三年高考2014_2016高考数学试题分项版专题14推理与证明理(含解析)
三年高考(2014-2016)数学(理)试题分项版解析 专题01集合和常用逻辑用语原卷版
(A)充分不必要条件(B)必要不充分条件
(C)充分必要条件(D)既不充分也不必要条件
54.【2014辽宁理1】已知全集 ,则集合 ()
A. B. C. D.
55.【2014辽宁理5】设 是非零向量,已知命题P:若 , ,则 ;命题q:若 ,则 ,则下列命题中真命题是()
(A)充分不必要条件(B)必要不充分条件
(C)充要条件(D)既不充分也不必要条件
24.【2015高考广东,理1】若集合 , ,则 ( )
A. B. C. D.
25.【 2014湖南5】已知命题 在命题
① 中,真命题是( )
A①③ B.①④ C.②③ D.②④
26.【2016高考天津理数】设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n−1+a2n<0”的()
10.【2016高考山东理数】设集合 则 =()
(A) (B) (C) (D)
11.【2016高考新课标2理数】已知集合 , ,则 ( )
(A) (B) (C) (D)
12.【2015高考浙江,理1】已知集合 , ,则 ()
A. B. C. D.
13.【2015高考浙江,理4】命题“ 且 的否定形式是()
设全集 ______.
2.【2015高考天津,理9】 是虚数单位,若复数 是纯虚数,则实数 的值为.
3.【2015高考山东,理12】若“ ”是真命题,则实数 的最小值为.
4.【2016高考江苏卷】已知集合 则 ______________.
5.【2014江苏,理1】已知集合 , ,则 .
6.【2015高考江苏,1】已知集合 , ,则集合 中元素的个数为_______.
近三年高考(2014-2016)数学(理)试题分项版解析:专题04+三角函数与解三角形(解析版)
三年高考(2014-2016)数学(理)试题分项版解析第四章 三角函数与解三角形一、选择题1. 【2016高考新课标1卷】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( ) (A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线0x x = 对称,则()0f x A = 或()0f x A =-.2. 【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D 【解析】试题分析:由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数()sin()f x A ωx φ=+的图象平移变换中要注意人“ω”的影响,变换有两种顺序:一种y sin x =的图象向左平移φ个单位得sin()y x φ=+,再把横坐标变为原来的1ω倍,纵坐标不变,得sin()y ωx φ=+的图象,另一种是把y sin x =的图象横坐标变为原来的1ω倍,纵坐标不变,得sin y ωx =的图象,向左平移φω个单位得sin()y ωx φ=+的图象.3. 【 2014湖南9】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( ) A.56x π=B.712x π=C.3x π=D.6x π= 【答案】A【考点定位】三角函数图像 辅助角公式 定积分【名师点睛】有关定积分的题目主要是根据定积分的有关公式结合定积分的几何性质进行正确求解即可,有关三角函数对称轴的求解主要是根据整体方法求解对称轴,三角函数辅助角公式化简三角函数问题是主要是根据有关辅助角具体形式进行恰当的变换即可.4. 【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )(A (B (C )- (D )-【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC ==,AB =.由余弦定理,知222222cos210AB AC BC A AB AC +-===-⋅,故选C . 考点:余弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.5.【2015高考山东,理3】要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin 4sin 4312y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭ 的图象,只需将函数sin 4y x = 的图象向右平移12π个单位.故选B. 【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.6. 【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( ) (A )725(B )15 (C )15- (D )725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.考点:三角恒等变换.【名师点睛】三角函数的给值求值,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.7. 【2014高考陕西版理第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π 【答案】B 【解析】试题分析:由周期公式2T w π=,又2w =,所以函数()cos(2)6f x x π=-的周期22T ππ==,故选B .考点:三角函数的最小正周期.【名师点晴】本题主要考查的是余弦函数的最小正周期,属于容易题.解题时只要正确记忆正弦函数、预先函数的最小正周期周期公式2T wπ=,就不会出现错误 8. 【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C【考点定位】三角函数的图象与性质.【名师点晴】本题主要考查的是三角函数的图象与性质,属于容易题.解题时一定要抓住重要字眼“最大值”,否则很容易出现错误.解三角函数求最值的试题时,我们经常使用的是整体法.本题从图象中可知sin 16x πϕ⎛⎫+=-⎪⎝⎭时,y 取得最小值,进而求出k 的值,当sin 16x πϕ⎛⎫+= ⎪⎝⎭时,y 取得最大值. 9. 【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B 【解析】试题分析:由题意,将函数2sin 2y x =的图像向左平移12π个单位得2s i n 2()2s i n (2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.10.【2014新课标,理4】钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B【名师点睛】本题主要考查了三角形的面积公式,余弦定理,本题属于基础题,解决本题的关健在于公式的准确与熟练,注意题目条件:三角形是钝角三角形.11. 【2016高考新课标3理数】若3tan 4α= ,则2cos 2sin 2αα+=( )(A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.12. 【2014四川,理3】 为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( ) A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A 【解析】试题分析:1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A. 【考点定位】三角函数图象的变换.【名师点睛】本题考查三角函数图象变换、性质、辅助角公式和诱导公式等基础知识,纵向伸缩或平移是对于y 而言,即 ()()g x kg x →或()()g x g x k →+;横向伸缩或平移是相对于x 而言,即()()g x g x ω→(纵坐标不变,横坐标变为原来的1ω倍),()()g x g x a →+(0a >时,向左平移a 个单位;0a <时,向右平移a 个单位).13. 【2015高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()s i n (2)2B y x π=+ ()s i n 2c o s 2C y xx =+ ()s i n c o sD y x x =+【答案】A【解析】对于选项A ,因为2sin 2,2y x T ππ=-==,且图象关于原点对称,故选A. 【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.14.【2015高考新课标1,理2】o o o o sin 20cos10cos160sin10- =( )(A ) (B (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin 30=12,故选D. 【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20°与160°之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.15. 【2014课标Ⅰ,理6】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )【答案】C【解析】如图所示,当02x π≤≤时,在Rt OPM ∆中,cos cos OM OP x x ==.在Rt O M D ∆中,MD =sin OM x 1cos sin sin 22x x x ==;当2x ππ<≤时,在Rt OPM∆中,c o s ()O M O P x xπ=-=-,在R t∆中,MD =s i OM xπ-1c o s s i n s i n2x x x =-=-,所以当0x π≤≤时,()y f x =的图象大致为C .【名师点睛】本题主要考查三角函数的图象与性质和二倍角公式的运用,正确表示函数的表达式是解题的关键,本题很好的考查了考生的利用数形结合综合分析问题的能力,和计算能力.16. 【2014课标Ⅰ,理8】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C【名师点睛】本题考查同角三角函数的基本关系,两角差的正弦公式以及诱导公式的应用,本题在解答过程中一定要注意22ππαβ-<-<, 022ππα<-<,本题考查了考生的对公式的记忆能力,以及运算能力.17.【2015高考新课标1,理8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 【考点定位】三角函数图像与性质【名师点睛】本题考查函数cos()y A x ωϕ=+的图像与性质,先利用五点作图法列出关于ωϕ,方程,求出ωϕ,,或利用利用图像先求出周期,用周期公式求出ω,利用特殊点求出ϕ,再利用复合函数单调性求其单调递减区间,是中档题,正确求ωϕ,使解题的关键.18.【2014年.浙江卷.理4】为了得到函数x x y 3co s 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位答案:D解析:sin 3cos334y x x x π⎛⎫=+=+ ⎪⎝⎭,故只需将y x 向左平移4π个单位.考点:三角函数化简,图像平移.【名师点睛】三角函数图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.19. 【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关 【答案】B 【解析】 试题分析:21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B .考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.20. 【2016年高考北京理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >)个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.t =,s 的最小值为3π 【答案】A 【解析】试题分析:由题意得,1sin(2)432t ππ=⋅-=,故此时'P 所对应的点为1(,)122π,此时向左平移-4126πππ=个单位,故选A.考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换21.【2016高考山东理数】函数f (x )=x +cos x )x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.【2014重庆10】已知A B ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足 C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式一定成立的是( )A.8)(>+c b bcB.()ac a b +>C.126≤≤abcD.1224abc ≤≤【答案】A 【解析】考点:1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.【名师点睛】本题考查了综合应用正弦定理,三角形的面积公式,两角和与差的三角函数,属于难题,根据题目条件熟练运用正弦定理将三角形的边与角互化是解决问题的关键.23. 【2015高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A 、1 B 、2 C 、3 D 、4 【答案】C 【解析】 由已知,3co s(10sin()5παπα-=-33cos cos sin sin1010sin cos cos sin55ππααππαα+-33costan sin1010tan cossin55ππαππα+=-33cos 2tan sin105102tan cossin555ππππππ+=- 33cos cos2sin sin 510510sincos55ππππππ+==155(cos cos )(cos cos )210101010sin 25πππππ++-3cos 103cos 10ππ==,选C .【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用.24.【2015高考安徽,理10】已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<- 【答案】A【解析】由题意,()()sin (0,0,0)f x x A ωϕωϕ=A +>>>,22||T πππωω===,所以2ω=,则()()sin 2f x x ϕ=A +,而当23x π=时,2322,32k k Z ππϕπ⨯+=+∈,解得2,6k k Zπϕπ=+∈,所以()si n 2(0)6fx x A π⎛⎫=A +> ⎪⎝⎭,则当2262x k πππ+=+,即,6x k k Z ππ=+∈时,()f x 取得最大值.要比较()()()2,2,0f f f -的大小,只需判断2,2,0-与最近的最高点处对称轴的距离大小,距离越大,值越小,易知0,2与6π比较近,2-与56π-比较近,所以,当0k =时,6x π=,此时|0|0.526π-,|2| 1.476π-,当1k =-时,56x π=-,此时5|2()|0.66π---,所以(2)(2)(0)f f f <-<,故选A.【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出ω,通过最值判断出ϕ,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.25.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=,则AC = ( )(A )1(B )2(C )3(D )4【答案】A 【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.29.【2014辽宁理9】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 【答案】B考点:函数sin()y A x ωϕ=+的性质.【名师点睛】本题考查三角函数图象的变换、三角函数图象和性质、复合函数的单调性.其易错点是平移方向与“+、-”混淆.本题是一道基础题,重点考查三角函数图象的变换、三角函数图象和性质等基础知识,同时考查考生的计算能力. 本题是教科书及教辅材料常见题型,能使考生心理更稳定,利于正常发挥.30. 【2015湖南理2】将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π【答案】D. 【解析】试题分析:向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min3x x π-=,∴632πϕπϕπ=⇒=-,故选D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以)sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.31. 【2015陕西理6】“sin cos αα=”是“cos 20α=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【考点定位】1、二倍角的余弦公式;2、充分条件与必要条件.【名师点晴】本题主要考查的是二倍角的余弦公式和充分条件与必要条件,属于容易题.解题时一定要注意p q ⇒时,p 是q 的充分条件,q 是p 的必要条件,否则很容易出现错误.充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化.二、填空题.1. 【2014高考北京理第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 . 【答案】π 【解析】试题分析:由)(x f 在区间]2,6[ππ上具有单调性,且)6()2(ππf f -=知,函数)(x f 的对称中心为)0,3(π,由)32()2(ππf f =知函数)(x f 的对称轴为直线127)322(21πππ=+=x ,设函数)(x f 的最小正周期为T , 所以,6221ππ-≥T ,即32π≥T ,所以43127T =-ππ,解得π=T . 考点:函数)sin()(ϕω+=x A x f 的对称性、周期性,容易题.【名师点睛】本题考查三角函数图象与性质,本题属于中等难度选填题,有关三角函数图象与性质及三角函数图像变换问题常在高考题目中出现,但本题重点考查函数图像的对称轴和对称中心以及对称轴和对称中心与周期性的关系,这样的考法并不多见,事实上,函数图象有两轴、两心、或一轴一心都会联想到函数的周期性,备考模拟题经常见到,但高考题偶尔遇到,不是很多.2. 【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin A C=.【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc+-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.3. 【2014高考广东卷.理.12】在ABC ∆中,角A .B .C 所对应的边分别为a .b .c ,已知b Bc C b 2cos cos =+,则=ba. 【答案】2.【解析】cos cos 2b C c B b += ,由边角互化得sin cos sin cos 2sin B C C B B +=, 即()sin 2sin B C B +=,即sin 2sin A B =,所以22aa b b=⇒=. 【考点定位】本题考查正弦定理中的边角互化思想的应用以及两角和的三角函数,属于中等题.【名师点晴】本题主要考查的是正弦定理和两角和的正弦公式,属于中等题.解题时要弄清楚是求边还是求角, 否则很容易出现错误.解本题需要掌握的知识点是正弦定理、两角和的正弦公式和三角函数的诱导公式,即2R sin sin sin Ca b c===A B (其中R 为C ∆AB 外接圆的半径),()sin sin cos cos sin αβαβαβ+=+,()sin sin παα-=.4. 【2015高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a =1sin 2B =,6C =π,则b = . 【答案】1. 【解析】因为1sin 2B =且()0,B π∈,所以6B π=或56B π=,又6C π=,所以6B π=,23A B C ππ=--=,又a =由正弦定理得sin sin a bA B=sin sin36bπ=解得1b =,故应填入1.【考点定位】三角形的内角和定理,正弦定理应用.【名师点睛】本题主要考查三角形的内角和定理、运用正弦定理解三角形,属于容易题,解答此题要注意由1sin 2B =得出6B π=或56B π=时,结合三角形内角和定理舍去56B π=. 5. 【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则t a nt a n t a nA B C的最小值是 ▲ . 【答案】8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识6. 【2014江苏,理5】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 . 【答案】6π. 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【名师点晴】从交点得到等量关系:关于ϕ的复角的三角函数式的值.由于值是特殊角的三角函数值,所以本题“给值求角”,根据角的范围,确定角.7. 【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 【考点定位】两角差正切公式【名师点晴】善于发现角之间的差别与联系,合理对角拆分,完成统一角和角与角转换的目的是三角函数式的求值的常用方法. 三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.8. 【2014江苏,理14】若ABC ∆的内角满足sin 2sin A B C =,则cos C 的最小值是 .【答案】4.【名师点晴】如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.利用基本不等式求最值,需注意一正二定三相等的条件.9. 【2014新课标,理14】函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.【答案】1 【解析】由题意知:()()()s i n 22s i n cf x xx ϕϕϕ=+-+=()()sin[]2sin cos x x ϕϕϕϕ++-+ =()sin cos x ϕϕ++()cos sin x ϕϕ+-()2sin cos x ϕϕ+=()cos sin x ϕϕ+-()sin cos x ϕϕ+=()sin[]x ϕϕ+-=sin x ,即()sin f x x =,因为x R ∈,所以()f x 的最大值为1. 【名师点睛】本题考查了三角恒等变形公式,三角函数sin()y A x B ωφ=++的性质,属于基础题目,根据三角恒等变形公式将已知函数的解析式化为sin()y A x B ωφ=++的形式即可.10. 【2016高考江苏卷】定义在区间[0,3]π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 ▲ . 【答案】7【解析】由1sin 2cos cos 0sin 2x x x x =⇒==或,因为[0,3x π∈,所以3551317,,,,,,,2226666x πππππππ=共7个 考点:三角函数图像【名师点睛】求函数图像交点个数,可选用两个角度:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解,二是数形结合,分别画出函数图像,数交点个数,此法直观,但对画图要求较高,必须准确,尤其明确增长幅度.11.【2016高考新课标3理数】函数sin y x x =的图像可由函数sin y x x=的图像至少向右平移_____________个单位长度得到. 【答案】32π考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.12. 【2014四川,理13】如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67 ,30 ,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈ ,cos670.39≈ ,sin 370.60≈ ,cos370.80≈ ,1.73≈)【答案】60 【解析】试题分析:92AC =,46cos 67AB = ,sin 37,60sin 30sin 37sin 30AB BC AB BC =∴=≈. 【考点定位】解三角形.【名师点睛】在三角形中,已知两角一边时可以使用正弦定理解三角形.13. 【2015高考四川,理12】=+ 75sin 15sin .【考点定位】三角恒等变换及特殊角的三角函数值.有sin cos )a b αααϕ+=+.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有sin cos )a b αααϕ+=+.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.14. 【2014课标Ⅰ,理16】已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则ABC ∆面积的最大值为____________.【解析】由2=a ,且()C b c B A b s i n )()s i n (s i n 2-=-+,故(ab)(s i n A+-=-,又根据正弦定理,得(a b)()(c b)a b c +-=-,化简得,222b c a bc +-=,故222b c a 1cosA 2bc 2+-==,所以0A 60=,又22b c 4bc bc +-=≥,故1S bcsinA 2BAC ∆=≤ 【名师点睛】本题主要考查正弦定理和余弦定理的应用,以及基本不等式的应用,熟练掌握正弦定理和余弦定理的应用,以及基本不等式的应用是解决这类问题的关键,本题主要考查考生的计算能力.15.【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB的取值范围是 .【答案】【考点定位】正余弦定理;数形结合思想【名师点睛】本题考查正弦定理及三角公式,作出四边形,发现四个为定值,四边形的形状固定,边BC 长定,平移AD ,当AD 重合时,AB 最长,当CD 重合时AB 最短,再利用正弦定理求出两种极限位置是AB 的长,即可求出AB 的范围,作出图形,分析图形的特点是找到解题思路的关键.16. 【2014年.浙江卷.理17】如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值答案:9解析:由勾股定理可得,20BC =,过P 作'PP BC ⊥,交BC 于'P ,连结'AP ,则'tan 'PP AP θ=,设'BP x =,则'20CP x =-,由30BCM ∠=︒得,)''tan 30203PP CP x =︒=-,在直角'ABP中,'AP =)2020tan 3x x θ--==,令20x y -=,()()21225202'x x x y -+--⋅⋅===,令'0y =得,454x =-,代入20tan x θ-=得,20tan x θ-==tan θ. 考点:解三角形,求最值.【名师点睛】本题主要考查了解直角三角形的有关问题,根据所给条件构造直角三角形,运用勾股定理求解直角边长,然后运用导数有关性质解决所求角正切的最值问题.17.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为s i n s i na bA B =, 所以sin 21sin 13a Bb A ==. 考点: 三角函数和差公式,正弦定理.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.。
三年高考(2014-2016)数学(理)真题分项版解析—— 专题14 推理与证明
推理与证明1.用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根2.学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油4.甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________5.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.6.观察分析下表中的数据:多面体面数(F )顶点数(V )棱数(E )三棱锥569五棱锥6610立方体6812猜想一般凸多面体中,E V F ,,所满足的等式是_________.7.一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于.。
三年高考高考数学试题分项解析专题 推理与证明文
专题24 推理与证明一、选择题1. 【2014山东.文4】用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根 【答案】A考点:反证法.【名师点睛】本题考查反证法.解答本题关键是理解反证法的含义,明确至少有一个的反面是一个也没有.本题属于基础题,难度较小.2. 【2014山东.文9】 对于函数)(x f ,若存在常数0≠a ,使得取定义域内的每一个值,都有)2()(x a f x f -=,则称)(x f 为准偶函数,下列函数中是准偶函数的是( ) A x x f =)( B 2)(x x f = C x x f tan )(= D )1cos()(+=x x f【答案】D【解析】由()f x 为准偶函数的定义可知,若()f x 的图象关于x a =对称,则()f x 为准偶函数.在D 中,()cos(1)f x x =+的图象关于1,x k k z π=-∈对称,故选D . 考点:新定义,函数的图象和性质.【名师点睛】本题考查函数的概念、函数的奇偶性、新定义问题.此类问题的基本解法是紧扣新定义,研究各个函数的图象及特性,得出结论.本题是一道新定义问题,属于基础题,在考查函数的概念、函数的奇偶性、函数的图象等基础知识的同时,考查数阅读能力、学习能力、转化与化归思想.3. 【2015高考浙江,文8】设实数a ,b ,满足1sin a b t +==( ) A .若确定,则2b 唯一确定 B .若确定,则22a a +唯一确定 C .若确定,则sin 2b唯一确定 D .若确定,则2a a +唯一确定 【答案】B【考点定位】函数概念【名师点睛】本题主要考查函数的概念.主要考查学生利用条件对其进行处理,通过对比选项,确定最终正确结论的能力.本题属于中等题,重点考查学生对条件的处理能力以及分析问题的能力.4. 【2015高考广东,文10】若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()c a r d X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D【解析】当4s =时,p ,,都是取,,,中的一个,有44464⨯⨯=种,当3s =时,p ,,都是取,,中的一个,有33327⨯⨯=种,当2s =时,p ,,都是取,中的一个,有2228⨯⨯=种,当1s =时,p ,,都取,有种,所以()card 642781100E =+++=,当0t =时,取,,,中的一个,有种,当1t =时,取,,中的一个,有种,当2t =时,取,中的一个,有种,当3t =时,取,有种,所以、的取值有123410+++=种,同理,、w 的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D .【考点定位】推理与证明.【名师点晴】本题主要考查的是新符号,属于难题.在新符号的问题中抓住新符号的实质把其转化为我们熟悉的问题加以解决,这是解决新符号问题的一个基本方向,要注意准确理解试题中给出的新符号的含义.解决新符号这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.5.【2014高考广东卷.文.10】对任意复数1w .2w ,定义1212w w w w *=,其中2w 是2w 的共轭复数.对任意复数1z .2z .3z ,有如下四个命题:①()()()1231323z z z z z z z +*=*+*; ②()()()1231213z z z z z z z *+=*+*; ③()()123123z z z z z z **=**; ④1221z z z z *=*.则真命题的个数是 ( )A .B .C .D . 【答案】B对于命题④,取11z i =+,22z i =+,则()()12123z z i i i *=+⋅-=+,()()21213z z i i i *=+⋅-=-,命题④错误.故选B .【考点定位】本题考查复数中的新定义运算,考查复数的概念,属于中等偏难题.【名师点晴】本题主要考查的是新符号,属于难题.在新符号的问题中抓住新符号的实质把其转化为我们熟悉的问题加以解决,这是解决新符号问题的一个基本方向,要注意准确理解试题中给出的新符号的含义.解决新符号这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.6.【20XX 年普通高等学校招生全国统一考试湖北卷10】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113【答案】B 【解析】试题分析:设圆锥底面圆的半径为,高为,依题意,r L π2=,h r h r 22)2(75231ππ=, 所以275831ππ=,即π的近似值为258,故选B.考点:《算数书》中π的近似计算,容易题.【名师点睛】以数学史为背景,重点考查圆锥的体积计算问题,其解题的关键是读懂文字材料,正确理解题意,建立方程关系.充分体现了方程思想在实际问题中的应用,能较好的考查学生运用基础知识的能力和简单近似计算能力. 7. 【2015高考湖北,文10】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) A .77 B .49C .45D .30【答案】C .【考点定位】本题考查用不等式表示平面区域和新定义问题,属高档题.【名师点睛】用集合、不等式的形式表示平面区域,以新定义为背景,涉及分类计数原理,体现了分类讨论的思想方法的重要性以及准确计数的科学性,能较好的考查学生知识间的综合能力、知识迁移能力和科学计算能力.8. 【2014福建,文12】在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L-距离”定义为121212.PP x x y y =-+-则平面内与轴上两个不同的定点12,F F 的“L-距离”之和等于定值(大于12|||F F )的点的轨迹可以是 ( )【答案】A 【解析】试题分析:不妨设12(1,0),(1,0),F F -(,)P x y 是平面内符合条件的点,则由“L-距离”定义得|1||||1|||2x y x y a +++-+=(0a >,2a > 12|||2F F =).即10x y ≤-⎧⎨>⎩时,0x y a -+=;10x y ≤-⎧⎨<⎩时,0x y a ++=;11x y -<≤⎧⎨>⎩时,10y a =->;110x y -<≤⎧⎨>⎩时,1y a =-;10x y >⎧⎨>⎩时,0x y a +-=;10x y >⎧⎨<⎩时,0x y a --=.故选A . 考点:新定义,绝对值的概念,分类讨论思想.【名师点睛】本题是一道信息迁移题,通过定义“L-距离”,考查学生对新定义的理解能力及处理绝对值问题时的分类讨论思想.利用零点分区间法正确进行分类,做到不重不漏,并准确进行运算是求解本题的关键. 二、填空题1. 【2016高考新课标2文数】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3考点: 逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式. 2. 【2016高考山东文数】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;……照此规律,2222π2π3π2π(sin )(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________. 【答案】()413n n ⨯⨯+考点:合情推理与演绎推理【名师点睛】本题主要考查合情推理与演绎推理,本题以三角函数式为背景材料,突出了高考命题注重基础的原则.解答本题,关键在于分析类比等号两端数学式子的特征,找出共性、总结规律,降低难度.本题能较好的考查考生逻辑思维能力及归纳推理能力等.3. 【2015高考山东,文14】定义运算“⊗”: 22x y x y xy -⊗=(,0x y R xy ∈≠,).当00x y >>,时,(2)x y y x ⊗+⊗的最小值是 .【解析】由新定义运算知,2222(2)4(2)(2)2y x y x y x y x xy --⊗==,因为,00x y >>,,所以,22222242(2)222x y y x x y x y y x xy xy xy xy--+⊗+⊗=+=≥=当且仅当x =时,(2)x y y x ⊗+⊗. 【考点定位】1.新定义运算;2.基本不等式.【名师点睛】本题考查了基本不等式及新定义运算的理解能力,解答本题的关键,首先是理解新定义运算,准确地得到不等式,然后根据其特征,想到应用基本不等式求解.本题属于小综合题,也是一道能力题,在考查考生学习能力的基础上,考查考生的计算能力及应用数学知识解决问题的能力.由于近几年考生对新定义运算问题已有准备,因此,不会对此感到陌生.4. 【2015高考陕西,文16】观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++…………据此规律,第n 个等式可为______________________.【答案】111111111234212122n n n n n-+-+⋅⋅⋅+-=++⋅⋅⋅+-++【考点定位】归纳推理.【名师点睛】本题考查的是归纳推理,解题关键点在于发现其中的规律,要注意从运算的过程中去寻找.本题属于基础题,注意运算的准确性.5.【2014四川,文15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。
2014年高考数学三轮专项模拟 数列、推理与证明试卷 理
数列、推理与证明本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·黄冈模拟)集合M ={y |y =lg(x 2+1),x ∈R },集合N ={x |4x >4,x ∈R },则M ∩N 等于( )A .[0,+∞)B .[0,1)C .(1,+∞)D .(0,1]【解析】 由x 2+1≥1知lg(x 2+1)≥0,所以M ={y |y ≥0},由4x >4知x >1,所以N ={x |x >1},所以M ∩N ={x |x >1},故选C. 【答案】 C2.如果命题“綈(p ∧q )”是真命题, 则( ) A .命题p 、q 均为假命题 B .命题p 、q 均为真命题C .命题p 、q 中至少有一个是真命题D .命题p 、q 中至多有一个是真命题【解析】 命题“綈(p ∧q )”是真命题,则命题“p ∧q ”是假命题,则命题p 、q 中至多有一个是真命题,故选D.【答案】 D3.(2013·宁波模拟)等差数列{a n }中,已知a 1=-12,S 13=0,使得a n >0的最小正整数n 为( )A .7B .8C .9D .10【解析】 由S 13=13(a 1+a 13)2=0得a 1+a 13=2a 7=0,所以a 7=0,又a 1=-12,故n ≥8时,a n >0.【答案】 B4.(2013·课标全国卷Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13C.19D .-19【解析】 设公比为q ,∵S 3=a 2+10a 1,a 5=9,∴⎩⎪⎨⎪⎧ a 1+a 2+a 3=a 2+10a 1,a 1q 4=9,∴⎩⎪⎨⎪⎧a 1q 2=9a 1,a 1q 4=9, 解得a 1=19,故选C.【答案】 C5.下列函数中与函数y =-3|x |奇偶性相同且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【解析】 函数y =-3|x |是偶函数且在(-∞,0)是增函数,故选C. 【答案】 C6.(2013·大纲全国卷)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)【解析】 由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-⎝⎛⎭⎫-13101-⎝⎛⎭⎫-13=3(1-3-10).【答案】 C7.已知向量a 、b 的夹角为120°,且|a |=|b |=4,那么b ·(2a +b )的值为( ) A .48 B .32 C .1D .0【解析】 b ·(2a +b )=2a·b +b 2=2×4×4×cos 120°+42=0. 【答案】 D8.已知f (x )=12 013+log 2x 1-x ,则f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫22 014+…+f ⎝⎛⎭⎫2 0132 014的值为( ) A .1B .2C .2 013D .2 014【解析】 对任意0<x <1,可得f (x )+f (1-x )=22 013.设S =f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫22 014+…+f ⎝⎛⎭⎫2 0132 014 则S =f ⎝⎛⎭⎫2 0132 014+f ⎝⎛⎭⎫2 1022 014+…+f ⎝⎛⎭⎫12 014 于是2S =⎣⎡⎦⎤f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫2 0132 014+⎣⎡f ⎝⎛⎭⎫22 014+⎦⎤f ⎝⎛⎭⎫2 0122 014+…+[f ⎝⎛⎭⎫2 0132 014+f ⎝⎛⎭⎫12 014] =22 013×2 013=2,所以S =1. 【答案】 A第Ⅱ卷二、填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上) 9.已知角α的终边与单位圆交于点⎝⎛⎭⎫-255,55,则sin 2α的值为________. 【解析】 由已知得sin α=55,cos α=-255, 所以sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45. 【答案】 -4510.(2013·昆明模拟)已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n+S 1)都成立,则S 15等于________.【解析】 由S n +1+S n -1=2(S n +S 1)得,(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起构成等差数列,S 15=1+2+4+6+8+…+28=211.【答案】 21111.(2013·东城模拟)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 013的值是________.【解析】 a 1a 2=2×7=14,所以a 3=4,4×7=28,所以a 4=8,4×8=32,所以a 5=2,2×8=16,所以a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,所以从第三项起,a n 成周期排列,周期数为6,2 013=335×6+3,所以a 2 013=a 3=4.【答案】 412.由直线y =2与函数y =2cos 2x 2(0≤x ≤2π)的图象围成的封闭图形的面积为________.【解析】 y =2cos 2x2=cos x +1,则所求面积为S =∫2π0[]2-(cos x +1)d x =(x -sin x )|2π0=2π.【答案】 2π13.(2013·潍坊模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos B +b cos A =c sin C ,b 2+c 2-a 2=3bc ,则角B =________.【解析】 由b 2+c 2-a 2=3bc 得cos A =b 2+c 2-a 22bc =32,所以A =30°.由a cos B +b cos A =c sin C 得 sin A cos B +cos A sin B =sin 2C , 即sin(A +B )=sin 2C , 所以sin C =sin 2C . 因为0°<C <180°, 所以sin C =1, 即C =90°, 所以B =60°. 【答案】 60°14.(2013·淄博模拟)如图1,一个类似杨辉三角的数阵,请写出第n (n ≥2)行的第2个数为________.图1【解析】 由已知得第n (n ≥2)行的第2个数为3+3+5+7+…+[2(n -2)+1]=3+(n -2)×2n 2=n 2-2n +3. 【答案】 n 2-2n +315.(2013·孝感模拟)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________.【解析】 设对应的数列为{a n },公差为d (d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n ,由a n +a n -1+a n -2=114得3a n -1=114,解得a n -1=38,(a 1+5d )2=a 1(a n -1+d ),即(10+5d )2=10(38+d ),解得d =2,所以a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.【答案】 16三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)(2013·安徽高考)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=()a n -a n +1+a n +2x +a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 【解】 (1)由题设可得f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x . 对任意n ∈N *,f ′(π2)=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2⎝⎛⎭⎫a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n (n +1)2+12⎣⎡⎦⎤1-(12)n 1-12=n 2+3n +1-12n .17.(本小题满分12分)(2013·佛山模拟)在平面直角坐标系xOy 中,以Ox 为始边,角α的终边与单位圆O 的交点B 在第一象限,已知A (-1,3).(1)若OA ⊥OB ,求tan α的值; (2)若B 点横坐标为45,求S △AOB .【解】 (1)由题可知:A (-1,3),B (cos α,sin α), OA →=(-1,3),OB →=(cos α,sin α), 由OA ⊥OB ,得OA →·OB →=0, ∴-cos α+3sin α=0,tan α=13.(2)∵cos α=45,∴sin α=1-cos 2α=35,即B ⎝⎛⎭⎫45,35, ∴OA →=(-1,3),OB →=⎝⎛⎭⎫45,35, ∴|OA |=(-1)2+(3)2=10,|OB |=1, 得cos ∠AOB =OA →·OB →|OA →||OB →|=-1×45+3×3510×1=1010,∴sin ∠AOB =1-cos 2∠AOB =31010,则S △AOB =12|AO ||BO |sin ∠AOB =12×10×1×31010=32.18.(本小题满分12分)(2013·青岛模拟)已知数列{a n }满足a 1=1,a 1+a 2+…+a n -1-a n=-1(n ≥2且n ∈N *).(2)令d n =1+log a a 2n +1+a 2n +25(a >0,a ≠1),记数列{d n }的前n 项和为S n ,若S 2n S n恒为一个与n 无关的常数λ,试求常数a 和λ.【解】 (1)由题知a 1+a 2+…+a n -1-a n =-1,① 所以a 1+a 2+…+a n -a n +1=-1.②由①-②得:a n +1-2a n =0,即a n +1a n =2(n ≥2),当n =2时,a 1-a 2=-1, 因为a 1=1,所以a 2=2,a 2a 1=2,所以,数列{a n }是首项为1,公比为2的等比数列. 故a n =2n -1(n ∈N *).(2)因为a n =2n -1,所以d n =1+log a a 2n +1+a 2n +25=1+2n log a 2.因为d n +1-d n =2log a 2,所以{d n }是以d 1=1+2log a 2为首项,以2log a 2为公差的等差数列, 所以S 2nS n =2n (1+2log a 2)+2n (2n -1)2×2log a 2n (1+2log a 2)+n (n -1)2×2log a 2=2+(4n +2)log a 21+(n +1)log a 2=λ⇒(λ-4)n log a 2+(λ-2)(1+log a 2)=0, 因为S 2nS n恒为一个与n 无关的常数λ,所以⎩⎪⎨⎪⎧(λ-4)log a 2=0,(λ-2)(1+log a 2)=0,解得λ=4,a =12.19.(本小题满分13分)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第1年的维护费用是4万元,从第2年到第7年,每年的维护费用均比上年增加2万元,从第8年开始,每年的维护费用比上年增加25%.(1)设第n 年该生产线的维护费用为a n ,求a n 的表达式. (2)设该生产线前n 年的维护费用为S n ,求S n .【解】 (1)由题意知,当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,故a n =4+(n -1)×2=2n +2.当n ≥8时,数列{a n }从a 7开始构成首项为a 7=2×7+2=16,公比为1+25%=54的等比数列,则此时a n =16×⎝⎛⎭⎫54n -7, 所以a n =⎩⎪⎨⎪⎧2n +2,n ≤7,16×⎝⎛⎭⎫54n -7,n ≥8. (2)当1≤n ≤7时,S n =4n +n (n -1)2×2=n 2+3n , 当n ≥8时,由S 7=70,得S n =70+16×54×1-⎝⎛⎭⎫54n -71-54=80×⎝⎛⎭⎫54n -7-10,所以该生产线前n 年的维护费用为 S n =⎩⎪⎨⎪⎧n 2+3n ,1≤n ≤7,80×⎝⎛⎭⎫54n -7-10,n ≥8. 20.(本小题满分13分)(2013·天津模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *),数列{b n }满足b 1=1,且点P (b n ,b n +1)(n ∈N *)在直线y =x +2上.(1)求数列{a n },{b n }的通项公式. (2)求数列{a n ·b n }的前n 项和D n .(3)设c n =a n ·sin 2n π2-b n ·cos 2n π2(n ∈N *),求数列{c n }的前2n 项和T 2n .【解】 (1)当n =1时,a 1=2, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1(n ≥2),所以{a n }是等比数列,公比为2,首项a 1=2,所以a n =2n , 又点P (b n ,b n +1)(n ∈N *)在直线y =x +2上,所以b n +1=b n +2, 所以{b n }是等差数列,公差为2,首项b 1=1,所以b n =2n -1. (2)由(1)知a n ·b n =(2n -1)×2n ,所以D n =1×21+3×22+5×23+7×24+…+(2n -3)×2n -1+(2n -1)×2n ,①2D n =1×22+3×23+5×24+7×25+…+(2n -3)×2n +(2n -1)×2n +1.②①-②得-D n =1×21+2×22+2×23+2×24+…+2×2n -(2n -1)×2n +1=2+2×4(1-2n -1)1-2-(2n -1)×2n +1=(3-2n )2n +1-6,则D n =(2n -3)2n +1+6.(3)c n =⎩⎪⎨⎪⎧2n , n 为奇数,-(2n -1), n 为偶数,T 2n =(a 1+a 3+…+a 2n -1)-(b 2+b 4+…+b 2n ) =2+23+…+22n -1-[3+7+…+(4n -1)]=22n +1-23-2n 2-n .21.(本小题满分13分)(2013·杭州模拟)已知数列{a n }的前n 项和S n =-a n -⎝⎛⎭⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n a n .(1)求证数列{b n }是等差数列,并求数列{a n }的通项公式.(2)设数列⎩⎨⎧⎭⎬⎫n +1n a n 的前n 项和为T n ,证明:n ∈N *且n ≥3时,T n >5n 2n +1. (3)设数列{c n }满足a n (c n -3n )=(-1)n -1λn (λ为非零常数,n ∈N *),问是否存在整数λ,使得对任意n ∈N *,都有c n +1>c n .【解】 (1)在S n =-a n -⎝⎛⎭⎫12n -1+2中,令n =1,可得S 1=-a 1-1+2=a 1,即a 1=12, 当n ≥2时,S n -1=-a n -1-⎝⎛⎭⎫12n -2+2, 所以a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1, 所以2a n =a n -1+⎝⎛⎭⎫12n -1,即2n a n =2n -1a n -1+1. 因为b n =2n a n ,所以b n =b n -1+1,即当n ≥2时,b n -b n -1=1. 又b 1=2a 1=1,所以数列{b n }是首项和公差均为1的等差数列. 于是b n =1+(n -1)·1=n =2n a n ,所以a n =n 2n (n ∈N *).(2)由(1)得c n =n +1na n =(n +1)⎝⎛⎭⎫12n, 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+(n +1)⎝⎛⎭⎫12n +1.② 由①-②得12T n =1+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =1+14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-(n +1)⎝⎛⎭⎫12n +1=32-n +32n +1, 所以T n =3-n +32n ,T n -5n 2n +1=3-n +32n -5n2n +1=(n +3)(2n -2n -1)2n (2n +1),于是确定T n 与5n2n +1的大小关系等价于比较2n 与2n +1的大小,由2<2×1+1;22<2×2+1;23>2×3+1;24>2×4+1;25>2×5+1;… 可猜想当n ≥3时,2n >2n +1,证明如下: 方法一:①当n =3时,对上式验算显示成立. ②假设当n =k 时成立,则n =k +1(k ≥2)时,2k +1=2·2k >2(2k +1)=4k +2=2(k +1)+1+(2k -1)>2(k +1)+1,所以当n =k +1时猜想也成立.综合①②可知,对一切n ≥3的正整数,都有2n >2n +1. 方法二:当n ≥3时,2n =(1+1)n =C 0n +C 1n +C 2n +…+C n -1n +C n n ≥C 0n +C 1n +C n -1n +C n n =2n +2>2n +1,综上所述,当n ≥3时,T n >5n 2n +1.(3)因为c n =3n+(-1)n -1λ·na n=3n +(-1)n -1λ·2n ,所以c n +1-c n =[3n +1+(-1)n λ·2n +1]-[3n +(-1)n -1λ·2n ]=2·3n -3λ(-1)n -1·2n >0,所以(-1)n -1·λ<⎝⎛⎭⎫32n -1.① 当n =2k -1(k =1,2,3,…)时, ①式即为λ<⎝⎛⎭⎫322k -2,②依题意,②式对k =1,2,3,…都成立,所以λ<1, 当n =2k ,k =1,2,3,…时,①式即为λ>-⎝⎛⎭⎫322k -1,③ 依题意,③式对k =1,2,3,…都成立, 所以λ>-32,所以-32<λ<1,又λ≠0,所以存在整数λ=-1,使得对任意n ∈N *有c n +1>c n .。
【备战2016】四川版高考数学分项汇编专题14推理与证明、新定义(含解析)理
第十四章 推理与证明、新定义一.基础题组1. 【 2009 四川,理12】已知函数 f (x) 是定义在实数集 R 上的不恒为零的偶函数,且对随意实数x 都有x f (x 1) = (1x) f ( x) ,则 f ( f ( 5)) 的值是( )2(A )0(B )1(C )1(D )5222.【 2011四川,理16】函数 f ( x) 的定义域为 A ,若 x 1,x 2A 且f (x 1 )f (x 2 ) 时总有 x 1x 2,则称 f (x) 为单函数. 比如,函数f ( x)2 x1( xR) 是单函数. 以下命题:①函数f ( x)x 2 ( xR) 是单函数;②若f ( x) 为单函数, x 1, x 2A 且x 1x 2,则 f ( x 2 )f ( x 2 );③若f : AB 为单函数,则关于随意b B ,它至多有一个原象;④函数f ( x)在某区间上拥有单一性,则f (x) 必定是单函数.此中的真命题是. (写出全部真命题的编号)【答案】②③3.【 2013 四川,理 15】设P1, P2, , P n为平面内的 n 个点,在平面内的全部点中,若点 P 到P1, P2, , P n点的距离之和最小,则称点P为 P1 , P2 , , P n点的一个“中位点”.比如,线段AB上的随意点都是端点A, B的中位点.则有以下命题:①若 A, B,C 三个点共线, C 在线段上,则 C 是 A, B,C 的中位点;②直角三角形斜边的点是该直角三角形三个极点的中位点;③若四个点 A,B, C , D 共线,则它们的中位点存在且独一;④梯形对角线的交点是该梯形四个极点的独一中位点.此中的真命题是____________.(写出全部真命题的序号)4. 【 2014 四川,理15】以 A 表示值域为R 的函数构成的会合, B 表示拥有以下性质的函数(x) 构成的集合:关于函数( x) ,存在一个正数M ,使得函数( x) 的值域包括于区间[ M ,M ].比如,当 1 (x) x3,2 (x) sin x 时, 1 (x) A , 2 ( x) B .现有以下命题:①设函数 f ( x) 的定义域为 D ,则“ f (x) A”的充要条件是“ b R , a D , f ( a) b ”;②函数 f ( x) B 的充要条件是 f (x) 有最大值和最小值;。
2014年高考数学真题分类汇编理科-推理与证明(理科)
专注数学 成就梦想
一、选择题
二、填空题
1.(2014 陕西理 14) 观察分析下表中的数据:
猜想一般凸多面体中,,,F V E 所满足的等式是_________.
2.(2014 新课标1理14)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;
乙说:我没去过C 城市;
丙说:我们三人去过同一城市;
由此可判断乙去过的城市为 .
三、解答题
1.(2014 北京理 20)(本小题13分)
对于数对序列()()()1122:,,,,,,n n P a b a b a b ,记()111T P a b =+,
()(){}()112max ,2k k k k T P b T P a a a k n -=+++
+剟,其中 (){}112max ,k k T P a a a -+++表示()1k T P -和12k a a a +++两个数中最大的数,
(1)对于数对序列()():2,5,4,1P ,求()()12,T P T P 的值.
(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对()(),,,a b c d 组成的数对序列()():,,,P a b c d 和()(),,,P':c d a b ,试分别对m a =和m d =的两种情况比较()2T P 和()2T P'的大小.
(3)在由5个数对()()()()()11,8,5,2,16,11,11,11,4,6组成的所有数对序列中,写出一个数对序列P 使()5T P 最小,并写出()5T P 的值.(只需写出结论).。
近三年高考(2014-2016)数学(理)试题分项版解析:专题01+集合和常用逻辑用语(原卷版)
三年高考(2014-2016)数学(理)试题分项版解析第一章 集合和常用逻辑用语一、选择题1. 【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( )A .]1,2[--B . )2,1[- C..]1,1[- D .)2,1[2. 【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭3. 【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈ 4. 【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞) 5. 【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )66. 【2014高考重庆理第6题】 已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝7. 【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则() A 、A =B B 、A ⋂B =∅ C 、A B D 、BA 8. 【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的() A 、充要条件 B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件9. 【2014】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{10. 【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 11. 【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 12. 【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2] 13. 【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >14. 【2016年高考北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-15. 【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件16. .【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,817. 【2014天津,理7】设,a b R ,则|“a b ”是“a a b b ”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要又不必要条件 18. 【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞19. 【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <20. 【2014四川,理1】已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=( )A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-21.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x << 22. 【2014高考广东卷.理.1】已知集合{}1,0,1M =-,{}0,1,2N =,则M N =( )A .{}1,0,1-B .{}1,0,1,2-C .{}1,0,2-D .{}0,1 23. 【2016高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件 24. 【2015高考广东,理1】若集合{|(4)(1)0}Mx x x ,{|(4)(1)0}N x x x ,则M N( ) A .∅ B .{}1,4-- C .{}0 D .{}1,425. 【 2014湖南5】已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④26. 【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件27. 【2016高考天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1} (B ){4} (C ){1,3} (D ){1,4}29. 【2014山东.理2】设集合{}{}]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( )A. ]2,0[B. )3,1(C. )3,1[D. )4,1(30. 【2013高考陕西版理第1题】设全集为R ,函数f (x )=21x -的定义域为M ,则R M 为( ).A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 31. 【2014高考陕西版理第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D32. 【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞33. 【2014陕西理8】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假34. 【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,235. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}36. 【2014高考北京理第1题】 已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2}37. 【2014湖北卷3】设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件38. 【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件39. 【2014上海,理15】设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件48. 【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( ) A .{}1- B .{}1 C .{}1,1- D .φ49. 【2015高考四川,理8】设a ,b 都是不等于1的正数,则 “333a b >>”是“log 3log 3a b <”的 ( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件50. 【2014,安徽理2】“0<x ”是“0)1ln(<+x ”的 ( )A .充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 52. 【2015高考安徽,理3】设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件54. 【2014辽宁理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 55. 【2014辽宁理5】设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝56. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}57. 【2015湖南理2】设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )二、填空题1. 【2014高考重庆理第11题】设全集{|110},{1,2,3,5,8},{1,3,5,7,9},()U U n N n A B A B =∈≤≤===则______.2. 【2015高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .3. 【2015高考山东,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 4. 【2016高考江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ______________. 5. 【2014江苏,理1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= . 6. 【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 7. 【2014上海,理11】. 已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a b += . 8. 【2014福建,理15】若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.。
高考数学试题分项版解析 专题14 推理与证明、新定义 理(精析版)
第十四章 推理与证明、新定义一.基础题组1.【2013年普通高等学校招生全国统一考试福建卷】设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足:)(i {}S x x f T ∈=)(;)(ii 对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <,那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )A. N B N A ==*,B. {}{}1008,31≤<-==≤≤-=x x x B x x A 或C. {}R B x x A =<<=,10D. Q B Z A ==,2.【2013年普通高等学校招生全国统一考试(陕西卷)】观察下列等式:211=22123-=-2221263+-=2222124310-+-=-…照此规律, 第n 个等式可为 .3.【2013年普通高等学校招生全国统一考试(上海卷)理】对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =二.能力题组4.【2013年普通高等学校招生全国统一考试数学浙江理】在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A. 平面α与平面β垂直B. 平面α与平面β所成的(锐)二面角为045 C. 平面α与平面β平行 D.平面α与平面β所成的(锐)二面角为0605.【2013年普通高等学校招生全国统一考试(山东卷)】定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩,现有四个命题: ①若0,0a b >>,则()lnln b a b a ++=; ②若0,0a b >>,则()ln ln ln ab a b +++=+;③若0,0a b >>,则ln ln ln a a b b +++⎛⎫≥-⎪⎝⎭ ④若0,0a b >>,则()lnln ln ln 2a b a b ++++≤++6.【2013年普通高等学校招生全国统一考试福建卷理】当1,<∈x R x 时,有如下表达式: x x x x n -=⋅⋅⋅++⋅⋅⋅+++1112 两边同时积分得:⎰⎰⎰⎰⎰-=⋅⋅⋅+⋅⋅⋅+++2102102102210210111dxx dx x dx x xdx dx n从而得到如下等式:.2ln )21(11)21(31)21(21211132=⋅⋅⋅+⨯++⋅⋅⋅+⨯+⨯+⨯+n n请根据以上材料所蕴含的数学思想方法,计算:=⨯++⋅⋅⋅+⨯+⨯+⨯+132210)21(11)21(31)21(2121n n n n n n C n C C C .231012n n n n n 1111111C C C C 2223212n n +⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 231123n+1n+1n+1n+1n+111111=C C C C n+12222n +⎡⎤⎛⎫⎛⎫⎛⎫+⨯+⨯++⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=11111n+12n +⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦113112n n +⎡⎤⎛⎫=-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦7.【2013年普通高等学校招生全国统一考试湖北卷理科】古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10,, 第n 个三角形数为2(1)11222n n n n +=+. 记第n 个k 边形数为(,)(3)N n k k ≥,以下列出 了部分k 边形数中第n 个数的表达式:三角形数 211(,3)22N n n n =+, 正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n =-, 六边形数 2(,6)2N n n n =-,………………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N =_________.8.【2013年普通高等学校招生全国统一考试(四川卷)理科】设12,,,n P P P ⋅⋅⋅为平面α内的n 个点.在平面α内的所有点中,若点P 到点12,,,n P P P ⋅⋅⋅的距离之和最小,则称点P 为点12,,,n P P P ⋅⋅⋅的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.现有下列命题:①若三个点,,A B C 共线,C 在线段AB 上,则C 是,,A B C 的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是_______.(写出所有真命题的序号)三.拔高题组9.【2013年普通高等学校统一考试江苏数学试题】设数列{}n a :111,2,2,3,3,3,4,4,4,4,,(1),,(1)k k k k k --------⋅⋅⋅-⋅⋅⋅-⋅⋅⋅个,,即当(1)(1)()22k k k k n k N *-+<≤∈时,记1(1)k n a k -=-.记12()n n S a a a n N *=++⋅⋅⋅+∈. 对于l N *∈,定义集合{|l n p n S =是n a 的整数倍,n N *∈,且1}n l ≤≤.(1)求集合11p 中元素的个数;(2)求集合2000p 中元素的个数.而(1)(21)(22)(1,2,,22)i i j a i j i +++=-+=⋅⋅⋅+,∴(1)(21)(1)(21)(22)(21)(1)(22)i i j i i S S j i i i j i +++++=-+=++-+不是(1)(21)i i j a +++(1,2,,22)j i =⋅⋅⋅+的倍数,故当(21)l i i =+时,集合l p 中元素的个数为213(21)i i ++⋅⋅⋅+-=,。
(湖北版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理
,那么C.
年普通高等学校招生全国统一考试湖北卷
究数。
比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是()
A.289
B.1024
C.1225
D.1378
意给定的等比数列
保等比数列函数
7.【2012
曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,求其直径
上的一组正交函数,给出三组函数:①x
7850113
到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出
=
111111111
3..【
13】回文数是指从左到右读与从右到左读都一样的正整
个:11
n
个数的表达式:
【解析】
试题分析:观察。
三年高考(2014-2016)数学(理)真题分项版解析—— 专题13 算法
三年高考(2014-2016)数学(理)试题分项版解析第十三章算法一、选择题1.【2016高考新课标1卷】执行右面的程序框图,如果输入的,,,则输出x,y的值满足===011x y n(A)2=(D)5=y xy x=(C)4y xy x=(B)3【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.2.【2014天津,理3】阅读右边的程序框图,运行相应的程序,输出的S的值为()(A)15 (B)105 (C)245 (D)945【答案】B.【解析】考点:算法与程序框图.【名师点睛】本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,运行程序时要准确.三视图问题,是进年高考热点,属于必考题,是高考备考的重点,也是学生必须掌握需要得满分的题目,需要加强训练的题型.3.【2015高考天津,理3】阅读右边的程序框图,运行相应的程序,则输出S的值为( )(A)10(B)6 (C)14 (D)18输出【答案】B【解析】模拟法:输入20,1S i==;=⨯=-=>不成立;21,20218,25i S=⨯==-=>不成立i S224,18414,45=⨯==-=>成立248,1486,85i S输出6,故选B.【考点定位】本题主要考查程序框图与模拟计算的过程.【名师点睛】本题主要考查程序框图与模拟计算的过程,首先是理解直到型循环结构的程序框图表示的算法功能,再用模拟的方法进行计算,是基础题.4. 【2016高考新课标3理数】执行下图的程序框图,如果输入的,,那么输出的n=()==a b46(A)3 (B)4 (C)5 (D)6【答案】B考点:程序框图.【注意提示】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.5. 【2014高考北京理第4题】当7,3==时,执行如图所示的程序m n框图,输出的S值为()A.7 B.42 C.210 D.840【答案】C【解析】试题分析:当输入7k?所以进入循<n,判断框内的条件为5m、3==环的k的值依次为7,6,5,因此执行k⨯⨯7=S.=SS⋅=后,则由21056故选C.考点:程序框图,容易题.名师点睛:本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,本题为直到型循环,所以直到满足条件为止,运行程序时要准确.6.【2015高考北京,理3】执行如图所示的程序框图,输出的结果为()A.()08,D.()-,---,C.()22-,B.()4044【答案】B【解析】运行程序:1,1,0;110,112x y k s t ====-==+=,0,2x y ==,011k =+=,因为13≥不满足,2,2s t =-=,2,2,2x y k =-==,因为23≥不满足,4,0s t =-=,4,0,3x y k =-==,因为33≥满足,输出(4,0)-考点定位:本题考点为程序框图,要求会准确运行程序【名师点睛】本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,运行程序时要准确.7. 【 2014湖南6】执行如图1所示的程序框图,如果输入的]2,2[-∈t ,则输出的S 属于( )A.]2,6[--B.]1,5[--C.]5,4[-D.]6,3[-【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D.【考点定位】程序框图 二次函数值域【名师点睛】本题主要考查程序框图知识,解决问题的根据是根据程序框图的逻辑结构分析程序,运用二次函数最值问题进行发现计算即可;有关程序框图的题目主要是以程序框图为载体,以平时所学其它知识点为对象,解决问题首先是读懂程序,然后运用有关知识分析解决即可.8. 【2016年高考四川理数】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A )9 (B )18 (C )20 (D )35【答案】B考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.9. 【2014高考陕西版理第4题】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=开始输入NS=1,i=1a i=2*SS=a ii=i+1否i>N是输出a1,a2,...,a N结束【答案】C考点:程序框图的识别.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要注意这是一个循环结构,而且最后输出的是数列的前N项要根据这些项归纳出数列的通项公式.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.【2015高考陕西,理8】根据右边的图,当输入x为2006时,输出的y ()A.28 B.10 C.4 D.2【答案】B【考点定位】程序框图.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件“0x≥”,否则很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.【2016高考新课标2理数】中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的==,依次输入的a为2,2,5,则输出的s=()2,2x n(A)7 (B)12 (C)17 (D)34【答案】C【解析】考点:程序框图,直到型循环结构.【名师点睛】直到型循环结构:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.12.【2014新课标,理7】执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 7【答案】D【解析】由题意知:当1k =时,2M =,5S =;当2k =时,2M =,7S =;当3k =时,输出S=7,故选D 。
【备战2016】(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理
专题14 推理与证明、新定义1. 【2006高考北京理第8题】下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( ) (A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >> 【答案】C2. 【2009高考北京理第8题】点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 ( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”【答案】A考点:创新题型.3. 【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人 【答案】B考点:合情推理,中等题.4. 【2005高考北京理第14题】已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( .如果在一种算法中,计算),,4,3,2(0n k x k=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P 10(x 0)的值共需要 次运算. 【答案】1(3)22n n n + 考点:信息题。
三年高考-高考数学试题分项版解析 专题14 推理与证明 文(含解析)-人教版高三全册数学试题
三年高考(2014-2016)数学(文)试题分项版解析第十五章 推理与证明一、选择题1. 【2014某某.文4】用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根【答案】A【解析】反证法的步骤第一步是假设命题反面成立,而“至少有一个根”的否定是“没有”,故选A .考点:反证法.【名师点睛】本题考查反证法.解答本题关键是理解反证法的含义,明确至少有一个的反面是一个也没有.本题属于基础题,难度较小.2. 【2014某某.文9】对于函数)(x f ,若存在常数0≠a ,使得x 取定义域内的每一个值,都有)2()(x a f x f -=,则称)(x f 为准偶函数,下列函数中是准偶函数的是( ) A x x f =)( B 2)(x x f = C x x f tan )(= D )1cos()(+=x x f【答案】D 考点:新定义,函数的图象和性质.【名师点睛】本题考查函数的概念、函数的奇偶性、新定义问题.此类问题的基本解法是紧扣新定义,研究各个函数的图象及特性,得出结论.本题是一道新定义问题,属于基础题,在考查函数的概念、函数的奇偶性、函数的图象等基础知识的同时,考查数阅读能力、学习能力、转化与化归思想.3. 【2015高考某某,文8】设实数a ,b ,t 满足1sin a b t +==()A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin2b 唯一确定 D .若t 确定,则2a a +唯一确定 【答案】B【解析】因为1sin a b t +==,所以222(1)sin a b t +==,所以2221a a t +=-,故当t 确定时,21t -确定,所以22a a +唯一确定.故选B.【考点定位】函数概念【名师点睛】本题主要考查函数的概念.主要考查学生利用条件对其进行处理,通过对比选项,确定最终正确结论的能力.本题属于中等题,重点考查学生对条件的处理能力以及分析问题的能力.4. 【2015高考某某,文10】若集合 (){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200【答案】D【考点定位】推理与证明.【名师点晴】本题主要考查的是新符号,属于难题.在新符号的问题中抓住新符号的实质把其转化为我们熟悉的问题加以解决,这是解决新符号问题的一个基本方向,要注意准确理解试题中给出的新符号的含义.解决新符号这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.5.【2014高考某某卷.文.10】对任意复数1w .2w ,定义1212w w w w *=,其中2w 是2w 的共轭复数.对任意复数1z .2z .3z ,有如下四个命题:①()()()1231323z z z z z z z +*=*+*;②()()()1231213z z z z z z z *+=*+*;③()()123123z z z z z z **=**;④1221z z z z *=*.则真命题的个数是( )A .1B .2C .3D .4【答案】B【考点定位】本题考查复数中的新定义运算,考查复数的概念,属于中等偏难题.【名师点晴】本题主要考查的是新符号,属于难题.在新符号的问题中抓住新符号的实质把其转化为我们熟悉的问题加以解决,这是解决新符号问题的一个基本方向,要注意准确理解试题中给出的新符号的含义.解决新符号这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.6.【2014年普通高等学校招生全国统一考试某某卷10】《算数书》竹简于上世纪八十年代在某某省江陵县X 家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113 【答案】B【解析】试题分析:设圆锥底面圆的半径为r ,高为h ,依题意,r L π2=,h r h r 22)2(75231ππ=, 所以275831ππ=,即π的近似值为258,故选B. 考点:《算数书》中π的近似计算,容易题.【名师点睛】以数学史为背景,重点考查圆锥的体积计算问题,其解题的关键是读懂文字材料,正确理解题意,建立方程关系.充分体现了方程思想在实际问题中的应用,能较好的考查学生运用基础知识的能力和简单近似计算能力.7. 【2015高考某某,文10】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C . 【考点定位】本题考查用不等式表示平面区域和新定义问题,属高档题.【名师点睛】用集合、不等式的形式表示平面区域,以新定义为背景,涉及分类计数原理,体现了分类讨论的思想方法的重要性以及准确计数的科学性,能较好的考查学生知识间的综合能力、知识迁移能力和科学计算能力. 8. 【2014某某,文12】在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L-距离”定义为121212.PP x x y y =-+-则平面内与x 轴上两个不同的定点12,F F 的“L-距离”之和等于定值(大于12|||F F )的点的轨迹可以是 ( )【答案】A考点:新定义,绝对值的概念,分类讨论思想.【名师点睛】本题是一道信息迁移题,通过定义“L-距离”,考查学生对新定义的理解能力及处理绝对值问题时的分类讨论思想.利用零点分区间法正确进行分类,做到不重不漏,并准确进行运算是求解本题的关键.二、填空题1. 【2016高考新课标2文数】有三X 卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3 【解析】 试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.考点:逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.2.【2016高考某某文数】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯; 2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯; 2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯; 2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯; ……照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________. 【答案】()413n n ⨯⨯+ 【解析】考点:合情推理与演绎推理【名师点睛】本题主要考查合情推理与演绎推理,本题以三角函数式为背景材料,突出了高考命题注重基础的原则.解答本题,关键在于分析类比等号两端数学式子的特征,找出共性、总结规律,降低难度.本题能较好的考查考生逻辑思维能力及归纳推理能力等.3. 【2015高考某某,文14】定义运算“⊗”:22x yx yxy-⊗=(,0x y R xy∈≠,).当00x y>>,时,(2)x y y x⊗+⊗的最小值是 . 【答案】2【解析】由新定义运算知,2222(2)4(2)(2)2y x y xy xy x xy--⊗==,因为,00x y>>,,所以,2222224222(2)2222x y y x x y xyx y y xxy xy xy xy--+⊗+⊗=+=≥=,当且仅当2x y=时,(2)x y y x⊗+⊗的最小值是2.【考点定位】1.新定义运算;2.基本不等式.【名师点睛】本题考查了基本不等式及新定义运算的理解能力,解答本题的关键,首先是理解新定义运算,准确地得到不等式,然后根据其特征,想到应用基本不等式求解.本题属于小综合题,也是一道能力题,在考查考生学习能力的基础上,考查考生的计算能力及应用数学知识解决问题的能力.由于近几年考生对新定义运算问题已有准备,因此,不会对此感到陌生.4.【2015高考某某,文16】观察下列等式:1-11 22 =1-11111 23434 +-=+1-11111111 23456456 +-+-=++…………据此规律,第n个等式可为______________________.【答案】11111111 1234212122n n n n n -+-+⋅⋅⋅+-=++⋅⋅⋅+-++【考点定位】归纳推理.【名师点睛】本题考查的是归纳推理,解题关键点在于发现其中的规律,要注意从运算的过程中去寻找.本题属于基础题,注意运算的准确性.5.【2014某某,文15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。
【5年高考3年模拟】(新课标版)2014年高考数学真题分类汇编 14 推理与证明 理
第十四章推理与证明考点一合情推理与演绎推理1.(2014,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人答案 B2.(2014课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.答案 A3.(2014某某,14,5分)观察分析下表中的数据:多面体面数(F) 顶点数(V) 棱数(E) 三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.答案F+V-E=24.(2014,20,13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P':(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)解析(1)T 1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P')=max{c+d+b,c+a+b}.当m=a时,T2(P')=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P').当m=d时,T2(P')=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P').所以无论m=a还是m=d,T2(P)≤T2(P')都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.考点二直接证明与间接证明5.(2014某某,4,5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A考点三数学归纳法6.(2014某某,21,13分)设实数c>0,整数p>1,n∈N*.(1)证明:当x>-1且x≠0时,(1+x)p>1+px;(2)数列{a n}满足a1>,a n+1=a n+.证明:a n>a n+1>.解析(1)证明:用数学归纳法证明:①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以p=k+1时,原不等式也成立.综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.(2)证法一:先用数学归纳法证明a n>.①当n=1时,由题设a1>知a n>成立.②假设n=k(k≥1,k∈N*)时,不等式a k>成立.由a n+1=a n+易知a n>0,n∈N*.当n=k+1时,=+=1+.由a k>>0得-1<-<<0.由(1)中的结论得=>1+p·=.因此>c,即a k+1>.所以n=k+1时,不等式a n>也成立.综合①②可得,对一切正整数n,不等式a n>均成立.再由=1+可得<1,即a n+1<a n.综上所述,a n>a n+1>,n∈N*.证法二:设f(x)=x+x1-p,x≥,则x p≥c,并且f '(x)=+(1-p)x-p=>0,x>.由此可得, f(x)在[,+∞)上单调递增.因而,当x>时, f(x)>f()=,①当n=1时,由a1>>0,即>c可知a2=a1+=a1<a1,并且a2=f(a1)>,从而a1>a2>.故当n=1时,不等式a n>a n+1>成立.②假设n=k(k≥1,k∈N*)时,不等式a k>a k+1>成立,则当n=k+1时, f(a k)>f(a k+1)>f(),即有a k+1>a k+2>.所以n=k+1时,原不等式也成立.综合①②可得,对一切正整数n,不等式a n>a n+1>均成立.7.(2014某某,21,14分)设函数f(x)=ln(1+x),g(x)=xf '(x),x≥0,其中f '(x)是f(x)的导函数.(1)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(2)若f(x)≥ag(x)恒成立,某某数a的取值X围;(3)设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解析由题设得,g(x)=(x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得g n(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即g k(x)=.那么,当n=k+1时,g k+1(x)=g(g k(x))===,即结论成立.由①②可知,结论对n∈N+成立.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)-(x≥0),即φ'(x)=-=,当a≤1时,φ'(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ'(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0.即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,a的取值X围是(-∞,1].(3)由题设知g(1)+g(2)+…+g(n)=++…+,n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n-ln(n+1).证明如下:证法一:上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则<ln.下面用数学归纳法证明.①当n=1时,<ln 2,结论成立.②假设当n=k时结论成立,即++…+<ln(k+1).那么,当n=k+1时,++…++<ln(k+1)+<ln(k+1)+ln=ln(k+2),即结论成立.由①②可知,结论对n∈N+成立.证法二:上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则ln>.故有ln 2-ln 1>,ln 3-ln 2>,……ln(n+1)-ln n>,上述各式相加可得ln(n+1)>++…+.结论得证.证法三:如图,dx是由曲线y=,x=n及x轴所围成的曲边梯形的面积,而++…+是图中所示各矩形的面积和,∴++…+>dx=dx=n-ln(n+1),结论得证.8.(2014某某,23,10分)已知函数f0(x)=(x>0),设f n(x)为f n-1(x)的导数,n∈N*.(1)求2f1+f2的值;(2)证明:对任意的n∈N*,等式=都成立.解析(1)由已知,得f1(x)=f '0(x)='=-,于是f2(x)=f '1(x)='-'=--+,所以f1=-, f2=-+. 故2f1+f2=-1.(2)证明:由已知,得xf0(x)=sin x,等式两边分别对x求导,得f0(x)+xf '0(x)=cos x,即f0(x)+xf1(x)=cos x=sin,类似可得2f1(x)+xf2(x)=-sin x=sin(x+π),3f2(x)+xf3(x)=-cos x=sin,4f3(x)+xf4(x)=sin x=sin(x+2π).下面用数学归纳法证明等式nf n-1(x)+xf n(x)=sin对所有的n∈N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kf k-1(x)+xf k(x)=sin.因为[kf k-1(x)+xf k(x)]'=kf 'k-1(x)+f k(x)+xf 'k(x)=(k+1)f k(x)+xf k+1(x),'=cos·'=sin,所以(k+1)f k(x)+xf k+1(x)=sin.因此当n=k+1时,等式也成立.综合(i),(ii)可知等式nf n-1(x)+xf n(x)=sin对所有的n∈N*都成立.令x=,可得nf n-1+f n=sin(n∈N*).所以=(n∈N*).9.(2014某某,22,12分)设a1=1,a n+1=+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论. 解析(1)解法一:a 2=2,a3=+1.再由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=+1(n∈N*).解法二:a2=2,a3=+1,可写为a1=+1,a2=+1,a3=+1.因此猜想a n=+1.下用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即a k=+1,则a k+1=+1=+1=+1.这就是说,当n=k+1时结论成立.所以a n=+1(n∈N*).(2)解法一:设f(x)=-1,则a n+1=f(a n).令c=f(c),即c=-1,解得c=.下用数学归纳法证明加强命题a2n<c<a2n+1<1.当n=1时,a2=f(1)=0,a3=f(0)=-1,所以a2<<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=.解法二:设f(x)=-1,则a n+1=f(a n).先证:0≤a n≤1(n∈N*).①当n=1时,结论明显成立.假设n=k时结论成立,即0≤a k≤1.易知f(x)在(-∞,1]上为减函数,从而0=f(1)≤f(a k)≤f(0)=-1<1.即0≤a k+1≤1.这就是说,当n=k+1时结论成立.故①成立.再证:a2n<a2n+1(n∈N*).②当n=1时,a2=f(1)=0,a3=f(a2)=f(0)=-1,有a2<a3,即n=1时②成立. 假设n=k时,结论成立,即a2k<a2k+1.由①及f(x)在(-∞,1]上为减函数,得a2k+1=f(a2k)>f(a2k+1)=a2k+2,a2(k+1)=f(a2k+1)<f(a2k+2)=a2(k+1)+1.这就是说,当n=k+1时②成立.所以②对一切n∈N*成立.由②得a2n<-1,即(a2n+1)2<-2a2n+2,因此a2n<.③又由①、②及f(x)在(-∞,1]上为减函数得f(a2n)>f(a2n+1),即a2n+1>a2n+2,所以a2n+1>-1,解得a2n+1>.④综上,由②、③、④知存在c=使a2n<c<a2n+1对一切n∈N*成立.。
高考数学(理)二轮试题:第14章《推理与证明(含2014试题)》(含答案)
精选题库试题理数1.(2014 山东 ,4,5 分 )用反证法证明命题“设a,b为实数,则方程x3+ax+b=0起码有一个实根”时,要做的假定是 ()A. 方程 x3+ax+b=0 没有实根B. 方程 x3+ax+b=0 至多有一个实根C.方程 x3+ax+b=0 至多有两个实根3D. 方程 x +ax+b=0 恰巧有两个实根1.A1.因为“方程 x3+ax+b=0 起码有一个实根”等价于“方程 x3+ax+b=0 的实根的个数大于或等于1”,所以 ,要做的假定是方程 x3+ax+b=0 没有实根 .2.(2014 北京 ,8,5 分 )学生的语文、数学成绩均被评定为三个等级,挨次为“优异”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙 ,且此中起码有一门成绩高于乙,则称“学生甲比学生乙成绩好”如.果一组学生中没有哪位学生比另一位学生成绩好,而且不存在语文成绩相同、数学成绩也相同的两位学生 ,那么这组学生最多有 ()A.2 人B.3 人C.4 人D.5 人2.B2.设学生人数为 n,因为成绩评定只有“优异”“合格”“不合格”三种状况 ,所以当 n≥4时 ,语文成绩起码有两人相同 ,若此两人数学成绩也相同 ,与“随意两人成绩不全相同”矛盾 ;若此两人数学成绩不一样 ,则此两人有一人比另一人成绩好 ,也不知足条件 .所以 :n<4, 即 n≤3当. n=3 时 ,评定结果分别为“优异 ,不合格”“合格 ,合格”“不合格 ,优异”,切合题意 ,故 n=3,选 B.3. ( 2014 广东汕头一般高考模拟考试一试题,8)设)为平面直角坐标系上的两点,此中.令,,若, 且,则称点B为点A的“有关点”,记作:, 已知)为平面上一个定点,平面上点列知足:=,且点的坐标为,此中, 则点的有关点” 有()个A.4B.6C.8D.103.C3.因为为非零整数)故或,所以点的有关点有8 个.4.(2014 陕西 ,15(B),5 分 )B.( 几何证明选做题 )如图 ,△ ABC 中 ,BC=6, 以 BC 为直径的半圆分别交AB,AC 于点 E,F,若 AC=2AE, 则 EF=________.4.34.∵四边形BCFE 内接于圆 ,∴∠ AEF= ∠ ACB,又∠ A 为公共角 ,∴△ AEF ∽△ ACB, ∴=,又∵ BC=6,AC=2AE.∴EF=3.5. (2014 陕西 ,14,5 分)察看剖析下表中的数据:多面体面数 (F)极点数 (V) 棱数 (E)三棱柱 569五棱锥 6610立方体 6812猜想一般凸多面体中F,V,E 所知足的等式是 ________________.5.F+V-E=25.察看表中数据 ,并计算 F+V 分别为 11,12,14,又其对应 E 分别为 9,10,12, 简单察看并猜想F+V-E=2.6.(2014 课表全国Ⅰ, 14, 5 分)甲、乙、丙三位同学被问到能否去过A,B,C 三个城市时 ,甲 :我去的城市比乙多,但没去 B 城市 ;乙 :我没去 C 城市 ;丙 :我三人去同一城市.由此可判断乙去的城市________.6.A6.因为甲、乙、丙三人去同一城市,而甲没有去 B 城市 ,乙没有去 C 城市 ,所以三人去同一城市A, 而甲去的城市比乙多,但没去 B 城市 ,所以甲去的城市数2,乙去的城市 A.7. (2014 福州高中班量, 15) 已知函数, 若数列足,且的前和,=.7.80427.依意,,,,,,,,,⋯所以,,猜想,所以.8.(2014 湖北黄高三 4 月模考, 14) 意大利有名数学家斐波那契在研究兔子生殖,有一数:1,1, 2,3, 5,8, 13 ,此中从第三个数起,每一个数都等于它前方两个数的和,咧是一个特别美和的数列. 有好多巧妙的属性 . 比方:跟着数列数的增添,前一与后一之比越迫近黄金切割0.6180339887⋯,人称数列“斐波那契数列”. 若把数列的每一除以4 所得的余数按相的序成新数列,在数列中第 2014的;数列中,第 2014 个 1 的的序号是.8. 340278.因是周期 6 的周期数列,前 6 : 1, 1, 2,3, 1, 0,所以第 2014=6×335+4 的是 3;因每个周期内含有三个1,2014=3×671+1,所以第 2014 个 1 的的序号是 6×671+1=4027.9. (2014 黑江哈第三中学第一次高考模考,13) 已知,由不等式,,,获得推行:,数________.9.9.又已知不等式获得的推行,适当;当;当;⋯ ;由推理可知,.10.(2014 江西色六校高三第二次考理数,13)随意正整数,定的双乘以下:当偶数,;当奇数,`。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年高考(2014-2016)数学(理)试题分项版解析第十四章 推理与证明一、选择题1. 【2015高考广东,理8】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3【答案】C .【解析】显然正三角形和正四面体的顶点是两两距离相等的,即3n =或4n =时命题成立,由此可排除A 、B 、D ,故选C .【考点定位】空间想象能力,推理能力,含有量词命题真假的判断.【名师点睛】本题主要考查学生的空间想象能力,推理求解能力和含有量词命题真假的判断,此题属于中高档题,如果直接正面解答比较困难,考虑到是选择题及选项信息可以根据平时所积累的平面几何、空间几何知识进行排除则不难得出正确答案C ,由于3n =时易知正三角形的三个顶点是两两距离相等的从而可以排除A 、B ,又当4n =时易知正四面体的四个顶点也是两两距离相等的从而可以排除D .2. 【2014福建,理10】用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 【答案】A考点:1.新定义.2.二项式展开式.【名师点睛】解决本题的关键是读懂题意,盯住关键字眼,就可以快速破解,如5个无区别的篮球都取出或都不取出,有()51b +种不同取法,看选项没有()51b +这一项的,直接排除,由此可排除B ,C ,D ,故选A.3.【2014山东.理4】 用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根【答案】A【名师点睛】本题考查反证法.解答本题关键是理解反证法的含义,明确至少有一个的反面是一个也没有.本题属于基础题,难度较小.4.【2015高考浙江,理6】设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立【答案】A.【解析】命题①显然正确,通过如下文氏图亦可知),(C A d 表示的区域不大于),(),(C B d B A d +的区域,故命题②也正确,故选A.【考点定位】集合的性质【名师点睛】本题是集合的阅读材料题,属于中档题,在解题过程中需首先理解材料中相关概念与已知的集合相关知识点的结合,即可知命题①正确,同时注重数形结合思想的运用,若用韦恩图表示三个集合A ,B ,C ,则可将问题等价转化为比较集合区域的大小,即可确定集合中元素个数大小的比较.5. 【2014年.浙江卷.理8】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+ 答案:D考点:向量运算的几何意义.【名师点睛】本题在处理时要结合着向量加减法的几何意义,将a b a b a b +-,,, 放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有有效的方法.6. 【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B【解析】试题分析:用A、B、C分别表示优秀、及格和不及格,依题意,事件A、B、C中都最多只有一个元素,所以只有AC,BB,CA满足条件,故选B.考点:合情推理,中等题.【名师点睛】本题考查计数问题,本题属于基础题,但要求学生对题目中“学生甲比学生乙成绩好”这个定义要读懂,还考查学生的分析问题的能力.7. 【2015高考北京,理8】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】“燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,选D.考点:本题考点定位为函数应用问题,考查学生对新定义“燃油效率”的理解和对函数图象的理解.【名师点睛】本题考查对新定义“燃油效率”的理解和读图能力,本题属于中等题,有能力要求,贴近学生生活,要求按照“燃油效率”的定义,汽车每消耗1升汽油行驶的里程,可以断定“燃油效率”高的车省油,相同的速度条件下,“燃油效率”高的汽车,每消耗1升汽油行驶的里程必然大,需要学生针对四个选择只做出正确判断.8.【2014年普通高等学校招生全国统一考试湖北卷6】若函数)(x f 、)(x g 满足⎰-=110)()(dx x g x f ,则称)(x f 、)(x g 在区间]1,1[-上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==. 其中为区间]1,1[-的正交函数的组数是( )A.0B.1C.2D.3【答案】C考点:新定义题型,微积分基本定理的运用,容易题.【名师点睛】以高等数学中的正交函数为载体,重点考查微积分基本定理的应用,充分体现了数学基础知识的应用能力,能较好的考查学生识记和理解数学基本概念的能力、基础知识在实际问题中的运用能力以及较强的数学计算能力.9. 【2014年普通高等学校招生全国统一考试湖北卷8】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113 【答案】B【解析】试题分析:设圆锥底面圆的半径为r ,高为h ,依题意,r L π2=,h r h r 22)2(75231ππ=, 所以275831ππ=,即π的近似值为258,故选B. 考点:《算数书》中π的近似计算,容易题. 【名师点睛】以数学史为背景,重点考查圆锥的体积计算问题,其解题的关键是读懂文字材料,正确理解题意,建立方程关系.充分体现了方程思想在实际问题中的应用,能较好的考查学生运用基础知识的能力和简单近似计算能力.10. 【2015高考湖北,理9】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(A B x x y y x y A ⊕=++∈∈,则A B ⊕中元素的个数为( ) A .77 B .49 C .45 D .30【答案】C【考点定位】1.集合的相关知识,2.新定义题型.【名师点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.二、填空题1. 【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】由丙说可知,乙至少去过A,B,C 中的一个城市,由甲说可知,甲去过A,C 且比乙去过的城市多,故乙只去过一个城市,且没去过C 城市,故乙只去过A 城市.【考点定位】推理.【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题,解决问题的能力.2. 【2014山东.理15】已知函数R x x f y ∈=),(,对函数I x x g y ∈=),(,定义)(x g 关于)(x f 的对称函数为函数I x x h y ∈=),(,)(x h y =满足:对于任意I x ∈,两个点))(,()),(,(x g x x h x 关于点()),(x f x 对称,若)(x h 是24)(x x g -=关于b x x f +=3)(的“对称函数”,且)()(x g x h >恒成立,则实数b 的取值范围是_________.【答案】).+∞【名师点睛】本题考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系.解答本题的关键,是理解新定义运算,将问题转化成3x b +恒成立,利用数形结合思想,再将问题转化成直线与圆的位置关系问题.本题属于新定义问题,是一道创新能力题,中等难度之上.在考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系等的同时,考查转化与化归思想及数形结合思想.3. 【2015高考山东,理11】观察下列各式:014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【考点定位】1、合情推理;2、组合数.【名师点睛】本题考查了合情推理与组合数,重点考查了学生对归纳推理的理解与运用,意在考查学生观察、分析、归纳、推理判断的能力,关键是能从前三个特殊的等式中观察、归纳、总结出一般的规律,从而得到结论.此题属基础题.4. 【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .【答案】1和3【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.考点: 逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.5. 【2014高考陕西版理第14题】观察分析下表中的数据:猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】2F V E +-=考点:归纳推理.【名师点晴】本题主要考查的是归纳推理,属于中档题,解题时注意观察,归纳三棱锥、五棱锥、立方体等几何体面数(F )、顶点数(V )、棱数(E )之间的关系,归纳猜想一般凸多面体中,E V F ,,所满足的等式.当然,如果平时能够记忆这个关系,则可以得到事半功倍的效果6.【2014四川,理15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”;②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)【答案】①③④【考点定位】1、新定义;2、函数的定义域值域.【名师点睛】新定义问题一般先考察对定义的理解,这时只需一一验证定义中各个条件即可.二是考查满足新定义的函数的简单应用,如在某些条件下,满足新定义的函数有某些新的性质,这也是在新环境下研究“旧”性质,此时需结合新函数的新性质,探究“旧”性质.三是考查综合分析能力,主要将新性质有机应用在“旧”性质,创造性证明更新的性质.7. 【2014年普通高等学校招生全国统一考试湖北卷14】设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点))(,(a f a ,))(,(b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(b a c b a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数;(2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab +2; (以上两空各只需写出一个符合要求的函数即可)【答案】(1))0()(>=x x x f ;(2))0()(>=x x x f .考点:两个数的几何平均数与调和平均数,难度中等.新定义型试题是高考的热点试题,考生错误往往有二,其一为不能正确理解题意,将新问题转化为所熟悉的数学问题;其二,不具备归纳、猜想、推理、传化等数学能力.但纵观湖北近四年高考试题,新定义型试题是必考试题,在专题复习中应加强训练.【名师点睛】以新定义为背景,以函数为依托,重点考查两个数的几何平均数与调和平均数,涉及构造函数,充分体现了函数思想在高中数学中的重要地位,其易错点有二,其一为不能正确理解题意,将新问题转化为所熟悉的数学问题;其二,不具备归纳、猜想、推理、传化等数学能力.8.【2015高考福建,理15】一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 .【答案】5.【解析】由题意得相同数字经过运算后为0,不同数字运算后为1.由45670x x x x ⊕⊕⊕=可判断后4个数字出错;由23670x x x x ⊕⊕⊕=可判断后2个数字没错,即出错的是第4个或第5个;由13570x x x x ⊕⊕⊕=可判断出错的是第5个,综上,第5位发生码元错误.【考点定位】推理证明和新定义.【名师点睛】本题以二元码为背景考查新定义问题,解决时候要耐心读题,并分析新定义的特点,按照所给的数学规则和要求进行逻辑推理和计算等,从而达到解决问题的目的,.三、解答题1. 【2014高考北京理第20题】(本小题满分13分)对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112(){(),}(2)k k k k T P b Max T P a a a k n -=++++≤≤,其中112{(),}k k Max T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数. (1)对于数对序列:(2,5),(4,1)P ,求12(),()T P T P 的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(,),(,)a b c d 组成的数对序列:(,),(,)P a b c d 和:(,),(,)P c d a b ',试分别对m a =和m d =两种情况比较2()T P 和2()T P '的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).【答案】(1)7,8;(2)无论a m =还是d m =,都有)()(22P T P T '≤成立;(3)10)(1=P T ,26)(2=P T ,42)(3=P T ,50)(4=P T ,52)(5=P T .【解析】试题分析:根据条件中的定义,对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112(){(),}(2)k k k k T P b Max T P a a a k n -=++++≤≤,其中112{(),}k k Max T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,求解. 试题解析:依题意,752)(1=+=P T ,8}6,7{1}42),({1)(12=+=++=Max P T Max P T .(3)数对序列:(4,6),(11,11),(16,11),(11,8),(5,2)的)(5P T 值最小.10)(1=P T ,26)(2=P T ,42)(3=P T ,50)(4=P T ,52)(5=P T .考点:新定义题型.【名师点睛】近年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对于新的信息的的理解和接受能力,题目给出新的定义:1()()k T P T P 、并对定义中max{T k -1(P ),a 1+a 2+…+a k }做出解释,第一步尝试对于数对序列P :(2,5),(4,1)使用定义,求得T 1(P ),T 2(P ),初步使用定义,加深对定义的理解,第二步中的比较大小及第三步中的求最值就是在第一步的基础上的深化研究,毕竟是一个新的信息题,在一个全新的环境下进行思维,所以学生做起来还是很费力的.2. 【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 (Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,①若n a 中有3的倍数,由(2)知:所有的n a 都是3的倍数,所以n a 都是3的倍数,所以n a 除以9的余数为为3,6,3,6,...... ,或6,3,6,3......,或0,0,0,...... ,而除以9余3且是4的倍数只有12,除以9余6且是4的倍数只有24,除以9余0且是4的倍数只有36,则M 中的数从第三项起最多2项,加上前面两项,最多4项. ②n a 中没有3的倍数,则n a 都不是3的倍数,对于3a 除以9的余数只能是1,4,7,2,5,8中的一个,从3a 起,n a 除以9的余数是1,2,4,8,7,5,1,2,4,8,...... ,不断的6项循环(可能从2,4,8,7或5开始),而除以9的余数是1,2,4,8,5且是4的倍数(不大于36),只有28,20,4,8,16,32,所以M 中的项加上前两项最多8项,则11a =时,{1,2,4,8,16,32,28,20}M =,项数为8,所以集合M 的元素个数的最大值为8.考点定位:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.【名师点睛】本题考查数列的有关知识及归纳法证明方法,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二、三两步难度较大,适合选拔优秀学生.3. 【2014上海,理22】(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔;⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求证:通过原点的直线中,有且仅有一条直线是E 的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-+∞;(3)证明见解析.【解析】试题分析:本题属于新定义问题,(1)我们只要利用题设定义求出η的值,若0η<,则结论就可得证;(2)直线y kx =是曲线2241x y -=的分隔线,首先直线与曲线无交点,即直线方程与曲线方程联立方程组2241x y y kx⎧-=⎨=⎩,方程组应无实解,方程组变形为22(14)10k x --=,此方程就无实解,注意分类讨论,按二次项系数为0和不为0分类,然后在曲线上找到两点位于直线y kx=的两侧.则可得到所求范围;(3)首先求出轨迹E 的方程1x =,化简为2221(2)x y x+-=,过原点的直线中,当斜率存在时设其方程为y kx =,然后解方程组2221(2)x y x y kx ⎧+-=⎪⎨⎪=⎩,变形为2221(1)44k x kx x +-+=,这个方程有无实数解,直接判断不方便,可转化为判断函数22()(1)44F x k x kx =+-+与21()G x x =的图象有无交点,而这可利用函数图象直接判断.()y F x =是开口方向向上的二次函数,()y G x =是幂函数,其图象一定有交点,因此直线y kx =不是E 的分隔线,过原点的直线还有一条就是0x =,它显然与曲线E 无交点,又曲线E 上两点(1,2),(1,2)-一定在直线0x =两侧,故它是分隔线,结论得证.(3)由题得,设(,)M x y 1x =,化简得,点M 的轨迹方程为222[(2)]1x y x +-⋅=①当过原点的直线斜率存在时,设方程为y kx =.联立方程,2222432[(2)]1(1)4410x y x k x kx x y kx⎧+-⋅=⇒+-+-=⎨=⎩. 令2432()(1)441F x k x kx x =+-+-,因为2(0)(2)(1)[16(1)15]0F F k =-⋅-+<,所以方程()0F x =有实解,直线y kx =与曲线E 有交点.直线y kx =不是曲线E 的分隔线. ②当过原点的直线斜率不存在时,其方程为0x =.显然0x =与曲线222[(2)]1x y x +-⋅=没有交点,又曲线E 上的两点(1,2),(1,2)-对于直线0x =满足110η=-⋅<,即点(1,2),(1,2)-被直线0x =分隔.所以直线0x =是E 分隔线.综上所述,仅存在一条直线0x =是E 的分割线.【考点】新定义,直线与曲线的公共点问题.【名师点睛】判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧ Ax +By +C =0,F x ,y =0,消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.。