江苏省苏州市2017-2018学年高一上学期期末数学试卷+Word版含解析

合集下载

【真题】2017-2018年江苏省苏州市高三(上)期末数学试卷(文科)与答案

【真题】2017-2018年江苏省苏州市高三(上)期末数学试卷(文科)与答案

2017-2018学年江苏省苏州市高三(上)期末数学试卷(文科)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={x|x<2},B={﹣1,0,2,3},则A∩B=.2.(5分)已知i为虚数单位,计算(1+2i)(1﹣i)2=.3.(5分)若函数f(x)=sin(x+θ)()的图象关于直线对称,则θ=.4.(5分)设S n为等差数列{a n}的前n项和,已知S5=5,S9=27,则S7=.5.(5分)若圆锥底面半径为1,高为2,则圆锥的侧面积为.6.(5分)运行如图所示程序框图,若输入值x∈[﹣2,2],则输出值y的取值范围是.7.(5分)已知,,则tanx=.8.(5分)函数y=ex﹣lnx的值域为.9.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则实数t的值为.10.(5分)已知m∈{﹣1,0,1},n∈{﹣1,1},若随机选取m,n,则直线mx+ny+1=0恰好不经过第二象限的概率是.11.(5分)已知f(x)=,则不等式f(x2﹣x+1)<12解集是.12.(5分)在直角坐标系xOy中,已知A(﹣1,0),B(0,1),则满足PA2﹣PB2=4且在圆x2+y2=4上的点P的个数为.13.(5分)已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.14.(5分)若(m≠0)对一切x≥4恒成立,则实数m的取值范围是.二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,设角A,B,C的对边分别为a,b,c,且acosC+=b.(Ⅰ)求角A的大小;(Ⅱ)若a=,b=4,求边c的大小.16.(14分)如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.17.(14分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过80km/h,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为a元.(1)将全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?18.(16分)如图,已知椭圆的右顶点为A(2,0),点P (2e,)在椭圆上(e为椭圆的离心率).(1)求椭圆的方程;(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.19.(16分)设数列{a n}满足a n+1=2a n+n2﹣4n+1.(1)若a1=3,求证:存在f(n)=an2+bn+c(a,b,c为常数),使数列{a n+f(n)}是等比数列,并求出数列{a n}的通项公式;(2)若a n是一个等差数列{b n}的前n项和,求首项a1的值与数列{b n}的通项公式.20.(16分)已知a,b为常数,a≠0,函数.(1)若a=2,b=1,求f(x)在(0,+∞)内的极值;(2)①若a>0,b>0,求证:f(x)在区间[1,2]上是增函数;②若f(2)<0,f(﹣2)<e﹣2,且f(x)在区间[1,2]上是增函数,求由所有点(a,b)形成的平面区域的面积.2017-2018学年江苏省苏州市高三(上)期末数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={x|x<2},B={﹣1,0,2,3},则A∩B={﹣1,0} .【解答】解:∵A={x|x<2},B={﹣1,0,2,3},∴A∩B={﹣1,0}.故答案为:{﹣1,0}2.(5分)已知i为虚数单位,计算(1+2i)(1﹣i)2=4﹣2i.【解答】解:(1+2i)(1﹣i)2=(1+2i)(1﹣2i+i2)=(1+2i)(﹣2i)=﹣2i﹣4i2=4﹣2i.故答案为:4﹣2i.3.(5分)若函数f(x)=sin(x+θ)()的图象关于直线对称,则θ=.【解答】解:∵函数f(x)=sin(x+θ)的图象关于直线x=对称,∴+θ=kπ+,k∈Z,∴θ=kπ+,k∈Z,又0<θ<,∴θ=,故答案为:.4.(5分)设S n为等差数列{a n}的前n项和,已知S5=5,S9=27,则S7=14.【解答】解:∵数列{a n}是等差数列,S5=5,S9=27,∴,解得.∴S7==﹣7+21=14.故答案为:14.5.(5分)若圆锥底面半径为1,高为2,则圆锥的侧面积为π.【解答】解:∵圆锥的底面半径为1,高为2,∴母线长为:,∴圆锥的侧面积为:πrl=π×1×=π,故答案为:π.6.(5分)运行如图所示程序框图,若输入值x∈[﹣2,2],则输出值y的取值范围是[﹣1,4] .【解答】解:由程序框图知:算法的功能是求y=的值,当﹣2≤x<0时,函数为减函数,∴0<y≤4;当0≤x≤2时,函数y=x(x﹣2),∴﹣1≤y≤0.综上y的取值范围是[﹣1,4].故答案为:[﹣1,4].7.(5分)已知,,则tanx=﹣7.【解答】解:∵,,∴,两式相比得,即4sinx+4cosx=3sinx﹣3cosx,∴sinx=﹣7cosx,∴tanx=﹣7,故答案为:﹣78.(5分)函数y=ex﹣lnx的值域为[2,+∞).【解答】解:定义域为(0,+∞),=,当时y′<0,当时,y′>0,所以函数在区间(0,)上单调递减,在区间()上单调递增,所以f (x)≥,所以函数的值域为[2,+∞).故答案为:[2,+∞).9.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则实数t的值为2.【解答】解:由题意可得,=||||cos60°=,∵,∴=t+(1﹣t)==1﹣=0,∴t=2,故答案为:210.(5分)已知m∈{﹣1,0,1},n∈{﹣1,1},若随机选取m,n,则直线mx+ny+1=0恰好不经过第二象限的概率是.【解答】解:由mx+ny+1=0得y=,要使直线mx+ny+1=0恰好不经过第二象限,则或者,即或,∴n=1,m=﹣1或n=1,m=0共有2个结果.∵m∈{﹣1,0,1},n∈{﹣1,1},∴m,n的选择共有3×2=6个结果,则根据古典概率的概率公式得所求的概率P=,故答案为:11.(5分)已知f(x)=,则不等式f(x2﹣x+1)<12解集是(﹣1,2).【解答】解:∵f(x)=,∴f(﹣x)=﹣f(x)恒成立,∴函数f(x)为奇函数,再根据二次函数的图象和性质可得:f(x)在(0,+∞)上是增函数,f(0)=0,可得函数f(x)在R上是增函数.令x2+x=12,求得x=3 或x=﹣4(舍去).∴由不等式f(x2﹣x+1)<12,可得x2﹣x+1<3,即(x+1)(x﹣2)<0,解得﹣1<x<2,故答案为:(﹣1,2).12.(5分)在直角坐标系xOy中,已知A(﹣1,0),B(0,1),则满足PA2﹣PB2=4且在圆x2+y2=4上的点P的个数为2.【解答】解:设P(x,y),∵A(﹣1,0),B(0,1),由PA2﹣PB2=4,得(x+1)2+y2﹣x2﹣(y﹣1)2=4.整理得:x+y=2.联立,解得:或.∴P点坐标为(0,2)或(2,0).即满足条件的P点的个数为2.故答案为:2.13.(5分)已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.【解答】解:∵正实数x,y满足xy+2x+y=4,∴(0<x<2).∴x+y=x+==(x+1)+﹣3﹣3=﹣3,当且仅当x=时取等号.∴x+y的最小值为.故答案为:.14.(5分)若(m≠0)对一切x≥4恒成立,则实数m的取值范围是(﹣∞,﹣).【解答】解:等价于(m2x﹣1)(mx+1)<0,x1=,x2=﹣,若(m≠0)对一切x≥4恒成立,则m<0,当﹣1≤m<0时,≥﹣,则<4,解得﹣1≤m<﹣,当m<﹣1时,<﹣,则﹣<4,解得m<﹣1.故答案为:(﹣∞,﹣).二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,设角A,B,C的对边分别为a,b,c,且acosC+=b.(Ⅰ)求角A的大小;(Ⅱ)若a=,b=4,求边c的大小.【解答】(本题满分为12分)解:(Ⅰ)利用正弦定理化简acosC+c=b,得:sinAcosC+sinC=sinB,…(2分)∵sinB=sin(A+C)=sinAcosC+cosAsinC,…(3分)∴sinAcosC+sinC=sinAcosC+cosAsinC,即sinC=cosAsinC,…(4分)∵sinC≠0,∴cosA=,∵A为三角形内角,∴A=;…(6分)(Ⅱ)∵a=,b=4,cosA=,…(8分)∴由余弦定理得:a2=b2+c2﹣2bccosA,15=16+c2﹣4c,即c2﹣4c+1=0,…(10分)解得:c==2±.…(12分)16.(14分)如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.【解答】证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.17.(14分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过80km/h,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为a元.(1)将全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?【解答】解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为y=,即y=1000(),定义域为(0,80],(2)依题意知a,v都为正数,故有1000()≥1000,当且仅当,即v=2时,等号成立,①若2≤80,即0<a≤1600时,则当v=2时,时,全程运输成本y最小.②若2>80,即a>1600时,则当v∈(0,80]时,有y′=1000()<0.∴函数在v∈(0,80]上单调递减,也即当v=80时,全程运输成本y最小,综上知,为使全程运输成本y最小,当0<a≤1600时行驶速度应为v=2时千米/时;当a>1600时行驶速度应为v=80千米/时.18.(16分)如图,已知椭圆的右顶点为A(2,0),点P (2e,)在椭圆上(e为椭圆的离心率).(1)求椭圆的方程;(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.【解答】解:(1)∵椭圆的右顶点为A(2,0),∴a=2,∵点P(2e,)在椭圆上,∴,∵a2=4,,a2=b2+c2,∴b2=1,c2=3,∴椭圆的方程为.(2)设直线OC的斜率为k,则直线OC方程为y=kx,代入椭圆方程,即x2+4y2=4,得(1+4k2)x2=4,∴,∴C(,),又直线AB方程为y=k(x﹣2),代入椭圆方程x2+4y2=4,得(1+4k2)x2﹣16k2x+16k2﹣4=0,∵x A=2,∴x B=,∵=0,∴+=0,∴,∵C 在第一象限,∴k >0,∴k=,∵=(),=(2﹣,0﹣)=(,),由=,得,∴k=,∴.19.(16分)设数列{a n }满足a n +1=2a n +n 2﹣4n +1.(1)若a 1=3,求证:存在f (n )=an 2+bn +c (a ,b ,c 为常数),使数列{a n +f (n )}是等比数列,并求出数列{a n }的通项公式;(2)若a n 是一个等差数列{b n }的前n 项和,求首项a 1的值与数列{b n }的通项公式.【解答】解:(1)∵数列{a n }满足a n +1=2a n +n 2﹣4n +1,设a n +1 +a (n +1)2+b (n +1)+c=2(a n +an 2+bn +c ),即 a n +1=2a n +an 2+(b ﹣2a )n +c ﹣a ﹣b , ∴,即.∵a 1+1﹣2=2,∴存在f (n )=n 2﹣2n ,使数列{a n +f (n )}是等比数列, ∴a n +n 2﹣2n=2×2n ﹣1, ∴a n =2n ﹣n 2+2n .(2)∵a n 是一个等差数列{b n }的前n 项和,数列{a n }满足a n +1=2a n +n 2﹣4n +1, 即 a n +1 +(n +1)2﹣2(n +1)=2(a n +n 2﹣n ), 即a n +1+(n +1)2﹣2(n +1)=2(a n +n 2﹣2n ),∴(a n +n 2﹣2n )=(a 1﹣1)•2n ﹣1,故a n =﹣n 2+2n +(a 1﹣1)•2n ﹣1, ∴b n =.再根据{b n }是等差数列,可得b n 的通项公式是关于n 的一次函数, ∴a 1=1,a n =﹣2n +3.20.(16分)已知a ,b 为常数,a ≠0,函数.(1)若a=2,b=1,求f(x)在(0,+∞)内的极值;(2)①若a>0,b>0,求证:f(x)在区间[1,2]上是增函数;②若f(2)<0,f(﹣2)<e﹣2,且f(x)在区间[1,2]上是增函数,求由所有点(a,b)形成的平面区域的面积.【解答】解:(1)若a=2,b=1,则f(x)=(2+)e x,则f′(x)=(x+1)(2x﹣1),由f′(x)>0,得x>,此时函数单调递增,由f′(x)<0,得0<x<,此时函数单调递减,则当x=时,f(x)取得极小值,f()=4.(2)f′(x)=(ax2+bx﹣b),设g(x)=ax2+bx﹣b,①证明:若a>0,b>0,则二次函数g(x)的图象开口向上,对称轴x=﹣<0,且g(1)=a>0,∴g(x)>0,对一切x∈[1,2]恒成立,又,∴f(x)>0恒成立.即f(x)在区间[1,2]上是增函数;②若f(2)<0,f(﹣2)<e﹣2,则,即,(•),∵f(x)在区间[1,2]上是增函数,∴f′(x)≥0对x∈[1,2]恒成立,即,(••),在(•),(••)的条件下,b<0,且1<≤2,且g()=恒成立,综上求由所有点(a ,b )满足的约束条件为,则不等式组对应的平面区域为△OAB ,其中A (),B (),C (1,0),则形成的平面区域的面积S=S △OAC ﹣S △OBC =.即△OAB 的面积为.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =. xxxx>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x xf xfxx<O-=f (p)f(q)()2b f a-x x<O-=f (p)f (q)()2b f a-x。

江苏省苏州市2017-2018学年高一下学期期末考试数学试题 Word版含解析

江苏省苏州市2017-2018学年高一下学期期末考试数学试题 Word版含解析

江苏省苏州市2017-2018学年高一下学期学业质量阳光指标调研试题一、填空题(本大题共14小题,每题5分,满分70分,将答案填在答题纸上)1. 已知集合.点睛:本题考查了交集运算问题,属于基础题.2. 一组数据1,2,3,4,5,则这组数据的方差等于__________.【答案】2【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.3. 为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时200辆汽车中,时__________辆.【答案】80考点:频率分布直方图4. 袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于__________.【解析】分析:通过枚举法写出摸出2个球的所有情况,再找出摸出1个黑球和1个白球的情况,由此能求出概率.详解:设3个黑球用A,B,C表示;2个白球用甲,乙表示,摸出2个球的所有情况:(A,B)、(A,C)、(A,甲)、(A,乙)、(B,C)、(B,甲)、(B,乙)、(C,甲)、(C,乙)、(甲,乙)共10种,其中摸出1个黑球和1个白球的情况有6种,所以,摸出1个黑球和1点睛:本题考查利用古典概型的概率公式求事件的概率,解题时要注意枚举法的合理运用.5. __________.【答案】4考点:向量平行6. 如右图所示的算法流程图中,最后的输出值为__________.【答案】25【解析】分析:由流程图可知,该算法为先判断后计算的当型循环,模拟执行程序,即可得到答案.详解:程序执行如下故答案为25.点睛:本题考查了循环结构的程序框图,正确判断循环的类型和终止循环的条件是解题关键7. 公元五世纪张丘建所著《张丘建算经》卷中第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织布的增加量为__________尺.(1匹=4丈,1丈=10尺)【解析】.项和公式得点睛:本题考查等差数列的实际应用,解题时要认真审题,注意等差数列性质的合理运用.8. 1是指每个小正方形的顶点).【答案】12.故答案为12.点睛:本题考查向量运算在几何中的应用,向量的数量积以及向量的正交分解,考查计算能力以及转化思想,属于中档题.9. __________.【解析】分析:由角的坐标为.详解:角的终边上的一点,故答案为点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式,属于中档题.给值求值问题,求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.10.__________.【答案】1成等差数列,可得.成等差数列,故答案为1.点睛:本题考查了余弦定理和等差数列的性质,属于基本知识的考查.11. 已知关于3__________.【解析】分析:将方程问题转换为函数与点.根据函数图象可以求出答案.3个相异实根,的图象在在坐标系中画出函数的图象,由图象可知,在上,函数联立,整理得实数的取值范围为点睛:本题主要考查方程的根与函数图象交点的关系,考查数形结合的思想以及分析问题解决问题的能力.12. __________.【答案】11等式,即可得出答案.,,,,,当且仅当时取等号的最小值等于故答案为11.点睛:本题考查基本不等式的性质与应用,同时考查了整体思想与转化思想的运用.13.构成等比数列,则__________.【解析】分析:根据三角函数.)的所有正数解,也就是函数第一象限交点的横坐标,,构成等比数列故答案为点评:本题综合考查方程的根与两个函数图象交点的关系,三角函数的图象与性质,等比数列的性质,考查转化思想、数形结合思想和分析解决问题的能力。

2017-2018学年苏州市高三上学期期末数学试卷(有答案)

2017-2018学年苏州市高三上学期期末数学试卷(有答案)

2017-2018学年苏州市高三上学期期末数学试卷(有答案)1.已知复数 $z=a+\dfrac{33}{22}i$,求其模长。

2.已知集合 $A=\{1,2\}$,$B=\{-1,1,4\}$,且 $A\subseteq B$,求正整数 $a$。

3.在平面直角坐标系 $xOy$ 中,已知抛物线 $y^2=-8x$,求其焦点坐标。

4.苏州轨道交通 1 号线每 5 分钟一班,其中列车在车站停留 0.5 分钟。

假设乘客到达站台的时刻是随机的,求该乘客到达站台立即能乘上车的概率。

5.已知 $4=2$,$\log_a x=2a$,求正实数 $x$。

6.XXX是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。

右边的流程图是秦九韶算法的一个实例。

若输入 $n$,$x$ 的值分别为 $3$,$3$,求输出 $v$ 的值。

7.已知变量 $x,y$ 满足 $x+y\geq 0$,求 $z=2x-3y$ 的最大值。

8.已知等比数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,且$S_6=1519$,$a_4-a_2=-8$,求 $a_3$ 的值。

9.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构。

它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经$90^\circ$ 榫卯起来。

若正四棱柱体的高为 $5$,底面正方形的边长为 $1$,现将该鲁班锁放进一个球形内,求该球形的表面积至少为多少(壁的厚度忽略不计,结果保留 $\pi$)。

10.如图,两座建筑物 $AB$,$CD$ 的高度分别是$9\text{ m}$ 和 $15\text{ m}$,从建筑物 $AB$ 的顶部 $A$ 看建筑物 $CD$ 的张角 $\angle CAD=45^\circ$,求这两座建筑物$AB$ 和 $CD$ 底部之间的距离 $BD$。

2017-2018学年江苏省苏州市高一(上)期末数学试卷及参考答案与解析

2017-2018学年江苏省苏州市高一(上)期末数学试卷及参考答案与解析

,2017-2018学年江苏省苏州市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={0,2,4},则A∩B=.2.(5分)函数y=lg(2﹣x)的定义域是.3.(5分)若α=240°,则sin(150°﹣α)的值等于.4.(5分)已知角α的终边经过点P(﹣2,4),则sinα﹣cosα的值等于.5.(5分)已知向量=(m,5),=(4,n),=(7,6),则m+n的值为.6.(5分)已知函数f(x)=,则f(f(2))的值为.7.(5分)《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为平方米.8.(5分)已知函数f(x)=,则函数g(x)=f(x)﹣2的零点个数为.9.(5分)已知函数f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值等于8,则函数y =f(x)(x∈[﹣2,1])的值域为.10.(5分)已知函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,则实数m的值等于.11.(5分)如图,在梯形ABCD中,=2,P为线段CD上一点,且=3,E为BC的中点,若=λ1+λ2(λ1,λ2∈R),则λ1+λ2的值为.12.(5分)已知tan()=2,则sin(2)的值等于.13.(5分)将函数y=sinx的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,则ω的取值范围为.14.(5分)已知x,y为非零实数,θ∈(),且同时满足:①=,②=,则cosθ的值等于.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U=R,集合A={x|x2﹣4x≤0},B={x|m≤x≤m+2}.(1)若m=3,求∁U B和A∪B;(2)若B⊆A,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.16.(14分)已知函数f(x)=a+的图象过点(1,).(1)判断函数f(x)的奇偶性,并说明理由;(2)若,求实数x的取值范围.17.(14分)如图,在四边形ABCD中,AD=4,AB=2.(1)若△ABC为等边三角形,且AD∥BC,E是CD的中点,求;(2)若AC=AB,cos,=,求||.18.(16分)某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60°,点Q在OA上,点M,N在OB上,点P在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⊥OA,PT⊥OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT最长,试问:此时点P应在何处?说明你的理由.19.(16分)已知=(2cosx,1),=(sinx+cosx,﹣1),函数f(x)=.(1)求f(x)在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[],求cos2x0的值;(3)若函数y=f(ωx)在区间()上是单调递增函数,求正数ω的取值范围.20.(16分)已知函数f(x)=x|x﹣a|+bx(a,b∈R).(1)当b=﹣1时,函数f(x)恰有两个不同的零点,求实数a的值;(2)当b=1时,①若对于任意x∈[1,3],恒有,求a的取值范围;②若a>0,求函数f(x)在区间[0,2]上的最大值g(a).,2017-2018学年江苏省苏州市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={0,2,4},则A∩B={0,2} .【解答】解:∵集合A={0,1,2},B={0,2,4},∴A∩B={0,2}.故答案为:{0,2}.2.(5分)函数y=lg(2﹣x)的定义域是(﹣∞,2).【解答】解:由2﹣x>0,得x<2.∴函数y=lg(2﹣x)的定义域是(﹣∞,2).故答案为:(﹣∞,2).3.(5分)若α=240°,则sin(150°﹣α)的值等于﹣1.【解答】解:∵α=240°,则sin(150°﹣α)=sin(﹣90°)=﹣sin90°=﹣1,故答案为:﹣1.4.(5分)已知角α的终边经过点P(﹣2,4),则sinα﹣cosα的值等于.【解答】解:∵角α的终边经过点P(﹣2,4),∴x=﹣2,y=4,r=|OP|=2,∴sinα==,cosα==﹣,则sinα﹣cosα=,故答案为:.5.(5分)已知向量=(m,5),=(4,n),=(7,6),则m+n的值为8.【解答】解:∵向量=(m,5),=(4,n),=(7,6),∴,即(7,6)=(4﹣m,n﹣5),∴,解得m=﹣3,n=11,∴m+n=8.故答案为:8.6.(5分)已知函数f(x)=,则f(f(2))的值为2.【解答】解:∵函数f(x)=,∴f(2)==1,f(f(2))=f(1)=2e1﹣1=2.故答案为:2.7.(5分)《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为120平方米.【解答】解:由题意可得:弧长l=20,半径r=12,扇形面积S=lr=×20×12=120(平方米),故答案为:120.8.(5分)已知函数f(x)=,则函数g(x)=f(x)﹣2的零点个数为2.【解答】解:根据题意,函数f(x)=,g(x)=f(x)﹣2=0,即f(x)=2,当x≤1时,f(x)=3﹣2x=2,解可得x=,即是函数g(x)的1个零点;当x>1时,f(x)=x2=2,解可得x=或﹣(舍),即是函数g(x)的1个零点;综合可得:函数g(x)共有2个零点,即和;故答案为:2.9.(5分)已知函数f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值等于8,则函数y =f(x)(x∈[﹣2,1])的值域为[,4] .【解答】解:∵数f(x)=x2+ax+2(a>0)的开口向上,∴f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值为max{f(0,f(2)},∵f(0)=2,f(2)=6+2a,且f(x)区间[0,2]上的最大值等于8,∴f(2)=6+2a=8,解得a=1,∴f(x)=x2+x+2=(x+)2+,当x=﹣时,f(x)有最小值,最小值为,当x=﹣2时,f(x)有最大值,最小值为4,∴函数y=f(x)(x∈[﹣2,1])的值域为[,4],故答案为:[[,4].10.(5分)已知函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,则实数m的值等于﹣1.【解答】解:函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,可得f(﹣x)=f(x),即为x2+2﹣x﹣m•2x=x2+2x﹣m•2﹣x,即有(m+1)(2x﹣2﹣x)=0,由x∈R,可得m+1=0,即m=﹣1,故答案为:﹣1.11.(5分)如图,在梯形ABCD中,=2,P为线段CD上一点,且=3,E为BC的中点,若=λ1+λ2(λ1,λ2∈R),则λ1+λ2的值为.【解答】解:===﹣.∴,λ1+λ2=.故答案为:.12.(5分)已知tan()=2,则sin(2)的值等于.【解答】解:由tan()=2,得,即,解得tanα=﹣3.∴sin(2)=sin2αcos cos2αsin====.故答案为:.13.(5分)将函数y=sinx的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,则ω的取值范围为(,] .【解答】解:将函数y=sinx的图象向左平移个单位长度,可得y=sin(x+)的图象;再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)=sin(ωx+)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,∵ω•0+=,∴ω•+∈( π,2π],∴ω∈(,],故答案为:(,].14.(5分)已知x,y为非零实数,θ∈(),且同时满足:①=,②=,则cosθ的值等于.【解答】解:由=,得,由=,得,即,则,即,解得tanθ=3或tanθ=.∵θ∈(),∴tanθ=3.联立,解得cosθ=.故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U=R,集合A={x|x2﹣4x≤0},B={x|m≤x≤m+2}.(1)若m=3,求∁U B和A∪B;(2)若B⊆A,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.【解答】解:(1)当m=3时,B={x|3≤x≤5},集合A={x|x2﹣4x≤0}={x|0≤x≤4},…(2分)∴C U B={x|x<3或x>5},…(4分)A∪B={x|0≤x≤5}.…(6分)(2)∵集合A{x|0≤x≤4},B={x|m≤x≤m+2},B⊆A,∴,…(8分)解得0≤m≤2.∴实数m的取值范围[0,2].…(10分)(3)∵集合A={x|0≤x≤4},B={x|m≤x≤m+2}.A∩B=∅,∴m+2<0或m>4,…(12分)解得m<﹣2或m>4.∴实数m的取值范围(﹣∞,﹣2)∪(4,+∞).…(14分) 16.(14分)已知函数f(x)=a+的图象过点(1,).(1)判断函数f(x)的奇偶性,并说明理由;(2)若,求实数x的取值范围.【解答】解:(1)因为f(x)的图象过点(1,),所以a+=﹣,解得a=﹣,所以f(x)=﹣=,f(x)的定义域为R.因为f(﹣x)===﹣f(x),所以f(x)是奇函数.(2)因为,所以﹣≤﹣≤0,即≤≤,可得2≤4x+1≤3,即1≤4x≤2,解得0≤x≤.17.(14分)如图,在四边形ABCD中,AD=4,AB=2.(1)若△ABC为等边三角形,且AD∥BC,E是CD的中点,求;(2)若AC=AB,cos,=,求||.【解答】解:(1)因为△ABC为等边三角形,且AD∥BC,所以∠DAB=120°.又AD=2AB,所以AD=2BC,因为E是CD的中点,所以:=,=.又,所以,=.=,=11.(2)因为AB=AC,AB=2,所以:AC=2.因为:,所以:.所以:.又=4.所以:.所以:=.故:.18.(16分)某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60°,点Q在OA上,点M,N在OB上,点P在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⊥OA,PT⊥OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT最长,试问:此时点P应在何处?说明你的理由.【解答】(本题满分为14分)解:(1)在Rt△PON中,PN=200sinθ,ON=200cosθ,在Rt△OQM中,QM=PN=200sinθ,…(2分)OM===,所以MN=0N﹣OM=200cosθ﹣,…(4分)因为矩形MNPQ是正方形,∴MN=PN,所以200cosθ﹣=200sinθ,…(6分)所以(200+)sinθ=200cosθ,所以tanθ===. …(8分)(2)因为∠POM=θ,所以∠POQ=60°﹣θ,∴PS+PT=200sinθ+200sin(60°﹣θ)=200(sinθ+cosθsinθ) …(10分)=200(sinθ+cosθ)=200sin(θ+60°),0°<θ<60°. …(12分)所以θ+60°=90°,即θ=30°时,PS+PT最大,此时P是的中点. …(14分)19.(16分)已知=(2cosx,1),=(sinx+cosx,﹣1),函数f(x)=.(1)求f(x)在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[],求cos2x0的值;(3)若函数y=f(ωx)在区间()上是单调递增函数,求正数ω的取值范围.【解答】解:(1)f(x)==2cosx(sinx+cosx)﹣1=sin2x+cos2x=2sin(2x+)因为x∈[0,],所以≤2x+≤,所以≤2sin(2x+)≤1,所以f(x)max=2,f(x)min=1.(2)因为f(x0)=,所以2sin(2x0+)=,所以sin(2x0+)=,因为x0∈[],所以≤2x0+≤,所以cos(2x0+)=﹣=﹣,所以cos2x0=cos[(2x0+)﹣]=cos(2x0+)+sin(2x0+)=×(﹣)+×=.(3)f(ωx)=sin(2ωx+)令2kπ≤2ωx+≤2kπ+,k∈Z,得﹣≤x≤+,因为函数函数y=f(ωx)在区间()上是单调递增函数,所以存在k0∈Z,使得()⊆(﹣,+)所以有即,因为ω>0所以k0>﹣又因为﹣≤﹣,所以0<ω≤,所以k0,从而有﹣<k0≤,所以k0=0,所以0<ω≤.20.(16分)已知函数f(x)=x|x﹣a|+bx(a,b∈R).(1)当b=﹣1时,函数f(x)恰有两个不同的零点,求实数a的值;(2)当b=1时,①若对于任意x∈[1,3],恒有,求a的取值范围;②若a>0,求函数f(x)在区间[0,2]上的最大值g(a).【解答】解:(1)当b=﹣1时,f(x)=x|x﹣a|﹣x=x(|x﹣a|﹣1),由f(x)=0,解得x=0或|x﹣a|=1,由|x﹣a|=1,解得x=a+1或x=a﹣1.∵f(x)恰有两个不同的零点且a+1≠a﹣1,∴a+1=0或a﹣1=0,得a=±1;(2)当b=1时,f(x)=x|x﹣a|+x,①∵对于任意x∈[1,3],恒有,即,即|x﹣a|,∵x∈[1,3]时,,∴,即恒有,令t=,当x∈[1,3]时,t∈[],x=t2﹣1.∴,∴,综上,a的取值范围是[0,];②=.当0<a≤1时,,,这时y=f(x)在[0,2]上单调递增,此时g(a)=f(2)=6﹣2a;当1<a<2时,0<<a<2,f=f(x)在[0,]上单调递增,在[,a]上单调递减,在[a,2]上单调递增,∴g(a)=max{f(),f(2)},,f(2)=6﹣2a,而,当1<a<时,g(a)=f(2)=6﹣2a;当≤a<2时,g(a)=f()=;当2≤a<3时,<2≤a,这时y=f(x)在[0,]上单调递增,在[,2]上单调递减,此时g(a)=f()=;当a≥3时,≥2,y=f(x)在[0,2]上单调递增,此时g(a)=f(2)=2a﹣2.综上所述,x∈[0,2]时,.。

江苏省苏州市-2017学年高一(上)期末数学试卷(解析版)

江苏省苏州市-2017学年高一(上)期末数学试卷(解析版)

2016-2017学年江苏省苏州市高一(上)期末数学试卷一、填空题:本大题共14个小题,每小题5分,共计70分.1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B=.2.已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=.3.若tanα=3,,则tan(α﹣β)等于.4.已知A(﹣3,4)、B(5,﹣2),则||=.5.函数y=e2x﹣1的零点是.6.把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为.7.若函数f(x)=,则f(log23)=.8.函数的单调递增区间为.9.设是两个不共线向量,,,,若A、B、D 三点共线,则实数P的值是.10.若=﹣,则sin2α的值为.11.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.12.如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为.13.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.14.函数是奇函数,且f(﹣2)≤f(x)≤f(2),则a=.二、解答题:本大题共6小题,计90分.15.已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.16.已知,,,.(I)求tan2β的值;(II)求α的值.17.已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.18.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)19.如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.20.已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.2016-2017学年江苏省苏州市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分.1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B={0,1} .【考点】交集及其运算.【分析】利用交集的性质求解.【解答】解:∵集合A={﹣1,0,1},B={0,1,2},∴A∩B={0,1}.故答案为:{0,1}.2.已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=2.【考点】函数的值.【分析】由题意得当x<0时,f(x)=﹣x+1,由此能求出f(﹣1).【解答】解:∵f(x)是偶函数,当x≥0时,f(x)=x+1,∴当x<0时,f(x)=﹣x+1,∴f(﹣1)=﹣(﹣1)+1=2.故答案为:2.3.若tanα=3,,则tan(α﹣β)等于.【考点】两角和与差的正切函数.【分析】由正切的差角公式tan(α﹣β)=解之即可.【解答】解:tan(α﹣β)===,故答案为.4.已知A(﹣3,4)、B(5,﹣2),则||=10.【考点】平面向量坐标表示的应用.【分析】由题意,已知A(﹣3,4)、B(5,﹣2),将此两点坐标代入向量求模的公式,计算即可得到||的值【解答】解:由题意A(﹣3,4)、B(5,﹣2),∴||===10故答案为105.函数y=e2x﹣1的零点是0.【考点】函数的零点.【分析】令y=0,求出x的值,即函的零点即可.【解答】解:令y=0,即e2x=1,解得:x=0,故答案为:0.6.把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为y=sin(2x﹣).【考点】函数y=Asin(ωx+φ)的图象变换.【分析】把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sinx的图象上所有点向右平移个单位,得到y=sin[2(x﹣)],写出要求的结果.【解答】解:把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sin2x的图象上所有点向右平移个单位,得到y=sin[2(x﹣)]=sin(2x﹣)对图象,∴所求函数的解析式为:y=sin(2x﹣).故答案为:y=sin(2x﹣).7.若函数f(x)=,则f(log23)=9.【考点】函数的值.【分析】由log23>log22=1,得到f(log23)=,由此利用对数性质及运算法则能求出结果.【解答】解:∵函数f(x)=,log23>log22=1,∴f(log23)===9.故答案为:9.8.函数的单调递增区间为.【考点】复合三角函数的单调性.【分析】令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间.【解答】解:令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,k∈z,故函数的增区间为故答案为.9.设是两个不共线向量,,,,若A、B、D 三点共线,则实数P的值是﹣1.【考点】向量加减混合运算及其几何意义.【分析】要求三点共线问题,先求每两点对应的向量,然后再按两向量共线进行判断,本题知道,要根据和算出,再用向量共线的充要条件.【解答】解:∵,,∴,∵A、B、D三点共线,∴,∴2=2λ,p=﹣λ∴p=﹣1,故答案为:﹣1.10.若=﹣,则sin2α的值为﹣.【考点】两角和与差的正弦函数;二倍角的正弦;二倍角的余弦.【分析】由三角函数公式化简已知式子可得cosα﹣sinα=0或cosα+sinα=,平方可得答案.【解答】解:∵=﹣,∵2cos2α=sin(﹣α),∴2(cos2α﹣sin2α)=cosα﹣sinα,∴cosα﹣sinα=0,或cosα+sinα=,平方可得1﹣sin2α=0,或1+sin2α=,∴sin2α=1,或sin2α=﹣,∵若sin2α=1,则cos2α=0,代入原式可知应舍去,故答案为:﹣.11.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(﹣∞,﹣]∪[,+∞).【考点】函数恒成立问题.【分析】问题转化为|x+t|≥|x|在[t,t+2]恒成立,去掉绝对值,得到关于t 的不等式,求出t的范围即可.【解答】解:f(x)=x2,x∈[t,t+2],不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,即|x+t|≥|x|在[t,t+2]恒成立,即:x≤(1+)t在[t,t+2]恒成立,或x≤(1﹣)t在[t,t+2]恒成立,解得:t≥或t≤﹣,故答案为:(﹣∞,﹣]∪[,+∞).12.如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为[0.).【考点】向量在几何中的应用.【分析】设的夹角为θ,,则cosθ∈[﹣1,0),2==2+2cosθ即可.【解答】解:设的夹角为θ,,则cosθ∈[﹣1,0),2==2+2cosθ∈[0,2)的范围为:[0,),故答案为[0,).13.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.【考点】三角形中的几何计算.【分析】根据图形判断直角三角形,利用直角三角形求解AE=GEcos2θ=lsinθcos2θ,由AE+BE=lsinθcos2θ+lsinθ=6,求解即可.【解答】解:由已知及对称性知,GF=BF=lcosθ,GE=BE=lsinθ,又∠GEA=∠GFB=2θ,∴AE=GEcos2θ=lsinθcos2θ,又由AE+BE=lsinθcos2θ+lsinθ=6得:l===.故答案为:.14.函数是奇函数,且f(﹣2)≤f(x)≤f(2),则a=.【考点】函数奇偶性的性质.【分析】由f(0)=0可求c,根据f(﹣2)≤f(x)≤f(2),利用基本不等式,即可得出结论.【解答】解:∵函数是奇函数且定义域内有0∴f(0)=0解得c=0,故f(x)=.x>0,a>0,f(x)==≤(ax=时取等号)∵f(﹣2)≤f(x)≤f(2),∴2a=,∴a=.故答案为.二、解答题:本大题共6小题,计90分.15.已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.【分析】(Ⅰ)利用两个向量坐标形式的加减运算法则,进行运算.(Ⅱ)把两个向量的坐标直接代入两个向量的夹角公式进行运算.(Ⅲ)因为向量与互相垂直,所以,它们的数量积等于0,解方程求得k的值.【解答】解:(Ⅰ)=(1,2)﹣2(﹣3,1)=(1+6,2﹣2)=(7,0).(Ⅱ)=﹣.(Ⅲ)因为向量与互相垂直,所以,()•()=0,即因为=5,,所以,5﹣10k2=0,解得.16.已知,,,.(I)求tan2β的值;(II)求α的值.【考点】两角和与差的正切函数.【分析】(I)由已知利用同角三角函数基本关系式可求sinβ,tanβ,进而利用二倍角的正切函数公式即可求得tan2β.(II)由已知可求范围α+β∈(,),利用同角三角函数基本关系式可求cos (α+β)的值,进而利用两角差的余弦函数公式即可计算得解cosα的值,结合范围,可求α=.【解答】(本题满分为14分)解:(I)∵,,可得:sin=, (2)分∴tan==﹣2,…4分∴tan2β==…7分(II)∵,,∴α+β∈(,),又∵,∴cos(α+β)=﹣=﹣,…9分∴cosα=cos(α+β﹣β)=cos(α+β)cosβ+sin(α+β)sinβ=()×(﹣)+×()=,∵,∴α=.…14分17.已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.【考点】指、对数不等式的解法;函数解析式的求解及常用方法.【分析】(1)可令t=x+1,则x=t﹣1,代入可得f(t),即f(x)的解析式;再由对数的真数大于0,可得函数的定义域;(2)运用对数的运算性质和对数函数的单调性,可得不等式,解不等式可得解集;(3)f(x)在(﹣1,1)上为增函数.由单调性定义,分设值、作差、变形和定符号、下结论,注意运用对数函数的性质,即可得证.【解答】解:(1)f(x+1)=lg(2+x)﹣lg(﹣x),可令t=x+1,则x=t﹣1,可得f(t)=lg(1+t)﹣lg(1﹣t),即有f(x)=lg(1+x)﹣lg(1﹣x),由1+x>0且1﹣x>0,解得﹣1<x<1,则函数f(x)的定义域为(﹣1,1);(2)由f(x)<1即lg(1+x)﹣lg(1﹣x)<1,即为lg(1+x)<lg10(1﹣x),可得0<1+x<10(1﹣x),解得﹣1<x<,则不等式的解集为(﹣1,);(3)证明:f(x)在(﹣1,1)上为增函数.理由:设﹣1<m<n<1,则f(m)﹣f(n)=lg(1+m)﹣lg(1﹣m)﹣[lg(1+n)﹣lg(1﹣n)]=lg﹣lg=lg•=lg•,由于﹣1<m<n<1,可得1﹣m>1﹣n>0,1+n>1+m>0,可得0<<1,0<<1,则0<•<1,即有lg•<0,则f(m)﹣f(n)<0,即f(m)<f(n),故f(x)在(﹣1,1)上为增函数.18.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)【考点】函数模型的选择与应用;分段函数的应用.【分析】(1)根据当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,可求得一次订购量为550个时,每个零件的实际出厂价格恰好降为51元;(2)函数为分段函数,当0≤x≤100时,p为出厂单价;当100<x<550时,;当x≥550时,p=51,故可得结论;(3)根据工厂售出一个零件的利润=实际出厂单价﹣成本,求出利润函数,利用利润为6000元,可求得结论.【解答】解:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x0个,则(个)因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元.…(2 )当0≤x≤100时,p=60;…当100<x<550时,;…当x≥550时,p=51.…所以…(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则…当0<x≤100时,L≤2000;…当x≥500时,L≥6050;…当100<x<550时,.由,解得x=500.答:当销售商一次订购500个时,该厂获得的利润为6000元.…19.如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.【考点】向量在几何中的应用.【分析】(I)延长AD到A1使得AD=DA1,连接CA1,A1B,证明四边形ACA1B是平行四边形,即可证明:;(II)证明•(﹣)=(+)•(﹣)=•+•,即可得出:为常数,并求该常数;(III)确定•(+)=2x(﹣x),利用基本不等式,求的范围.【解答】(I)证明:延长AD到A1使得AD=DA1,连接CA1,A1B,∵D是BC的中点,∴四边形ACA1B是平行四边形,∴=+,∵;(II)证明:∵=+,∴•(﹣)=(+)•(﹣)=•+•,∵DE⊥BC,∴•=0,∵•=()=,∴•(﹣)=(III)解:△ABC中,||=2,||=1,cosA=,,∴||==,同理+=2,∴•(+)=•2=||•||,设||=x,则||=﹣x(0),∴•(+)=2x(﹣x)≤2=1,当且仅当x=时取等号,∴•(+)∈(0,1].20.已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.【考点】函数恒成立问题;根的存在性及根的个数判断.【分析】(1)对g(x)配方,求出对称轴x=a,讨论若1≤a≤3时,若a>3时,若a<1,由单调性可得最小值,解方程,即可得到所求a的值;(2)由题意可得(2x)2﹣2•2x+1﹣k•4x≥0,化为k≤(2﹣x)2﹣2•2﹣x+1,令t=2﹣x,求出t的范围,求得右边函数的最小值即可得到k的范围;(3)令y=0,可化为|2x﹣1|2﹣2•|2x﹣1|+1+2k﹣3k•|2x﹣1|=0(|2x﹣1|≠0)有3个不同的实根.令t=|2x﹣1|,讨论t的范围和单调性,t2﹣(3k+2)t+1+2k=0有两个不同的实数解t1,t2,已知函数有3个零点等价为0<t1<1,t2>1或0<t1<1,t2=1,记m(t)=t2﹣(3k+2)t+1+2k,由二次函数图象可得不等式组,解不等式可得k的范围.【解答】解:(1)g(x)=x2﹣2ax+1=(x﹣a)2+1﹣a2在区间[1,3]上的值域[0,4].若1≤a≤3时,g(x)的最小值为g(a)=1﹣a2,由1﹣a2=0,可得a=1(﹣1舍去),g(x)=(x﹣1)2满足在区间[1,3]上的值域[0,4];若a>3时,g(x)在[1,3]递减,g(x)的最小值为g(3),由g(3)=10﹣6a=0,解得a=(舍去);若a<1,则g(x)在[1,3]递增,g(x)的最小值为g(1),由g(1)=2﹣2a=0,解得a=1.综上可得,a=1;(2)由g(2x)﹣k•4x≥0即(2x)2﹣2•2x+1﹣k•4x≥0,化为k≤(2﹣x)2﹣2•2﹣x+1,令t=2﹣x,由x≥1可得0<t≤,则k≤t2﹣2t+1,0<t≤,记h(t)=t2﹣2t+1,0<t≤,由单调递减,可得h(t)的最小值为(﹣1)2=,则k的取值范围是k≤;(3)令y=0,可化为|2x﹣1|2﹣2•|2x﹣1|+1+2k﹣3k•|2x﹣1|=0(|2x﹣1|≠0)有3个不同的实根.令t=|2x﹣1|,则t>0,由2x﹣1>﹣1,当x<0时,t=|2x﹣1|=1﹣2x,t∈(0,1]且递减,当0<x<1时,t=|2x﹣1|=2x﹣1,t∈(0,1)且递增,当x=1时,t=1.当x>1时,t=|2x﹣1|=2x﹣1,t∈(1,+∞)且递增,t2﹣(3k+2)t+1+2k=0有两个不同的实数解t1,t2,已知函数有3个零点等价为0<t1<1,t2>1或0<t1<1,t2=1,记m(t)=t2﹣(3k+2)t+1+2k,则或,解得k>0或k无实数解,综上可得,k的取值范围是(0,+∞).2017年2月28日。

精选江苏省苏州市2017-2018学年高一第一学期期末试卷

精选江苏省苏州市2017-2018学年高一第一学期期末试卷

苏州市2018年学业质量阳光指标调研卷高一数学2018.1一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.........1.已知集合,则=______.【答案】【解析】,填.2.函数的定义域是______.【答案】【解析】由题设有,解得,故函数的定义域为,填.3.若,则的值等于______.【答案】【解析】,填.4.已知角的终边经过点,则的值等于______.【答案】【解析】,所以,,故,填.5.已知向量,,,则的值为______.【答案】8【解析】,所以,所以,故,填.6.已知函数则的值为______.【答案】【解析】,所以,填2.7.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.【答案】120【解析】扇形的半径为,故面积为(平方米),填.8.已知函数则函数的零点个数为______.【答案】【解析】的零点即为的解.当时,令,解得,符合;当,令,解得,符合,故的零点个数为2.9.已知函数在区间上的最大值等于8,则函数的值域为______.【答案】【解析】二次函数的对称轴为,故,所以且,对称轴为,故所求值域为,填.10.已知函数是定义在R上的偶函数,则实数的值等于____.【答案】-1【解析】因为为偶函数,故,所以,整理得到,即,又当时,有,,故,为偶函数,故填.11.如图,在梯形ABCD中,,P为线段CD上一点,且,E为BC的中点,若,则的值为______.【答案】【解析】,整理得到,又,所以,也就是,,填.12.已知,则的值等于______.【答案】【解析】令,则,所以,因为,所以故,填.点睛:三角变换中,对于较为复杂的角,可用换元法去处理角与角的关系.13.将函数的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,若函数在区间上有且仅有一个零点,则的取值范围为____.【答案】.【解析】由题设,令,解得,取,分别得到,它们是函数在轴右侧的第一个零点和第二个零点,所以,故,故填.点睛:因为,所以该函数的图像必过定点且在轴的右侧的第一个对称中心的横坐标在内,第二个对称中心的横坐标不在中,从而得到.14.已知为非零实数,,且同时满足:①,②,则的值等于______.【答案】【解析】由题设有,,所以,解得或者.而,故,所以,所以,填.点睛:题设中有3个变量,两个等式,注意到两个方程都与相关,故把看成一个整体,把代入另一个方程就能构建关于的方程,解出就能得到的值,注意只有一个解.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知全集,集合.(1)若,求C U B和;(2)若,求实数m的取值范围;(3)若,求实数m的取值范围.【答案】(1) ,;(2) ;(3) 或.【解析】试题分析:(1)当时,求出,,借助数轴可求得,.(2)依据集合的包含关系,得到区间端点的大小关系为,解得.(3)依据交集为空集,得到区间的端点的大小关系为或,也即是或.解析:(1)当时,,由得,,所以, ;.(2)因为,则,解得.(3)因为因为或,所以或.16.已知函数的图象过点.(1)判断函数的奇偶性,并说明理由;(2)若,求实数的取值范围.【答案】(1)为偶函数,理由见解析;(2)。

江苏省苏州市2017-2018学年高一上学期期中考试数学试卷 Word版含解析

江苏省苏州市2017-2018学年高一上学期期中考试数学试卷 Word版含解析

2017-2018学年江苏省苏州市高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={1,2,3,4},B={0,1,3,5},则A∩B等于()A.{1,3}B.{2,4}C.{0,5}D.{0,1,2,3,4,5}2.若函数f(x)=1313logx x,则f(27)等于()A.2 B.1 C.﹣1 D.03.下列函数中,在(0,+∞)上单调递增的是()A.y= B.y=1﹣x2C.y=()x D.y=lgx4.函数f(x)=x2﹣的零点位于区间()A.(1,) B.(,)C.(,)D.(,2)5.列车从A地出发直达500km外的B地,途中要经过离A地300km的C地,假设列车匀速前进,5h后从A地到达B地,则列车与C地距离y(单位:km)与行驶时间t(单位:h)的函数图象为()A.B. C.D.6.若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则e f(﹣2)的值为()A.B.C.D.7.已知函数f(x)=4x2+kx﹣1在区间[1,2]上是单调函数,则实数k的取值范围是()A.(﹣∞,﹣16]∪[﹣8,+∞)B.[﹣16,﹣8]C.(﹣∞,﹣8)∪[﹣4,+∞)D.[﹣8,﹣4]8.已知集合A={x|x≥1},B={x|x>2a+1},若A∩(∁R B)=∅,则实数a的取值范围是()A.(1,+∞)B.(0,+∞)C.(﹣∞,1)D.(﹣∞,0)9.已知a=2,b=log3,c=log4,则()A.b<a<c B.c<a<b C.c<b<a D.b<c<a10.若函数y=a x在区间[0,2]上的最大值和最小值的和为5,则函数y=log a x在区间[,2]上的最大值和最小值之差是()A.1 B.3 C.4 D.511.已知alog23=1,4b=3,则ab等于()A.0 B.C.D.112.已知函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),则log4m﹣log n的值是()A.小于1 B.等于1C.大于1 D.由b的符号确定二、填空题(共4小题,每小题5分,满分20分)13.设集合A={x|x2﹣2x=0},B={0,1},则集合A∪B的子集的个数为.14.函数f(x)=,则f(f(﹣3))=.15.已知幂函数y=f(x)的图象过点(2,),若f(m)=2,则m=.16.已知函数f(x)=满足f(0)=1且f(0)+2f(﹣1)=0,那么函数g(x)=f(x)+x有个零点.三、解答题(共6小题,满分70分)17.(10分)(1)计算:﹣()0+0.25×()﹣4;(2)已知x+x=3,求的值.18.(12分)已知集合A={x|﹣4<x<1},B={x|()x≥2}.(1)求A∩B,A∪B;(2)设函数f(x)=的定义域为C,求(∁R A)∩C.19.(12分)已知函数y=f(x)满足f(x﹣1)=2x+3a,且f(a)=7.(1)求函数f(x)的解析式;(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.20.(12分)已知函数f(x)=x2+.(1)求证:f(x)是偶函数;(2)判断函数f(x)在(0,)和(,+∞)上的单调性并用定义法证明.21.(12分)设a>1,函数f(x)=log2(x2+2x+a),x∈[﹣3,3].(1)求函数f(x)的单调区间;(2)若f(x)的最大值为5,求f(x)的最小值.22.(12分)已知函数f(x)=(1)求函数f(x)的零点;(2)若实数t满足f(log2t)+f(log2)<2f(2),求f(t)的取值范围.2016-2017学年江苏省苏州市高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(2016秋•苏州期中)已知集合A={1,2,3,4},B={0,1,3,5},则A∩B等于()A.{1,3}B.{2,4}C.{0,5}D.{0,1,2,3,4,5}【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,2,3,4},B={0,1,3,5},∴A∩B={1,3},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(2016秋•苏州期中)若函数f(x)=x+log x,则f(27)等于()A.2 B.1 C.﹣1 D.0【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】直接利用函数的解析式,代入求解即可.【解答】解:函数f(x)=1313logx x,则f(27)=27+log27=3﹣3=0,故选:D.【点评】本题考查函数在的求法,指数与对数运算法则的应用,考查计算能力.3.(2016秋•苏州期中)下列函数中,在(0,+∞)上单调递增的是()A.y= B.y=1﹣x2C.y=()x D.y=lgx【考点】函数单调性的判断与证明.【专题】规律型;函数的性质及应用.【分析】直接利用函数的单调性,判断选项即可.【解答】解:由题意可知,选项A,B,C三个函数都是在(0,+∞)上单调递减,只有y=lgx 在(0,+∞)上单调递增.故选:D.【点评】本题考查函数的单调性的判断,是基础题.4.(2016秋•苏州期中)函数f(x)=x2﹣的零点位于区间()A.(1,) B.(,)C.(,)D.(,2)【考点】函数零点的判定定理.【专题】计算题;函数的性质及应用.【分析】直接利用零点判定定理,计算端点函数值,判断即可.【解答】解:函数f(x)=x2﹣,可得f(1)=﹣1<0,f()=﹣>0,f()==﹣<0.f()•f()<0.函数f(x)=x2﹣的零点位于区间:(,).故选:B.【点评】本题考查零点判定定理的应用,考查计算能力.5.(2016秋•苏州期中)列车从A地出发直达500km外的B地,途中要经过离A地300km 的C地,假设列车匀速前进,5h后从A地到达B地,则列车与C地距离y(单位:km)与行驶时间t(单位:h)的函数图象为()A.B. C.D.【考点】函数的图象.【专题】对应思想;数学模型法;函数的性质及应用.【分析】当列车到达C地时,距离y=0,求出列车到达C地的时间即可得出答案.【解答】解:列车的运行速度为km/h,∴列车到达C地的时间为h,故当t=3时,y=0.故选C.【点评】本题考查了函数图象的意义,属于基础题.6.(2016秋•苏州期中)若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则e f(﹣2)的值为()A.B.C.D.【考点】函数奇偶性的性质.【专题】转化思想;综合法;函数的性质及应用.【分析】由条件利用函数的奇偶性的定义可得e f(﹣2)=e﹣f(2)=e﹣ln2,计算求得结果.【解答】解:由题意可得e f(﹣2)=e﹣f(2)=e﹣ln2==,故选:B.【点评】本题主要考查函数的奇偶性的定义和性质,属于基础题.7.(2016秋•苏州期中)已知函数f(x)=4x2+kx﹣1在区间[1,2]上是单调函数,则实数k 的取值范围是()A.(﹣∞,﹣16]∪[﹣8,+∞)B.[﹣16,﹣8]C.(﹣∞,﹣8)∪[﹣4,+∞)D.[﹣8,﹣4]【考点】判断两个函数是否为同一函数.【专题】函数思想;分类法;函数的性质及应用.【分析】求出f(x)的对称轴方程,讨论f(x)在区间[1,2]上是单调增函数和减函数,注意对称轴和区间的关系,解不等式即可得到所求范围.【解答】解:函数f(x)=4x2+kx﹣1的对称轴为x=﹣,若f(x)在区间[1,2]上是单调增函数,可得﹣≤1,解得k≥﹣8;若f(x)在区间[1,2]上是单调减函数,可得﹣≥2,解得k≤﹣16.综上可得k的范围是[﹣8,+∞)∪[﹣∞,﹣16].故选:A.【点评】本题考查二次函数的单调性的判断,注意运用分类讨论的思想方法,考查运算能力,属于中档题.8.(2016秋•苏州期中)已知集合A={x|x≥1},B={x|x>2a+1},若A∩(∁R B)=∅,则实数a的取值范围是()A.(1,+∞)B.(0,+∞)C.(﹣∞,1)D.(﹣∞,0)【考点】交、并、补集的混合运算.【专题】计算题;综合法;集合.【分析】由题意和补集的运算求出∁R B,由交集的运算和A∩(∁R B)=∅,列出不等式求出a 的范围.【解答】解:由题意得,B={x|x>2a+1},则∁R B={x|x≤2a+1},∵A={x|x≥1},A∩(∁R B)=∅,∴2a+1<1,得a<0,∴实数a的取值范围是(﹣∞,0),故选:D.【点评】本题考查了交、并、补集的混合运算,注意是端点值的取舍,是基础题.9.(2016秋•苏州期中)已知a=2,b=log3,c=log4,则()A.b<a<c B.c<a<b C.c<b<a D.b<c<a【考点】对数值大小的比较.【专题】计算题;函数的性质及应用.【分析】判断三个数的范围,即可判断三个数的大小.【解答】解:a=2>1,b=log3∈(0,1).,c=log4<0,∴a>b>c.故选:C.【点评】本题考查对数值的大小比较,是基础题.10.(2016秋•苏州期中)若函数y=a x在区间[0,2]上的最大值和最小值的和为5,则函数y=log a x在区间[,2]上的最大值和最小值之差是()A.1 B.3 C.4 D.5【考点】函数的最值及其几何意义.【专题】综合题;函数思想;转化法;函数的性质及应用.【分析】先根据指数函数的单调性求出a的值,再根据对数函数的性质即可求出答案.【解答】解:∵函数y=a x在区间[0,2]上的最大值和最小值的和为5,∴1+a2=5,解得a=2,a=﹣2(舍去),∴y=log2x在区间[,2]上为增函数,∴y max=log22=1,y min=log2=﹣2,∴1﹣(﹣2)=3,故选:B【点评】本题考查了指数函数和对数函数的单调性,属于基础题.11.(2016秋•苏州期中)已知alog23=1,4b=3,则ab等于()A.0 B.C.D.1【考点】对数的运算性质.【专题】计算题;转化思想;函数的性质及应用.【分析】利用指数转化为对数,利用对数运算法则化简求解即可.【解答】解:alog23=1,4b=3,可得a=log32,b=log23,ab═log32•(log23)=.故选:B.【点评】本题考查指数与对数的互化,对数运算法则的应用,考查计算能力.12.(2016秋•苏州期中)已知函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),则log4m﹣log n的值是()A.小于1 B.等于1C.大于1 D.由b的符号确定【考点】二次函数的性质.【专题】综合题;函数思想;转化法;函数的性质及应用.【分析】先根据二次函数的性质得到对称轴为x=2,则可得到m+n=4,根据对数的运算性质和基本不等式即可得到答案.【解答】解:函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),∴函数的对称轴为x=2,∵f(m)=f(n)=0(m≠n),∴m+n=4,∴mn<()2=4∴log4m﹣log n=log4m+log4n=log4mn<log44=1,故选:A【点评】本题考查了二次函数的性质,对数的运算性质和基本不等式,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(2016秋•苏州期中)设集合A={x|x2﹣2x=0},B={0,1},则集合A∪B的子集的个数为8.【考点】并集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出集合A中方程的解确定出A,求出A与B的并集,找出并集子集的个数即可.【解答】解:由集合A中的方程得:x=0或2,即A={0,2},∵B={0,1},∴A∪B={0,1,2},则A∪B的子集的个数为23=8个,故答案为:8【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.14.(2016秋•苏州期中)函数f(x)=,则f(f(﹣3))=.【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】直接利用函数的解析式求解函数值即可.【解答】解:函数f(x)=,则f(f(﹣3))=f(9)==.故答案为:.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.15.(2016秋•苏州期中)已知幂函数y=f(x)的图象过点(2,),若f(m)=2,则m=.【考点】幂函数的概念、解析式、定义域、值域.【专题】转化思想;整体思想;函数的性质及应用.【分析】根据已知求出函数的解析式,进而构造关于m的方程,解得答案.【解答】解:设幂函数y=f(x)=x a,∵幂函数y=f(x)的图象过点(2,),∴,则a=,若f(m)==2,则m=,故答案为:【点评】本题考查的知识点是幂函数的图象和性质,整体思想,难度中档.16.(2016秋•苏州期中)已知函数f(x)=满足f(0)=1且f(0)+2f(﹣1)=0,那么函数g(x)=f(x)+x有2个零点.【考点】根的存在性及根的个数判断;分段函数的应用.【专题】计算题;转化思想;函数的性质及应用.【分析】利用已知条件求出b,c,然后求解函数零点的个数.【解答】解:函数f(x)=满足f(0)=1,可得c=1,f(0)+2f(﹣1)=0,可得﹣1﹣b+1=﹣,b=,∴当x>0时,g(x)=f(x)+x=2x﹣2=0,解得x=1,当x≤0时,g(x)=f(x)+x=﹣x2+x+1,令g(x)=0,解得x=2舍去,或x=﹣.综上函数的零点有2个.故答案为:2.【点评】本题考查分段函数的应用,函数零点个数,考查转化思想以及计算能力.三、解答题(共6小题,满分70分)17.(10分)(2016秋•苏州期中)(1)计算:﹣()0+0.25×()﹣4;(2)已知x+x=3,求的值.【考点】有理数指数幂的化简求值.【专题】计算题;函数的性质及应用.【分析】(1)利用指数幂的运算性质即可得出.(2)因为x+x=3,可以两边同时平方,得x+x﹣1+2=9,从而求出x+x﹣1的值为7,x+x﹣1两边同时平方,x2+x﹣2+2=49,从而求出x2+x﹣2的值,带入计算即可得到答案.【解答】解:(1)﹣()0+0.25×()﹣4;原式=﹣4﹣1+×=﹣5+=﹣5+2=﹣3(2)已知:x+x=3,则(x+x)2=9⇒x+x﹣1+2=9⇒x+x﹣1=7∴(x+x﹣1)2=49⇒x2+x﹣2+2=49⇒x2+x﹣2=47所以:=.【点评】本题考查了指数幂的运算性质,属于基础题.18.(12分)(2016秋•苏州期中)已知集合A={x|﹣4<x<1},B={x|()x≥2}.(1)求A∩B,A∪B;(2)设函数f(x)=的定义域为C,求(∁R A)∩C.【考点】交、并、补集的混合运算.【专题】综合题;综合法;集合.【分析】(1)由指数的运算、指数函数的性质求出B,由交、并集的运算分别求出A∩B,A∪B;(2)由对数函数的性质求出定义域C,由补、交集的运算分别求出∁R A,∁R A)∩C.【解答】解:(1)由()x≥2得()x≥=()﹣1,则x≤﹣1,即B={x|x≤﹣1},∵A={x|﹣4<x<1},∴A∩B={x|﹣4<x≤﹣1},A∪B={x|x<1};(2)由题意得,,即,解得x≥2,∴函数f(x)的定义域C={x|x≥2},由A={x|﹣4<x<1}得,∁R A={x|x≤﹣4或x≥1},∴(∁R A)∩C={x|x≥2}.【点评】本题考查了交、并、补集的混合运算,以及对数函数的性质,是基础题.19.(12分)(2016秋•苏州期中)已知函数y=f(x)满足f(x﹣1)=2x+3a,且f(a)=7.(1)求函数f(x)的解析式;(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.【考点】函数的最值及其几何意义;函数解析式的求解及常用方法.【专题】综合题;分类讨论;转化法;函数的性质及应用.【分析】(1)根据配凑法即可求出函数的解析式,(2)化简g(x),根据二次函数的性质,分类讨论即可求出λ的值,【解答】解:(1)f(x﹣1)=2x+3a=2(x﹣1)+3a+2,则f(x)=2x+3a+2,∵f(a)=7,∴2a+3a+2=7,解得a=1,∴f(x)=2x+5,(2)g(x)=x•f(x)+λf(x)+x=x(2x+5)+2λx+5λ=2x2+(6+2λ)x+5λ,则其对称轴为x=﹣,当﹣≤0时,即λ≥﹣3时,函数g(x)在[0,2]上单调递增,故g(x)max=g(2)=9λ+20,当﹣≥2时,即λ≤﹣7时,函数g(x)在[0,2]上单调递减,故g(x)max=g(0)=5λ,当0<﹣≤1时,即﹣5≤λ<﹣3时,g(x)max=g(2)=9λ+20,当1<﹣<2时,即﹣7<λ<﹣5时,g(x)max=g(0)=5λ,故,当λ≥﹣5时,g(x)max=g(2)=9λ+20=2,解得λ=﹣2,当λ<﹣5时,g(x)max=g(0)=5λ=2,解的λ=,舍去综上所述λ的值为﹣2【点评】本题考查了函数解析式的求法和二次函数的性质,关键时分类讨论,属于中档题.20.(12分)(2016秋•苏州期中)已知函数f(x)=x2+.(1)求证:f(x)是偶函数;(2)判断函数f(x)在(0,)和(,+∞)上的单调性并用定义法证明.【考点】函数奇偶性的判断;函数单调性的判断与证明;奇偶性与单调性的综合.【专题】证明题;整体思想;分析法;函数的性质及应用.【分析】(1)、根据题意,先分析函数的定义域,进而求出f(﹣x),分析与f(x)的关系,即可得证明;(2)、根据题意,分析可得函数f(x)在(0,)为减函数,在(,+∞)上为增函数;进而利用作差法证明即可.【解答】解:(1)f(x)=x2+,则其定义域为{x|x≠0},关于原点对称,f(﹣x)=(﹣x)2+=x2+=f(x),故函数f(x)为偶函数,(2)根据题意,函数f(x)在(0,)为减函数,在(,+∞)上为增函数;证明如下:设0<x1<x2<,则f(x1)﹣f(x2)=(x1)2+()﹣(x2)2+()=[(x1)2﹣(x2)2][]=[(x1﹣x2)(x1+x2)][],又由0<x1<x2<,则f(x1)﹣f(x2)>0,则f(x)在(0,)为减函数,同理设<x1<x2,则f(x1)﹣f(x2)=(x1)2+()﹣(x2)2+()=[(x1)2﹣(x2)2][]=[(x1﹣x2)(x1+x2)][],又由<x1<x2,分析可得f(x1)﹣f(x2)<0,则f(x)在(0,)为增函数.【点评】本题考查函数的奇偶性与单调性的证明,注意证明函数的奇偶性时要先分析函数的定义域.21.(12分)(2016秋•苏州期中)设a>1,函数f(x)=log2(x2+2x+a),x∈[﹣3,3].(1)求函数f(x)的单调区间;(2)若f(x)的最大值为5,求f(x)的最小值.【考点】函数的最值及其几何意义.【专题】综合题;分类讨论;函数思想;转化法;函数的性质及应用.【分析】(1)令t(x)=x2+2x+a,x∈[﹣3,3],根据复数函数的单调性法则即可求出f(x)的单调区间,(2)根据函数的单调性可知f(x)在x=﹣1处取得最小值,在x=3取取最大值,先求出a 的值,即可求出答案.【解答】解:(1)当a>1时,知x2+2x+1>0对任意的x∈[﹣3,3],令t(x)=x2+2x+a,x∈[﹣3,3],则y=log2t,且t(x)=(x+1)2+a﹣1,x∈[﹣3,3],∴t(x)在[﹣3,﹣1]上为减函数,在(﹣1,3]为增函数,∵y=log2t为增函数,∴f(x)=log2(x2+2x+a)的两个单调区间为[﹣3,﹣1],(﹣1,3],且f(x)在[﹣3,﹣1]为减函数,在(﹣1,3]为增函数;(2)由(1)的单调性知,f(x)在x=﹣1处取得最小值,在x=3取得最大值,∴f(x)max=f(3)=log2(a+15)=5,解得a=17,∴f(x)min=f(﹣1)=log216=4.【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化、分类讨论的数学思想,属于中档题.22.(12分)(2016秋•苏州期中)已知函数f(x)=(1)求函数f(x)的零点;(2)若实数t满足f(log2t)+f(log2)<2f(2),求f(t)的取值范围.【考点】分段函数的应用;函数零点的判定定理.【专题】函数的性质及应用.【分析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案.(2)分析函数的奇偶性和单调性,进而可将不等式化为|log2t|<2,解得f(t)的取值范围.【解答】解:(1)当x<0时,解得:x=ln=﹣ln3,当x≥0时,解得:x=ln3,故函数f(x)的零点为±ln3;(2)当x>0时,﹣x<0,此时f(﹣x)﹣f(x)===0,故函数f(x)为偶函数,又∵x≥0时,f(x)=为增函数,∴f(log2t)+f(log2)<2f(2)时,2f(log2t)<2f(2),即|log2t|<2,﹣2<log2t<2,∴t∈(,4)故f(t)∈(,)【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的值域,难度中档.。

江苏省苏州市2017-2018学年高一第一学期期末试卷(精品解析版)

江苏省苏州市2017-2018学年高一第一学期期末试卷(精品解析版)

苏州市2018年学业质量阳光指标调研卷高一数学2018.1一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.已知集合,则=______.【答案】【解析】,填.2.函数的定义域是______.【答案】【解析】由题设有,解得,故函数的定义域为,填.3.若,则的值等于______.【答案】【解析】,填.4.已知角的终边经过点,则的值等于______.【答案】【解析】,所以,,故,填.5.已知向量,,,则的值为______.【答案】8【解析】,所以,所以,故,填.6.已知函数则的值为______.【答案】【解析】,所以,填2.7.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.【答案】120【解析】扇形的半径为,故面积为(平方米),填.8.已知函数则函数的零点个数为______.【答案】【解析】的零点即为的解.当时,令,解得,符合;当,令,解得,符合,故的零点个数为2.9.已知函数在区间上的最大值等于8,则函数的值域为______.【答案】【解析】二次函数的对称轴为,故,所以且,对称轴为,故所求值域为,填.10.已知函数是定义在R上的偶函数,则实数的值等于____.【答案】-1【解析】因为为偶函数,故,所以,整理得到,即,又当时,有,,故,为偶函数,故填.11.如图,在梯形ABCD中,,P为线段CD上一点,且,E为BC的中点,若,则的值为______.【答案】【解析】,整理得到,又,所以,也就是,,填.12.已知,则的值等于______.【答案】【解析】令,则,所以,因为,所以故,填.点睛:三角变换中,对于较为复杂的角,可用换元法去处理角与角的关系.13.将函数的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,若函数在区间上有且仅有一个零点,则的取值范围为____.【答案】.【解析】由题设,令,解得,取,分别得到,它们是函数在轴右侧的第一个零点和第二个零点,所以,故,故填.点睛:因为,所以该函数的图像必过定点且在轴的右侧的第一个对称中心的横坐标在内,第二个对称中心的横坐标不在中,从而得到.14.已知为非零实数,,且同时满足:①,②,则的值等于______.【答案】【解析】由题设有,,所以,解得或者.而,故,所以,所以,填.点睛:题设中有3个变量,两个等式,注意到两个方程都与相关,故把看成一个整体,把代入另一个方程就能构建关于的方程,解出就能得到的值,注意只有一个解.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知全集,集合.(1)若,求C U B和;(2)若,求实数m的取值范围;(3)若,求实数m的取值范围.【答案】(1) ,;(2) ;(3) 或.【解析】试题分析:(1)当时,求出,,借助数轴可求得,.(2)依据集合的包含关系,得到区间端点的大小关系为,解得.(3)依据交集为空集,得到区间的端点的大小关系为或,也即是或.解析:(1)当时,,由得,,所以, ;.(2)因为,则,解得.(3)因为因为或,所以或.16.已知函数的图象过点.(1)判断函数的奇偶性,并说明理由;(2)若,求实数的取值范围.【答案】(1)为偶函数,理由见解析;(2)。

2017-2018年江苏省苏州市高一(下)期末数学试卷(解析版)

2017-2018年江苏省苏州市高一(下)期末数学试卷(解析版)

2017-2018学年江苏省苏州市高一(下)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={x|0<x<2},B={x|x>1},则A∩B=.2.(5分)一组数据1,2,3,4,5,则这组数据的方差等于.3.(5分)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有辆.4.(5分)袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于.5.(5分)设向量=(1,4),=(﹣1,x),=+3,若∥,则实数x的值是.6.(5分)如图所示的算法流程图中,最后输出值为.7.(5分)公元五世纪张丘建所著《张丘建算经》卷22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织尺布的增加量为尺.(1匹=4丈,1丈=10尺)8.(5分)如图所示,在6×4的方格纸中,每个小正方形的边长为1,点O,A,B,C均为格点(格点是指每个小正方形的顶点),则•=.9.(5分)已知角θ位的终边上一点P的坐标(3,4),则的值为.10.(5分)已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且A,B,C成等差数列,则+的值为.11.(5分)已知关于x的方程|x|(x﹣a)=1在(﹣2,+∞)上有三个相异实根,则实数a 的取值范围是.12.(5分)已知a>0,b>0,且+=1,则3a+2b+的最小值等于.13.(5分)将关于x的方程sin(x﹣)=a(0<a<1)所有正整数解从小到大排列构成数列{a n},且a1,a2,a3构成等比数列,则a1=.14.(5分)已知函数f(x)=x2+(1﹣2a)x+a2,若关于x的不等式f(f(x))≥0恒成立.则实数a的取值范围是二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(14分)已知cosα=,α∈(0,).(1)求sin(+α)的值;(2)若cos(α+β)=,β∈(0,),求β的值.16.(14分)已知公差不为0的等差数列{a n}的前n项和为S n,S3=2a3,S4=2a4+4.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.17.(14分)如图,在平面四边形ABCD中,∠ABC=π,AB⊥AD,AB=1(1)若•=3,求△ABC的面积;(2)若BC=2,AD=5,求CD的长度.18.(16分)如图,长方形材料ABCD中,已知AB=2,AD=4.点P为材料ABCD内部一点,PE⊥AB于E,PF⊥AD于F,且PE=1,PF=.现要在长方形材料ABCD 中裁剪出四边形材料AMPN,满足∠MPN=150°,点M,N分别在边AB,AD上.(1)设∠FPN=θ,试将四边形材料AMPN的面积S表示为θ的函数,并指明θ的取值范围;(2)试确定点N在AD上的位置,使得四边形材料AMPN的面积S最小,并求出其最小值.19.(16分)已知函数f(x)=.(1)当a=4,b=﹣2时,求满足f(x)=2x的x的值;(2)若函数f(x)是定义在R上的奇函数.①存在t∈[﹣1,1],使得不等式f(t2﹣t)<f(2t2﹣k)有解,求实数k的取值范围;②若函数g(x)满足f(x)•[g(x)+2]=2x﹣2﹣x,若对任意x∈R且x≠0,不等式g(2x)≥m•g(x)﹣10恒成立,求实数m的最大值.20.(16分)设数列{a n}的前n项和为S n,2S n+a n=3,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足:对于任意的n∈N*,都有a1b n+a2b n﹣1+a3b n﹣2+…+a n b1=()n﹣1+3n﹣3成立.①求数列{b n}的通项公式;②设数列∁n=a n b n,问:数列{∁n}中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.2017-2018学年江苏省苏州市高一(下)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={x|0<x<2},B={x|x>1},则A∩B={x|1<x<2}.【解答】角:∵集合A={x|0<x<2},B={x|x>1},∴A∩B={x|1<x<2}.故答案为:{x|1<x<2}.2.(5分)一组数据1,2,3,4,5,则这组数据的方差等于2.【解答】解:=(1+2+3+4+5)=3S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2故答案为:23.(5分)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有80辆.【解答】解:由频率分布直方图得:时速在区间[40,60)内的汽车的频率为(0.01+0.03)×10=0.4.∴时速在区间[40,60)内的汽车有0.4×200=80(辆).故答案为:80.4.(5分)袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于.【解答】解:∵袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,基本事件总数n==10,摸出1个黑球和1个白球包含的基本事件个数m==6,∴摸出1个黑球和1个白球的概率p=.故答案为:.5.(5分)设向量=(1,4),=(﹣1,x),=+3,若∥,则实数x的值是﹣4.【解答】解:∵向量=(1,4),=(﹣1,x),∴=+3=(﹣2,4+3x),∵∥,∴,解得x=﹣4,∴实数x的值是﹣4.故答案为:﹣4.6.(5分)如图所示的算法流程图中,最后输出值为25.【解答】解:第一次循环得到T=1×5=5,i=10;第二次循环得到T=5×10=50,i=15;第三次循环得到T=50×15=750,i=20;第四次循环得到T=750×20=15000,i=25;此时不满足判断框中的条件,终止循环,输出i=25.故答案为:25.7.(5分)公元五世纪张丘建所著《张丘建算经》卷22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织尺布的增加量为尺.(1匹=4丈,1丈=10尺)【解答】解:设该妇子织布每天增加d尺,由题意知,S30=30×5=390,解得d=尺.故答案为:.8.(5分)如图所示,在6×4的方格纸中,每个小正方形的边长为1,点O,A,B,C均为格点(格点是指每个小正方形的顶点),则•=12.【解答】解:如图所示:以O为坐标原点,向右为x轴的正方向,向上为y轴的正方向,故:A(﹣1,4),B(5,1),C(3,2),所以:,,则:.故答案为:129.(5分)已知角θ位的终边上一点P的坐标(3,4),则的值为﹣.【解答】解:角θ位的终边上一点P的坐标(3,4),∴sinθ==,cosθ==,则===﹣,故答案为:﹣.10.(5分)已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且A,B,C成等差数列,则+的值为1.【解答】解:∵A,B,C成等差数列,∴2B=A+C,又A+B+C=π,∴B=,由余弦定理得b2=a2+c2﹣2ac cos B=a2+c2﹣ac+===.故答案为:1.11.(5分)已知关于x的方程|x|(x﹣a)=1在(﹣2,+∞)上有三个相异实根,则实数a 的取值范围是(﹣,﹣2).【解答】解:关于x的方程|x|(x﹣a)=1,显然x=0方程不成立,可得a=x﹣,设f(x)=x﹣,则f(x)=,画出f(x)的图象,可得当﹣<a<﹣2时,y=a和y=f(x)的图象有3个交点,即关于x的方程|x|(x﹣a)=1在(﹣2,+∞)上有三个相异实根,故答案为:(﹣,﹣2).12.(5分)已知a>0,b>0,且+=1,则3a+2b+的最小值等于11.【解答】解:已知a>0,b>0,且+=1,则3a+2b+=3a()+2b()+,=5+,故答案为:1113.(5分)将关于x的方程sin(x﹣)=a(0<a<1)所有正整数解从小到大排列构成数列{a n},且a1,a2,a3构成等比数列,则a1=.【解答】解:关于x的方程sin(x﹣)=a(0<a<1),可得x﹣=2kπ+arcsin a或x﹣=2kπ+π﹣arcsin a,k∈Z,可得a1=+arcsin a,a2=﹣arcsin a,a3=+arcsin a,a1,a2,a3构成等比数列,可得a22=a1a3,即(﹣arcsin a)2=(+arcsin a)(+arcsin a),解得arcsin a=,则a1=+arcsin a=.故答案为:.14.(5分)已知函数f(x)=x2+(1﹣2a)x+a2,若关于x的不等式f(f(x))≥0恒成立.则实数a的取值范围是[,+∞)【解答】解:函数f(x)=x2+(1﹣2a)x+a2,配方可得f(x)=(x+﹣a)2+a﹣,由y=f(f(x))是将f(x)中的x换为f(x)得到的函数式,则x=a﹣也为y=f(f(x))的对称轴,且取得最小值,则f(f(a﹣))≥0,即为(a﹣+﹣a)2+a﹣≥0,解得a≥,故答案为:[,+∞).二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(14分)已知cosα=,α∈(0,).(1)求sin(+α)的值;(2)若cos(α+β)=,β∈(0,),求β的值.【解答】解:(1)由cosα=,α∈(0,),∴sinα==,所以sin(+α)=sin cosα+cos sinα=•+•=.(2)因为β∈(0,),所以α+β∈(0,π).又cos(α+β)=,则sin(α+β)==.所以sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=•﹣•=,∴β=.16.(14分)已知公差不为0的等差数列{a n}的前n项和为S n,S3=2a3,S4=2a4+4.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.【解答】解:(1)设等差数列{a n}的公差为d,其中d≠0.由S3=2a3,得3a1+3d=2(a1+2d),即a1=d,由S4=2a4+4,得4a1+6d=2(a1+3d)+4,即a1=2,所以a1=d=2.故a n=2+2(n﹣1)=2n;(2)由(1)得S n==n(n+1),则==﹣,所以前n项和T n=1﹣+﹣+…+﹣=1﹣=.17.(14分)如图,在平面四边形ABCD中,∠ABC=π,AB⊥AD,AB=1(1)若•=3,求△ABC的面积;(2)若BC=2,AD=5,求CD的长度.【解答】解:(1)因为•=3,所以=﹣3,即||||cos∠ABC=﹣3.………………………………………………(2分)又因为∠ABC=,AB=1,所以||||cos=﹣3,则BC=3.………(5分)所以S△ABC===.…………………………(7分)(2)在△ABC中,由余弦定理得,=1=13,∴AC=.…………………………(9分)在△ABC中,由正弦定理得:,即,∴sin∠BAC=.…………………………(11分)∴cos∠CAD=cos(BAC)=sin∠BAC=.…………………………(13分)在△ACD中,由余弦定理得,CD2=AD2+AC2﹣2AD•AC cos∠CAD,=25+13﹣2×5××=18,即CD=3.…………………(14分)18.(16分)如图,长方形材料ABCD中,已知AB=2,AD=4.点P为材料ABCD内部一点,PE⊥AB于E,PF⊥AD于F,且PE=1,PF=.现要在长方形材料ABCD 中裁剪出四边形材料AMPN,满足∠MPN=150°,点M,N分别在边AB,AD上.(1)设∠FPN=θ,试将四边形材料AMPN的面积S表示为θ的函数,并指明θ的取值范围;(2)试确定点N在AD上的位置,使得四边形材料AMPN的面积S最小,并求出其最小值.【解答】解:(1)在直角△NFP中,因为PF=,∠FPN=θ,所以NF=tanθ,所以S△APN=NA•PF=(1+tanθ)×.……………………………(2分)在直角△MEP中,因为PE,∠EPM=﹣θ,所以ME=tan(﹣θ),所以S△APM=MA•PE=(+tan(﹣θ))×1.………………………………(4分)所以S=S△APN+S△APM=tanθ+tan(﹣θ)+,θ∈[0,],……………………………(7分)(注:定义域错误扣1分)(2)因为S=tanθ+tan(﹣θ)+=tanθ++.…(9分)令t=1+tanθ,由θ∈[0,],得t∈[1,4],……………(11分)所以S=+=(t+)+………………(12分)≥×2×+=2+.………………(14分)当且仅当t=时,即tanθ=时等号成立.………………(15分)此时,AN=,S min=2+.答:当AN=时,四边形材料AMPN的面积S最小,最小值为2+………………………………………(16分)19.(16分)已知函数f(x)=.(1)当a=4,b=﹣2时,求满足f(x)=2x的x的值;(2)若函数f(x)是定义在R上的奇函数.①存在t∈[﹣1,1],使得不等式f(t2﹣t)<f(2t2﹣k)有解,求实数k的取值范围;②若函数g(x)满足f(x)•[g(x)+2]=2x﹣2﹣x,若对任意x∈R且x≠0,不等式g(2x)≥m•g(x)﹣10恒成立,求实数m的最大值.【解答】解:(1)因为a=4,b=﹣2,所以=2x,化简得(2x)2﹣3•2x﹣4=0,即2x=4(﹣1舍去),所以x=2;(2)因为f(x)是奇函数,所以f(﹣x)+f(x)=0,所以+=0,化简并变形得:(a+b)(2x+2﹣x)+2ab+2=0,要使上式对任意的x成立,则a+b=0且ab+1=0,解得a=1,b=﹣1或a=﹣1,b=1,因为f(x)的定义域是R,所以a=1,b=﹣1舍去,所以a=﹣1,b=1,所以f(x)=;①f(x)==1﹣.对任意x1,x2∈R,x1<x2有:f(x1)﹣f(x2)=﹣=﹣,因为x1<x2,所以2x1<2x2,即2x1﹣2x2<0,所以f(x1)<f(x2),因此f(x)在R上递增.因为f(t2﹣t)<f(2t2﹣k),所以t2﹣t<2t2﹣k,即k<t2+t在t∈[﹣1,1]时有解.当t∈[﹣1,1]时,t2+t的最大值为2,所以k<2;②因为f(x)•[g(x)+2]=2x﹣2﹣x,所以g(x)=2x+2﹣x(x≠0),所以g(2x)=22x+2﹣2x=(2x+2﹣x)2﹣2.不等式g(2x)≥mg(x)﹣10恒成立,即(2x+2﹣x)2﹣2≥m(2x+2﹣x)﹣10,令t=2x+2﹣x,t>2,则m≤t+在t>2时恒成立.因为t>2,由基本不等式可得:t+≥4,当且仅当t=2时,等号成立.所以m≤4,则实数m的最大值为4.20.(16分)设数列{a n}的前n项和为S n,2S n+a n=3,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足:对于任意的n∈N*,都有a1b n+a2b n﹣1+a3b n﹣2+…+a n b1=()n﹣1+3n﹣3成立.①求数列{b n}的通项公式;②设数列∁n=a n b n,问:数列{∁n}中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.【解答】解:(1)由2S n+a n=3,①得2S n﹣1+a n﹣1=3,(n≥2),②由①﹣②得2a n+a n﹣a n﹣1=0,即a n=a n﹣1(n≥2).对①取n=1得,a1=1≠0,所以a n≠0,所以{a n}为等比数列,首项为1,公比为,即a n=()n﹣1,n∈N*.(2)①由a n=()n﹣1,可得对于任意n∈N*.有b n+b n﹣1+()2b n﹣2+…+()n﹣1b1=()n﹣1+3n﹣3,③则b n﹣1+b n﹣2+()2b n﹣3+…+()n﹣2b1=()n﹣2+3n﹣6,n≥2,④则b n﹣1+()2b n﹣2+()3b n﹣3+…+()n﹣1b1=()n﹣1+n﹣2,n≥2,⑤由③﹣⑤得b n=2n﹣1(n≥2),对③取n=1得,b1=1也适合上式,因此b n=2n﹣1,n∈N*.②由(1)(2)可知∁n=a n b n=,则c n+1﹣∁n=﹣=,所以当n=1时,c n+1=∁n,即c1=c2,当n≥2时,c n+1<∁n,即{∁n}在n≥2且n∈N*上单调递减,故c1=c2>c3>c4>c5>…,假设存在三项c s,c p,∁r成等差数列,其中s,p,r∈N*,由于c1=c2>c3>c4>c5>…,可不妨设s<p<r,则2c p=c s+∁r(*),即=+,因为s,p,r∈N*,且s<p<r,则s≤p﹣1且p≥2,由数列{∁n}的单调性可知,c s≥c p﹣1,即≥,因为∁r=>0,所以=+>,即>,化简得p<,又p≥2且p∈N*,所以p=2或p=3,当p=2时,s=1,即c1=c2=1,由r≥3时,∁r<c2=1,此时c1,c2,∁r不构成等差数列,不合题意.当p=3时,由题意s=1或s=2,即c s=1,又c p=c3=,代入(*)式得∁r=.因为数列{∁n}在n≥2且n∈N*上单调递减,且c5=,r≥4,所以r=5.综上所述,数列{∁n}中存在三项c1,c3,c5或c2,c3,c5构成等差数列.。

(完整word版)2017-2018高一数学上学期期末考试试题及答案,推荐文档

(完整word版)2017-2018高一数学上学期期末考试试题及答案,推荐文档
是符合题目要求的.
1.已知全集 U {0,1,2,3}, A {1,3} ,则集合 CU A ( )
A. 0 B . 1,2 C . 0,2 D . 0,1,2
2.空间中,垂直于同一直线的两条直线
()
A.平行 B .相交 C .异面 D .以上均有可能
2
3.已知幂函数 f x x 的图象经过点 2, 2 ,则 f 4 的值等于
18.(本小题满分 10 分)
已知函数 f (x) log a (1 x) log a( x 3) (0 a 1) . (Ⅰ)求函数 f ( x) 的零点; (Ⅱ)若函数 f ( x) 的最小值为 4 ,求 a 的值 .
3
19. (本小题满分 12 分) 已知圆 C:x2+ y2- 8y+ 12= 0,直线 l : ax+y+ 2a=0. ( Ⅰ ) 当 a 为何值时,直线 l 与圆 C相切; ( Ⅱ ) 当直线 l 与圆 C相交于 A,B两点,且 AB= 2 2时,求直线 l 的方程.
()
A.若 m∥n,m∥α,则 n∥α
B.若 α⊥ β,m∥α ,则 m⊥ β
C.若 α⊥ β,m⊥β ,则 m∥ α
D.若 m⊥n,m⊥α, n ⊥β ,则 α⊥β
7.设 f x 是定义在 R 上的奇函数,当 x 0 时, f x 2x 2 x,则 f 1 等于 (

A.- 3
B
.- 1
C
.1
D
.3
∵ 3 < x <1 ∴ 0 < -( x
2
1)
4
4
L L L L L L L 7分
∵0 < a <1∴ log a (x 1)2 4 log a 4
5

苏教版2017-2018学年高一上学期期末考试数学试题(精品Word版,含答案解析) (5)

苏教版2017-2018学年高一上学期期末考试数学试题(精品Word版,含答案解析) (5)

2017-2018学年高一(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A. B. C. 3,4, D. 2,4,2.已知=(3,x),=(-1,1),若 ⊥,则实数x的值为()A. 1B. 2C. 3D.3.如图,边长为2的正方形ABCD中,P,Q分别是边BC,CD的中点,若=x+y,则x=()A. 2B.C.D.4.函数f(x)=ax3+2bx+a-b是奇函数,且其定义域为[3a-4,a],则f(a)=()A. 4B. 3C. 2D. 15.已知,则tanα=()A. 2B. 3C.D.6.在函数y=sin|x|、y=sin(x+)、y=cos(2x+)、y=|sin2-cos2|中,最小正周期为π的函数的个数为()A. 1B. 2C. 3D. 47.设tanα,tanβ是方程x2-3x+2=0的两个根,则tan(α+β)的值为()A. B. C. 1 D. 38.设偶函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,|KL|=1,则f()的值为()A. B. C. D.9.点O在△ABC所在平面内,给出下列关系式:(1);(2);(3);(4).则点O依次为△ABC的()A. 内心、外心、重心、垂心B. 重心、外心、内心、垂心C. 重心、垂心、内心、外心D. 外心、内心、垂心、重心10.当0<x≤时,4x<log a x,则实数a的取值范围是( )A. B. C. D.11.已知为单位向量,+=(3,4).则|1+•|的最大值为()A. 6B. 5C. 4D. 312.定义在R上的函数f(x)对任意x1,x2(x1≠x2)都有<0,且函数y=f(x+1)的图象关于点(-1,0)成中心对称,若当1≤s≤4时,s,t满足不等式-f()≥f(t)≥f(s),则的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)13.函数y=tan(+),x∈(0,]的值域是______.14.已知向量=(2,6),=(-1,λ),若,则λ=______.15.已知函数f(x)=<>的图象上关于y轴对称的点恰好有4对,则实数a=______.16.不超过实数x的最大整数称为x整数部分,记作[x].已知f(x)=cos([x]-x),给出下列结论:①f(x)是偶函数;②f(x)是周期函数,且最小正周期为π;③f(x)的单调递减区间为[k,k+1)(k∈Z);④f(x)的值域为(cos1,1].其中正确命题的序号是______(填上所以正确答案的序号).三、解答题(本大题共6小题,共52.0分)17.已知全集U=R,集合A={-1≤x<3},B={x|2x+2≥x+4},(1)求A∩B;(2)若C={x|2x-a>0},且B∪C=B,求实数a的取值范围.18.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).(1)求f(x)的解析式及x0的值;(2)若锐角θ满足,求f(4θ)的值.19.已知函数f(x)=cos2(x+),g(x)=1+sin2x.(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.(2)求函数h(x)=f(x)+g(x)的单调递增区间.20.已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中∈,.(1)若,求角α的值;(2)若,求的值.21.已知非零向量,满足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且仅有唯一一个元素.(1)求向量,的夹角θ;(2)若关于t的不等式|-t|<|-m|的解集为空集,求实数m的值.22.已知函数f(x)=log a(a>0且a≠1)是奇函数,(1)求实数m的值;(2)若a=,并且对区间[3,4]上的每一个x的值,不等式f(x)>()x+t恒成立,求实数t的取值范围.(3)当x∈(r,a-2)时,函数f(x)的值域是(1,+∞),求实数a与r的值.答案和解析1.【答案】A【解析】解:集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则A∪B={1,3,4,5}.∁U(A∪B)={2,6}.故选:A.求出A与B的并集,然后求解补集即可.本题考查集合的交、并、补的运算,考查计算能力.2.【答案】C【解析】解:∵=(3,x),=(-1,1),⊥,∴=-3+x=0,解得x=3.∴实数x的值为3.故选:C.由向量垂直的性质能求出实数x的值.本题考查实数值的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.【答案】C【解析】解:在正方形ABCD中,P,Q分别是边BC,CD的中点,∴=+,=+,=+,∵=x+y,∴解得:x=故选:C.由已知可得:=+,=+,=+,结合=x+y,可得,解得答案.本题考查的知识点是平面向量的基本定理,难度中档.4.【答案】B【解析】解:∵奇函数的定义域为[3a-4,a],∴3a-4+a=0,得4a=4,a=1,则f(x)=x3+2bx+1-b,又f(0)=0,得f(0)=1-b=0,则b=1,即f(x)=x3+2x,则f(a)=f(1)=1+2=3,故选:B.根据奇函数的性质和定义建立方程进行求解即可.本题主要考查函数值的计算,根据奇函数的定义和性质建立方程关系是解决本题的关键.5.【答案】A【解析】解:∵,可得:===,∴解得:tanα=2.故选:A.由条件利用同角三角函数的基本关系,二倍角公式,即可计算得解.本题主要考查同角三角函数的基本关系,二倍角公式在三角函数化简求值中的应用,属于基础题.6.【答案】B【解析】解:由y=sin|x|的图象知,它是非周期函数;y=sin(x+)是周期函数,周期是2π;y=cos(2x+)是周期函数周期是π;y=|sin2-cos2|=|cosx|,y=cosx的周期为2π,将其图象沿x轴对折后得到y=|cosx|的图象,但周期变为原来的一半,故T=π;最小正周期为π的函数的个数为:2.故选:B.分别判断四个函数是否是周期函数,求出函数的周期,然后判断即可.本题是基础题,考查三角函数的周期性,周期的判断,周期的求法,牢记三角函数的图象,解题方便快捷.7.【答案】A【解析】解:∵tanα,tanβ是方程x2-3x+2=0的两个根,∴tanα+tanβ=3,tanαtanβ=2,则tan(α+β)===-3.故选:A.由tanα,tanβ是方程x2-3x+2=0的两个根,利用根与系数的关系分别求出tanα+tanβ及tanαtanβ的值,然后将tan(α+β)利用两角和与差的正切函数公式化简后,将tanα+tanβ及tanαtanβ的值代入即可求出值.此题考查了两角和与差的正切函数公式,以及根与系数的关系,利用了整体代入的思想,熟练掌握公式是解本题的关键.8.【答案】C【解析】【分析】通过函数的图象,利用KL以及∠KML=90°求出求出A,然后函数的周期,确定ω,利用函数是偶函数求出φ,即可求解.本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,属于基础题.【解答】解:因为f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,KL=1,所以A=,T=2,因为T=,所以ω=π,函数是偶函数,0<φ<π,所以φ=,∴函数的解析式为:f(x)=sin(πx+),所以.故选:C.9.【答案】C【解析】解:由三角形“五心”的定义,我们可得:(1)时,O为△ABC的重心;(2)时,O为△ABC的垂心;(3)时,O为△ABC的内心;(4)时,O为△ABC的外心;故选:C.根据三角形五心的定义,结合向量数量积的几何意义,我们对题目中的四个结论逐一进行判断,判断出O点在△ABC中的特殊位置,即可得到答案.本题考查的知识点是三角形的五心,三角形的“五心”是三角形中位置“特殊”的点,其性质常作用三角形性质的外延用于几何问题的证明,因此利用向量描述三角形五心的性质要求大家熟练掌握.10.【答案】B【解析】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选:B.由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题11.【答案】B【解析】解:设,由+=(3,4),得,∴=(cosθ,sinθ)•(3-cosθ,4-sinθ)=3cosθ-cos2θ+4sinθ-sin2θ=4sinθ+3cosθ-1,∴1+•=4sinθ+3cosθ=5sin(θ+φ)(tanφ=),则|1+•|的最大值为5.故选:B.由题意设,再由+=(3,4)求得,得到,进一步得到1+•=4sinθ+3cosθ,运用辅助角公式化积后得答案.本题考查平面向量的数量积运算,训练了三角函数最值的求法,借助于辅助角公式化积是关键,是中档题.12.【答案】D【解析】解:由函数y=f(x+1)的图象关于点(-1,0)成中心对称,可得y=f(x)的图象关于原点O中心对称,即函数f(x)为奇函数,又对任意x1,x2(x1≠x2)都有<0,可知f(x)在R上单调递减,由-f()≥f(t)≥f(s),得f(-)≥f(t)≥f(s),即,∴约束条件为,画出可行域如图:=.由图可知,,则,∴,则∈[-3,0].故选:D.由已知可得函数的奇偶性与单调性,再由1≤s≤4,且s,t满足不等式-f()≥f(t)≥f(s),得到约束条件,作出可行域,由线性规划知识求解.本题考查函数的性质及其应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.13.【答案】(1,]【解析】解:由x∈(0,],∴+∈(,]结合正切函数的性质可得:1<y.故答案为:(1,].根据x∈(0,],求解+的范围,结合正切函数的性质可得值域;本题考查了与正切函数有关的值域求法,是基础题.14.【答案】-3【解析】解:∵,∴-6-2λ=0,解得λ=-3.故答案为:-3.利用向量共线定理即可得出.本题考查了向量共线定理,考查了推理能力语音计算能力,属于基础题.15.【答案】【解析】解:若x>0,则-x<0,∵x<0时,f(x)=sin(x)-1,∴f(-x)=sin(-x)-1=-sin(x)-1,则若f(x)=sin(x)-1(x<0)的图象关于y轴对称,则f(-x)=-sin(x)-1=f(x),即y=-sin(x)-1,x>0.设g(x)=-sin(x)-1,x>0,作出函数g(x)的图象,要使y=-sin(x)-1,x>0与f(x)=log a x,x>0的图象恰好有4个交点,则0<a<1且满足f(9)=-2,即log a9=-2,解得a=,故答案为:.求出函数f(x)=sin x-1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.本题主要考查分段函数的应用,作出函数关于y轴对称的图象,利用数形结合的思想是解决本题的关键,属于中档题.16.【答案】③④【解析】解:对于①,∵f(π)=cos(3-π)=cos(π-3),f(-π)=cos(-4+π)=cos(4-π),显然f(π)≠f(-π),∴f(x)不是偶函数,故①错误;对于②,f(0)=cos(0-0)=cos0=1,而f(π)=cos(π-3)≠1,∴f(0)≠f(π),即f(x)不是周期为π的函数,故②错误;对于③,当x∈[k,k+1)时,[x]=k,令t(x)=x-[x],则t(x)在区间[k,k+1)单调递增,且0≤t(x)<1,又y=cosx在[0,1)上单调递减,∴f(x)=cos([x]-x)=cos(x-[x])在[k,k+1)单调递减,故③正确;对于④,∵-1<[x]-x≤0,∴f(x)取不到值cos1,且f(x)的最大值为1.故f(x)的值域为(cos1,1].即④正确.故答案为:③④通过计算特殊值验证判断①,②;利用符合函数的单调性判断③,根据[x]-x的范围和余弦函数的性质判断④.本题考查命题的真假判断与应用,考查函数的图象和性质,是中档题17.【答案】解:(1)∵A={-1≤x<3},B={x|2x+2≥x+4}={x|x≥2},∴A∩B=[2,3);(2)C={x|2x-a>0}={x|x>},∵B∪C=B,∴C⊆B,则,即a≥4.∴实数a的取值范围是[4,+∞).【解析】(1)求解一元一次不等式化简B,再由交集运算得答案;(2)由B∪C=B得C⊆B,再由两集合端点值间的关系求解.本题考交、并、补集的混合运算,是基础题.18.【答案】解:(1)由题意可得:,,即∴,,f(0)=2sinφ=1,由<,∴.(3分),所以,∈,又∵x0是最小的正数,∴;(2),∵∈,,,∴,∴,,∴.【解析】(1)根据图象求出A,T,求出ω,图象经过(0,1),求出φ,然后求f(x)的解析式,根据(x0,2)求x0的值;(2)锐角θ满足,求出sinθ,sin2θ,cos2θ,化简f(4θ),然后求f(4θ)的值.本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,二倍角的余弦,考查计算能力,视图能力,是基础题.19.【答案】解:(1)由题设知f(x)=[1+cos(2x+)],∵x=x0是函数y=f(x)图象的一条对称轴,∴2x0+=kπ,即2x0=kπ-(k∈Z),∴g(x0)=1+sin2x0=1+sin(kπ-),当k为偶数时,g(x0)=1+sin(-)=;当k为奇数时,g(x0)=1+sin=.…(6分)(2h(x)=f(x)+g(x)=[1+cos(2x+)]+1+sin2x=[cos(2x+)+sin2x]+=(cos2x+sin2x)+=sin(2x+)+.当2kπ-≤2x+≤2kπ-,即kπ-≤x≤kπ+(k∈Z),∴函数h(x)=f(x)+g(x)的单调递增区间是[kπ-,kπ+](k∈Z),…(12分)【解析】(1)利用二倍角的余弦可求得f(x)=[1+cos(2x+)],x=x0是函数y=f(x)图象的一条对称轴⇒2x0+=kπ⇒g(x0)=1+sin(kπ-),对k分k为偶数与k为奇数讨论即可求得g(2x0)的值;(2)利用三角函数间的恒等变换可求得h(x)=sin(2x+)+,再利用正弦函数的单调性,可得结论.本题考查二倍角的余弦、三角函数间的恒等变换、正弦函数的对称性、单调性,考查分析与运算能力,属于中档题.20.【答案】解:(1)∵,,,,∴,.由得sinα=cosα.又∈,,∴ .(2)由,得(cosα-3)cosα+sinα(sinα-3)=-1,∴,∴>.又由<<,∴<<,∴.故=.【解析】先由A、B、C三点的坐标,求出的坐标,再根据,列出一个关于α的方程,可将问题转化为简单的三角函数化简求值问题.解决此题的关键是:熟练掌握向量数量积公式以及三角函数的变换方法.已知某三角函数值、求其它三角函数的值.一般先化简,再求值.化简三角函数的基本方法:统一角、统一名通过观察“角”“名”“次幂”,找出突破口,利用切化弦、降幂、逆用公式等手段将其化简.21.【答案】解:(1)∵方程x2+(||+||)x+||||=0 有且仅有唯一一个实根,∴△=-4||•||==0,∴||=||.∵(2-)⊥,∴(2-)•=0,即2=,求得cos<,>=,∴<,>=60°.(2)关于t的不等式|-t|<|-m|的解集为空集,即+t2-2t<+m2•-2m•的解集为空集,即t2-t-m2+m<0无解,∴△=12-4(-m2+m)≤0,即(2m-1)2≤0,∴m=.【解析】(1)由题意利用二次函数的性质、两个向量垂直的性质,可得2=,求得cos<,>的值,可得<,>的值.(2)根据题意,方程t2-t-m2+m<0无解,故△=12-4(-m2+m)≤0,由此求得m的值.本题主要考查两个向量垂直的性质,二次函数的性质,属于中档题.22.【答案】解:(1)由f(x)=log a(a>0且a≠1)是奇函数,得f(-x)+f(x)=log a+log a==0对于定义域内的任意x恒成立,即,得m2=1,即m=±1.当m=-1时,原函数化为f(x)=,定义域为{x|x≠1}(舍去),∴m=1;(2)a=时,f(x)>()x+t等价于f(x)-()x>t,令g(x)=f(x)-()x,则g(x)在区间[3,4]上递增,,故t<;(3)设u=1+,则y=log a u,①当a>1时,∵函数f(x)的值域是(1,+∞),即y>1,∴u=1+(r<x<a-2)的值域为(a,+∞),作出函数u=1+(r<x<a-2)的图象,得r=1,且a=1+,解得:a=2+;②当0<a<1时,∵函数f(x)的值域是(1,+∞),即y>1,∴u=1+(r<x<a-2)的值域为(0,a),作出函数u=1+(r<x<a-2)的图象,得a-2=-1,解得:a=1,矛盾.综上,r=1,a=2+.【解析】(1)由已知可得f(-x)+f(x)=0恒成立,求出m后验证定义域得答案;(2)a=时,f(x)>()x+t等价于f(x)-()x>t,令g(x)=f(x)-()x,利用单调性求出g(x)在区间[3,4]上的最小值可得t的范围;(3)设u=1+,则y=log a u,然后分a>1和0<a<1两类求解得答案.本题考查函数奇偶性与单调性性质的应用,考查恒成立问题的求解方法,考查数形结合的解题思想方法,是中档题.。

苏州市第一学期期末考试高中高一数学Word版本含有答案

苏州市第一学期期末考试高中高一数学Word版本含有答案

2016~2017 学年第一学期期末考试一试卷高一数学2017.1一、填空题:本大题共14 个小题,每题 5 分,合计70 分。

1. 已知会合 A { 1,0,1} , B { 0,1,2} ,则A B __________.2. 已知 f ( x) 是偶函数,当x 0 时, f (x) x 1 ,则 f ( 1) __________.3. 若 tan 3 ,tan 4) __________. ,则 tan(34. 已知 A( 3,4) , B(5, 2) ,则| AB | __________.5. 函数 y e2 x 1 的零点是 __________.6. 把函数 y sin x 的图象上所有点的横坐标减小到本来的1(纵坐标不变 ),再将图象上所有点2右平移个单位,所得函数图象所对应的分析式y __________.31 x 2017,0),则 f (log 2 3)7. 若函数 f (x) ( 4 ) , x [ __________.4x, x [0,2017]8. 函数 y sin( 2x4) 的单一增区间为__________.9. 设 a、b 是两个不共线向量,AB 2a p b,BC a b ,CD a 2b,若A、B、D三点共线,则实数p __________.10. 若cos2 2,则 sin 2 __________.sin( ) 2411.f (x) x2,若对随意的x [t ,t 2] ,不等式 f ( x t)2 f ( x) 恒建立,则实数t的取值范围是__________.12. 如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则| OMON |的范围为 __________.13.如图,将矩形纸片的右下角折起,使得该角的极点落在矩形的左侧上,若sin 1,则折痕4l 的长度=__________cm.14. 函数f ( x) bxax2 c1(a,b, c R )是奇函数,且 f ( 2) f (x) f (2) ,则a __________.二、解答题:本大题共6 小题,计90 分。

【优质文档】2017-2018学年江苏省高一上学期数学期末综合复习试题(一)含答案

【优质文档】2017-2018学年江苏省高一上学期数学期末综合复习试题(一)含答案

6. 函数 y x 1 x 的值域为
- ,1 .
32 . 4
1或9 .
7. 如图,正方体 ABCD A1 B1C1D1 中, E 、F 分别是棱 C1C 与 BC 的中点,则直线 EF 与直线 D1C 所成角的大小是
D1
A1
____ 60 __. D
A
第 1页共9 页
C1
B1
E
C
F
B
8. 给出的下列命题中,正确的是 __①④ _____.
答在试卷和草稿纸上无效。考生必须保持答题卡的整洁。考试结束后,只需上交答题卡。
参 考公式:球的锥体
,其中 是锥体的底面积, 是锥体的高.
台体的体积公式 台体
,其中 分别是台体上、下底面的面积, 是台体的高. 第 I 卷(填空题 70 分)
一、填空题 1. 已知集合 A {1,2} , B { a, a2 3} ,若 A B { 1} 则实数 a 的值为 1 .
a1

令 x 0得 y
a1
a
1 2a
a
1a
=
1 ,解得 a
1或a
1
. ……………………………………………
5分
a 1 2a
3
⑵ ( i )当 a
1
11
时, 直线 l 的方程为: x
0.即 x
2
22
1 ,此时 l不通过第一象限;
同理,当 a 0 时, l也不通过第一象限 . ………………………………………… 9 分
( ii )当 a
1 且a
0 时,直线 l 的方程为: y
a
a1
x
.
2
1 2a 1 2a
l不通过第一象限,即

苏教版2017-2018学年高一数学上学期期末考试试题(精品Word版,含答案解析)

苏教版2017-2018学年高一数学上学期期末考试试题(精品Word版,含答案解析)

2017-2018学年高一(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A. B. C. D.2.如图,正三棱柱ABC-A1B1C1中,各棱长都相等,则二面角A1-BC-A的平面角的正切值为()A.B.C. 1D.3.在正三棱柱ABC-A1B1C1中,若AB=BB1,D是CC1中点,则CA1与BD所成角的大小是()A. B. C. D.4.若圆有且仅有三个点到直线的距离为1,则实数a的值为()A. B. C. D.5.已知f(x)=为奇函数,g(x)=ln(x2-b),若对∀x1、x2∈R,f(x1)≤g(x2)恒成立,则b的取值范围为()A. B. C. D.6.已知两条直线ax-y-2=0和(2-a)x-y+1=0互相平行,则a等于()A. 2B. 1C. 0D.7.下列函数中,既是偶函数又在区间(0,+∞)上单调增的是()A. B. C. D.8.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④m⊂α,n⊂α,且l⊥m,l⊥n,则l⊥α;其中真命题的序号是()A. B. C. D.9.圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是()A. 外离B. 外切C. 相交D. 内含10.如图是一个几何体的三视图,则该几何体的表面积为()A. 46B. 48C. 50D. 52二、填空题(本大题共4小题,共16.0分)11.直线x+ay=3与圆(x-1)2+y2=2相切,则a=______.12.过A(-1,1),B(1,3),圆心在x轴上的圆的标准方程为______.13.已知函数f(x)=与g(x)=log2x,则函数h(x)=f(x)-g(x)的零点个数是______.14.在四面体S-ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为______.三、解答题(本大题共4小题,共44.0分)15.如图,在直三棱柱ABC-A1B1C1(侧棱与底面垂直的棱柱称为直棱柱)中,AB=AC=AA1=2,∠BAC=90°.(1)求证:BA⊥A1C;(2)求三棱锥A-BB1C1的体积.16.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的方程.17.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=,现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.(1)求证:AM∥平面BEC;(2)求证:BC⊥平面BDE;(3)求直线DC与平面BEC所成角的正弦值.18.已知线段AB的端点B(4,0),端点A在圆(x+4)2+y2=16上运动(Ⅰ)求线段AB的中点C的轨迹方程.(Ⅱ)设动直线y=k(x-1)(k≠0)与圆C交于A,B两点,问在x轴正半轴上是否存在定点N,使得直线AN与直线BN关于x轴对称?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C.2.【答案】D【解析】【分析】本题主要考查二面角的平面角及求法.解决本题的关键在于通过取BC的中点E,得二面角A1-BC-A的平面角为∠A1EA,进而求出结论.先取BC的中点E,可得二面角A1-BC-A的平面角为∠A1EA,再在直角三角形A1EA中求出其正切即可.【解答】解:设棱长为a,BC的中点为E,连接A1E,AE,由正三棱柱ABC-A1B1C1中,各棱长都相等.可得A1E⊥BC,AE⊥BC所以;二面角A1-BC-A的平面角为:∠A1EA,在RT△ABC中,AE=a,所以:tan∠A1EA===.即二面角A1-BC-A的平面角的正切值为:故选D.解:如图过D作DE∥CA1交A1C1于E,则E是A1C1的中点,连接BE,则∠BDE为CA1与BD所成角,设AB=2,则BD=,DE=,B1E=,BE=,在△BDE中,cos∠BDE==0,所以∠BDE=;故选:C.由题意,画出图形,通过作平行线得到所求角的平面角,利用余弦定理求大小.本题考查了正三棱柱的性质以及异面直线所成的角的求法;关键是找到平面角,利用余弦定理求值.4.【答案】B【解析】解:化圆x2+y2+2x-6y+6=0为(x+1)2+(y-3)2=4.可得圆心坐标为C(-1,3),半径r=2.如图:要使圆x2+y2+2x-6y+6=0有且仅有三个点到直线x+ay+1=0的距离为1,则圆心C到直线x+ay+1=0的距离为1,即,解得a=.故选:B.化圆的一般方程为标准方程,求出圆心坐标与半径,把圆x2+y2+2x-6y+6=0上有且仅有三个点到直线x+ay+1=0的距离为1,转化为圆心C到直线x+ay+1=0的距离为1,再由点到直线的距离公式求解得答案.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法和数学转化思想方法,是中档题.解:由于f(x)=为奇函数,故f(0)=0,a=1;则f(x)==1-∈(-1,1),由题意,要求f(x)max≤g(x)min,而f(x)∈(-1,1),从而要求ln(x2-b)≥1,x2-b≥e在R上恒成立,b≤(x2-e)min,b≤-e,故选:A根据f(x)为奇函数,求出a值,进而求出值域,将对∀x1,x2∈R,f(x1)≤g(x2)恒成立,转化为:f(x)≤g(x)min,可得答案.max本题考查的知识点是函数奇偶性性质,熟练掌握函数奇偶性的性质是解答的关键.6.【答案】B【解析】解:∵两条直线ax-y-2=0和(2-a)x-y+1=0互相平行,∴,解得a=1.故选:B.利用直线与直线平行的性质求接求解.本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线平行的性质的合理运用.7.【答案】C【解析】根据函数的单调性以及函数的奇偶性判断即可.本题考查了成绩函数的奇偶性和单调性的性质,是一道基础题.解:对于A,函数是奇函数,不合题意,对于B,函数是非奇非偶函数,不合题意,对于C,函数是偶函数,x>0时,y=x-1,递增,符合题意,对于D,函数是偶函数,在(0,+∞)递减,不合题意,故选:C.8.【答案】C【解析】解:若α∥β,l⊂α,由面面平行的性质定理可得l∥β,故正确;若m⊂α,n⊂α,m∥β,n∥β,若m∥n,则α∥β不一定成立,故错误;若l∥α,由线面平行的性质定理可得存在b⊂α,使b∥l,又由l⊥β,可由线面垂直的第二判定定理得b⊥β,由面面垂直的判定定理可得α⊥β,故正确;m⊂α,n⊂α,且l⊥m,l⊥n,若m∥n,则l⊥α不一定成立,故错误;故选C由面面平行的性质定理,可得的真假;由面面平行的判定定理,可得的真假;根据线面平行的性质定理,线面垂直的判定方法及面面垂直的判定定理可得的真假;由线面垂直的判定定理可得的真假,进而得到答案.本题考查空间中直线与平面之间的位置关系,解题的关键是掌握空间中线面位置关系判断的定理,本题是考查双基的题,知识性较强.9.【答案】C【解析】解:∵圆C1:x2+y2+2x+8y-8=0的圆心C1(-1,-4),半径r1==5,圆C2:x2+y2-4x-4y-1=0的圆心C2(2,2),半径r2==3,∴|CC2|==3,|r1-r2|=2,,1∵|r1-r2|<|C1C2|<r1+r2,∴圆C1与圆C2相交.故选C.由圆C1:x2+y2+2x+8y-8=0的圆心C1(-1,-4),半径r1=5,圆C2:x2+y2-4x-4y-1=0的圆心C2(2,2),半径r2=3,知|r1-r2|<|C1C2|<r1+r2,由此得到圆C1与圆C2相交.本题考查圆与圆的位置关系的判断,是基础题.解题时要认真审题,仔细解答.10.【答案】B【解析】解:由三视图知,几何体是一个四棱锥,高为3,四棱锥的一条侧棱与底面垂直,底面是边长为4的正方形,∴该几何体的表面积为2××3×4+2××4×5+4×4=12+20+16=48.故选:B.几何体是一个四棱锥,四棱锥的一条侧棱与底面垂直,高为3,底面是边长为4的正方形,即可求出该几何体的表面积本题考查由三视图求该几何体的表面积,考查由三视图还原几何体的直观图.11.【答案】±1【解析】解:圆心坐标为(1,0),半径R=,∵直线和圆相切,∴圆心到直线的距离d===,即2=•,平方得1+a2=2,得a2=1,则a=±1,故答案为:±1求出圆心和半径,结合直线和圆相切的等价条件,建立方程关系进行求解即可.本题主要考查直线和圆相切的位置关系的应用,结合圆心到直线的距离等于半径是解决本题的关键.12.【答案】(x-2)2+y2=10【解析】解:∵圆的圆心在x轴上,设圆心为M(a,0),由圆过点A(-1,1)和B(1,3),即|MA|=|MB|可得MA2=MB2,即(a+1)2+1=(a-1)2+9,求得a=2,可得圆心为M(2,0),半径为|MA|=,故圆的方程为(x-2)2+y2=10.故答案为:(x-2)2+y2=10.设圆心为M(a,0),由|MA|=|MB|求得a的值,可得圆心坐标以及半径的值,从而求得圆的方程.本题主要考查求圆的标准方程,求出圆心的坐标,是解题的关键,属于基础题.13.【答案】3【解析】解:可由题意在同一个坐标系中画出f(x)和g(x)的图象其中红色的为g(x))=log2x的图象,由图象可知:函数f(x)和g(x)的图象由三个公共点,即h(x)=f(x)-g(x)的零点个数为3,故答案为:3由题意可作出函数f(x)和g(x)的图象,图象公共点的个数即为函数h(x)=f(x)-g(x)的零点个数.本题为函数零点个数的求解,转化为函数图象的交点个数来求是解决问题的关键,属中档题.14.【答案】【解析】解:解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S-AC-B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE===,∴该四面体外接球的表面积S=4πR2=4=.故答案为:.取AC中点D,连接SD,BD,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE,由此能求出该四面体外接球的表面积.本题考查四面体的外接球的表面积的求法,考查四面体、球等基础知识,考查推理论证能力、运算求解能力,数形结合思想,是中档题.15.【答案】证明:(1)∵在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°.∴A1A⊥平面ABC,∴BA⊥AA1,又∵∠BAC=90°,∴BA⊥AC,A1A∩AC=A,∴BA⊥平面ACC1A1,∴BA⊥A1C.解:(2)∵AC⊥AB,AC⊥AA1,AB∩AA1=A,∴AC⊥平面ABB1,∴C1到平面ABB1的距离为AC=2,∵在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°.∴△ =2,∴三棱锥A-BB1C1的体积:==△=.【解析】(1)推导出A1A⊥平面ABC,从而BA⊥AA1,由∠BAC=90°,得BA⊥AC,从而BA⊥平面ACC1A1,由此能证明BA⊥A1C.(2)三棱锥A-BB1C1的体积=,由此能求出结果.本题考查线线垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.16.【答案】证明:(1)直线l:mx-y+1-m=0转化为m(x-1)-y+1=0,∴直线l经过定点(1,1),∵12+(1-1)2<5,∴定点(1,1)在圆C内,∴对m∈R,直线l与圆C总有两个不同的交点.解:(2)由圆心(0,1)到直线mx-y+1-m=0的距离d==,而圆的弦长|AB|=2=,即2=,17=4(4+),m2=3,解得m=,故所求的直线方程为或-.【解析】(1)直线l经过定点(1,1),定点(1,1)在圆C内,由此能证明对m∈R,直线l与圆C总有两个不同的交点.(2)由圆心(0,1)到直线mx-y+1-m=0的距离d=,圆的弦长|AB|=2=,由此能求出直线方程.本题考查直线与圆总有两个交点的证明,考查直线方程的求法,考查直线过定点、圆、点到直线的距离公式、弦长等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.【答案】证明:(1)取EC中点N,连结MN,BN,在△EDC中,M,N分别为ED、EC的中点,∴MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,∴四边形ABMN为平行四边形.∴BN∥AM.又∵BN⊂平面BEC,且AM⊄平面BEC,∴AM∥平面BEC.(2)在正方形ADEF中,ED⊥AD,又∵平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,∴ED⊥平面ABCD,∴ED⊥BC,在直角梯形ABCD中,AB=AD=1,CD=2,得BC=.在△BCD中,BD=BC=,CD=2,BD2+BC2=CD2,∴BC⊥BD.∵ED∩BD=D,∴BC⊥平面BDE.解:(3)作DH⊥平面BEC于点H,连接CH,则∠DCH为CD与平面BEC所成角,由(2)知,BC⊥BE,BC⊥BD,∴S△BCD=,又∵ED⊥平面ABCD,△ =.∴DH=,∴sin∠ ==.∴CD与平面BEC所成角的正弦值为.【解析】11(1)取EC中点N,连结MN,BN,推导出四边形ABMN为平行四边形,从而BN∥AM,由此能证明AM∥平面BEC.(2)推导出ED⊥AD,ED⊥BC,BC⊥BD,由此能证明BC⊥平面BDE.(3)作DH⊥平面BEC于点H,连接CH,则∠DCH为CD与平面BEC所成角,由此能求出CD与平面BEC所成角的正弦值.本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.【答案】解:(Ⅰ)设线段AB中点为C(x,y),点A(x0,y0),∵B(4,0),∴2x=x0+4,2y=y0+0,∴x0=2x-4,y0=2y,∴(2x-4+4)2+4y2=16,∴x2+y2=4,(Ⅱ)设N(t,0),A(x1,y1),B(x2,y2).由,得(k2+1)x2-2k2x+k2-4=0.∴x1+x2=,x1x2=若直线AN与直线BN关于x轴对称,则k AN=-k BN⇒+=0⇒+=0,即2x1x2-(t+1)(x1+x2)+2t=0⇒-+2t=0,解得t=4.∴在x轴正半轴上存在定点N(4,0),使得AN与直线BN关于x轴对称【解析】(Ⅰ)设出C和A点的坐标,由中点坐标公式得到两点坐标的关系,把A的坐标用C的坐标表示,代入圆的方程后整理得答案.(Ⅱ)设N(t,0),A(x1,y1),B(x2,y2).可得,得(k2+1)x2-2k2x+k2-4=0,根据根与系数的关系以及k AN=-k BN,即可求出N的坐标本题考查了圆的方程,点的轨迹,定点问题直线和圆的位置关系,考查了运算能力,属于中档题.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市2018年学业质量阳光指标调研卷
高一数学 2018.1
一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案
直接填在答题卡相应位置上
.........
1. 已知集合,则=______.
【答案】
【解析】,填.
2. 函数的定义域是______.
【答案】
【解析】由题设有,解得,故函数的定义域为,填.
3. 若,则的值等于______.
【答案】
【解析】,填.
4. 已知角的终边经过点,则的值等于______.
【答案】
【解析】,所以,,故,填.
5. 已知向量,,,则的值为______.
【答案】
【解析】,所以,所以,故,填.
6. 已知函数则的值为______.
【答案】
【解析】,所以,填2.
............
【答案】
【解析】扇形的半径为,故面积为(平方米),填.
8. 已知函数则函数的零点个数为______.
【答案】
【解析】的零点即为的解.当时,令,解得,符合;当,令,解得,符合,故的零点个数为2.
9. 已知函数在区间上的最大值等于8,则函数的值域为______.
【答案】
【解析】二次函数的对称轴为,故,所以且
,对称轴为,故所求值域为,填.
10. 已知函数是定义在R上的偶函数,则实数的值等于____.
【答案】
11. 如图,在梯形ABCD中,,P为线段CD上一点,且,E为BC的中点,若,则的值为______.
【答案】
【解析】,整理得到
,又,所以,也就是
,,填.
12. 已知,则的值等于______.
【答案】
【解析】令,则,所以,因为,所以
故,填.
点睛:三角变换中,对于较为复杂的角,可用换元法去处理角与角的关系.
13. 将函数的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的
倍(纵坐标不变),得到函数的图象,若函数在区间上有且仅有一个零点,则的取值范围为____.
【答案】
【解析】由题设,令,解得,取,分别得到
,它们是函数在轴右侧的第一个零点和第二个零点,所以,故,故填.
点睛:因为,所以该函数的图像必过定点且在轴的右侧的第一个对称中心的横坐标在内,第二个对称中心的横坐标不在中,从而得到.14. 已知为非零实数,,且同时满足:①,② ,则的值等于______.
【答案】
【解析】由题设有,,所以,解得或者.而
,故,所以,所以,填.
点睛:题设中有3个变量,两个等式,注意到两个方程都与相关,故把看成一个整体,把
代入另一个方程就能构建关于的方程,解出就能得到的值,注意只有一个解.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15. 已知全集,集合.
(1)若,求和;
(2)若,求实数m的取值范围;
(3)若,求实数m的取值范围.
【答案】(1),;(2);(3)或.
【解析】试题分析:(1)当时,求出,,借助数轴可求得,.(2)依据集合的包含关系,得到区间端点的大小关系为,解得.(3)依据交集为空集,得到区间的端点的大小关系为或,也即是或.
解析:(1)当时,,由得,,所以,
;.
(2)因为,则,解得.
(3)因为因为或,所以或.
16. 已知函数的图象过点.
(1)判断函数的奇偶性,并说明理由;
(2)若,求实数的取值范围.
【答案】(1)是奇函数,理由见解析;(2).
【解析】试题分析:(1)因为的图像过,代入后得到,这样可化简为
,依据奇函数的定义可判断其为奇函数.(2)不等式可化简为
,从而不等式的解为.
解析:(1)因为的图象过点,所以,解得,所以
的定义域为.因为,所以是奇函数.(2)因为,所以,所以,所以
,所以,解得.
17. 如图,在四边形中,.
(1)若△为等边三角形,且,是的中点,求;
(2)若,,,求.
【答案】(1)11;(2).
【解析】试题分析:(1)由题设可以得到,故就是一组基底,通过线性运算可以得到,而,故可以转化基底向量之间的数量积计算.另一方面,因为有等边三角形,图形较为规则,故可以建立直角坐标系来计算数量积.(2)要计算,关键在于计算,可把已知条件变形为
,再利用可得,最后利用计算

解析:(1)法一:因为△为等边三角形,且所以.又所
以,因为是中点,所以
.又,所以

法二:
如图,以为原点,所在直线为轴,建立平面直角坐标系,则,因为△为
等边△,且所以
. 又所以,所以因为是
中点,所以 所

,
所以
. (2)因为所以,因为所以
所以
又所以
.所以
.所以.
18. 某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形的半径为200米,圆心角,点在
上,点

上,点在弧
上,


(1)若矩形
是正方形,求
的值;
(2)为方便市民观赏绿地景观,从点处向修建两条观赏通道

(宽度不计),
使
,其中PT 依PN 而建,为让市民有更多时间观赏,希望
最长,
试问:此时点应在何处?说明你的理由.
【答案】(1);(2)答案见解析.
【解析】试题分析:(1)因为四边形是扇形的内接正方形,所以
,注意到,代入前者就可以求出.
(2)由题设可由,,利用两角差的正弦和辅助角公式把化成的形式,从而求出的最大值.
解析:(1)在中,,,在中,
,所以
,因为矩形是正方形,,所以
,所以,所以

(2)因为所以,
,.所以
, 即时,最大,此时是的中点.
答:(1)矩形是正方形时,;
(2)当是的中点时,最大.
19. 已知,函数.
(1)求在区间上的最大值和最小值;
(2)若,,求的值;
(3)若函数在区间上是单调递增函数,求正数的取值范围.
【答案】(1);(2);(3).
【解析】试题分析:(1)利用数量积的计算得到,再利用二倍角公式和辅助角公式得到,从而可求在上的最值.(2)等价于
,把变形为,利用两角差的余弦可以得到.(3)先求出单调增区间为,因此存在,使得,从而
,根据不等式的形式和可得,因此.
解析:(1),因为,所以,所以,所以.
(2)因为,所以,所以,因为,所以
,所以,所以

(3),令得,因为函数在上是单调递增函数,所以存在,使得,所以有即,因为所以又因为,所以, 所以从而有,所以,所以
(另解:由,得.因为,所以,所以
或,解得或.又,所以)
点睛:对于函数,如果它在区间上单调,那么基本的处理方法是先求出单调区间的一般形式,利用是单调区间的子集得到满足的不等式组,利用
和不等组有解确定整数的取值即可.
20. 已知函数.
(1)当时,函数恰有两个不同的零点,求实数的值;
(2)当时,
① 若对于任意,恒有,求的取值范围;
② 若,求函数在区间上的最大值.
【答案】(1);(2)①.;②.
【解析】试题分析:(1)当时,考虑的解,化简后得到或者,它们共有两个不同的零点,所以必有解,从而.
(2)在上恒成立等价于在上恒成立,因此考虑
在上的最小值和在上的最大值即可得到的取值范围.(3)可化为,则当或时,在上递增;当
时,在上单调递增,在上单调递减,两类情形都可以求得函数的最大值.当时,在上单调递增,在上单调递减,在上单调递增,因此,比较的大小即可得到的表达式.
解析:(1)当时,,由解得或,由解
得或.因为恰有两个不同的零点且,所以,或,所以.
(2)当时,,
①因为对于任意,恒有,即,即,因
为时,,所以,即恒有
令,当时,,,所以
,所以,所以.

当时,,
这时在上单调递增,此时;
当时,,
在上单调递增,在上单调递减,在上单调递增,
所以,,
而,
当时,;
当时,;
当时,,
这时在上单调递增,在上单调递减,此时;
当时,,在上单调递增,此时;
综上所述,时,
点睛:(1)若对任意的恒成立,则有对任意的恒成立.(2)对于含有绝对值符号的函数,我们可以考虑先去掉绝对值符号,把它转化分段函数且不同范围上的解析式是熟悉的形式(如二次函数等),然后依据对称轴和分段点的大小关系分类讨论即可,最后再根据单调性的变化进一步细分,从而完成问题的讨论.
- 11 -。

相关文档
最新文档