概率论与数理统计常用数值表
概率论与数理统计超全公式总结
Cov(aX , bY ) = abCo若v(UX~,Yχ)2(n1),
F 分布 正态总体条件下 样本均值的分布:
V ~ χ 2 (n2 ),
则 U / n1 V / n2
~
F (n1, n2 )
σ2 X ~ N(µ, )
n
X − µ ~ N (0,1) σ/ n
样本方差的分布:
(n −1)S 2 σ2
k =1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
F (x, y) = P{X ≤ x,Y ≤ y} 联合密度与边缘密度
+∞
∫ fX (x) = −∞ f (x, y)dy
+∞
∫ fY (y) = −∞ f (x, y)dx
P(X =k)=Cnkpk(1−p)n−k,(k=0,1,...n, )
泊松分布——X~P(λ)
P( X = k) = λk e−λ, (k = 0,1,...) k!
概率密度函数
+∞
∫ f (x)dx = 1 −∞
怎样计算概率 P(a ≤ X ≤ b)
b
P(a ≤ X ≤ b) = ∫a f (x)dx
均匀分布 X~U(a,b)
1
f (x) =
(a ≤ x ≤ b)
b−a
n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
⎜⎛ x ± zα / 2 ⎝
σ ⎟⎞ n⎠
(3) H0 : µ ≤ µ0 H1 : µ > µ0 右边检验
单正态总体均值的 Z 检验
小样本、正态总体、标 准差σ已知
(大样本情形σ未知时用SZ代=替X)− µ 0 σ/ n
概率论与数理统计公式大全
概率论与数理统计公式⼤全第1章随机事件及其概率第⼆章随机变量及其分布a≤x≤b 0, x 1, x>b 。
,0,,,x<0。
X 落在以为中⼼,3为半径的区间(-3, +3)内的概率相当⼤(0.9973),落在(-3, +3)以外的概率可以忽略不计F Y (y ) =P (Yy )=P (g(X ) y )=第三章⼆维随机变量及其分布⼆维正态分布,(X,Y)~N(可以推出 X~N(但若X~N(,(X,Y)未必是⼆维正态分布。
,两个独⽴的正态分布的和仍为正态分布()。
卷积公式:分布设n个随机变量相互独⽴,且服从标准正态分布,可以证明它们的平⽅和的分布密度为我们称随机变量W服从⾃由度为n的分布,记为W~,其中所谓⾃由度是指独⽴正态随机变量的个数,它是随机变量分布中的⼀个重要参数。
分布满⾜可加性:设则t分布设X,Y是两个相互独⽴的随机变量,且可以证明函数的概率密度为我们称随机变量T服从⾃由度为n的t分布,记为T~t(n)。
F分布设,且X与Y独⽴,可以证明的概率密度函数为我们称随机变量F服从第⼀个⾃由度为n1,第⼆个⾃由度为n2的F分布,记为F~f(n1, n2).(1)p ij≥0(i,j=1,2,…);(2)M=max(X,Y),N=min(X,Y)的分布(极值分布)设随机变量X,Y相互独⽴且分布函数分别为F X(x),F Y(y)则M与N的分布函数分别为第四章随机变量的数字特征⼀维随机变量的数字特征离散型连续型(平均值)E(X+Y)=E(X)+E(Y); E(XY)=E(X) E(Y),充分条件:X和Y独⽴;充要条件:X和Y不相关。
函数的期望Y=g(X) Y=g(X), D(X)= cov(X,Y)= ; D(Y)=。
Y)=E(XY)-E(X)E(Y).Cov (X, Y)=cov (Y, X) cov(aX,bY)=ab cov(X,Y) +X2, Y)=cov(X1,Y)+cov(X2,Y) 1相关系数(标准协⽅差):=的标准化变量:即“随机变量与期望之差除以均⽅差”|≤1,当||=1时,称X与Y完全相关:完全相关时,称X与Y不相关。
第二节 极大似然估计(概率论与数理统计)
θr = gr (X1, X2,L, Xn )
r =1,2,L, k
r =1,2,L, k
为θ1, θ2,…, θk 的极大似然估计量
例7 设总体 X ~ N (,σ 2), x1, x2,…, xn 是 X 的样本值, 求 , σ 2 的极大似然估计. 解 L(x1, x2 ,L, xn ; ,σ )
分别是 a , b 的极大似然估计量.
问 题
1) 待估参数的极大似然估计是否一定存在 待估参数的极大似然估计是否一定存在? 2) 若存在 是否惟一 若存在, 是否惟一?
例9设 X ~ U ( a – , a + ), x1, x2,…, xn 是 X的一个样本, 求 a 的极大∑xi 令 1 n dlnL i=1 i=1 = =0 p = xi = x dp p 1 p n i=1
∑xi
n
n
∑
d2lnL ∑xi n ∑xi i=1 2 = i=1 2 < 0 2 (1 p) p dp
n n
所以
p = x 为所求 p 的估计值.
一般, 设 X 为离散型随机变量, 其分布律为
P( X = x) = f (x,θ ), x = u1,u2 ,L,θ ∈Θ
则样本 X1, X2,…, Xn的概率分布为
P( X1 = x1, X2 = x2,L Xn = xn ) ,
= f (x1,θ ) f (x2 ,θ )Lf (xn ,θ )
记为
= L(x1, x2 ,L, xn ,θ ) = L(θ )
221?nxxxl????i???nix222221n2?22211??2???1iixn?n2e12?21?ln22?ln22?ln2122???nnxlni??i????2?????exxniimlemle???1n?1???似然方程组为01ln12???i????????????nixl??0221ln?212222????i????????????nxlnini1??i???2imlexxn12???2的极大似然估计量分别为1iixxn?1n??2121bxxnni??i??极大似然估计方法1写出似然函数l2求出k?????2?1?使得???
概率论与数理统计笔记(重要公式)
r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0
设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba
概率论与数理统计公式整理(超全免费版)
当 A=Ω 时,P( B )=1- P(B)
(12)条件 概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
概率论与数理统计 公式(全)
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
(2)加法 和乘法原 理
(3)一些 常见排列 (4)随机 试验和随 机事件
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
(3)离散 与连续型 随机变量 的关系
设 F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实数 x ,有
x
F (x) f (x)dx
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概
率密度。 密度函数具有下面 4 个性质:
1° f (x) 0 。
概率论与数理统计考前必备公式
概率论与数理统计考前必备公式==================================概率论与数理统计是大学生必修的数学课程之一,也是多个专业领域的基础知识。
这门课程主要研究随机现象以及随机事件的概率,探索统计规律,并应用于实际问题的分析与决策。
在概率论与数理统计的学习过程中,我们会接触到大量的公式,这些公式是我们进行问题求解的基础。
本文档将为大家整理并介绍概率论与数理统计考前必备的公式,帮助大家在考试中更好地把握重点,提高成绩。
1.随机变量与分布1.1随机变量随机变量是一种数值型的随机量,它的取值由随机实验的结果决定。
我们将随机变量分为离散型和连续型两类。
1.离散型随机变量定义:$X$是一个随机变量,如果它的取值有穷多个或者可列无穷多个,那么$X$是离散型随机变量。
2.连续型随机变量定义:$X$是一个随机变量,如果它的取值为一个区间或者多个区间,那么$X$是连续型随机变量。
1.2分布函数分布函数是描述随机变量取值情况的函数,记作$F(x)$,其中$x$为实数。
根据随机变量的类型,分布函数可为离散型随机变量的概率质量函数或连续型随机变量的概率密度函数。
1.离散型随机变量概率质量函数概率质量函数描述离散型随机变量取值的概率分布。
对于离散型随机变量$X$,其概率质量函数定义如下:$$P(X=x_i)=p_i,\q u ad i=1,2,\d ot s$$2.连续型随机变量概率密度函数概率密度函数描述连续型随机变量取值的概率分布。
对于连续型随机变量$X$,其概率密度函数定义如下:$$F(x)=\in t_{-\in f ty}^{x}f(x)d x$$1.3均匀分布均匀分布是最简单的连续型随机变量分布之一,主要用于描述在一个区间内所有点出现的概率相等的情况。
1.均匀分布的概率密度函数均匀分布的概率密度函数定义如下:$$f(x)=\be gi n{cas e s}\f ra c{1}{b-a},&a\le qx\l eq b\\0,&\t ex t{其他}\e n d{ca se s}$$其中$a$为区间下界,$b$为区间上界。
概率论与数理统计期末复习重要知识点及公式整理
概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。
两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。
2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。
概率论与数理统计公式整理(完整版)
An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14)独立 性
(15)全概 公式
布,所以(0-1)分布是二项分布的特例。
5 / 27
概率论与数理统计 公式(全)
泊松分布
设随机变量 X 的分布律为 P( X k) k e , 0 , k 0,1,2, k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或
超几何分布 几何分布
者 P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
当 A=Ω时,P( B )=1- P(B)
(12)条件 概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。
2 / 27
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø )的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
设事件 B1, B2 ,…, Bn 及 A 满足
概率论和数理统计公式整理(超全版)
第1章随机事件及其概率
我们作了n次试验,且满足
每次试验只有两种可能结果,A发生或A不发生;
n次试验是重复进行的,即A发生的概率每次均一样;
每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k n k k
n n q p k P C -=)(,n k ,,2,1,0 =。
第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。
概率论与数理统计常用数值表
附录: 常用数理统计表表1 标准正态分布函数⎰∞--=Φxu du ex 2221)(π数值表表2 对应于概率αχχα=>)(22P 及自由度k 的2αχ的数值表表3 对应于概率α=≥)(t tP 及自由度的t 的数值表表4 对应于概率αα=≥)(F FP 及自由度),(21k k 的αF 的数值表α表4(续)=.0005表5 多重比较中的q值表表(两尾)多重比较中1%的)2(3L)2(7L)2(7L 二列间的交互作用)2(7L 表头设计)2(11L)2(1516L) L3(13)3(1327L 二列间的交互作用列 号 列 号123 4 5 6 7 8 910 11 12 13 1 1 ⎪⎩⎪⎨⎧43)1( 242 3 6 7 5 7 5 6 9 10 8 10 8 9 12 13 11 13 11 12 2 2⎪⎩⎪⎨⎧41)2( 1 38 119 1210 135 116 127 135 86 97 103 3 ⎪⎩⎪⎨⎧21)3( 9131011 812 712 513 611 610 78 59 4 4 ⎪⎩⎪⎨⎧1210)4( 8 139 11 6 13 7 11 5 12 7 9 5 10 6 8 5 5 ⎪⎩⎪⎨⎧71)5( 1 62 113 134 12 2 8 4 10 3 9 6 6 ⎪⎩⎪⎨⎧51)6( 4 132 123 11 3 10 2 94 8 7 7 ⎪⎩⎪⎨⎧123)7( 4 112 134 9 3 8 2 10 8 8 ⎪⎩⎪⎨⎧101)8( 1 92 53 74 6 9 9 ⎪⎩⎪⎨⎧81)9( 4 72 63 5 10 10 ⎪⎩⎪⎨⎧63)10( 4 52 7 11 11 ⎪⎩⎪⎨⎧131)11( 1 212 12⎪⎩⎪⎨⎧121)12()3(1327L 表头设计因子数 列 号 1234 5 6 7 8 9 10 11 12 133 A B 1AB 2AB C 1AC 2AC 1BC 2BC4 AB1AB 2AB C 1AC 2AC 1BC D 1AD 2BC 1BD 2CD1CD 2BD 2AD5 AB1AB 2AB C 1AC 2AC 1BC D E 2BC1CD 2BD 2AD6AB1AB 2AB C 1AC 2AC 1BC D E 2BC F1CD2BDL4(5)L5()21 5 1 5 4 3 222 5 2 1 5 4 323 5 3 2 1 5 424 5 4 3 2 1 525 5 5 4 3 2 1表8 二次回归设计表二因子二次回归正交组合设计表试验号Z0 Z1 Z2 Z1Z2Z1’Z2’1 1 -1 -1 1 0.397 0.3972 1 -1 1 -1 0.397 0.3973 1 1 -1 -1 0.397 0.3974 1 1 1 1 0.397 0.3975 1 -1.148 0 0 0.714 -0.6036 1 1.148 0 0 0.714 -0.6037 1 0 -1.148 0 -0.603 0.7148 1 0 1.148 0 -0.603 0.7149 1 0 0 0 -0.603 -0.60310 1 0 0 0 -0.603 -0.60311 1 0 0 0 -0.603 -0.603四因子(1实施)二次回归正交组合设计表二次回归正交旋转组合设计表二因子二次回归正交旋转组合设计二次回归通用旋转组合设计表二次回归通用旋转组合设计表表9 均匀设计表(1) )5(4U)5(4U 表的使用(2) )7(6U)7(6U 表的使用(3))9(6U)9(6U 表的使用(4) )11(10U)11(10U 表的使用(5) )13(2U)13(U 表的使用(6) )15(8U)15(8U 表的使用(7) )17(16U)17(U 表的使用(8) )19(18UU表的使用)(19U2112(2112。
概率论与数理统计 公式(全)
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi
2°
i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
设事件 B1, B2 ,…, Bn 及 A 满足
布
几 何
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
分 随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
布
均 匀
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,
分 布
f
(
x)
b
1
a
,
0,
a≤x≤b 其他,
1° B1, B2 ,…, Bn 两两互不相容, P(Bi) >0, i 1,2,…, n ,
n
A Bi
2°
i1 , P( A) 0 ,
则
P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
概率论与数理统计常用的统计分布
Y X ~ N ( 0 ,1) , 2 (n 1)S 2 ~ 2 (n 1)
/ n
2
且 Y 与 2 独立,由 t 分布的定义有
X
X
S/ n
/ n (n 1)S 2 / 2
Y S2/n
~ t(n 1)n 1概率论与数理统计 例1 设 X ~ N (21,22 ), X1, X 2,, X 25 为X的一个样本,求: (1) 样本均值的数学期望与方差; (2) P{| X 21| 0.24}.
试估计未知参数 .
解 E(X )
认为可以用 X 代替 E( X )
ˆ X 是的估计量
ˆ x 172.7是的估计值
概率论与数理统计
点估计没有给出估计值接近总体参数程度 的信息;同时,也可以看到, 对于同一个 参数, 用不同的估计方法求出的估计量可 能不相同。
那么那一个估计量好坏的标准是什么?
概率论与数理统计
定理 1 设总体 X ~ N (, 2 ) , X1, X2,...Xn 是取自 X 的一个样本, X 为该样本的样本均值,则有 (1) X ~ N(, 2 / n) (2)U X ~ N (0,1)
/ n
概率论与数理统计
本,则
设 X1, X2 ,, Xn 是来自总体 X ~ N(, 2 ) 的样
(1) 样本均值的数学期望与方差;
(2) P{| X 21| 0.24}.
P{| X 21| 0.24} P{21 0.24 X 21 0.24}
P{19.76 21 X 21 21.24 21}
0.4
0.4
0.4
( 21.24 21) (19.76 21) 2(0.6) 1
概率论与数理统计:分位数
分位数教学目标:1.理解分位数的概念2.会查表求常用统计分布的分位数教学内容:一、分位数的概念分位数或临界值与随机变量的分布函数有关,根据应用的需要,有三种不同的称呼,即α分位数、上侧α分位数与双侧α分位数,它们的定义如下:定义1:设随机变量X 的分布函数为()x F ,对于给定的实数α满足10<<α时,若有αx 满足(){}ααα=≤=x X P x F ,则称αx 为X 的α分位数;上侧α分位数是使{}()αλλ=-=>F X P 1的数λ,双侧α分位数是使{}()αλλ5011.F X P ==<的数1λ,使{}()αλλ50122.F X P =-=>的数2λ。
因为()()αλαλ-==-11F ,F ,所以上侧α分位数λ就是α-1分位数α-1x ;因为()()αλαλ5015021.F ,.F =-=,所以双侧α分位数1λ就是α50.的分位数α50.x ,双侧α分位数2λ就是α501.-分位数α501.x -。
二、几种常用统计分布的分位数1.标准正态分布的α分位数记作αu ,α50.分位数记作α50.u ,α501.-分位数记作α501.u -。
当X ~N(0,1)时,{}()ααα==<u F u X P 1,0,{}()ααα50501050.u F u X P .,.==<,{}()ααα50150110501.u F u X P .,.-==<--。
根据标准正态分布密度曲线的对称性,可知αα--=1u u 论述如下:当X ~N(0,1)时,{}()ααα==<u F u X P ,10, {}()ααα-==<--11101u F u X P ,,{}()ααα=-=>--11011u F u X P ,,故根据标准正态分布密度曲线的对称性,可知αα--=1u u 。
例如,u 0.10=-u 0.90=-1.282,u 0.05=-u 0.95=-1.645,u 0.01=-u 0.99=-2.326,u 0.025=-u 0.975=-1.960,u 0.005=-u 0.995=-2.576。
概率论与数理统计公式(表格用)
第1章随机事件及其概率第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验文- 汉语汉字编辑词条文,wen,从玄从爻。
天地万物的信息产生出来的现象、纹路、轨迹,描绘出了阴阳二气在事物中的运行轨迹和原理。
故文即为符。
上古之时,符文一体。
古者伏羲氏之王天下也,始画八卦,造书契,以代结绳(爻)之政,由是文籍生焉。
--《尚书序》依类象形,故谓之文。
其后形声相益,即谓之字。
--《说文》序》仓颉造书,形立谓之文,声具谓之字。
--《古今通论》(1) 象形。
甲骨文此字象纹理纵横交错形。
"文"是汉字的一个部首。
本义:花纹;纹理。
(2) 同本义[figure;veins]文,英语念为:text、article等,从字面意思上就可以理解为文章、文字,与古今中外的各个文学著作中出现的各种文字字形密不可分。
古有甲骨文、金文、小篆等,今有宋体、楷体等,都在这一方面突出了"文"的重要性。
古今中外,人们对于"文"都有自己不同的认知,从大的方面来讲,它可以用于表示一个民族的文化历史,从小的方面来说它可用于用于表示单独的一个"文"字,可用于表示一段话,也可用于人物的姓氏。
折叠编辑本段基本字义1.事物错综所造成的纹理或形象:灿若~锦。
2.刺画花纹:~身。
3.记录语言的符号:~字。
~盲。
以~害辞。
4.用文字记下来以及与之有关的:~凭。
~艺。
~体。
~典。
~苑。
~献(指有历史价值和参考价值的图书资料)。
~采(a.文辞、文艺方面的才华;b.错杂艳丽的色彩)。
5.人类劳动成果的总结:~化。
~物。
6.自然界的某些现象:天~。
水~。
7.旧时指礼节仪式:虚~。
繁~缛节(过多的礼节仪式)。
8.文华辞采,与“质”、“情”相对:~质彬彬。
9.温和:~火。
~静。
~雅。
10.指非军事的:~职。