 11.【答案】3【解析】原式=tan 60(1tan 20tan 40)3tan 20tan 40-+20tan 403tan 20tan 403=+= 12.【答案】3【解析】原式=3cos 2x x =1sin )2x x -=)3x π-,故max y . 13.【解析】由,2παβπ⎛⎫-∈ ⎪⎝⎭且12cos()13αβ-=-,得5sin()13αβ-=.又由3,22παβπ⎛⎫+∈ ⎪⎝⎭,且12cos()13αβ+=,得5sin()13αβ+=-.cos 2cos[()()]βαβαβ=+--cos()cos()sin()sin()αβαβαβαβ=+-++- 121255113131313⎛⎫=-⨯+-⨯=- ⎪⎝⎭. 又∵3,22αβππ⎛⎫+∈ ⎪⎝⎭,,2παβπ⎛⎫-∈ ⎪⎝⎭32,22ππβ⎛⎫⇒∈ ⎪⎝⎭. ∴2βπ=,则2πβ=.14.【解析】原式cos10(tan10tan 60)sin 50=-sin10sin 60cos10()cos10cos 60sin 50=-sin(50)cos10cos10cos 60sin 50-= 1cos60-=2=-.15.【解析】(1)因为α,β为锐角,所以02πα<<,02πβ<<,所以22ππαβ-<-<.所以2cos()3αβ-===. (2)因为sin sin 13tan tan cos cos 7αβαβαβ==, ①又2cos()cos cos sin sin 3αβαβαβ-=+=, ②由①②得7cos cos 30αβ=,13713sin sin 73030αβ=⨯=. 所以7131cos()cos cos sin sin 30305αβαβαβ+=-=-=-.16.【解析】(1)()cos 2sin()6f x x x a x a π=++=++,所以()f x 的最小正周期为2π.(2),22x ππ⎡⎤∈-⎢⎥⎣⎦,2,633x πππ⎡⎤∴+∈-⎢⎥⎣⎦,()f x ∴的最大值为2,a +21,1a a ∴+=∴=-.。
(完整版)两角和与差的正弦余弦正切公式
两角和与差的正弦余弦正切公式教学目标1.能根据两角差的余弦公式推导出两角和与差的正弦、余弦公式,并灵活运用.(重点)2.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.(难点)3.掌握两角和与差的正切公式及变形应用.(难点、易错点)[基础·初探]教材整理1 两角和与差的余弦公式阅读教材P128“思考”以下至“探究"以上内容,完成下列问题。
cos 75°cos 15°-sin 75°sin 15°的值等于________.【解析】逆用两角和的余弦公式可得cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)=cos 90°=0.【答案】0教材整理2 两角和与差的正弦公式阅读教材P128“探究"以下内容,完成下列问题.1.公式2.重要结论-辅助角公式y=a sin x+b cos x=错误!sin(x+θ)(a,b不同时为0),其中cos θ=错误!,sin θ=错误!.判断(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.()(2)存在α,β∈R,使得sin(α-β)=sin α-sin β成立.( )(3)对于任意α,β∈R,sin(α+β)=sin α+sin β都不成立.()(4)sin 54°cos 24°-sin 36°sin 24°=sin 30°。
( )解:(1)√.根据公式的推导过程可得.(2)√.当α=45°,β=0°时,sin(α-β)=sin α-sin β.(3)×.当α=30°,β=-30°时,sin(α+β)=sin α+sin β成立.(4)√.因为sin 54°cos 24°-sin 36°sin 24°=sin 54°cos 24°-cos 54°sin 24°=sin(54°-24°)=sin 30°,故原式正确.【答案】(1)√(2)√(3)×(4)√教材整理3两角和与差的正切公式阅读教材P129“探究”以下至“例3”以上内容,完成下列问题.判断(正确的打“√”,错误的打“×")(1)存在α,β∈R,使tan(α+β)=tan α+tan β成立.( )(2)对任意α,β∈R,tan(α+β)=错误!都成立.( )(3)tan(α+β)=错误!等价于tan α+tan β=tan(α+β)·(1-tan αtan β).( )解:(1)√。
两角和与差的正弦、余弦和正切公式(含解析)
两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。
两角和与差的正弦、余弦和正切公式(含解析)
归纳与技巧:两角和与差的正弦、余弦和正切公式基础知识归纳1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4.基础题必做1. 若tan α=3,则sin 2αcos 2α的值等于( )A .2B .3C .4D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( )A .-22B.22C.32D .1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 3.已知sin α=23,则cos(π-2α)等于( )A .-53 B .-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.4.(教材习题改编)若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4=________ 解析:由已知条件sin α=-1-cos 2α=-35,sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-7210. 答案:-72105.若tan ⎝⎛⎭⎫α+π4=25,则tan α=________. 解析:tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=25, 即5tan α+5=2-2tan α. 则7tan α=-3,故tan α=-37.答案:-37解题方法归纳1.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.三角函数公式的应用 典题导入[例1] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. [自主解答] (1)∵f (x )=2sin ⎝⎛⎭⎫13x -π6, ∴f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65, ∴2sin α=1013,2sin ⎝⎛⎭⎫β+π2=65. 即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665.解题方法归纳两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.(2) 已知α为锐角,cos α=55,则tan ⎝⎛⎭⎫π4+2α=( ) A .-3 B .-17C .-43D .-7 解析:(1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π,∴cos α=-45. ∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝⎛⎭⎫π4+2α=1-431+43=-17. 答案:(1)-75 (2)B三角函数公式的逆用与变形应用典题导入[例2] 已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎫x +π3,∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝⎛⎭⎫α-π3=13,∴1+2cos α=13,即cos α=-13. ∵α为第二象限角,∴sin α=223. ∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.解题方法归纳运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1) 已知sin ⎝⎛⎭⎫α+π6+cos α=435,则sin ⎝⎛⎭⎫α+π3的值为( ) A.45 B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎫α+π3=45. (2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换 典题导入[例3] (1) 若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2) 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. [自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.(2)因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425, cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. [答案] (1)43 (2)17250解题方法归纳1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧: α=2·α2;α=(α+β)-β;α=β-(β-α); α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)]; π4+α=π2-⎝⎛⎭⎫π4-α;α=π4-⎝⎛⎭⎫π4-α.以题试法3.设tan ()α+β=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A.1318 B.1322 C.322D.16解析:选C tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.1. 设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3.2. 已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 3. 已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α的值为( ) A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos ⎝⎛⎭⎫π4+α=12sin ⎝⎛⎭⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b , f ′(1)=3+b =4,b =1. 所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 故函数的最大值为2,最小正周期为π. 5. 设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( ) A.2525B.255C.2525或255D.55或525 解析:选A 依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α、β均为锐角,因此0<α<α+β<π, cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 7. 满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得 cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12sin 2αcos 2α =cos 2αsin 2α·12sin 2αcos 2α=12. 答案:129. 已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-35×⎝⎛⎭⎫-13+45×223 =3+8215.答案:3+821510.已知α∈⎝⎛⎭⎫0,π2,tan α=12,求tan 2α和sin ⎝⎛⎭⎫2α+π3的值. 解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1, ∴5sin 2α=1,而α∈⎝⎛⎭⎫0,π2, ∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 11.已知:0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=45. (1)求sin 2β的值; (2)求cos ⎝⎛⎭⎫α+π4的值.解:(1)法一:∵cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13, ∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79. (2)∵0<α<π2<β<π, ∴π4<β<-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎫β-π4>0,cos (α+β)<0. ∵cos ⎝⎛⎭⎫β-π4=13,sin (α+β)=45, ∴sin ⎝⎛⎭⎫β-π4=223,cos (α+β)=-35. ∴cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos (α+β)cos ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315. 12. 函数f(x)=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2,x ∈R . (1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝⎛⎭⎫0,π2,求tan ⎝⎛⎭⎫α+π4的值. 解:(1)f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 故f (x )的最小正周期T =2π12=4π. (2)由f (α)=2105,得sin α2+cos α2=2105, 则⎝⎛⎭⎫sin α2+cos α22=⎝⎛⎭⎫21052, 即1+sin α=85,解得sin α=35,又α∈⎝⎛⎭⎫0,π2,则cos α=1-sin 2α= 1-925=45, 故tan α=sin αcos α=34, 所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝⎛⎭⎫1a ,且α+β=π4,则实数a 的值为( ) A .1B.110 C .1或110 D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝⎛⎭⎫1a 1-lg (10a )·lg ⎝⎛⎭⎫1a =1⇒lg 2a +lg a =0, 所以lg a =0或lg a =-1,即a =1或110. 2.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:123.已知sin α+cos α=355,α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35,β∈⎝⎛⎭⎫π4,π2. (1)求sin 2α和tan 2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,∴sin 2α=45.又2α∈⎝⎛⎭⎫0,π2,∴cos 2α=1-sin 22α=35, ∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝⎛⎭⎫π4,π2,β-π4∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35, ∴cos ⎝⎛⎭⎫β-π4=45, 于是sin 2⎝⎛⎭⎫β-π4=2sin ⎝⎛⎭⎫β-π4cos ⎝⎛⎭⎫β-π4=2425. 又sin 2⎝⎛⎭⎫β-π4=-cos 2β, ∴cos 2β=-2425, 又∵2β∈⎝⎛⎭⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π4, ∴cos α=255,sin α=55. ∴cos(α+2β)=cos αcos 2β-sin αsin 2β=255 ×⎝⎛⎭⎫-2425-55×725=-11525.1. 已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎡⎦⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ·(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎡⎦⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎡⎦⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32. 因为x ∈⎣⎡⎦⎤π2,π,所以2x -π3∈⎣⎡⎦⎤2π3,5π3. 所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32. 2.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; 解:∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π. ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β = 1-⎝⎛⎭⎫232=53,sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-⎝⎛⎭⎫-192=459. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.。
两角和与差的正弦、余弦和正切公式讲义 高三数学一轮专题复习
§4.3 两角和与差的正弦、余弦和正切公式 考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用. 知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)= ;(2)公式C (α+β):cos(α+β)= ;(3)公式S (α-β):sin(α-β)= ;(4)公式S (α+β):sin(α+β)= ;(5)公式T (α-β):tan(α-β)= ;(6)公式T (α+β):tan(α+β)= .2.辅助角公式a sin α+b cos α= ,其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在α,β,使等式sin(α+β)=sin α+sin β.( )(2)两角和与差的正切公式中的角α,β是任意角.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( )教材改编题1.sin 20°cos 10°-cos 160°sin 10°等于( )A .-32 B.32 C .-12 D.12 2.若将sin x -3cos x 写成2sin(x -φ)的形式,其中0≤φ<π,则φ= .3.已知α∈⎝⎛⎭⎫π2,π,且sin α=45,则tan ⎝⎛⎭⎫α+π4的值为 .题型一 两角和与差的三角函数公式例1 (1)计算:cos 55°+sin 25°cos 60°cos 25°等于( ) A .-32 B.32 C .-12 D.12(2)(2023·青岛模拟)已知tan α=1+m ,tan β=m ,且α+β=π4,则实数m 的值为( ) A .-1 B .1 C .0或-3 D .0或1听课记录:______________________________________________________________ ________________________________________________________________________思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)(2023·茂名模拟)已知0<α<π2,sin ⎝⎛⎭⎫π4-α=26,则sin α1+tan α的值为( ) A.41451 B.21413 C.41751 D.21713(2)(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则( ) A .tan(α-β)=1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α+β)=-1题型二 两角和与差的公式逆用与辅助角公式 例2 (1)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( ) A.14 B.13 C.12 D.53(2)(2022·浙江)若3sin α-sin β=10,α+β=π2,则sin α= ,cos 2β= .听课记录:______________________________________________________________ ________________________________________________________________________思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.跟踪训练2 (1)(2022·咸阳模拟)已知sin ⎝⎛⎭⎫x -π6=33,则sin x +sin ⎝⎛⎭⎫x -π3等于( ) A .1 B .-1 C.233D.3 (2)满足等式(1+tan α)(1+tan β)=2的数组(α,β)有无穷多个,试写出一个这样的数组________.题型三 角的变换问题例3 (1)(2020·全国Ⅲ)已知sin θ+sin ⎝⎛⎭⎫θ+π3=1,则sin ⎝⎛⎭⎫θ+π6等于( ) A.12 B.33 C.23 D.22(2)已知α,β为锐角,sin α=31010,cos(α+β)=-55.则sin(2α+β)的值为 . 听课记录:______________________________________________________________ ________________________________________________________________________思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等. 跟踪训练3 (1)(2023·青岛质检)已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=2425,则cos ⎝⎛⎭⎫α+π4=________. (2)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .。
两角和与差的正弦、余弦和正切公式--知识点与题型归纳
●高考明方向1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.★备考知考情1.利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点.2.常与三角函数的性质、向量、解三角形的知识相结合命题.3.题型以选择题、填空题为主,属中低档题.一、知识梳理《名师一号》P52知识点1、(补充)两角差的余弦公式的推导1欢迎下载。
2欢迎下载利用向量的数量积推导----必修4 课本P1252、(补充)公式之间的关系及导出过程3、和、差、倍角公式《名师一号》P52注意:《名师一号》P53 问题探究 问题1两角和与差的正切公式对任意角α,β都成立吗?其适用条件是什么?在公式T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z),即保证tan α,tan β,tan(α+β)都有意义;。
3欢迎下载若α,β中有一角是k π+π2(k ∈Z),可利用诱导公式化简.小结:一、公式的逆用与变形运用《名师一号》P53知识点二2(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos2α2,sin 2α=1-cos2α2; (3)1+sin2α=(sin α+cos α)2,1-sin2α=(sin α-cos α)2;(4)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.二、三角恒等变换须关注以下三方面《名师一号》P53 问题探究 问题2(补充)1、角:角的变换:注意拆角、拼角技巧如α=(α+β)-β=(α-β)+β,(α+β)+(α-β)=2α,β=α+β2-α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β,75°=45°+30°等注意倍角的相对性:。
两角和与差的正弦、余弦和正切公式Word版含答案
两角和与差的正弦、余弦和正切公式【课前回顾】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【课前快练】1.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15,选A. 3.(2017·山东高考)已知cos x =34,则cos 2x =( )A .-14B.14 C .-18D.18解析:选D ∵cos x =34,∴cos 2x =2cos 2x -1=18.4.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α5.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75考点一 三角函数公式的直接应用三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【典型例题】1.已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α的值为( ) A.210B .-210 C.7210D .-7210解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, ∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则cos ⎝⎛⎭⎫5π6-2α的值为______. 解析:因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.答案:-4+3310考点二 三角函数公式的逆用与变形用1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.2.熟记三角函数公式的2类变式 (1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (2)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 考法(一) 三角函数公式的逆用 1.sin 10°1-3tan 10°=________. 解析:sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案:142.在△ABC 中,若tan A tan B = tan A +tan B +1, 则cos C =________.解析:由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.答案:223.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考法(二) 三角函数公式的变形用 4.化简sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-15.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换1.迁移要准(1)看到角的范围及余弦值想到正弦值;看到β,α+β,α想到凑角β=(α+β)-α,代入公式求值.(2)看到两个角的正切值想到两角和与差的正切公式;看到α+β,β,α-β想到凑角.2.思路要明(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.3.思想要有转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.【典型例题】1.(2018·南充模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β=________.解析:因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,所以α+β∈(0,π), 所以sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314, 则sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝⎛⎭⎫-1114×437=32. 答案:322.已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-726【针对训练】1.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵α∈⎝⎛⎭⎫0,π2,tan α=2,∴sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝⎛⎭⎫255+55=31010. 答案:310102.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 【课后演练】1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B.32C.233D .2 3解析:选B 由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 3.(2018·石家庄质检)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429解析:选A 因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.4.(2018·衡水调研)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118 C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.5.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:选Bsin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.6.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65B .1C.35D.15解析:选A 因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2018·贵州适应性考试)已知α是第三象限角,且cos(α+π)=45,则tan 2α=________.解析:由cos(α+π)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tan α=34,故tan 2α=2tan α1-tan 2α=247. 答案:2479.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3 =cos x +12cos x +32sin x=32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33 =-1. 答案:-110.(2018·石家庄质检)已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=________. 解析:因为α∈⎝⎛⎭⎫0,π2,所以α+π3∈⎝⎛⎭⎫π3,5π6, 所以sin ⎝⎛⎭⎫α+π3=53,所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3-π3=cos ⎝⎛⎭⎫α+π3cos π3+sin ⎝⎛⎭⎫α+π3sin π3=-23×12+53×32=15-26. 答案:15-2611.(2018·陕西高三教学质量检测)已知角α的终边过点P (4,-3),则cos ⎝⎛⎭⎫α+π4的值为( )A .-7210 B.7210 C .-210D.210解析:选B 由于角α的终边过点P (4,-3),则cos α=442+(-3)2=45,sin α=-342+(-3)2=-35,故cos ⎝⎛⎭⎫α+π4=cos αcos π4-sin αsin π4=45×22-⎝⎛⎭⎫-35×22=7210. 12.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225 B.2425 C .-2425D .-1225解析:选B 因为α为锐角,且cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6= 1-cos 2⎝⎛⎭⎫α+π6=35, 所以sin ⎝⎛⎭⎫2α+π3=sin2⎝⎛⎭⎫α+π6 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425. 13.(2018·广东肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( ) A .-195 B .-519 C .-3117D .-1731解析:选D 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247, ∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 14.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π315.(2018·安徽两校阶段性测试)若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________.解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α),所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件;由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151616.(2018·广东六校联考)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12 =sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2, 所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ) =22×⎝⎛⎭⎫2425-725=17250. 17.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35,得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310. 18.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3,∴cos ⎝⎛⎭⎫2α+π3=-32, ∴ sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3 =-12×12-⎝⎛⎭⎫-32×32=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
两角和与差的正弦、余弦和正切(二倍角公式)
两角和与差的正弦、余弦和正切(二倍角公式)一.【学习目标】1、掌握并熟练使用两角和与差的余弦、正弦、正切进行证明、化简和求值;2、能针对不同情况进行寻找已知角之间的关系,灵活使用两角和与差的余弦、正弦、正切公式,二倍角公式进行证明、化简和求值.二.重点、难点、易错(混)点、常考点灵活使用两角和与差的余弦、正弦、正切进行证明、化简和求值三.【知识梳理】1.两角和与差的正弦、余弦、正切公式: C (),cos()αβαβ--= ; C (),cos()αβαβ++= S (),sin()αβαβ--= ; S (),sin()αβαβ++= . T (),tan()αβαβ++= 由T ()αβ+可得公式变形tan tan αβ+= T (),tan()αβαβ--=由T ()αβ-可得公式变形得:tan tan αβ-= 2. 二倍角的正弦、余弦、正切公式2:sin 2S ________________;2:tan 2T ________________。
2:cos 2C ________________=________________=________________;四.【基础题达标】 1.12cos312sinππ-=2.sin15°sin30°sin75°=__________.3.cos20°cos40°cos60°cos80° =4.),0(πθ∈,θθsin 1sin 1--+=5.313sin 253sin 223sin 163sin +的值等于 6.12cos312sinππ-=7.化简:x x sin 6cos 2-= 8.若51cos sin =+θθ,则θ2sin 的值 9.81cos sin =x x 且24ππ<<x ,则=-x x sin cos 10.),0(πθ∈,θθsin 1sin 1--+=11.函数)(2cos 21cos )(R x x x x f ∈-=的最大值为 12..若223tan 1tan 1+=-+αα,则=-αα2cos 2sin 113.50tan 10tan 350tan 10tan ++=14.化简:15tan 115tan 1-+=15.已知cos (6πα-)+sin α76)πα+的值是考点一: 运用公式求值、求角问题【例1】 (1)已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,求cos(α-β)的值. (2)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (3)已知π2<β<α<34π,sin(α-β)=1213,cos(α+β) =-35,求sin2α的值(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【训练1】已知βα,是锐角且1010sin ,55sin ==βα,求βα+【训练2】(2012·江苏卷)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________.考点二: 公式的变形应用【例2】已知:)tan(βα+=βtan 2。
第五节 两角和与差的正弦、余弦和正切公式(知识归纳及考点突破)
3 π tanα+4 的值为____ 22 .
基础盘查二
二倍角的正弦、余弦、正切公式
(一)循纲忆知
能利用两角差的余弦公式推导出二倍角的正弦、余弦、正切 公式,了解它们的内在联系.
tan(α+β)(1-tan αtan β),且对任意角 α,β 都成立编)已知 sin α=- ,α 是第四象限角,则 5
π 10 cosα+4=______.
7 2
1 2 . 3.计算 cos 42°cos 18° -cos 48°cos 72° 的值为____
[典题例析]
1 2 π 1. (2015· 东北三校第二次联考)已知 sin α+cos α=3, 则 sin 4-α=
( 1 A.18 8 C. 9 17 B.18 2 D. 9
)
1 解析:∵sin α+cos α= , 3 1 8 ∴(sin α+cos α)2=1+2sin α cos α= ,∴sin 2α=- , 9 9
4+3 3 =- . 10
[类题通法]
两角和与差的三角函数公式可看作是诱导公式的推广, 可用 α、 β 的三角函数表示 α ±β 的三角函数, 在使用两角和与差的三角函数 公式时,特别要注意角与角之间的关系,完成统一角和角与角转换 的目的.
考点二
三角函数公式的逆用与变形应用 (重点保分型考点——师生共研)
-2 3 2tan α ∴tan 2α= = = 3. 1-tan2α 1-- 32
3.(2014· 江苏高考)已知 (1)求
π α∈2,π,sin
5 α= . 5
两角和与差的正弦、余弦、正切公式及变形(最新整理)
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式(1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β))②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β))③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β))④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β))⑤tan(α-β)=(T (α-β))tan α-tan β1+tan αtan β⑥tan(α+β)=(T (α+β))tan α+tan β1-tan αtan β(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β).②tan α-tan β=tan(α-β)(1+tan αtan β).2.二倍角公式(1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,③tan 2α=.2tan α1-tan 2α(2)公式变形①cos 2α=,sin 2α=;1+cos 2α21-cos 2α2②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=sin .2)4(πα±3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√)(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√)(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意tan α+tan β1-tan αtan β角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×)(6)存在角α,使得sin 2α=2sin α成立.(√)(7)若α+β=,则(1+tan α)(1+tan β)=2.(√)π4(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×)(9)存在实数α,使tan 2α=2tan α.(√)(10)y =的x 无意义.(×)1-2cos 2x考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:-sin 10°;1+cos 20°2sin 20°)5tan 5tan 1(00-解:原式=-sin 10°2cos 210°2×2sin 10°cos 10°)5cos 5sin 5sin 5cos (0000-=-sin 10°·=-sin 10°·cos 10°2sin 10°cos 25°-sin 25°sin 5°cos 5°cos 10°2sin 10°cos 10°12sin 10°=-2cos 10°=cos 10°2sin 10°cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°===.cos 10°-2(12cos 10°-32sin 10°)2sin 10°3sin 10°2sin 10°32(2)化简:sin 2α·sin 2β+cos 2α·cos 2β-cos 2α·cos 2β.12解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-·(2cos 2α-1)·(2cos 2β-1)12=sin 2α·sin 2β+cos 2α·cos 2β-·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)12=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12=sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12=sin 2β+cos 2β-=1-=.121212法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-cos 2α·cos12122β=cos 2β-sin 2α·cos 2β-cos 2α·cos 2β12=cos 2β-cos 2β·)2cos 21(sin 2αα+=-cos 2β·1+cos 2β2[sin 2α+12(1-2sin 2α)]=-cos 2β=.1+cos 2β21212法三:(从“幂”入手,利用降幂公式先降次)原式=·+·-cos 2α·cos 2β1-cos 2α21-cos 2β21+cos 2α21+cos 2β212=(1+cos 2α·cos 2β-cos 2α-cos 2β)+(1+cos 2α·cos 2β+cos 2α+cos 2β)-·cos 2α·cos 2β141412=.12[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+tan 10°).3解:sin 50°(1+tan 10°)=sin 50°(1+tan 60°·tan 10°)3=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·====1.cos (60°-10°)cos 60°cos 10°2sin 50°cos 50°cos 10°sin 100°cos 10°cos 10°cos 10°2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan +tan +tan tan 的值为A 2C 23A 2C2________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =,=,tan =,2π3A +C 2π3A +C23所以tan +tan +tan tanA 2C 23A 2C2=tan +tan tan22(C A +2tan 2tan 1(CA -3A 2C 2=+tan tan =.3)2tan 2tan1(CA -3A 2C 23考点二 三角函数式的给值求值命题点1.已知某角的三角函数值求其它的三角函数值2.已知某角的三角函数值,求三角函数的值3.已知三角函数式的值,求三角函数值[例2] (1)(2016·高考全国丙卷)若tan θ=-,则cos 2θ=( )13A .- B .-C. D.45151545解析:法一:cos 2θ=cos 2θ-sin 2θ=cos2θ-sin 2θcos 2θ+sin 2θ==.故选D.1-tan 2θ1+tan 2θ45法二:由tan θ=-,可得sin θ=±,因而cos 2θ=1-2sin 2θ=.1311045答案:D(2)已知tan =,且-<α<0,则等于( ))4(πα+12π2)4cos(2sin sin 22πααα-+A .-B .-C .-D.255351031010255解析:由tan ==,得tan α=-.)4(πα+tan α+11-tan α1213又-<α<0,所以sin α=-.π21010故==2sin α=-.)4cos(2sin sin 22πααα-+2sin α(sin α+cos α)22(sin α+cos α)2255答案:A(3)已知α∈,且2sin 2α-sin α·cos α-3cos 2α=0,则=________.)2,0(π12cos 2sin )4sin(+++ααπα解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0,由于α∈,sin α+cos α≠0,)2,0(π则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=,213∴==.12cos 2sin )4sin(+++ααπα22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)268答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan 的值.)6(θπ+解:tan ===.)6(θπ+tan π6+tan θ1-tan π6tan θ33-131+33×1353-6132.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值.解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ===-.2tan 2θ-tan θ-3tan 2θ+12×(-13)2+13-3(-13)2+11153.已知cos +sin =,则cos =________.)2(απ-)32(απ-23532(πα+解析:由cos +sin =,得)2(απ-)32(απ-235sin α+sin cos α-cos πsin α=∴sin α+cos α=,2π3232353232235即sin =,∴sin =,3)6(πα+2356(πα+25因此cos =1-2sin 2=1-2×=.)32(πα+6(πα+2)52(1725答案:1725考点三 已知三角函数式的值求角命题点1.利用弦函数值求角2.利用切函数值求角[例3] (1)已知cos α=,cos(α-β)=,0<β<α<,则β=________.171314π2解析:∵cos α=,0<α<.∴sin α=.17π2437又cos(α-β)=,且0<β<α<.∴0<α-β<,则sin(α-β)=.1314π2π23314则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×==,由于0<β<,所以β=.1713144373314497×1412π2π3答案:π3(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为________.1217解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β==>0,∴0<α<.又∵tan 2α===>0,12-171+12×1713π22tan α1-tan 2α2)31(1312-⨯34∴0<2α<,∴tan(2α-β)===1.π2tan 2α-tan β1+tan 2αtan β34+171-34×17∵tan β=-<0,∴<β<π,-π<2α-β<0,∴2α-β=-π.17π234答案:-π34[方法引航] 1.解决给值求角问题应遵循的原则(1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是,选正、余弦皆可;②)2,0(π若角的范围是(0,π),选余弦较好;③若角的范围是,选正弦较好.)2,2(ππ-2.解给值求角问题的一般步骤(1)求角的某一个三角函数值.(2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=,cos β=-,则α+β的值为( )5531010A. B.C. D.或3π45π47π45π47π4解析:选C.∵α,β为钝角,sin α=,cos β=-,5531010∴cos α=,sin β=,∴cos(α+β)=cos αcos β-sin αsin β=>0.-255101022又α+β∈(π,2π),∴α+β∈,∴α+β=.)2,23(ππ7π42.已知tan α=-,cos β=,α∈,β∈,求tan(α+β)的值,并求出α+β的值.1355),2(ππ)2,0(π解:由cos β=,β∈,得sin β=,tan β=2.55)2,0(π255∴tan(α+β)===1.tan α+tan β1-tan αtan β-13+21+23∵α∈,β∈,∴<α+β<,∴α+β=.),2(ππ)2,0(ππ23π25π4[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-sin 30°=1-=.121434(Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+cos 2α+sin αcos α+sin 2α-sin α·cos α-sin 2α=sin 2α+34321432123434cos 2α=.34法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=+-sin α(cos 30°cos α+sin 1-cos 2α21+cos (60°-2α)230°sin α)=-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin 2α=-cos 2α1212121232121212++cos 2α+sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.121434341414141434[高考真题体验]1.(2016·高考全国甲卷)若cos =,则sin 2α=( ))4(απ-35A. B. C .-D .-7251515725解析:选D.因为cos =cos cos α+sin sin α=(sin α+cos α)=,所以sin α+cos α=)4(απ-π4π42235,所以1+sin 2α=,所以sin 2α=-,故选D.32518257252.(2016·高考全国丙卷)若tan α=,则cos 2α+2sin 2α=( )34A.B.C .1D.642548251625解析:选A.法一:由tan α==,cos 2α+sin 2α=1,得Error!或Error!,则sin 2α=2sin αcossin αcos α34α=,则cos 2α+2sin 2α=+=.2425162548256425法二:cos 2α+2sin 2α====.cos 2α+4sin αcos αcos 2α+sin 2α1+4tan α1+tan 2α1+31+91664253.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .- B.C .- D.32321212解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=.124.(2014·高考课标全国卷Ⅰ)设α∈,β∈,且tan α=,则( ))2,0(π)2,0(π1+sin βcos βA .3α-β= B .2α-β=C .3α+β= D .2α+β=π2π2π2π2解析:选B.由条件得=,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin sin αcos α1+sin βcos β,因为-<α-β<,0<-α<,所以α-β=-α,所以2α-β=,故选B.)2(απ-π2π2π2π2π2π25.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α==2sin αcos α-cos 2αsin 2α+cos 2α2tan α-1tan 2α+1==-1.-4-14+1答案:-16.(2016·高考四川卷)cos 2-sin 2=________.π8π8解析:由二倍角公式,得cos 2-sin 2=cos =.π8π8)82(π⨯22答案:22课时规范训练A 组 基础演练1.tan 15°+=( )1tan 15°A .2 B .2+C .4D.3433解析:选C.法一:tan 15°+=+1tan 15°sin 15°cos 15°cos 15°sin 15°===4.1cos 15°sin 15°2sin 30°法二:tan 15°+=+1tan 15°1-cos 30°sin 30°1sin 30°1+cos 30°=+==4.1-cos 30°sin 30°1+cos 30°sin 30°2sin 30°2.的值是( )2cos 10°-sin 20°sin 70°A. B.C.D.123232解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°==.3cos 20°cos 20°33.已知θ∈(0,π),且sin =,则tan 2θ=( ))4(πθ-210A. B. C .-D.4334247247解析:选C.由sin =,得(sin θ-cos θ)=,所以sin θ-cos θ=.)4(πθ-2102221015解方程组Error!,得Error!或Error!.因为θ∈(0,π),所以sin θ>0,所以Error!不合题意,舍去,所以tan θ=,所以tan 2θ==432tan θ1-tan 2θ=-,故选C.2×431-(43)22474.若θ∈,sin 2θ=,则sin θ等于( )]2,4[ππ378A. B. C.D.35457434解析:选D.由sin 2θ=和sin 2θ+cos 2θ=1得387(sin θ+cos θ)2=+1=,3782)473(+又θ∈,∴sin θ+cos θ=.]2,4[ππ3+74同理,sin θ-cos θ=,∴sin θ=.3-74345.已知sin 2(α+γ)=n sin 2β,则的值为( )tan (α+β+γ)tan (α-β+γ)A.B.C.D.n -1n +1nn +1nn -1n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以=tan (α+β+γ)tan (α-β+γ),故选D.n +1n -16.若sin =,则cos 2θ=________.)2(θπ+35解析:∵sin =cos θ=,∴cos 2θ=2cos 2θ-1=2×-1=-.)2(θπ+352)53(725答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈,则tan 2α的值是________.),2(ππ解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈,sin α≠0,∴cos α=-.又∵α∈,∴α=π,),2(ππ12),2(ππ23∴tan 2α=tan π=tan =tan =.43)3(ππ+π33答案:39.化简:(0<θ<π).(1+sin θ+cos θ)(sin θ2-cosθ2)2+2cos θ解:由θ∈(0,π),得0<<,∴cos >0,θ2π2θ2∴==2cos .2+2cos θ4cos 2θ2θ2又(1+sin θ+cos θ)=)2cos 2(sinθθ-2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+=2cos θ2)2cos 2(sin 22θθ-=-2cos cos θ.故原式==-cos θ.θ2-2cos θ2cos θ2cosθ210.已知α∈,且sin +cos =.),2(ππα2α262(1)求cos α的值;(2)若sin(α-β)=-,β∈,求cos β的值.35),2(ππ解:(1)因为sin +cos =,两边同时平方,得sin α=.α2α26212又<α<π,所以cos α=-.π232(2)因为<α<π,<β<π,所以-π<-β<-,故-<α-β<.π2π2π2π2π2又sin(α-β)=-,得cos(α-β)=.3545cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-×+×=-.324512)53(-43+310B 组 能力突破1.已知sin α+cos α=,则1-2sin 2=( )22)4(απ-A. B.C .-D .-12321232解析:选C.由sin α+cos α=,得1+2sin αcos α=,∴sin 2α=-.221212因此1-2sin 2=cos2=sin 2α=-.)4(απ-)4(απ-122.已知f (x )=2tan x -,则f 的值为( )2sin 2x2-1sin x 2cos x 2)12(πA .4B.C .4D .83833解析:选D.∵f (x )=2=2×=,)sin cos cos sin (2sin cos (tan xxx x x x x +⨯=+1cos x ·sin x 4sin 2x∴f ==8.)12(π4sin π63.已知sin α=,sin(α-β)=-,α,β均为锐角,则角β等于( )551010A. B. C. D.5π12π3π4π6解析:选C.∵α、β均为锐角,∴-<α-β<.π2π2又sin(α-β)=-,∴cos(α-β)=.101031010又sin α=,∴cos α=,55255∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=.5531010255)1010(-22∴β=.π44.若tan α=lg(10a ),tan β=lg ,且α+β=,则实数a 的值为________.1a π4解析:tan α+tan β=lg(10a )+lg =lg 10=1,1a∵α+β=,所以tan =tan(α+β)==,π4π4tan α+tan β1-tan αtan β11-tan αtan β∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg =0.1a 所以10a =1或=1,即a =或1.1a 110答案:或11105.已知tan(π+α)=-,tan(α+β)=.13ααααπ2sin cos 10cos 4)2(2sin 22-+-(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-,∴tan α=-.∵tan(α+β)=1313ααααπ2sin cos 10cos 4)2(2sin 22-+-===sin 2α+4cos 2α10cos 2α-sin 2α2sin αcos α+4cos 2α10cos 2α-2sin αcos α2cos α(sin α+2cos α)2cos α(5cos α-sin α)====.sin α+2cos α5cos α-sin αtan α+25-tan α-13+25-(-13)516(2)tan β=tan[(α+β)-α]===.tan (α+β)-tan α1+tan (α+β)tan α516+131-516×133143。
第03讲 两角和与差的正弦、余弦和正切公式 (精讲+精练)(学生版)
第03讲两角和与差的正弦、余弦和正切公式 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:公式的基本应用高频考点二:公式的逆用及变形高频考点三:辅助角公式的运用高频考点四:二倍角高频考点五:拼凑角第四部分:高考真题感悟第五部分:第03讲两角和与差的正弦、余弦和正切公式(精练)1、两角和与差的正弦、余弦和正切公式①两角和与差的正弦公式sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=-②两角和与差的余弦公式cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+③两角和与差的正切公式tan tan tan()1tan tan αβαβαβ--=+tan tan tan()1tan tan αβαβαβ++=-2、二倍角公式①sin22sin cos ααα=②22cos2cos sin ααα=-;2cos22cos 1αα=-;2cos212sin αα=- ③22tan tan 21tan ααα=-3、降幂公式21cos2cos 2αα+=21cos2sin 2αα-=4、辅助角公式:sin cos )a x b x x ϕ±=±(其中tan b aϕ=) 5、常用结论①两角和与差的正切公式的变形:tan tan tan()(1tan tan )αβαβαβ±=± ②21sin 2(sin cos )ααα+=+ ③21sin 2(sin cos )ααα-=- ④sin cos )4πααα±=±一、判断题1.(2021·江西·贵溪市实验中学高三阶段练习)tan 35tan8535tan85︒︒︒︒+=.( ) 2.(2021·江西·贵溪市实验中学高三阶段练习)1sin 73cos13cos73sin132-=.( ) 二、单选题3.(2022·北京·高三学业考试)sin cos θθ=( ) A .1sin 22θB .1cos 22θC .sin 2θD .cos2θ4.(2022·四川成都·高一期中(理))sin5sin55︒+︒=( ) A .sin 60︒ B .sin 65︒ C .sin 70︒ D .sin 75︒三、填空题5.(2022·云南玉溪·高一期末)23sin1601sin 35-︒+︒的值等于____________.6.(2022·上海市青浦高级中学高一阶段练习)将sin x x 化为sin()(0)A x A ωϕ+>的形式为______.高频考点一:公式的基本应用例题1.(2022·江苏徐州·高一期中)已知0,2πα⎛⎫∈ ⎪⎝⎭,若4sin 5α,则()cos 6πα-=( ) A B C D 例题2.(2022·四川成都·高一期中(理))若tan α,tan β是方程22370x x +-=两个实数根,则tan()αβ+=( ) A .13-B .13C .32-D .25例题3.(2022·浙江金华第一中学高一阶段练习)已知sin cos αβ+=cos sin αβ+=则sin()αβ+= A .12B C .12-D .例题4.(2022·江苏·淮阴中学高一阶段练习)求值1tan15tan15︒+︒( ) A .4B .14C.4+D.4-例题5.(2022·陕西·榆林市第一中学高一期中(文))化简计算:sin 58sin13cos 45cos13︒-︒︒=︒___________.例题6.(2022·北京·北师大实验中学高一期中)若tan 2θ=,则tan 4πθ⎛⎫+= ⎪⎝⎭___________;tan 2θ=___________.题型归类练1.(2022·河北·沧县中学高一阶段练习)sin50cos100cos50sin100+=( ) A .12BC .-12D2.(2022·北京市第二十五中学高一期中)sin 75︒=( ) A 122 BCD3.(2022·北京·北师大实验中学高一期中)已知π0,2θ⎛⎫∈ ⎪⎝⎭,4sin 5θ=,则os 4πc θ⎛⎫-= ⎪⎝⎭( )A.10B.10-C.10D.10-4.(2022·江苏·南京外国语学校高一期中)已知1sin 3α=,,2παπ⎛⎫∈ ⎪⎝⎭,则cos 3πα⎛⎫+ ⎪⎝⎭的值为( )A.BC. D5.(2022·湖南·宁乡市教育研究中心模拟预测)若3sin ,(,)52πααπ=∈,则sin()3πα-=( )ABCD6.(2022·山东德州·高一期中)已知cos 2πcos 4αα=⎛⎫+ ⎪⎝⎭sin 2α=______.7.(2022·江苏·南京师大附中高一期中)设复数1cos isin z αα=+,2cos isin z ββ=+,已知12z z -=. (1)求()cos αβ-的值; (2)若0,tan 72παβα-<<<=-,求2αβ-的值.高频考点二:公式的逆用及变形例题1.(2022·江苏省前黄高级中学高一阶段练习)cos17cos43sin17sin223+=( )A .12-B .C .12D例题2.(2022·江苏·华罗庚中学高三阶段练习)已知cos α=,()sin βα-=,αβ均为锐角,则β=( ) A .12πB .6πC .4π D .3π 例题3.(2022·陕西·榆林市第一中学高一期中(文))3πππ13πsincos cos sin 412412+=___________. 例题4.(2022·四川凉山·高一期中(理))tan 26tan 343tan 26tan 34++⋅=_________. 例题5.(2022·江苏·盐城市伍佑中学高一期中)求下列各式的值. (1)sin10cos20sin80sin 20︒︒+︒︒ (2)cos 47sin17sin 30cos17︒+︒︒︒题型归类练1.(2022·河南·宝丰县第一高级中学模拟预测(理))tan204sin20︒+︒=( )AB .1CD .2.(2022·四川省广安第三中学校高一阶段练习)tan17tan 28tan17tan 28︒+︒+︒︒等于( )A .BC .-1D .13.(2022·上海·华东师范大学附属天山学校高一期中)已知3cos()cos sin()sin 5αβααβα+++=-,则cos 2β=____________.4.(2022·江苏·苏州市苏州高新区第一中学高一期中)化简:tan10tan20tan30tan10tan20tan30+++=__________.5.(2022·江苏宿迁·高一期中)在ABC 中,已知tan tan tan A B A B +,则C =_________6.(2022·江苏·马坝高中高一期中)22tantantan 9999ππππ+=__________.高频考点三:辅助角公式的运用例题1.(2022·全国·高一课时练习)求下列函数的最大值和最小值:(1)1cos 2y x x =; (2)sin cos y x x =-;(3)sin y x x =; (4)sin 22y x x =.例题2.(2021·全国·高一课时练习)设m 为实数,已知sin 1m αα=-,求m 的取值范围.例题3.(2022·黑龙江·勃利县高级中学高一阶段练习)求函数21sin cos (sin cos )y x x x x =++++的值域.题型归类练1.(2022·江西九江·三模(文))已知1sin cos 3αα-=,则cos 4πα⎛⎫+= ⎪⎝⎭( )A .13-B .C .13D2.(2022·江西·︒︒=( )A B .12C .D .12-3.(2022·湖南·=___________.4.(2022·陕西汉中·高一期中)(1)若sin cos αα+=tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)若2cos 65πα⎛⎫-= ⎪⎝⎭,求sin 26πα⎛⎫+ ⎪⎝⎭的值.5.(2021·全国·高一课时练习)求下列函数的最大值和最小值: (1)34sin cos 55y x x =+;(2)sin cos y a x b x =+(a ,b 均为正数).高频考点四:二倍角例题1.(2022·北京·汇文中学高一期中)若sin cos αα-=,则sin 2α=( ) A .35B .45C .35 D .45-例题2.(2022·甘肃·永昌县第一高级中学高二期中(文))已知sin 2cos 0αα+=,则cos2sin 2αα-等于( ) A .45B .35C .25D .15例题3.(2022·全国·高三阶段练习(理))已知tan 24tan 4πθθ⎛⎫=-+ ⎪⎝⎭,则sin 2θ=( )A .25-B .45-C .25D .45例题4.(2022·云南曲靖·二模(文))已知3sin 2παα⎛⎫=+ ⎪⎝⎭,则cos2=α___________.例题5.(2022·北京·中关村中学高一期中)若角α的终边经过点()1,2P -,则cos α=___________.tan2α=___________.题型归类练1.(2022·江西鹰潭·二模(文))已知(,)2παπ∈,且213sin 2cos 25αα-=-,则cos2=α( )A .35B .45C .35 D .45或352.(2022·陕西·长安一中模拟预测(理))已知函数()2cos cos2f x x x =+,则()f x 的最小值为( ) A .1-B .12-C .32-D .52-3.(2022·云南德宏·高三期末(文))已知πsin 2sin()2αα=+,则cos2α=( ) A .35 B .45-C .35D .454.(2022·四川省广汉中学高一阶段练习(理))若()()3πsin 3πsin 12π3cos cos π2αααα⎛⎫---- ⎪⎝⎭=⎛⎫++-+ ⎪⎝⎭,则tan2α=( )A .34B .34-C .43-D .435.(2022·江苏南通·高一阶段练习)已知cos 3sin 0αα+=,则tan2α=( )A .34B .34-C .35 D .38-6.(2022·陕西·长安一中高一期中)已知1sin 24α=,且42ππα<<,则cos sin αα-=________.7.(2022·北京市西城外国语学校高一期中)已知角α的终边在直线y =上,则sin 2α=________. 8.(2022·辽宁沈阳·高一期中)若1sin cos ,05αααπ+=<<,则sin 2cos2αα+=___________. 9.(2022·浙江绍兴·模拟预测)已知tan 2α=,则tan2α=________,2sin 2cos αα+=__________.高频考点五:拼凑角例题1.(2022·江苏·东海县教育局教研室高一期中)已知0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,1sin 3α=,()7sin 9αβ+=,则cos β的值为( ) A .13-B .13C .12-D .12例题2.(2022·江苏·苏州市苏州高新区第一中学高一期中)设0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且11tan ,tan 73αβ==,则2αβ+=( ) A .4πB .3π C .34π D .54π 例题3.(2022·江苏·星海实验中学高一期中)已知22ππθ-<<,且1sin 63πθ⎛⎫-= ⎪⎝⎭,则sin θ的值为( )A .16B C D 例题4.(2022·江苏·涟水县第一中学高一阶段练习)已知,αβ都是锐角,3sin 5α=,5cos()13αβ+=-,则cos β=( ) A .1B .5665-C .1665D .5665题型归类练1.(2022·北京市第五十中学高一期中)若,αβ都是锐角,且sin α=,()sin αβ-=, 则sin β=( ) AB2C .12D .1102.(2022·安徽淮南·二模(理))已知ππ340,π,sin ,cos()2255αβααβ<<<<=+=-,则sin β=( ) A .2425B .2425-C .2425-或2425D .0或24253.(2022·甘肃省民乐县第一中学高一期中)若()3tan 2αβ-=,tan 2β=,则tan α=( ) A .74-B .47-C .47D .744.(2022·四川成都·高一期中(理))已知α、β为锐角,且3sin 5β=,5cos()13αβ+=-,则sin α的值为( ) A .6365B .3365C .4865-D .48654.(2022·江苏省镇江中学高一期中)已知αβ、为锐角,()31tan ,tan 43αβα=-=,则tan β=( )A .139B .913C .3D .131.(2021·全国·高考真题(文))函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A .3πB .3π和2C .6πD .6π和22.(2020·全国·高考真题(理))已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .23.(2020·全国·高考真题(文))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( ) A .12B C .23D .24.(2020·全国·高考真题(文))若2sin 3x =-,则cos2x =__________.5.(2020·江苏·高考真题)已知2sin ()4πα+ =23,则sin 2α的值是____.6.(2020·浙江·高考真题)已知tan 2θ=,则cos 2θ=________;πtan()4θ-=______.7.(2021·浙江·高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.一、单选题1.(2022·四川省南充市白塔中学高一期中(文))sin75cos15sin15cos75︒︒-︒︒的值是( ) A .0B .12C D .12-2.(2022·江苏淮安·高一期中)已知tan 2α=,tan 4β=,则()tan αβ+=( ) A .67B .-67C .-57D .573.(2022·四川凉山·高一期中(理))已知sin cos 12sin cos 3αααα+=-,则πtan(α)4+的值为( )A .35B .45-C .35 D .454.(2022·湖南·岳阳市教育科学技术研究院三模)212cos 67.5-︒=( )A .12-B .C .D 5.(2022·四川凉山·高一期中(理))求cos60sin15cos15⋅⋅的值为( )A .14B .12C D .186.(2022·江苏·南京市金陵中学河西分校高一期中)已知1sin cos 2θθ-=,则2cos 4πθ⎛⎫-= ⎪⎝⎭( )A .716B .78C D7.(2022·广东茂名·模拟预测)已知1sin15cos15cos 6αα=,则()cos 2120α+︒=( ) A .79B .79-C .1718D .1718-8.(2022·江苏南通·模拟预测)在△ABC 中,若tan tan tan A B A B +,则tan 2C =( )A .-B .C .-D .二、填空题9.(2022·上海市仙霞高级中学高一期中)函数3sin 4cos y x x =+的最大值是______. 10.(2022·北京市育英中学高一期中)已知32ππα<<,3sin 45πα⎛⎫-= ⎪⎝⎭,则cos α的值为__________.11.(2022·山东·肥城市教学研究中心模拟预测)若0,2πα⎛⎫∈ ⎪⎝⎭,且3sin 24cos20αα+=, 则cos cos 2sin cos αααα=+_______.12.(2022·全国·高三专题练习)已知4cos 25πα⎛⎫-=- ⎪⎝⎭,且,02πα⎛⎫∈- ⎪⎝⎭,则22cos 24παα⎛⎫- ⎪⎝⎭的值是______. 三、解答题13.(2022·宁夏吴忠·高一期中)已知3cos 5α=,,02πα⎛⎫∈- ⎪⎝⎭. (1)求cos2α,sin 2α的值; (2)求sin 3πα⎛⎫- ⎪⎝⎭的值.14.(2022·北京市第十九中学高一期中)已知tan 24πα⎛⎫+= ⎪⎝⎭,,44ππα⎛⎫∈- ⎪⎝⎭.(1)求sin α的值;(2)求()sin cos 4cos 2παααα⎛⎫+⋅+ ⎪⎝⎭的值.15.(2022·广东·深圳中学高一期中)已知,αβ为锐角,tan 2,sin()ααβ=-=. (1)求cos2α的值; (2)求tan β的值.16.(2022·陕西·泾阳县教育局教学研究室高一期中)计算求值: (1)(2cos1023cos 100sin10--的值;(2)已知α、β均为锐角,1sin 7α=,()cos αβ+=sin β的值.。
【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式
两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β),β,α±β≠π2+k π,k ∈两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α≠k π+π2且α≠k π2+π4,k ∈二倍角是相对的,例如,α2是α43α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φsin φ=b a 2+b 2,cos φ考点一三角函数公式的直接应用[典例](1)已知sin α=35,αtan β=-12,则tan(α-β)的值为()A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin (π-α)=13,且π2≤α≤π,则sin 2α的值为()A .-229B .-429C.229D.429[解析](1)因为sin α=35,α所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×=-429.[答案](1)A(2)B[解题技法]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.[题组训练]1.已知sin α=13+cos α,且α,则cos 2α()A .-23B.23C .-13D.13解析:选A因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2α=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且αsin α________.解析:因为sin α=45,且αα所以cos α=-1-sin 2α=-=-35.因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以αsin 2αcos π3+cos 2αsin π3=-24+7350.答案:-24+7350考点二三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解析](1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°=3.[答案](1)-12(2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin αsin α2±cos ;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知sin α=435,则________.解析:由sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,∴3sin =435,即=45.答案:453.化简sin sin sin 2α的结果是________.解析:sin 2α=1-12cos ααsin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三角的变换与名的变换考法(一)三角公式中角的变换[典例](2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点-35,-若角β满足sin(α+β)=513,则cos β的值为________.[解析]由角α的终边过点-35,-得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.[答案]-5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=考法(二)三角公式中名的变换[典例](2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.[解](1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法]三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos ()A.12B.13C.14D.15解析:选C由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos =1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若=7210A sin A 的值为()A.35B.45C.35或45D.34解析:选B ∵A A +π4∈∴=-210,∴sin A =-π4=cos π4-sin π4=45.3.已知sin α=-45,α∈3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=()A.613B.136C .-613D .-136解析:选A ∵sin α=-45,α∈3π2,2π,∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos[(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=()A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +1,则cos 2x =()A .-89B .-79C.79D .-725解析:选C 因为2sin x +1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若=-33,则cos α=()A .-223B .±223C .-1D .±1解析:选C cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos =-1.4.tan 18°+tan 12°+33tan 18°tan 12°=()A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33.5.若α3cos 2α=sin 2α的值为()A .-118B.118C .-1718D.1718解析:选C由3cos 2α=3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos ()A .-13B.13C .-23D.23解析:选Dcos =12+12sin 2α=12+12×13=23.7.已知=12,α-π2,cos________.解析:由已知得cos α=12,sin α=-32,所以=12cos α+32sin α=-12.答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若=16,则tan α=________.解析:tan α=+π4=tanπ41-tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-111.已知tan α=2.(1)求tan(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:=tan α+tan π41-tan αtan π4=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β,∴-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×=91050.B 级1.(2019·广东五校联考)若4cos(2π-θ),|θ|<π2,则tan2θ=________.解析:∵4cos(2π-θ),∴cos θsin θ=4cos θ,又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,=35,则________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,=35,所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,=-45,可得cos (A +B )=-2425×+725×35=117125.答案:1171253.(2019·石家庄质检)已知函数f (x )=x ∈R.(1)求f(2)若cos θ=45,θf θ解:(1)-π4+=-12.(2)θθ-π3+θ=22(sin 2θ-cos 2θ).因为cos θ=45,θsin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以θ=22(sin 2θ-cos 2θ)=22×=17250.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●高考明方向1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.★备考知考情1.利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点.2.常与三角函数的性质、向量、解三角形的知识1相结合命题.3.题型以选择题、填空题为主,属中低档题.一、知识梳理《名师一号》P52知识点1、(补充)两角差的余弦公式的推导利用向量的数量积推导----必修4 课本P125 2、(补充)公式之间的关系及导出过程233、和、差、倍角公式《名师一号》P52注意:《名师一号》P53 问题探究 问题1两角和与差的正切公式对任意角α,β都成立吗?其适用条件是什么?在公式T (α+β)与T (α-β)中,α,β,α±β都不等于kπ+π2(k ∈Z),即保证tanα,tanβ,tan (α+β)都有意义;4 若α,β中有一角是kπ+π2(k ∈Z),可利用诱导公式化简.小结:一、公式的逆用与变形运用《名师一号》P53知识点二2(1)tanα±tanβ=tan(α±β)(1∓tanαtanβ);(2)cos 2α=1+cos2α2,sin 2α=1-cos2α2; (3)1+sin2α=(sinα+cosα)2,1-sin2α=(sinα-cosα)2;(4)sin α±cosα=2sin ⎝⎛⎭⎪⎫α±π4.二、三角恒等变换须关注以下三方面《名师一号》P53 问题探究 问题2 (补充)1、角:5 角的变换:注意拆角、拼角技巧如α=(α+β)-β=(α-β)+β,(α+β)+(α-β)=2α,β=α+β2-α-β2,α-β2=⎝⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β,75°=45°+30°等 注意倍角的相对性:如α是2α的二倍角等; 3α是23α的二倍角等; 2、函数名:异名化同名---正余互化,切化弦,弦化切 正余互化(利用诱导公式、平方关系) 切化弦,弦化切(利用sin tan cos ααα=、 αααααcos 1sin sin cos 12tan +=-=)等; 3、式子结构:(1)1的变换(注意145tan =︒,22sin cos 1+=αα)、(2)幂的变换(升幂角减半6 221cos 22cos ,1cos 22sin αααα+=-=;降幂角加倍221cos 21cos 2cos ,sin 22αααα+-==)、 (3)合一变换()sin(cos sin 22ϕααα++=+b a b a ) -----《名师一号》P53 知识点三要时时关注角的范围的讨论!二、例题分析:(一)公式的直接应用例1.(1)《名师一号》P53 对点自测1、2、3、4cos33°cos87°+sin33°cos177°的值为( )A.12 B .-12 C.32 D .-327解析 cos33°cos87°+sin33°cos177° =cos33°sin3°-sin33°cos3°=sin(3°-33°)=-sin30°=-12. 2.若cosα=-45,α是第三象限的角,则sin ⎝⎛⎭⎪⎫α+π4 =( )A .-7210 B.7210 C .-210 D.210解析 由于α是第三象限角且cosα=-45, ∴sinα=-35.8∴sin ⎝⎛⎭⎪⎫α+π4=sinαcos π4+cosαsin π4 =22⎝ ⎛⎭⎪⎫-35-45=-7210.3.若sin α2=33,则cosα=( ) A .-23 B .-13 C.13 D.23解析 因为sin α2=33, 所以cosα=1-2sin 2α2=1-2×⎝ ⎛⎭⎪⎪⎫332=13.4.化简:11+tanα-11-tanα=________.9解析 原式=-2tan α1+tanα1-tanα=-2tanα1-tan 2α=-tan2α.例1.(2)(补充) 计算cos15sin15cos15sin15︒︒︒︒-+答案: 33例2.《名师一号》P53 高频考点 例1(2)(2)(2014·新课标全国卷Ⅰ)设α∈10 ⎝⎛⎭⎪⎫0,π2, β∈⎝ ⎛⎭⎪⎫0,π2,且tanα=1+sinβcosβ,则( ) A .3α-β=π2 B .3α+β=π2C .2α-β=π2D .2α+β=π2解析:(2)由已知,得sinαcosα=1+sinβcosβ,∴sinαcosβ=cosα+cosαsinβ, ∴sinαcosβ-cosαsinβ=cosα. ∴sin(α-β)=cosα.∴s in(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2.11 ∴-π2<α-β<π2,0<π2-α<π2. ∴α-β=π2-α,∴2α-β=π2.故选C.练习1:3-sin70°2-cos 210°=( ) A.12 B.22 C .2 D.32分析:观察角可以发现70°与20°互余,20°是10°的二倍,故可用诱导公式和倍角公式(或降幂)化简解析:原式=3-cos20°2-cos 210°=3-2cos 210°-12-cos 210°=2.练习2:已知α是第二象限的角,tan(π+2α)12=-43, 则tanα=________.分析:用诱导公式可将条件化为tan2α的函数值, 用二倍角公式解方程可求得tanα.解析:由tan(π+2α)=-43得tan2α=-43,由tan2α=2tanα1-tan 2α=-43,解得tanα=-12或tanα=2,又α是第二象限的角,所以tanα=-12.练习3:设5π<θ<6π,cos θ2=a ,则sin θ4等于( )13 A.1+a 2 B.1-a 2C .-1+a 2 D .-1-a 2解析:∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4<0,∵a =cos θ2=1-2sin 2θ4,∴sin θ4=-1-a 2.点评:不要求记忆半角公式,只要熟记二倍角公式,熟练进行角的范围与三角函数值符号的讨论,求半角的三角函数值时,可利用倍角公式通过开方求解.(二)公式的变形应用例1.(1) (补充)计算:tan20°+tan40°+3tan20°tan40°=答案: 3例1.(2) (补充)化简:tan(18°-x)tan(12°+x)+3[tan(18°-x)+tan(12°+x)]=________.答案: 1解析:∵tan[(18°-x)+(12°+x)]=tan18°-x+tan12°+x1-tan18°-x·tan12°+x=14tan30°=3 3∴tan(18°-x)+tan(12°+x)=33[1-tan(18°-x)·tan(12°+x)]于是原式=tan(18°-x)tan(12°+x)+3·33[1-tan(18°-x)·tan(12°+x)]=1.变式:计算(1+tan1°) (1+tan2°) (1+tan3°) …(1+tan44°) (1+tan45°)答案: 232注意:公式的逆用与变形运用1516练习:计算1sin10︒=答案:4例2.(1)《名师一号》P54 高频考点 例2(2)sin110°sin20°cos 2155°-sin 2155°的值为( )A .-12 B.12 C.32 D .-32sin110°sin20°cos 2155°-sin 2155°=sin70°sin20°cos310°=cos20°sin20°cos50°=12sin40°sin40°=12.17例2.(2)(补充)化简: ()1*cos cos 2cos 4cos 2n n N αααα-⋅⋅⋅⋅∈L温故知新P50 知识(5)1cos 20cos 40cos60cos8016︒︒︒︒⋅⋅⋅=答案: ()*sin 22sin n n n N ∈g αα注意:公式的逆用与变形运用例3.《名师一号》P53 对点自测5、65.如果α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=45,那么sin ⎝ ⎛⎭⎪⎫α+π4+cos ⎝ ⎛⎭⎪⎫α+π4=( )18 A.425 B .-425 C.325D .-325解析 因为sin α=45,π2<α<π,所以cos α=-35. 而sin ⎝ ⎛⎭⎪⎫α+π4+cos ⎝⎛⎭⎪⎫α+π4 =2sin ⎝⎛⎭⎪⎫α+π2=2cosα=-325.6.已知函数f(x)=3sinx -cosx ,x ∈R ,若f(x)≥1,则x 的取值范围为( )A .{x|kπ+π3≤x≤kπ+π,k ∈Z}19 B .{x|2kπ+π3≤x≤2kπ+π,k ∈Z} C .{x|kπ+π6≤x≤kπ+5π6,k ∈Z} D .{x|2kπ+π6≤x≤2kπ+5π6,k ∈Z}解析 根据题意,得f(x)=2sin ⎝ ⎛⎭⎪⎫x -π6,f(x)≥1,所以2sin ⎝ ⎛⎭⎪⎫x -π6≥1,即sin ⎝ ⎛⎭⎪⎫x -π6≥12.由图象可知满足π6+2kπ≤x-π6≤5π6+2kπ(k∈Z),解得π3+2kπ≤x≤π+2kπ(k∈Z).20 注意:公式的逆用与变形运用合一变换 asinα+bcosα=a 2+b 2sin(α+φ),其中cosφ=a a 2+b 2,sinφ=b a 2+b2,tanφ=ba .φ的终边所在象限由a ,b 的符号来确定.拓展:温故P59第7题(三)角的代换例1.(1)(补充)若sin(π6-α)=13,则cos(2π3+2α)的值为( )A.13 B .-13 C.79 D .-7921[答案] D[解析] cos(2π3+2α)=2cos 2(π3+α)-1=2cos 2[π2-(π6-α)]-1 =2sin 2(π6-α)-1=2×(13)2-1=-79.变式: 已知12sin()cos(2)633ππαα+=-=,则 。