列方程解应用题的四种方法

合集下载

列方程解应用题的一般步骤是

列方程解应用题的一般步骤是

列方程解应用题的一般步骤是:〔1〕审〔2〕找〔3〕设〔4〕列〔5〕解〔6〕答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。

一、怎样找等量关系〔一〕、根据数量关系找相等关系。

好多应用题都有表达数量关系的语句,即“…比…多…〞、“ …比…少…〞、“…是…的几倍〞、“ …和…共…〞等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。

例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,那么舞蹈队有多少人?相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,那么调〔20-x〕人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3〔人〕答:应调往甲处17人,乙处3人。

〔二〕、根据熟悉的公式找相等关系。

单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。

例1:一件商品按本钱价提高100元后标价,再打8折销售,售价为240元。

求这件商品的本钱价为多少元?相等关系:〔本钱价+100〕×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。

高中数学列方程解应用题的技巧

高中数学列方程解应用题的技巧

高中数学列方程解应用题的技巧全文共四篇示例,供读者参考第一篇示例:高中数学中,列方程解应用题是学生们经常遇到的一种题型。

解决这类问题需要灵活运用数学知识,同时也需要一定的解题技巧。

接下来,我们将介绍一些关于高中数学列方程解应用题的技巧,帮助学生们更好地应对这类问题。

一、理清思路在解题前,首先要理清思路,明确问题的要求和解题的步骤。

通常,列方程解应用题需要根据题目中的条件建立方程,然后解方程求出未知数的值。

要认真阅读题目,分析问题,确定需要解决的未知数,并逐步推导出方程。

二、建立方程建立方程是解决列方程解应用题的关键步骤。

在建立方程时,可以根据题目中的条件,利用代数运算和数学关系建立方程。

需要注意的是,方程的建立需要符合问题的逻辑关系,确保方程的正确性和有效性。

在建立方程时,可以采用如下方法:1. 引入变量:将题目中未知的量引入变量,并用代数符号表示。

假设需要求某物体的长度,可以用变量x 表示其长度。

2. 建立数学关系:根据题目条件建立数学关系,将条件转化为方程。

若已知两数的和与差,可以建立关于这两个数的方程。

3. 列出方程:根据引入的变量和建立的数学关系,列出方程并进行简化。

通过以上步骤,可以建立出符合题目条件的方程,为接下来的解题提供了基础。

三、解方程建立方程后,接下来需要解方程求解未知数的值。

解方程的方法有多种,可以根据具体情况选择适合的方法。

通常,可以采用以下几种方法来解方程:1. 代入法:将已知的值代入方程中,求解未知数的值。

2. 化简法:利用代数运算规律对方程进行化简,使方程变得更简单,便于求解。

3. 因式分解法:根据方程的特点,采用因式分解方法求解。

4. 比较法:利用方程两边的数值大小进行比较,得出未知数的值。

在解方程时,需要注意保持方程的等价性,确保每一步的变换是合理且准确的。

四、检查答案在解题完成后,务必进行答案的检查。

检查答案的目的是为了确保解答的准确性和逻辑性。

可以通过代入原方程,验证得到的未知数是否符合题目中的条件。

列一元二次方程解应用题的四种类型 利润、增长率、面积、动点问题

列一元二次方程解应用题的四种类型 利润、增长率、面积、动点问题

列一元二次方程解应用题的四种类型(利润、增长率、面积、动点问题)1、商品销售问题售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.如果商场每天要盈利1200元,每件衬衫应降价多少元?分析:设每件衬衫应该降价x元,则每件衬衫的盈利元;商场每天可以多销售件,则商场降价后每天售出的数量为件。

根据:利润=单件的利润╳数量,我们可以列出方程:解这个方程得:答:;例1. 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?练习:1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。

小学数学六年级列方程解应用题的类型

小学数学六年级列方程解应用题的类型

列方程解应用题的类型(一)直接设未知数例1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍,问甲乙原来各有存款多少元?解析:这是一道较复杂的和差倍问题.但用方程思维来解,就好理解了.解:设乙原来有存款x元,(直接设未知数,求两个量以上的,一般设最小的那个),那么甲原来的存款数就是4x元(用未知数表示另外的量)根据题中“现在,乙的存款是甲的3倍”这一数量关系式,我们可以列出方程(x+110)=(4x-110)×3(二)间接设未知数例2.盒子里装有白球的个数是红球的3倍.每次取出3个红球和4个白球,取了若干次以后,红球正好取完,白球还有20个,盒子里原来共有多少个球?解析:如果直接设未知数,设原来共有X个球,你就无法用未知数表示出白球和红球的数量,自然也不能用方程列出两种球的数量关系式.所以直接设对这类型题不合适.从题意中我们发现,如果知道取了多少次,这道题就简单多了解:设共取了x次,题目中”盒子里白球的个数是红球的3倍”说出了两者的数量关系式,我们可以列出方程4x+20=3x×3(三).方程在其他题目中的运用例3.计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)解析: 如果直接去括号计算,三个数乘以三个数的乘法分配律,还没学.但仔细观察下,发现,算式中有好多数是相同的.我们可以把这些相同的数当成一个数,这样算式就简化了解:设0.12+0.23=x,设1+0.12+0.23=y原式=y×(x+0.34)-(y+0.34)×x=x×y+0.34×y-x×y-0.34×x (式子中的”×”号可不写)=0.34y-0.34x=0.34(y-x)=0.34(提醒:原来,设未知数的目的在于简化计算过程,到最后,含有未知数的全部抵消掉了 )例4. 有一个三位数:十位上的数字是0,其余两位上的数字之和是12。

小学六年级列方程解应用题方法归纳

小学六年级列方程解应用题方法归纳

小学六年级列方程解应用题专项复习小学六年级列方程解应用题专项复习1 列方程解应用题的意义列方程解应用题的意义★ 正向思维,把未知量当已知量。

正向思维,把未知量当已知量。

2、方法总结.列方程解应用题的步骤是: (1)审题:弄清题意,确定已知量、未知量及它们的关系; (2)设元:选择适当未知数,用字母表示; (3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量; (4)列方程:利用列代数式时未用过的等量关系,列出方程;)列方程:利用列代数式时未用过的等量关系,列出方程;(5)解方程:正确运用等式的性质,求出方程的解; (6)检验并答题。

)检验并答题。

3列方程解应用题的方法列方程解应用题的方法★ 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种们之间的等量关系,进而列出方程。

这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

已知到未知。

★ 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

其思考方向是从未知到已知。

4列方程解应用题的范围列方程解应用题的范围a 一般应用题;一般应用题;b 和倍、差倍问题;和倍、差倍问题;c 几何形体的周长、面积、体积计算;几何形体的周长、面积、体积计算; d 分数、百分数应用题;百分数应用题; e 比和比例应用题。

比和比例应用题。

5.常见的一般应用题常见的一般应用题一、以总量为等量关系建立方程一、以总量为等量关系建立方程例题例题 两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?快车每小时行多少小时?解法一:解法一: 快车快车 4小时行的+慢车4小时行的=总路程总路程解设:快车小时行X 千米千米4X+60×4=536 4X+240=536 4X=296 X=74 解法二:解法二:解设:快车小时行X 千米千米(X+60)×4=536 X+60=536÷4 X=134一60 X=74 答:快车每小时行驶74千米。

列方程解应用题的一般步骤

列方程解应用题的一般步骤

用字母代替应用题中的未知数,根据等量关系列出方程,再解所列出的方程,从而得到应用题的答案,这个过程叫做列方程解应用题.列方程解应用题的一般步骤是:(1)分析题意.认真读题,反复审题,弄清问题中的已知量是什么,未知量是什么,它们之间有什么等量关系:(2)设未知数为x.合理选择未知数是解题的关键步骤之一.一般设题目里所求的未知数是x,特殊情况下也可设与所求量相关的另一个未知数为x;(3)列方程.根据所设的未知量x和题目中的已知条件,利用等量关系列出方程;(4)解方程.求未知数x的值;(5)检验并答题.对方程的解进行检查验算,看是否符合题意,针对问题作出答案.例1 甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?分析:先找相等的关系.乙船抽出一部分油给甲船后,使甲船的油等于乙船的油的4倍,即:甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解.解:设从乙船抽出x吨油,则595+x=(225-x)×4595+x=900-4x4x+x=900-5955x=305x=61答:必须从乙船抽出61吨油给甲船.例2 甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米.甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离.分析:甲从西镇出发,行了30分钟,因有事用原速返回西镇,这样又得需要30分钟,到西镇后又耽搁了半小时,甲前后共耽误了0.5×3=1.5小时,但在甲耽误的时间里,乙没有停留,因此可以看作乙比甲从西镇提前1.5小时出发,然后甲追乙,结果比乙晚30分钟到达东镇,如果设甲第二次从西镇出发到东镇所用时间为x小时,我们可以得出东西两镇的距离为:甲时速×x=乙在甲前的路程+乙时速×(x-0.5)根据这样的等量关系,可以列出方程求解.解:设甲第二次从西镇出发到东镇所用的时间为x小时,则15x=10×(0.5×3)+10(x-0.5)15x=15+10x-515x-10x=15-55x=10x=2代入15x=15×2=30答:东西两镇的距离是30千米.例3 哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?分析:解答有关年龄方面的问题时,注意两人的年龄差经过多少年都不会变,因此可以根据这个差不变找等量关系.如果假设哥哥现在的年龄为x岁,由于哥哥与弟弟现在的年龄和是30岁,所以弟弟现在的年龄为30-x岁,又因为哥哥当年的年龄与弟弟现在的年龄相同,所以哥哥当年的年龄为30-x岁,又由于哥哥现在的年龄是弟弟当年年龄的3倍,所以弟弟当年的年龄为他们的年龄差不变.解:设哥哥现在的年龄为x,则方程两边同乘以3,得6x-90=90-3x-x6x+4x=90+9010x=180x=18代入30-x=30-18=12答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁.思考:如果设弟弟现在的年龄为x岁,如何列方程呢?例4 小红、小丽、小强三位同学,各用同样多的钱买了一些练习本.小红买的每本是0.6元,比小强少2本,小丽买的每本是0.4元,比小强多3本,问小强买了多少个练习本?每本的价格是多少?分析:设小强买了x个练习本,由于小红买的本数比小强少2本,所以小红买的本数为x-2个,小丽买的本数比小强多3本,所以小丽买的本数为x+3个.根据三人买练习本花的钱数相同,可以列出方程.解:设小强买了x个练习本,则0.6×(x-2)=0.4×(x+3)0.6x-1.2=0.4x+1.20.6x-0.4x=1.2+1.20.2x=2.4x=12代入0.6×(x-2)=0.6×(12-2)=66÷12=0.5答:小强买了12个练习本,每本价格0.5元。

三种方法教你轻松解决列方程解应用题问题

三种方法教你轻松解决列方程解应用题问题

三种方法教你轻松解决列方程解应用题问题点击数:138次录入时间:2012/8/3 9:23:00 编辑:zhangwei19910302作者:佚名在七年级数学教学中,列方程解应用题是代数教学联系实际的重要课题。

它对于培养学生分析问题、解决问题的能力具有重要的意义,因此它是七年级代数教学的重点。

要列方程解应用题,找出题目中的等量关系是关键。

我主要从以下三方面引导学生寻找等量关系:1、图示法:对于一些直观的问题(如行程问题)可将题目中的条件以及它们之间的关系,用简明的示意图表示出来。

这样便于分析,然后根据图示中的有关数量的内在联系,列出方程。

例如常用线段表示距离,箭头表示前进方向等,此法多用于行程问题、劳动力调配问题、面积、体积问题等。

例:小丽和小红每天早晨坚持跑步,小红每秒跑4米,小丽每秒跑6米。

(1)如果他们从100米跑道的两端相向跑,那么几秒后两人相遇?(2)如果小丽站在百米跑道起跑处,小红站在她前面10米处,两人同时同向起跑,几秒后小丽追上小红?分析问题:(1)找出题目中的已知量、未知量?(2)题目中有何等量关系?你是怎样表示的?(学生分小组合作交流,完成问题。

师巡视,肯定学生的发现)(1)小丽所跑的路程+小红所跑的路程=100米。

设经过x秒后两人相遇,则可画得线段图为(2)小丽所跑的路程-小红所跑的路程=10米设x秒后小丽追上小红,则可画得线段图为(学生写出完整的解题步骤)解:(1)设经过x秒后两人相遇,则小丽跑的路程为6x米,小红跑的路程为4x米,由此可得方程6x+4x=100。

解得x=10。

答:经过10秒后两人相遇。

(2)设x秒后小丽追上小红,则小丽跑的路程为6x米,小红跑的路程为4x米,由此可得方程6x-4x=10。

解得x=5。

答:经过5秒钟后小丽追上小红。

(师:由这道题我们可以看出,在审题过程中,如果能把文字语言变成图形语言――线段图,即可使问题更加直观,等量关系更加清晰。

我们只要设出未知数,并用代数式表示出来,便可得到方程。

列方程解应用题的几种常见类型及解题技巧

列方程解应用题的几种常见类型及解题技巧

列方程解应用题的几种常见类型及解题技巧(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。

①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

) 例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。

这类问题要搞清人数的变化。

例.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?(4)工程问题:三个基本量:工作量、工作时间、工作效率;其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。

例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(5)利润问题:基本关系:①商品利润=商品售价-商品进价;②商品利润率=商品利润/商品进价×100%;③商品销售额=商品销售价×商品销售量;④商品的销售利润=(销售价-成本价)×销售量。

列方程解应用题的方法

列方程解应用题的方法

列方程解应用题的方法从近几年的中题看,列方程解应用题型的出现在上,其目的是考查分析问题和解决问题的。

列方程解应用题就是将量与未知量的关系列成等式,通过解方程求出未知量的过程。

如何解决这类题目,其很多,现结合实例给出几种,以供参考。

一. 直译法设元后,视元为数,根据题设条件,把语言直译为代数式,即可列出方程初中英语。

例1. 〔2019年山西省〕甲、乙两个建筑队完成某项工程,假设两队同时开工,12天就可以完成工程;乙队单独完成该工程比甲队单独完成该工程多用10天。

问单独完成此项工程,乙队需要多少天?解:设乙单独完成工程需x天,那么甲单独完成工程需〔x-10〕天。

根据题意,得去分母,得解得经检验,都是原方程的根,但当时,,当时,,因时间不能为负数,所以只能取。

答:乙队单独完成此项工程需要30天。

点评:设乙单独完成工程需x天后,视x为,那么根据题意,原原本本的把语言直译成代数式,那么方程很快列出。

二. 列表法设出未知数后,视元为数,然后综合条件,把握数量关系,分别填入表格中,那么等量关系不难得出,进而列出方程〔组〕。

例2. 〔2019年海淀区〕在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分。

某班足球队参加了12场比赛,共得22分,这个队只输了2场,那么此队胜几场?平几场?解:设此队胜x场,平y场由列表与题中数量关系,得解这个方程组,得答:此队胜6场,平4场。

点评:通过列表格,将题目中的数量关系显露出来,使人明白,从胜、平、负的场数之和等于12,总得分22分是胜场、平场、负场得分之和。

建立方程组,利用列表法求解使人易懂。

三. 参数法对复杂的应用题,可设参数,那么往往可起到桥梁的作用。

例3. 从A、B两汽车站相向各发一辆车,再隔相同时间又同时发出一辆车,按此规律不断发车,且知所有汽车的速度相同,A、B间有骑自行车者,发觉每12分钟,后面追来一辆汽车,每隔4分钟迎面开来一辆汽车,问A、B两站每隔几分钟发车一次?解:设汽车的速度为x米/分;自行车的速度为y米/分,同一车站发出的相邻两辆汽车相隔m米。

列方程解应用题专题训练(教研)

列方程解应用题专题训练(教研)

列方程解应用题专题训练知识要点:1、列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。

2、列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。

3、列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4、常见的一般应用题一、以总量为等量关系建立方程例题两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解法一:快车 4小时行的+慢车4小时行的=总路程解设:快车小时行X千米4X+60×4=5364X+240=5364X=296X=74解法二:解设:快车小时行X千米(X+60)×4=536X+60=536÷4 X=134一60 X=74答:快车每小时行驶74千米。

练一练①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55.5千米,行了多少小时还离乙地有27千米?⑤电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?二、以总量为等量关系建立方程例题甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包?解设:乙仓有粮X包,那么甲仓有粮3X包甲粮仓的包数+乙粮仓的包数=总共的包数X+3X=68004X=6800X=17003X=3×1700=5100检验:1700+5100=6800包(甲乙两仓总共的包数)或5100÷1700=3(甲仓是乙仓的3倍)答:甲原有粮5100包,乙原有粮1700包。

小学生方程解应用题的意义、步骤、方法(附例题及练习题)

小学生方程解应用题的意义、步骤、方法(附例题及练习题)

小学生列方程解应用题------意义、步骤、方法(附例题及练习题)1、列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。

2、列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。

3、列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4、列方程解应用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d分数、百分数应用题;e比和比例应用题。

5、常见的一般应用题以总量为等量关系建立方程以相差数为等量关系建立方程以题中的等量为等量关系建立方程以较大的量或几倍数为等量关系建立方程根据题目中条件选择解题方法一、以总量为等量关系建立方程例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解:设快车小时行X千米解法一:快车4小时行程+慢车4小时行程=总路程4X+60×4=5364X+240=5364X=296X=74答:快车每小时行驶74千米。

解法二:快车的速度+慢车的速度)×4小时=总路程(X+60)×4=536X+60=536÷4X=134一60X=74练一练:①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55。

列方程(组)解应用题的方法及步骤

列方程(组)解应用题的方法及步骤

列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。

(2)根据题意找出能够表示应用题全部含义的一个相等关系。

(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。

(4)解方程:求出未知数的值。

(5)检验后明确地、完整地写出答案。

检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。

2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。

(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。

(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。

(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。

(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。

(6)行程类应用题基本关系:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。

环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。

(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。

1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?答:从乙处调3人到甲处.2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?得x =17.∴20-x =3.答:应调往甲处17人,乙处3人.3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?解:设在这5立方米木料中,用x 立方米木料做桌面,用y 立方米木料做桌子腿,由题意可得:x y x y +=⨯=⎧⎨⎩514503002()() 解之可得:x y ==⎧⎨⎩32 即用3立方米木料做桌面,2立方米木料做桌腿。

初中列方程解应用题的技巧

初中列方程解应用题的技巧

初中列方程解应用题的技巧同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。

列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。

如何应用方程来解应用题呢首先是审题,确定未知数。

审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

寻找等量关系,列出方程是关键。

“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”解方程,求出未知数得值。

解方程时应当注意把等号对齐。

如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224检验也是列方程解应用题中必不可少的。

检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两边相等,说明方程解正确了。

如上题的检验过程为:检验:把x=224代入原方程。

左边=2×224+47 右边=495=495因为左边=右边,所以x=224是方程2x+47=495的解。

列方程式解应用题时如何寻找等量关系

列方程式解应用题时如何寻找等量关系

列方程解应用题时如何寻找等量关系列方程解应用题是初中数学教学中的重点和难点,而列方程解应用题的关键是寻找等量关系。

如何寻找等量关系,下面列举几种方法:一.利用常见的基本数量关系式确定等量关系一些应用题,本身有很好的相等关系,如:行程问题:路程=速度×时间工程问题:工作量=工作效率×工作时间浓度配比问题:溶质重量=溶液重量×百分比浓度利息问题:利息=本金×利率销售问题:商品利润=商品售价-商品进价商品利润率=×100% 等。

例1:(七年级教材上册84页第八题)一辆汽车已行驶了12000 千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?分析:利用:路程=速度×时间,设X月后这辆汽车将行驶20800千米,则:12000+800X=20800评析:本题是行程问题,要求掌握基本关系式。

二.利用“三分法” 确定等量关系“三分法” 通常是指题目中有三个量,已知其中一个量,设定一个未知量(通常为题中所求未知数),然后用第三个量来寻找等量关系:例2:(七年级教材上册106页第四题)某中学学生自己动手整修操场,如果让七年级学生单独工作,需要7.5小时完成;如果让八年级学生单独工作,需要5小时完成。

如果让七、八年级学生一起工作一小时,再由八年级学生单独完成剩余部分,共需多少时间完成?分析:此题是工程问题。

题中共有三个量:工作时间、工作效率、工作总量。

若设共需要X小时完成(也可设八年级学生单独完成剩余部分需X小时),七年级、八年级学生的工作效率是已知的,则应以工作总量为等量关系,那么,列出的方程为:评析:此题解题方法适用于题中有三个量的问题:行程问题、工程问题、浓度配比问题、销售问题等。

对于不同问题中的三个量,一定要弄清已知量、未知量,然后根据题中数量关系列出方程。

三.利用题中的关键性语句确定等量关系有些问题,根据题中的关键性语句反应的数量关系就可以找出等量关系。

五年级列方程解应用题找等量关系的方法

五年级列方程解应用题找等量关系的方法

在五年级数学学习中,列方程解应用题是一个重要的知识点,也是学生们比较困惑的一个内容。

今天我们就来探讨一下如何在解决这类问题中找到等量关系的方法。

一、了解等量关系的概念等量关系是指两个或多个物体在数量上相等的关系。

在解决列方程解应用题时,我们需要通过分析题目中所涉及的物体或数量,找出它们之间的等量关系,从而建立方程,进而解决问题。

二、分析题目,找出关键信息在解决列方程解应用题时,首先要仔细阅读题目,找出关键信息,明确题目中涉及的物体及其数量关系。

题目中可能涉及到苹果、香蕉的数量,或者小明、小华的芳龄等等。

通过分析题目,找出问题中涉及的等量关系,为建立方程奠定基础。

三、设立未知数,建立方程在分析题目并找出等量关系之后,我们需要设立未知数,建立方程。

设立未知数是为了将问题中涉及的数量用代数式表示出来,然后根据等量关系建立方程。

设立“苹果的数量为x”,“香蕉的数量为y”,然后根据题目中的条件建立方程,进而解决问题。

四、解方程,求解未知数建立方程之后,就需要解方程,求解未知数。

这一步可能涉及到一些数学运算,比如方程的合并、移项、化简等,最终得出未知数的值。

通过求解未知数,我们就能得出问题的答案,解决列方程解应用题。

五、检验解答,确定问题的解最后一步,我们需要对求解出的未知数进行检验,确定问题的解。

通过将未知数的值代入原方程,验证方程两边是否相等,从而确定问题的解是否正确。

若验证通过,则问题解决;若验证不通过,则需要重新审视解题过程,找出问题所在,进行修正。

以上就是五年级列方程解应用题找等量关系的方法,希望对大家有所帮助。

在学习过程中,多做一些相关练习,逐步提高解决问题的能力,加深对等量关系的理解,相信大家在数学学习中一定会取得更大的进步!在学习数学的过程中,列方程解应用题是一个比较难掌握的知识点,但只要我们掌握了找等量关系的方法,就能够轻松解决这类问题。

下面我们来详细了解一下如何找到等量关系的方法。

了解等量关系的概念非常重要。

列方程解应用题设未知数常用方法

列方程解应用题设未知数常用方法

列方程解应用题设未知数常用方法甘肃省康县第一中学746500杜红全列一元一次方程解应用题,若未知数设得好,则可使解题更为方便省事;下面介绍几种设未知数的技巧;一.直接设未知数直接设未知数就是题目问什么,就设什么为x ;例1.一条环形跑道长400米;甲练习骑自行车,平均每分钟骑550米;乙练习赛跑,平均每分钟跑250米.两人同时同向从同地出发,经过多少分钟相遇解:直接设经过x 分钟两人相遇,依题意,得550x -250x =400解得x =43; 答:经过43分钟两人相遇; 二.间接设未知数对有的题,若直接设未知数使求解过程繁琐,可间接设与所求未知数有关的未知数,使求解过程简化;所谓间接设未知数就是选取一个与问题有关的量为未知数,再通过这个未知数求出题目中要求的量;例2.为了测量井深,将一定长度的绳子折成相等的3段后放下去,绳的下端碰到井底时,上端露出井口4尺;将绳子折成相等的4段之后再放下去,下端碰到井底时上端正好与井口平齐;求井深;解:不直接设井深,而设绳长为x 尺,那么井深为4x 尺,依题意,得 3x -4=4x , 解得x =48,4x =12; 答:井深为12尺;三.有选择的设未知数题目中,若要求多个未知数,可根据未知数之间的关系,有选择地设其中一个或几个便于求解的未知数;例3.某商店现有甲、乙、丙三种电视机共1800台;已知其中甲电视机数是乙种电视机的5倍,而丙种电视机比乙种电视机多120台;问甲、乙、丙三种电视机各有多少台解:选择设乙种电视机有x 台,则甲种电视机有5x 台,丙种电视机有x +5台,依题意,得5x +x +x +120=1800,解得x =240,5x =1200,x +120=360.答:这个商店现有甲种电视机1200台,乙种电视机240台,丙种电视机360台;四.设比例关系中的一份为未知数涉及某些连比的题目,若直接设未知数不便时,则可以设比例关系中的一份为未知数;例4.一种混凝土由水、水泥、黄沙、碎石搅拌而成;这四种原料的质量比是1.7:2:3:5.7;搅拌这种混凝土3100千克,四种原料各需多少千克解:设其中每一份为x千克,那么水、水泥、黄沙、碎石的质量分别是1.7x 千克,2x 千克,3x 千克,5.7x 千克,依题意,得1.7x +2x +3x +5.7x =3100,解得x =250,则1.7x =425,2x =500,3x =750,5.7x =1425.答:水、水泥、黄沙、碎石分别需要425千克,500千克,750千克,1425千克;五.设辅助未知数若题目中各量关系不明显,或已知条件较少,列方程困难,可增设一些辅助未知数,则容易列方程;这些未知数不一定要求出,而在解题过程中将被消去;例5.某商店月末的进货价比月初进货价少8%,但这批货物的出售价保持不变,那么此商店按进货价而定的利润率月末比月初增加10%;问该店月初定的利润率是多少解:设该店月初进货价为a 元,a 为辅助未知数,月初的利润率为x %,那么月初的售货价为a1+x %,月末的进货价为a1-8%,月末的售货价为a1-8%+a1-8%x %+10%=a ⨯92%[]1(10)%x ++,依题意,得a1+x %=a ⨯92%[]1(10)%x ++,解得x =15,即月初定的利润率为15%;答:该店月初定的利润率为15%;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题的四种方法
列方程(组)解应用题就是将已知量与未知量的关系列成等式,通过解方程(组)求出未知量的过程. 其目的是考查学生分析问题和解决问题的能力. 如何解决这类问题,其方法很多,现结合实例给出几种解法,以供参考.
一、直译法
设元后,把元看作未知数,根据题设条件,把数学语言直译为代数式,即可列出方程组. 例1(2007年南京市)某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率. 分析:若设南瓜亩产量的增长率为x ,则南瓜种植面积的增长率为2x .由此可知今年南瓜的亩产量为2000(1)x +kg ,共种植了10(12)x +亩南瓜,根据总产量是60 000kg 即可列出方程.
解:设南瓜亩产量的增长率为x .根据题意列方程,得
10(12)2000(1)60000x x ++= .
解得10.550%x ==,22x =-(不合题意,舍去). 答:南瓜亩产量的增长率为50%.
二、列表法
设出未知数后,视元为未知数,然后综合已知条件,把握数量关系,分别填入表格中,则等量关系不难得出,进而列出方程组.
例2(2007年沈阳市)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数
是甲队单独完成此项工程所需天数的45
,求甲、乙两个施工队单独完成此项工程各需多少天? 分析:解工程问题的关键是抓住工作总量、工作效率、工作时间三者间的关系,工作总量通常看作单位1. 根据题意,将关键数据分别填入表格即可列出方程.
解:设甲队单独完成此项工程需要x 天,则乙队单独完成此项工程需要45x 天. 由题意得1012145
x x +=.解得25x =. 经检验,25x =是原方程的解. 当25x =时,4205
x =. 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.
三、参数法
对复杂的应用题,可设参数,则往往起到桥梁的作用.
例3 (2007年滨州市)某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,
每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为12u u ,表示),请你根据图1,求电车每隔几分钟(用t 表示)从车站开出一部?
分析:本题给人数量少,条件不足,好象无从下手的感觉,因此可把需要的量以辅助未知数(参数)的形式表示出来.解决本题的关键是正确求出两部电车的间隔距离,如图1(甲)所示,则从行人身后(人车同向)发来的两辆电车间的距离为:6×(电车行进的速度-行人骑车的速度);如图1(乙)所示,则从行人前方(人车异向)发来的两辆电车间的距离为:2×(电车行进的速度+行人骑车的速度).
解:设电车的速度为1u ,行人的速度为2u ,电车每隔t 分钟从车站开出一部.
根据题意得121121
6()2()u u u t u u u t -=⎧⎨+=⎩,解得122u u =. 再把122u u =代入所列方程组的任意一个方程中,均可解得3t =(分钟).
答:电车每隔3分钟从车站开出一部.
四、线示法
运用图线,把已知和未知条件间的数量关系,用线性图表示出来,再把数量关系写在直线图上,则等量关系可一目了然.
例4(2007年梅州市)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h ,人步行的速度是5km/h (上、下车时间忽略不计).
(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;
(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.
分析:(1)可把单独用一辆小汽车来回接送学生所需要的时间与42分钟做比较即可;
(2)若确定去县城的最短时间,可充分考虑“汽车”和“人”这两个运动因素. 显然当汽车到达时,人也同时到达这一情况可使运送学生的总时间最短. 最短时间可利用速度比求得.
解:(1)不能在限定时间内使考生到达考场.
图1
理由如下:如果单独用一辆小汽车来回接送,那么小汽车需要跑3趟,所需要的时间为1533(h)45604
⨯==(分钟),由于45分钟42>分钟,所以不能在限定时间内到达考场. (2)方案不惟一,具有开放性. 最短时间的方案设计如下:先让4人乘车,另4人步行,如果恰当的选取第一批学生下车的位置,然后让他们步行到车站,同时第二批4人也步行;小汽车返回后接第二批步行的4人追赶第一批步行的人,使这8人同时到达火车站. 在这个过程中,8个人始终在步行或乘车,没有因为等车而浪费时间,因而应该最节约时间. 其运动过程如图2所示.
设先步行的4人的行走路程AB 为km x ,后步行的4人的行走路程CD 为km z ,中间的汽车行走路程BC 为km y . 则汽车在路线A C B →→上所用时间与先步行的4人在路线A B →上所用的时间相等;汽车在路线C B D →→上所用时间与后步行的4人在路线C D →上所用的时间相等. 根据在相等的时间内,路程之比等于速度之比,可以得到::(2)5:60:(2)5:60x x y z z y +=⎧⎨+=⎩ 整理得212212x y x z y z
+=⎧⎨+=⎩ 解得2,112.11
x y z y ⎧=⎪⎪⎨⎪=⎪⎩ 又因为15x y z ++=,所以可得:2x =,11y =,2z =. 由题知所用最短时间为汽车行走的路程与汽车的速度之比,即3376060
x y z ++=(时)37=(分钟). 因为3742<,所以他们能在截止进考场的时刻前到达考场. 图2。

相关文档
最新文档