2007年高考数学试题分类汇编-圆锥曲线(ks5u高考资源网)
2007年高考数学试题汇编
2007年高考数学试题汇编——圆锥曲线(一)1、(重庆文)已知以F1(2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为(C )(A)(B)(C)(D)【解答】设椭圆方程为消x得:即:又联立解得由焦点在x轴上,故长轴长为2、(重庆文)(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B 两点。
题(21)图(Ⅰ)求抛物线的焦点F的坐标及准线l的方程;(Ⅱ)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值。
【解答】(Ⅰ)设抛物线的标准方程为,则,从而因此焦点的坐标为(2,0).又准线方程的一般式为。
从而所求准线l的方程为。
答(21)图(Ⅱ)解法一:如图(21)图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知|FA|=|FC|,|FB|=|BD|.记A、B的横坐标分别为xxxz,则|FA|=|AC|=解得,类似地有,解得。
记直线m与AB的交点为E,则所以。
故。
解法二:设,,直线AB的斜率为,则直线方程为。
将此式代入,得,故。
记直线m与AB的交点为,则,,故直线m的方程为.令y=0,得P的横坐标故。
从而为定值。
3、(重庆理)过双曲线的右焦点F作倾斜角为的直线,交双曲线于PQ两点,则|FP||FQ|的值为__________.【分析】:代入得:设又4、(重庆理)(本小题满分12分)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x = 12。
(1)求椭圆的方程;(2)在椭圆上任取三个不同点,使,证明为定值,并求此定值。
解:(I)设椭圆方程为.因焦点为,故半焦距.又右准线的方程为,从而由已知,因此,.故所求椭圆方程为.(II)记椭圆的右顶点为,并设(1,2,3),不失一般性,假设,且,.又设点在上的射影为,因椭圆的离心率,从而有.解得.因此,而,故为定值.5、(浙江文)已知双曲线的左、右焦点分别为F1、F2,P 是准线上一点,且P F1⊥P F2,|P F1||P F2 |=4ab,则双曲线的离心率是(B)(A)(B) (C)2 (D)3【解答】:设准线与x轴交于A点. 在中,,又, 化简得,故选答案B【高考考点】双曲线的离心率的求法解三角形的相关知识。
【备战】历届高考数学真题汇编专题10 圆锥曲线 理(2007-)
【2012年高考试题】一、选择题1.【2012高考真题浙江理8】如图,F1,F2分别是双曲线C:22221x ya b-=(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是B【答案】B2.【2012高考真题新课标理8】等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线xy162=的准线交于,A B两点,AB=;则C的实轴长为()()A ()B ()C 4 ()D 83.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C. 4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( )A 、、、4 D 、 【答案】B【解析】设抛物线方程为22y px =,则点(2,M ±Q 焦点,02p ⎛⎫⎪⎝⎭,点M 到该抛物线焦点的距离为3,∴ 22492p P ⎛⎫-+= ⎪⎝⎭, 解得2p =,所以OM ==.5.【2012高考真题山东理10】已知椭圆2222:1(0)x y C a b a b +=>>双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y +=6.【2012高考真题湖南理5】已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1 B.25x -220y =1 C.280x -220y =1 D.220x -280y =1【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴=∴C 的方程为220x -25y =1.7.【2012高考真题福建理8】已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于8.【2012高考真题安徽理9】过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为( )()A ()B ()C ()D 【答案】C【解析】设(0)AFx θθπ∠=<<及BF m =;则点A 到准线:1l x =-的距离为3,得:1323cos cos 3θθ=+⇔=又232cos()1cos 2m m m πθθ=+-⇔==+,AOB ∆的面积为113sin 1(3)22232S OF AB θ=⨯⨯⨯=⨯⨯+⨯=。
新课标全国卷2007-2017十年真题分题型汇编——圆锥曲线大题
新课标全国卷2007-2017十年真题分题型汇编——圆锥曲线大题[2007•海南宁夏理.19] 在平面直角坐标系xOy 中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ +与AB 共线?如果存在,求k 值;如果不存在,请说明理由.[2008•海南宁夏理.20] 在直角坐标系xOy 中,椭圆1C :22221(0)x y a b a b+=>>的左、右焦点分别为12,F F .2F 也是抛物线2C :24y x =的焦点,点M 为1C 与2C 在第一象限的交点,且25||3MF =.(Ⅰ)求1C 的方程;(Ⅱ)平面上的点N 满足12MN MF MF =+uuu r uuu r uuu u r ,直线//l MN ,且与1C 交于,A B 两点,若0OA OB ⋅=uu r uu u v,求直线l 的方程.[2009•海南宁夏理.20] 已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (1)求椭圆C 的方程;(2)若P 为椭圆C 的动点,M 为过P 且垂直于x 轴的直线上的点,OP OMλ=,求点M 的轨迹方程,并说明轨迹是什么曲线.[2011•新课标.20] 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线i 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列. (I )求E 的离心率;(II ) 设点(0,1)p -满足PA PB =,求E 的方程[2011•新课标理.20] 在平面直角坐标系xOy 中,已知点(0,1)A -,B 点在直线3y =-上,M 点满足MB ∥OA ,MA ·AB =MB ·BA ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.[2012•新课标理.20] 设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.[2013•新课标Ⅰ理.20] 已知圆22:(1)1M x y ++=,圆:22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .[2013•新课标II 理.20] 平面直角坐标系xoy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ι)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形面积的最大值.[2014•新课标Ⅰ理.20] 已知点()02A -,,椭圆E :22221(0)x y a b a b +=>>的离心率为2;F 是椭圆E 的右焦点,直线AF O 为坐标原点 (I )求E 的方程;(II )设过点A 的动直线l 与E 相交于,P Q 两点.当OPQ ∆的面积最大时,求l 的直线方程.[2014•新课标II 理.20] 设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .[2015•新课标Ⅰ理.20] 在直角坐标系xOy 中,曲线C :42x y =与直线a kx y +=(0>a )交于M ,N 两点,(1)当0=k 时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPN OPM ∠=∠?说明理由.[2015•新课标II 理.20] 已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.[2016新课标Ⅰ理.20] 设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,学.科网求四边形MPNQ 面积的取值范围.[2016新课标Ⅱ理.20] 已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.[2016新课标Ⅲ理.20] 已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.[2017新课标Ⅰ理.20] 已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–12),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.[2017新课标Ⅱ理.20] 设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .[2017新课标Ⅲ理.20] 已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上; (2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.。
2007-13 浙江数学理科 圆锥曲线集锦
浙江卷函数、导数、圆锥曲线集锦07年(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab = ,则双曲线的离心率是( )C.2 D.3(20)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值;(II )当2AB =,1S =时,求直线AB 的方程.(7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2, 则双曲线的离心率是( )(A )3 (B )5 (C )3 (D )5(20)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
是过点Q (-1,0)的直线,M 是C 上(不在 上)的动点;A 、B 在 上,x MB MA ⊥⊥, 轴(如图)。
(Ⅰ)求曲线C 的方程;(Ⅱ)求出直线 的方程,使得QA QB 2为常数。
9.过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC = ,则双曲线的离心率是 ( ) .ABCD21.已知椭圆1C :22221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.(I )求椭圆1C 的方程;(II )设点P 在抛物线2C :2()y x h h =+∈R 上,2C 在点P 处的切线与1C 交于点,M N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.(8)设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )(A ) (B ) (C ) (D )(21)已知m >1,直线,椭圆,分别为椭圆的左、右焦点.(Ⅰ)当直线过右焦点时,求直线的方程;(Ⅱ)设直线与椭圆交于两点,△,△的重心分别为.若原点在以线段为直径的圆内,求实数的取值范围.1F 2F 22221(0,0)x y a b a b -=>>P 212PF FF =2F 1PF340x y ±=350x y ±=430x y ±=540x y ±=2:02m l x my --=222:1x C y m +=1,2F F C l 2F l l C ,A B 12AF F V 12BF F V ,G H O GHm(8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则( )(A )2132a = (B )213a = (C )212b = (D )22b = (17)设12,F F 分别为椭圆2213x y +=的焦点,点,A B 在椭 圆上,若125F A F B = ;则点A 的坐标是 . (21)已知抛物线1:C 2x =,圆2:C 22(4)1x y +-=的圆心为点M 。
2007年高考数学试题汇编
2007年高考数学试题汇编——圆锥曲线(一) 1、(重庆文)已知以F1(2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为( C ) (A)(B)(C)(D) 【解答】设椭圆方程为消x得: 即: 又联立解得 由焦点在x轴上,故长轴长为 2、(重庆文)(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 如题(21)图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点。
题(21)图 (Ⅰ)求抛物线的焦点F的坐标及准线l的方程; (Ⅱ)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值。
【解答】(Ⅰ)设抛物线的标准方程为,则,从而 因此焦点的坐标为(2,0). 又准线方程的一般式为。
从而所求准线l的方程为。
答(21)图 (Ⅱ)解法一:如图(21)图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知 |FA|=|FC|,|FB|=|BD|. 记A、B的横坐标分别为xxxz,则 |FA|=|AC|=解得, 类似地有,解得。
记直线m与AB的交点为E,则 所以。
故。
解法二:设,,直线AB的斜率为,则直线方程为。
将此式代入,得,故。
记直线m与AB的交点为,则 , , 故直线m的方程为. 令y=0,得P的横坐标故 。
从而为定值。
3、(重庆理)过双曲线的右焦点F作倾斜角为的直线,交双曲线于PQ两点,则|FP||FQ|的值为__________. 【分析】: 代入得: 设 又 4、(重庆理)(本小题满分12分)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x = 12。
(1)求椭圆的方程; (2)在椭圆上任取三个不同点,使,证明 为定值,并求此定值。
解:(I)设椭圆方程为. 因焦点为,故半焦距. 又右准线的方程为,从而由已知 , 因此,. 故所求椭圆方程为. (II)记椭圆的右顶点为,并设(1,2,3),不失一般性, 假设,且,. 又设点在上的射影为,因椭圆的离心率,从而有 . 解得. 因此 , 而 , 故为定值. 5、(浙江文)已知双曲线 的左、右焦点分别为F1、F2,P是准线上一点,且P F1⊥P F2,|P F1||P F2 |=4ab,则双曲线的离心率是(B) (A) (B) (C)2 (D)3 【解答】:设准线与x轴交于A点. 在中,, 又, 化简得 ,故选答案B 【高考考点】双曲线的离心率的求法解三角形的相关知识。
全国卷高考十年(2007-2016)圆锥曲线题目汇总
在平面直角坐标系 xOy 中, 椭圆 C 的中心为原点, 焦点 F1 , F2 在 x 轴上, 离心率为 两点,且 △ ABF2 的周长为 16,那么 C 的方程为 。
2 。 过 F1 的直线 L 交 C 于 A, B 2
31. [2010 年高考全国新课标文数第 5 题] 中心在原点,焦点在 x 轴上的双曲线的一条渐近线经过点(4,2) ,则它的离心率为 ( A) 6 (B) 5 (C)
∆ ABP 的面积为
(A)18 (B)24 (C)36 (D)48
29. [2011 年高考全国新课标理数第 ቤተ መጻሕፍቲ ባይዱ 题] 设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A ,B 两点, AB 为 C 的实轴长的 2 倍, 则 C 的离心率为 (A) 2 (B) 3 (C)2 30. [2011 年高考全国新课标理数第 14 题] (D)3
1 3
(B)
1 2
(C)
2 3
(D)
3 4
7. [2015 年高考全国新课标Ⅱ卷文数第 15 题]
8. [2015 年高考全国新课标Ⅱ卷理数第 11 题]
1
新课程标准(2007-2016)数学试卷分类汇编—圆锥曲线
2016 年 10 月 13 日
9. [2015 年高考全国新课标Ⅰ卷文数第 5 题]
63 32
D. 9
4
15. [2014 年高考全国新课标Ⅰ卷文数第 4 题] 已知双曲线
x2 y2 − = 1(a > 0) 的离心率为 2,则 a = ( a2 3
)
16. [2014 年高考全国新课标Ⅰ卷文数第 10 题]
2
新课程标准(2007-2016)数学试卷分类汇编—圆锥曲线
2007年全国各地高考数学试题及解答分类大全(导数)
2.(2007 安徽文))(本小题满分 14 分)设函数 f(x)=-cos2x-4tsin x cos x +4t2+t2-3t+4,x∈R,
22
其中 t ≤1,将 f(x)的最小值记为 g(t).
(Ⅰ)求 g(t)的表达式; (Ⅱ)诗论 g(t)在区间(-1,1)内的单调性并求极值.
2.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导 数,函数的单调性.考查应用导数分析解决多项式函数的单调区间、极值与最值等问题的综合能力. 本小题满分 14 分. 解:(Ⅰ)我们有
2007 年全国各地高考数学试题及解答分类大全
一、选择题:
(导数)
1.(2007 福建文、理)已知对任意实数 x 有 f(-x)=-f(x),g(-x)=g(x),且 x>0 时,f’(x)>0,g’(x)>0,
则 x<0 时( B )
A f’(x)>0,g’(x)>0
B f’(x)>0,g’(x)<0
xx
列表如下:
第 2页 (共 25页)
x
(0,2)
2
(2,+∞)
F′(x)
-
0
+
F(x)
↓
极小值 F(2)
↑
故知 F(x)在(0,2)内是减函数,在(2,+∞)内是增函数,所以,在 x=2 处取得极小值 F(2)
=2-2In2+2a.
(Ⅱ)证明:由 a 0知,F (x)的极小值F (2) 2 In 2 2a 0.
于是由上表知,对一切 x (0,), 恒有F (x) xf (x) 0.
从而当 x 0时,恒有f (x) 0,故f (x)在(0,)内单调增加.
2007高考圆锥曲线考题汇总
专题 十 2007-2015高考圆锥曲线考题汇总(2007)7.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+,则有( ) A.123FP FP FP += B.222123FP FP FP += C.2132FP FP FP =+ D.2213FP FP FP =·(2007)13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . (2007)21.在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,.(Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA OB +与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.(2008)2、双曲线221102x y -=的焦距为( )(2008)15、过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为_____(2008)20、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=。
(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?(2009)(5)已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )(A )2(2)x ++2(2)y -=1 (B )2(2)x -+2(2)y +=1(C )2(2)x ++2(2)y +=1 (D )2(2)x -+2(2)y -=1(14)已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若()2,2P 为AB 的中点,则抛物线C 的方程为 。
2007年高考数学《圆锥曲线》试题汇编(41页含答案)
2007年高考数学试题汇编圆锥曲线重庆文(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A )23(B )62(C )72(D )24(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 如题(21)图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明|FP|-|FP|cos2a 为定值,并求此定值。
重庆理(16)过双曲线422=-y x 的右焦点F 作倾斜角为0105的直线,交双曲线于P 、Q 两点,则|FP||FQ|的值为__________.(22) (本小题满分12分)如图,中心在原点O 的椭圆的右焦点为F (3,0),右准线l 的方程为x = 12。
(1)求椭圆的方程;(2)在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明||1||1||1321FP FP FP ++为定值,并求此定值。
浙江文(10)已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且PF 1⊥P F 2,|P F 1|⋅|P F 2 |=4ab ,则双曲线的离心率是23XOFY2P 1P3Pl(21)(本题15分)如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S .(I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程. 浙江理(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =g ,则双曲线的离心率是()B.C.2D.3天津文(7)设双曲线22221(00)x y a b a b-=>>,24y x =的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= (22)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222xy t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.天津理22.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O到直线AF 的距离为1OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程. 四川文(5)如果双曲线2242x y -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362(C)62(D)32(10)已知抛物线y=x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32 D.42解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220xx +-=,由弦长公式可求出AB ==线的位置关系.自本题起运算量增大.(21)(本小题满分12分)求F 1、F 2分别是椭圆2214x y +=的左、右焦点. (Ⅰ)若r 是第一象限内该数轴上的一点,221254PF PF +=-u u u r u u u u r ,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围. 四川理20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.18、已知双曲线22145x y -=,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为_____ 21、已知半椭圆()222210x y x a b +=≥与半椭圆()222210y x x b c +=≤组成的曲线称为“果圆”,其中222,0,0a b c a b c =+>>>,012,,F F F 是对应的焦点。
2007年全国高考数学文科与理科试题汇总
2007年全国高考数学文科试题汇总2007年全国高考数学试卷(重庆卷)(文)2007年全国高考数学试卷(浙江卷)(文)2007年全国高考数学试卷(天津卷)(文)2007年全国高考数学试卷(四川卷)(文)2007年全国高考数学试卷(陕西卷)(文)2007年全国高考数学试卷(山东卷)(文)2007年全国高考数学试卷(全国卷2)(文)2007年全国高考数学试卷(全国卷1)(文)2007年全国高考数学试卷(辽宁卷)(文)2007年全国高考数学文科试卷(全国卷II)2007年全国高考数学试卷(江西卷)(文)2007年全国高考数学试卷(江苏卷)2007年全国高考数学试卷(湖南卷)(文)2007年全国高考数学试卷(湖北卷)(文)2007年全国高考数学试卷(海南卷)(文)2007年全国高考数学试卷(广东卷)(文)2007年全国高考数学试卷(福建卷)(文)2007年全国高考数学试卷(北京卷)(文)2007年全国高考数学试卷(安徽卷)(文).2007年全国高考数学文科试题(上海卷)2007年全国高考数学理科试题汇总2007年全国高考数学试卷(重庆卷)(理)2007年全国高考数学试卷(浙江卷)(理)2007年全国高考数学试卷(天津卷)(理)2007年全国高考数学试卷(四川卷)(理)2007年全国高考数学试卷(陕西卷)(理)2007年全国高考数学试卷(山东卷)(理)2007年全国高考数学试卷(全国卷2)(理)2007年全国高考数学试卷(全国卷1)(理)2007年全国高考数学试卷(辽宁卷)(理)2007年全国高考数学试卷(江西卷)(理)2007年全国高考数学试卷(湖南卷)(理)2007年全国高考数学试卷(湖北卷)(理)2007年全国高考数学试卷(海南卷)(理)2007年全国高考数学试卷(广东卷)(理)2007年全国高考数学试卷(福建卷)(理)2007年全国高考数学试卷(北京卷)(理)2007年全国高考数学试卷(安徽卷)(理)。
07年--11年山东圆锥曲线高考题
07年--11年圆锥曲线高考题(07年) 21.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1.(I)求椭圆C 的标准方程;(II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.(08年) 22.如图,设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为,A B .(Ⅰ)求证:A M B ,,三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(22)p -,时,410AB =.求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.(09年)22.设椭圆E: 22221x y a b+=(0a b >>)过M (2,2) ,N(6,1)两点,O 为坐标原点,(I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
(10年)21. 如图,已知椭圆22221(0)x y a b a b +=>>的离心率为22,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为4(21)+.一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(11年)22. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆=62,其中O 为坐标原点.(Ⅰ)证明2212x x +和2212y y +均为定值; (Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得62ODE ODG OEG S S S ∆∆∆===?若存在,判断△DEG 的形状;若不存在,请说明理由. y x B A O M2p -。
2007--2012广东高考分类《圆锥曲线》(含答案)
11.(2007?广东)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是x=﹣.考点:抛物线的简单性质。
专题:计算题。
分析:先求出线段OA的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到准线方程.解答:解:依题意我们容易求得直线的方程为4x+2y﹣5=0,把焦点坐标(,0)代入可求得焦参数p=,从而得到准线方程x=﹣.故答案为:x=﹣.点评:本题主要考查抛物线的基本性质.基本性质的熟练掌握是解答正确的关键.11.(2009?广东)巳知椭圆{x n}与{y n}的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.考点:椭圆的标准方程。
专题:计算题。
分析:由题设条件知,2a=12,a=6,b=3,由此可知所求椭圆方程为.解答:解:由题设知,2a=12,∴a=6,b=3,∴所求椭圆方程为.答案:.点评:本题考查椭圆的性质和应用,解题时要注意公式的灵活运用.18.(2007?广东)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C 与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.考点:直线与圆锥曲线的关系;圆的标准方程。
分析:(1)中,设出圆的标准方程,由相切和过原点的条件,建立方程求解.(2)中,要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于|OF|的长度4,我们可以转化为探求以右焦点F为圆心,半径为4的圆(x─4)2+y2=8与(1)所求的圆的交点数.解答:解:(1)设圆心坐标为(m,n)(m<0,n>0),则该圆的方程为(x﹣m)2+(y﹣n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则=2即|m﹣n|=4①又圆与直线切于原点,将点(0,0)代入得m2+n2=8②联立方程①和②组成方程组解得故圆的方程为(x+2)2+(y﹣2)2=8;(2)|a|=5,∴a2=25,则椭圆的方程为=1其焦距c==4,右焦点为(4,0),那么|OF|=4.通过联立两圆的方程,解得x=,y=.即存在异于原点的点Q(,),使得该点到右焦点F的距离等于|OF|的长.点评:本题考查的是圆的位置关系和圆锥曲线的基本概念的理解.对于题中第二小问中,探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于|OF|的长度4,转化为探求以右焦点F为顶点,半径为4的圆(x─4)2+y2=8与(1)所求的圆的交点数.可使问题简化.18.(2008?广东)设b >0,椭圆方程为,抛物线方程为x 2=8(y ﹣b ).如图所示,过点F (0,b+2)作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点F 1.(1)求满足条件的椭圆方程和抛物线方程;(2)设A ,B 分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).考点:椭圆的标准方程;抛物线的标准方程;圆锥曲线的综合。
2007年高考数学试题汇编——圆锥曲线(七)
2007年高考数学试题汇编——圆锥曲线(七)51、(湖北理)(本小题满分12分)在平面直角坐标系中,过定点作直线与抛物线()相交于两点.(I)若点是点关于坐标原点的对称点,求面积的最小值;(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.(此题不要求在答题卡上画图)【解答】本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点的坐标为,可设,直线的方程为,与联立得消去得.由韦达定理得,.于是.,当时,.(Ⅱ)假设满足条件的直线存在,其方程为,的中点为,与为直径的圆相交于点,的中点为,则,点的坐标为.,,,.令,得,此时为定值,故满足条件的直线存在,其方程为,即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得,又由点到直线的距离公式得.从而,当时,.(Ⅱ)假设满足条件的直线存在,其方程为,则以为直径的圆的方程为,将直线方程代入得,则.设直线与以为直径的圆的交点为,则有.令,得,此时为定值,故满足条件的直线存在,其方程为,即抛物线的通径所在的直线.52、(湖北文)过双曲线左焦点的直线交曲线的左支于两点,为其右焦点,则的值为______.【解答】根据双曲线定义有|MF2|-|MF|=2a,|NF2|-|NF|=2a,两式相加得|MF2|+|NF2|-|MN|=4a=8点评:本题主要考查双曲线定义的灵活运用。
53、(广东理)在平面直角坐标系中,有一定点,若线段的垂直平分线过抛物线则该抛物线的方程是.【解答】OA的垂直平分线的方程是y-,令y=0得到x=;54、(广东理)(本小题满分14分)在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.(1)求圆的方程;(2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.【解答】(1)设圆心坐标为(m,n)(m<0,n>0),则该圆的方程为(x-m)2+(y-n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则=2即=4 ①又圆与直线切于原点,将点(0,0)代入得m2+n2=8 ②联立方程①和②组成方程组解得故圆的方程为(x+2)2+(y-2)2=8(2)=5,∴=25,则椭圆的方程为其焦距c==4,右焦点为(4,0),那么=4。
2007年全国各地高考试卷主干知识分类评析——圆锥曲线
因为 I FI 剧 分别等于A B到抛物线 、l 1 A 、
-
【 作者单位: 武汉 市新洲一 中】 责任编辑 : 苏京 燕
一
—一
—一
Hale Waihona Puke 准线 一 的距离, 1 所以 I B I F I =I +l A
I :
。 l、 h i E | 。p ≈
…
…
…
…
上存在尸 使线段腻 的中垂线过点 ,则椭 圆离心 ,
率 的取 值 范 围 是 ( )
性质 , 其命题在求离心率 的值或取值范 围、 研究两
所
2 2 1
一 一
A( l B 孚l ., . 0
y+ 22 2 + = 十 ) l + = +1 2 ( y
・~' ̄ +x2 2 ・ ] =xl - n ) 2
庆 ( )2 陕西 2 ) 构造三角形或边长值, 文 1, 1; 求参数 范 围或直线方程 ( 如浙江 2 ) 0 ;已知椭圆方程及椭
圆的焦点弦 , 明不等式成立 ( 证 如全 国 I( 2 ) 文) 2 ; 以抛物线 的焦点弦为基础 , 作其他直线或辅助 圆,
求 相 应 的参 数 值 , 求 定值 问题 ( 重 庆 ( ) 1安 或 如 文 2,
圆锥 曲线 的性质 ,并掌握求定值 等问题 的基本 方
法:
是抛物- ;2x  ̄ =p ( 0的焦点, p> ) A是抛物线上的一
2 湖 南( 9 全 国I( t) 或者求椭 圆的离心 , 文) , I 文) 1 、
率 的取 值 范 围 ( 北京 ( ) , 南 9 . 如 文 4湖 )
【 1 ( 南卷 , )设 , 分 别 是椭 圆 例 】 湖 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年高考数学试题分类汇编圆锥曲线重庆文(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A )23(B )62(C )72(D )24(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
题(21)图 (Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明|FP|-|FP|cos2a 为定(21)(本小题12分)(Ⅰ)解:设抛物线的标准方程为px y 22=,则82=p ,从而.4=p 因此焦点)0,2(pF 的坐标为(2,0).又准线方程的一般式为2p x -=。
从而所求准线l 的方程为2-=x 。
答(21)图(Ⅱ)解法一:如图(21)图作AC ⊥l ,BD ⊥l ,垂足为C 、D ,则由抛物线的定义知 |F A |=|FC |,|FB |=|BD |.记A 、B 的横坐标分别为x x x z ,则 |F A |=|AC |=4cos ||22cos ||2+=++=+a FA p p a FA p x x 解得aFA cos 14||-=, 类似地有a FB FB cos ||4||-=,解得aFB cos 14||+=。
记直线m 与AB 的交点为E ,则aaa a FB FA FB FA FA AE FA FE 2sin cos 4cos 14cos 1421|)||(|212||||||||||||=⎪⎭⎫ ⎝⎛+--=-=+-=-=所以a a FE FP 2sin 4cos ||||==。
故8sin sin 2·4)2cos 1(sin 42cos ||||222==-=-aa a aa FP FP 。
解法二:设),(A A y x A ,),(B B y x B ,直线AB 的斜率为a k t an =,则直线方程为)2(-=x k y 。
将此式代入x y 82=,得04)2(42222=++=k x k x k ,故22)2(k k k x x B A +=+。
的交点为),(E E y x E ,则,kx k y E E )2(=-=,故直线m 的方程为⎪⎪⎭⎫⎝⎛+--=-224214k k x k k y . 令y =0,得P 的横坐标44222++-k k x P 故a k k x FP P 222sin 4)1(42||=+=-=。
从而8sin sin 2·4)2cos 1(sin 42cos ||||222==-=-aa a aa FP FP 为定值。
重庆理(16)过双曲线422=-y x 的右焦点F 作倾斜角为0105的直线,交双曲线于PQ 两点,则|FP||FQ|的值为__________.(22) (本小题满分12分)如图,中心在原点O 的椭圆的右焦点为F (3,0),右准线l 的方程为:x = 12。
(1)求椭圆的方程;(2)在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明||1||1||1321FP FP FP ++为定值,并求此定值。
浙江文(10)已知双曲线22221x y-= (0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且2|⋅|P F 2 |=4ab ,则双曲线的离心率是(A) (C)2 (D)3(21)(本题15分)如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S .(I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程.(21)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(I)解:设点A 的坐标为(1(,)x b ,点B 的坐标为2(,)x b ,由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=当且仅当b =.S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB12|2x x -== ②又因为O 到AB的距离21||Sd AB == 所以221b k =+ ③ ③代入②并整理,得440k -解得,2213,22k b ==,代入①式检验,△>0 故直线AB 的方程是y x =或y x =或y x =或y x =-. 浙江理(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab = ,则双曲线的离心率是( )C.2D.3天津文(7)设双曲线22221(00)x y a b a b-=>>,的离心率为,且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= (22)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212A F F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.(22)本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c-,,2(0)F c ,,不妨设点()A c y ,,其中 0y >,由于点A 在椭圆上,有22221c y a b +=,222221a b y a b-+=, 解得2b y a =,从而得到2b A c a ⎛⎫ ⎪⎝⎭,,直线2AF 的方程为2()2b y x c ac=+,整理得 2220b x acy b c -+=.由题设,原点O 到直线1AF 的距离为113OF ,即23c =, 将222c a b =-代入原式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,,过点O 作1OB AF ⊥,垂足为H ,易知112F BC F F A △∽△211BO F A OF F A=由椭圆定义得122AF AF a +=,又113BO OF =,所以 2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即a =. (Ⅱ)解法一:圆222x y t +=上的任意点00()M x y ,处的切线方程为200x x y y t +=. 当(0)t b ∈,时,圆222x y t +=上的任意点都在椭圆内,故此圆在点A 处的切线必交椭圆于两个不同的点1Q 和2Q ,因此点111()Q x y ,,222()Q x y ,的坐标是方程组20022222x x y y t x y b ⎧+=⎪⎨+=⎪⎩ ①②的解.当00y ≠时,由①式得 200t x xy y -=代入②式,得22220022t x x x b y ⎛⎫-+= ⎪⎝⎭,即22224220000(2)4220x y x t x x t b y +-+-=,于是2012220042t x x x x y +=+,422122200222t b y x x x y -=+2201121201t x x t x x y y y y --=422012012201()t x t x x x x x y ⎡⎤=-++⎣⎦ 242242200002222200000422122t x t b y t x t x y x y x y ⎛⎫-=-+ ⎪++⎝⎭ 422220022t b x x y -=+. 若12OQ OQ ⊥,则42242242220000121222222200000022232()0222t b y t b x t b x y x x y y x y x y x y ---++=+==+++. 所以,42220032()0t b x y -+=.由22200x y t +=,得422320t b t -=.在区间(0)b ,内此方程的解为t 当00y =0≠,同理求得在区间(0)b ,.另一方面,当t =时,可推出12120x x y y +=,从而12OQ OQ ⊥.综上所述,(0)3t b =∈,使得所述命题成立. 天津理 22.(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212A F F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c-,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即222221a b y a b-+=. 解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,.直线1AF 的方程为2()2b y x c ac =+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF,即23c =,将222c a b =-代入上式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,.过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故由椭圆定义得122AF AF a +=,又113BO OF =, 所以2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即a =.(Ⅱ)解法一:设点D 的坐标为00()x y ,.当00y ≠时,由12OD QQ ⊥知,直线12QQ 的斜率为0x y -,所以直线12Q Q 的方程为0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,2000x m y y =+.点111222()()Q x y Q x y ,,,的坐标满足方程组22222y kx m x y b =+⎧⎨+=⎩,.将①式代入②式,得2222()2x kx m b ++=, 整理得2222(12)4220k x kmx m b +++-=,于是122412kmx x k +=-+,21222212m b x x k -=+.由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++2222222222242121212m b km m b k k km m k k k---=++=+++··. 由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得22222322012m b b k k --=+, 22232(1)m b k =+.将200000x x k m y y y =-=+代入上式,整理得2220023x y b +=.当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组022222x x x y b =⎧⎨+=⎩,. 所以120x x x ==,12y =,. 由12OQ OQ ⊥知12120x x y y +=,即2220202b x x --=, 解得22023x b =. 这时,点D 的坐标仍满足2220023x y b +=. 综上,点D 的轨迹方程为 22223x y b +=.解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD QQ ⊥,垂足为D ,可知直线12Q Q 的方程为220000x x y y x y +=+. 记2200m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组0022222x x y y m x y b +=⎧⎪⎨+=⎪⎩, ①. ②由①式得00y y m x x =-. ③由②式得22222200022y x y y y b +=. ④ 将③式代入④式得222220002()2y x m x x y b +-=. 整理得2222220000(2)4220x y x mx x m b y +-+-=,于是222122200222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥由②式得22222200022x x x y x b +=. ⑦ 将⑥式代入⑦式得22222000()22m y y x y x b -+=, 整理得2222220000(2)220x y y my y m b x +-+-=,于是22212220022m b x y y x y -=+. ⑧ 由12OQ OQ ⊥知12120x x y y +=.将⑤式和⑧式代入得2222220022220000222022m b y m b x x y x y --+=++, 22220032()0m b x y -+=.将2200m x y =+代入上式,得2220023x y b +=. 所以,点D 的轨迹方程为22223x y b +=.四川文(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362 (C)62 (D)32 (10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42 解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB ==本题考查直线与圆锥曲线的位置关系.自本题起运算量增大.(21)(本小题满分12分)求F 1、F 2分别是椭圆2214x y +=的左、右焦点. (Ⅰ)若r 是第一象限内该数轴上的一点,221254PF PF +=- ,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围.解析:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解(Ⅰ)易知2a =,1b =,c =∴1(F,2F .设(,)P x y (0,0)x y >>.则22125(,,)34PF PF x y x y x y ⋅=--=+-=- ,又2214x y +=,联立22227414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得221134x x y y =⎧⎧=⎪⎪⇒⎨⎨==⎪⎪⎩⎩,(1,2P . (Ⅱ)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设11(,)A x y ,22(,)B x y .联立22222214(2)4(14)1612042x y x kx k x kx y kx ⎧+=⎪⇒++=⇒+++=⎨⎪=+⎩∴1221214x x k =+,1221614kx x k +=-+ 由22(16)4(14)120k k ∆=-⋅+⋅>22163(14)0k k -+>,2430k ->,得234k >.① 又AOB ∠为锐角cos 00AOB OA OB ⇔∠>⇔⋅>,∴12120OA OB x x y y ⋅=+>又212121212(2)(2)2()4y y kx kx k x x k x x =++=+++ ∴1212x x y y +21212(1)2()4k x x k x x =++++2221216(1)2()41414kk k k k =+⋅+⋅-+++22212(1)21641414k k kk k +⋅=-+++ 2=∴4-综①②可知2344k <<,∴k 的取值范围是(2,- . 四川理20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.(20)本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力。