2020中考数学-九年级-代数综合大题专练复习练习
2020中考数学专项训练4.代数与几何综合题(附解析)
代数与几何综合题类型一动点型探究题1.如图①,已知Rt △ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm/s.以AQ 、PQ 为边作四边形AQPD ,连接DQ ,交AB 于点E .设运动的时间为t (单位:s)(0<t ≤4),解答下列问题:(1)用含有t 的代数式表示AE =____;(2)如图②,当t 为何值时,四边形AQPD 为菱形;(3)求运动过程中,四边形AQPD 的面积的最大值.第1题图解:(1)5-t ;【解法提示】∵在Rt △ABC 中,∠C =90°,AC =8cm ,BC =6cm ,∴由勾股定理得:AB =10cm ,∵点P 由B 出发沿BA 方向向点A 匀速运动,速度为2cm/s ,∴BP =2t cm ,∴AP =AB -BP =10-2t ,∵四边形AQPD 为平行四边形,∴AE =12AP =5-t .(2)如解图①,当四边形AQPD 是菱形时,DQ ⊥AP ,则cos ∠BAC =AE AQ =AC AB,即5-t 2t =810,解得t =2513,∴当t =2513时,四边形AQPD 是菱形;(3)如解图②,作PM ⊥AC 于M ,设平行四边形AQPD 的面积为S .∵PM ∥BC ,∴△APM ∽△ABC ,∴AP AB =PM BC ,即10-2t 10=PM 6,∴PM =65(5-t ),∴S =AQ ·PM =2t ·65(5-t )=-125t 2+12t=15255122+⎪⎭⎫ ⎝⎛--t (0<t ≤4),∵-125<0,∴当t =52时,S 有最大值,最大值为15cm 2.第1题解图2.已知,在Rt△ABC中,∠ACB=90°,BC=AC,AB=6,D是AB的中点,动点E从点D出发,在AB边上向左或右运动,以CE为边向左侧作正方形CEFG,直线BG,FE相交于点N(点E向左运动时如图①,点E向右运动时如图②).(1)在点E的运动过程中,直线BG与CD的位置关系为________;(2)设DE=x,NB=y,求y与x之间的函数关系式,并求出y的最大值;(3)如图②,当DE的长度为3时,求∠BFE的度数.第2题图解:(1)BG∥CD;【解法提示】∵四边形EFGC是正方形,∴CG=CE,∠GCE=∠GFE=∠FEC =90°,∵∠ACB=∠GCE=90°,∴∠GCB=∠ECA,∵GC=CE,CB=CA,∴△CAE≌△CBG.又∵∠ACB=90°,BC=AC,D是AB的中点,∴∠CBG=∠CAE=45°,∠BCD=45°,∴∠CBG=∠BCD,∴BG∥CD.(2)∵CB=CA,CD⊥AB,∠ACB=90°,∴CD=BD=AD=3,∠CBA=∠A=45°,易得△CAE≌△CBG,∴∠CBG =∠A =45°,∴∠GBA =∠GBC +∠CBA =90°.∵∠BEN +∠BNE =90°,∠BEN +∠CED =90°,∴∠BNE =∠CED ,∵∠EBN =∠CDE =90°,∴△NBE ∽△EDC ,∴BN ED =BE CD ,∴y x =3-x 3,∴y =-31(x -32)2+34,∵-31<0,∴x =32时,y 的最大值为34;(3)如解图,作FH ⊥AB 于点H .∵CB =CA ,BD =CD ,∠BCA =90°,∴CD ⊥AB ,CD =BD =AD =3,∴tan ∠DCE =DE CD =33,∴∠DCE =30°,∵四边形EFGC 是正方形,∴EF=EC,∵∠CDE=∠EHF=90°,易证∠DCE=∠HEF,∴△CDE≌△EHF,∴∠DCE=∠HEF=30°,FH=DE,CD=EH,∵CD=BD,∴BD=EH,∴BH=DE=FH,∴△BHF是等腰直角三角形,∴∠BFH=45°,∵∠EFH=90°-∠HEF=60°,∴∠BFE=∠BFH+∠EFH=105°.第2题解图3.如图,在直角梯形ABCD中,∠A=∠D=90°,AB=8cm,CD=10cm,AD =6cm,点E从点A出发,沿A→D→C方向运动,运动速度为2cm/s,点F 同时从点A出发,沿A→B方向运动,运动速度为1cm/s.设运动时间为t(s),△CEF的面积为S(cm2).(1)当0≤t≤3时,t=________,EF=10.(2)当0≤t≤3时(如图①),求S与t的函数关系式,并化为S=a(t-h)2+k的形式,指出当t为何值时,S有最大值,最大值为多少?(3)当3≤t≤8时(如图②),求S与t的函数关系式,并求出当t为何值时,S有最大值,最大值为多少?第3题图解:(1)2;【解法提示】根据题意知,AF=t,AE=2t,∵∠A=90°,∴AF2+AE2=EF2,即t2+(2t)2=(10)2,解得:t=2(负值舍去).(2)当0≤t≤3时,如解图①,过点C作CP⊥AB,交AB延长线于点P,第3题解图①∵∠A=∠D=90°,∴四边形APCD是矩形,则CP=AD=6cm,∵AB=8cm,AD=6cm,∴BF =(8-t )cm ,DE =(6-2t )cm ,则S =S 梯形ABCD -S △AEF -S △CBF -S △CDE=12×(8+10)×6-12×t ×2t -12×(8-t )×6-12×(6-2t )×10=-t 2+13t=-(t -132)2+1694,即S =-(t -132)2+1694,∵当t <132时,S 随t 的增大而增大,∴当t =3时,S 取得最大值,最大值为30;(3)当3≤t ≤8时,如解图②,过点F 作FQ ⊥CD 于点Q ,第3题解图②由∠A =∠D =90°,知四边形ADQF 是矩形,∴FQ =AD =6cm ,∵AD +DE =2t ,AD =6cm ,CD =10cm ,∴CE =(16-2t )cm ,则此时S =12×(16-2t )×6=48-6t ,∵-6<0,∴S 随t 的增大而减小,∴当t =3时,S 取得最大值,最大值为30cm 2.4.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)①求线段CD 的长;②求证:△CBD ∽△ABC ;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值;(3)是否存在某一时刻t ,使得△CPQ 为等腰三角形?若存在,请直接写出满足条件的t 的值;若不存在,请说明理由.(1)①解:∵∠ACB =90°,AC =8,BC =6,∴AB =10,∵CD ⊥AB ,∴S △ABC =12BC ·AC =12AB ·CD ,∴CD =BC ·AC AB =6×810=524,∴线段CD 的长为524;②证明:∵∠B =∠B ,∠CDB =∠BCA =90°,∴△CBD ∽△ABC ;(2)解:如解图②,过点P 作PH ⊥AC ,垂足为H ,由题可知DP =t ,CQ =t ,则CP =524-t ,∵∠ACB =∠CDB =90°,∴∠HCP =90°-∠DCB =∠B ,∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB ,∴△CHP ∽△BCA ,∴PH AC =PC BA,∴PH 8=10524t -,∴PH =9625-45t ,∴S =12CQ ·PH =12t (9625-45t )=-25(t -125)2+288125,∵52-<0,∴当t =125时,S 最大=288125;(3)存在,t =125或14.455或2411.【解法提示】①若CQ =CP ,如解图①,则t =524-t .解得:t =125;②若PQ =PC ,如解图②所示.∵PQ =PC ,PH ⊥QC ,∴QH =CH =12QC =t 2.∵△CHP ∽△BCA .∴CH BC =CP AB .∴t 26=10524t -,解得t =14455;③若QC =QP ,如解图③,过点Q 作QE ⊥CP ,垂足为E ,同理可得:t =2411.综上所述:当t 为524秒或14455秒或2411秒时,△CPQ 为等腰三角形.第4题解图5.如图,在矩形ABCD 中,AB =6cm ,BC =8cm.如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2cm/s 和1cm/s.FQ ⊥BC ,分别交AC 、BC 于点P 和Q ,设运动时间为t (s)(0<t <4).(1)连接EF 、DQ ,若四边形EQDF 为平行四边形,求t 的值;(2)连接EP ,设△EPC 的面积为y cm 2,求y 与t 的函数关系式,并求y 的最大值;(3)若△EPQ 与△ADC 相似,请直接写出t 的值.解:(1)在矩形ABCD 中,∵AB =6cm ,BC =8cm ,∴CD =AB =6cm ,AD =BC =8cm ,∠BAD =∠ADC =∠DCB =∠B =90°,在Rt △ABC 中,由勾股定理得:AC =10,∵FQ ⊥BC ,∴∠FQC =90°,∴四边形CDFQ 是矩形,∴DF =QC ,FQ =DC =6cm ,由题意知,BE =2t ,QC =DF =t ,∴EQ =BC -BE -QC =8-3t ,∵四边形EQDF 为平行四边形,∴FD =EQ ,即t =8-3t ,解得t =2;(2)∵∠FQC =90°,∠B =90°,∴∠FQC =∠B ,∴PQ ∥AB ,∴△CPQ ∽△CAB ,∴PQ AB =QC BC,即PQ 6=t 8,∴PQ =34t ,∵S △EPC =12EC ·PQ ,∴y =12·(8-2t )·34t =-34t 2+3t =-34(t -2)2+3,即y =-34(t -2)2+3,∵a =-34<0,∴当t =2时,y 有最大值,y 的最大值为3;(3)t 的值为2或12857或12839.【解法提示】分两种情况讨论:若E 在FQ 左边,①当△EPQ ∽△ACD 时,可得:PQ CD =EQ AD ,即34t 6=8-3t 8,解得t =2;②当△EPQ ∽△CAD 时,可得:PQ AD =EQ CD ,即34t 8=8-3t 6,解得t =12857.若E 在FQ 右边,③当△EPQ ∽△ACD 时,可得:PQ CD =EQ AD ,即34t 6=3t -88,解得t =4(舍去);④当△EPQ ∽△CAD 时,可得:PQ AD =EQ CD ,即34t 8=3t -86,解得t =12839.综上所述,若△EPQ 与△ADC 相似,则t的值为:2或12857或12839.类型二动线型探究题6.如图,在△ABC 中,∠C =90°,∠A =60°,AC =2cm.长为1cm 的线段MN 在△ABC 的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M ,N 分别作AB 的垂线交直角边于P ,Q 两点,线段MN 运动的时间为t s.(1)若△AMP 的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围),并求出y 的最大值;(2)在线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C ,P ,Q 为顶点的三角形与△ABC 相似?第6题图解:(1)当点P 在AC 上时,∵AM =t ,∴PM =AM ·tan60°=3t ,∴y =12t ·3t =32t 2(0<t ≤1),当t =1时,y 最大=32;当点P 在BC 上时,PM =BM ·tan 30°=33(4-t ),∴y =12t ·33(4-t )=-36t 2+233t =-36(t -2)2+233(1<t <3),当t =2s 时,y 最大=233,综上所述,y0<t ≤12+233t ,1<t <3,∴当t =2s 时,y 最大=233;(2)∵AC =2,∴AB =4,∴BN =AB -AM -MN =4-t -1=3-t .∴QN =BN ·tan 30°=33(3-t ),由题知,若要四边形MNQP 为矩形,需PM =QN ,且P ,Q 分别在AC ,BC 上,即3t =33(3-t ),∴t =34,∴当t =34s 时,四边形MNQP 为矩形.(3)由(2)知,当t =34s 时,四边形MNQP 为矩形,此时PQ ∥AB ,∴△PQC ∽△ABC ,除此之外,当∠CPQ =∠B =30°时,△QPC ∽△ABC ,此时CQ CP =tan 30°=33,∵AM AP =cos 60°=12,∴AP =2AM =2t ,∴CP =2-2t ,∵BN BQ =cos 30°=32,∴BQ =BN 32=233(3-t ),又BC =23,∴CQ =23-233(3-t )=23t 3,∴23t 32-2t =33,解得t =12,∴当t =12s 或34s 时,以C ,P ,Q 为顶点的三角形与△ABC 相似.7.如图,在△ABC 中,AB =AC =5cm,BC=6cm,AD是BC边上的高.点P由C出发沿CA方向匀速运动.速度为1cm/s.同时,直线EF由BC出发沿DA方向匀速运动,速度为1cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.第7题图解:(1)如解图①,连接DF,第7题解图①∵AB=AC=5,BC=6,AD⊥BC,∴BD=CD=3,在Rt△ABD中AD=52-32=4,∵EF //BC ,∴△AEF ∽△ABC ,∴EF BC =AQ AD,∴EF 6=4-t 4,∴EF =32(4-t ),∵EF //BD ,∴当EF =BD 时,四边形EFDB 是平行四边形,∴32(4-t )=3,∴t =2,∴当t =2s 时,四边形EFDB 是平行四边形;(2)如解图②,作PN ⊥AD 于N ,第7题解图②∵PN //DC ,∴PN DC =AP AC,∴PN 3=5-t 5,∴PN =35(5-t ),∴y =12DC ·AD -12AQ ·PN =6-12(4-t )·35(5-t )=6-(310t 2-2710t +6)=-310t 2+2710t (0<t <4);(3)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .第7题解图③∵当QN 为AP 的垂直平分线时QA =QP ,QN ⊥AP ,∴AN =NP =12AP =12(5-t ),由题意cos ∠CAD =AD AC =AN AQ,∴12(5-t )4-t=45,∴t =73,∴当t =73s 时,点Q 在线段AP 的垂直平分线上.∵sin ∠FPH =FH PF =sin ∠CAD =35,∵PA =5-73=83,AF =AQ ÷45=2512,∴PF =712,∴FH =720.∴点F 到直线PQ 的距离h =720(cm).类型三动图型探究题8.如图①,在平行四边形ABCD 中,连接BD ,AD =6cm ,BD =8cm ,∠DBC =90°,现将△AEF 沿BD 的方向匀速平移,速度为2cm/s ,同时,点G 从点D 出发,沿DC 的方向匀速移动,速度为2cm/s.当△AEF 停止移动时,点G 也停止运动,连接AD ,AG ,EG ,过点E 作EH ⊥CD 于点H ,如图②所示,设△AEF 的移动时间为t (s)(0<t <4).(1)当t =1时,求EH 的长度;(2)若EG ⊥AG ,求证:EG 2=AE ·HG ;(3)设△AGD 的面积为y (cm 2),当t 为何值时,y 可取得最大值,并求y 的最大值.第8题图解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,又∠DBC =90°,∴∠ADB =90°,又AD =6cm ,BD =8cm ,由勾股定理得,AB =AD 2+BD 2=10cm ,当t =1时,EB =2cm ,则DE =8-2=6cm ,∵EH ⊥CD ,∠DBC =90°,∴△DEH ∽△DCB ,∴DE DC =EH BC ,即610=EH 6,解得EH =3.6cm ;(2)∵∠CDB =∠AEF ,∴AE ∥CD ,∴∠AEG =∠EGH ,又EG ⊥AG ,EH ⊥CD ,∴△AGE ∽△EHG ,∴EG HG =AE EG,∴EG 2=AE ·HG ;(3)由(1)得,△DEH ∽△DCB ,∴DE CD =EH BC ,即8-2t 10=EH 6,解得,EH =24-6t 5,∴y =12×DG ×EH =-6t 2+24t 5=-65t 2+245t =-65(t -2)2+245,∴当t =2时,y 的最大值为245.9.把Rt △ABC 和Rt △DEF 按如图①摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.已知:∠ACB =∠EDF =90°,∠DEF =45°,AC =8cm ,BC =6cm ,EF =10cm.如图②,△DEF 从图①的位置出发,以1cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动;当点P 移动到点B 时,点P 停止移动,△DEF 也随之停止移动.DE 与AC 交于点Q ,连接PQ ,设移动时间为t (s).(1)用含t 的代数式表示线段AP 和AQ 的长,并写出t 的取值范围;(2)连接PE ,设四边形APEQ 的面积为y (cm 2),试求出y 的最大值;(3)当t 为何值时,△APQ 是等腰三角形.第9题图解:(1)AP =2t ,∵∠EDF =90°,∠DEF =45°,∴∠CQE =45°=∠DEF ,∴CQ =CE =t ,∴AQ =8-t ,t 的取值范围是:0≤t ≤5;(2)如解图①,过点P 作PG ⊥x 轴于G ,可求得AB =10,sin B =45,PB =10-2t ,EB =6-t ,∴PG =PB sin B =45(10-2t ),∴y =S △ABC -S △PBE -S △QCE=12×6×8-12(6-t )×45(10-2t )-12t 2=-1310t 2+445t =-1310(t -4413)2+96865,∴当t =4413(s)(在0≤t ≤5内),y 有最大值,y 最大值=96865(cm 2);第9题解图(3)若AP =AQ ,则有2t =8-t 解得:t =83(s),若AP =PQ ,如解图②:过点P 作PH ⊥AC ,则AH =QH =8-t 2,PH ∥BC ,∴△APH ∽△ABC ,∴AP AH =AB AC ,即2t 8-t 2=108,解得:t =4021(s),若AQ =PQ ,如解图③:过点Q 作QI ⊥AB ,则AI =PI =12AP =t ,∵∠AIQ =∠ACB =90°∠A =∠A ,∴△AQI ∽△ABC ∴AI AQ =AC AB 即t 8-t =810,解得:t =329(s),综上所述,当t =83(s)或4021(s)或329(s)时,△APQ 是等腰三角形.10.如图①,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图①所示的位置绕G点沿逆时针方向旋转α(0°<α<90°),如图②,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:(1)连接CG,求证:△CGH∽△AGK;(2)连接HK,求证:KH∥EF;(3)设AK=x,△CKH的面积为y,求y关于x的函数关系式,并求出y的最大值.第10题图(1)证明:在Rt△ABC中,CG⊥AB,∠B=30°,∴∠GCH=∠GAK=60°,又∠CGH=∠AGK=α,∴△CGH∽△AGK;(2)证明:由(1)得△CGH∽△AGK,∴GH GK =CG AG.在Rt △ACG 中,tan ∠CAG =CG AG =3,∴GH GK = 3.在Rt △KHG 中,tan ∠GKH =GH GK =3,∴∠GKH =60°.∵在Rt △EFG 中,∠F =30°,∴∠E =60°,∴∠GKH =∠E ,∴KH ∥EF ;(3)解:由(1)得△CGH ∽△AGK ,∴CH AK =CG AG .由(2)知CG AG =3,∴CH AK = 3.∴CH =3AK =3x ,在Rt △ABC 中,∠B =30°,∴AC =12AB =2,∴CK =AC -AK =2-x ,∴y =12CK ·CH =12(2-x )·3x =-32x 2+3x ,又y =-32x 2+3x =-32(x -1)2+32,(0<x <2)∴当x =1时,y 有最大值为32.。
九年级数学代数综合训练题(含答案)
代数综合训练题一.选择题(本大题共8个小题,每个4分,共32分)1、肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )A .77.110⨯B .60.7110-⨯C .77.110-⨯D .87110-⨯2.下列运算正确的是( )A . a 2+a =2a 3B .a 2·a 3=a 6C .(-2a 3)2=4a 6D .a 6÷a 2=a 3 3、把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( )A .2a (4a 2﹣4a+1)B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)2 4、实数a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是( )A .﹣2a+bB .2a ﹣bC .﹣bD .b5、若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是( )6、若关于x 的方程+=3的解为正数,则m 的取值范围是( )A .m <B .m <且m ≠C .m >﹣D .m >﹣且m ≠﹣7、若不等式组11m x x ⎩-⎧⎨<>恰有两个整数解,则m 的取值范围是( ) A .-1≤m<0 B .-1<m≤0 C.-1≤m≤0 D.-1<m <0 8、抛物线y=x 2+bx+3的对称轴为直线x=1.若关于x 的一元二次方程x 2+bx+3-t=0(t 为实数)在-1<x <4的范围内有实数根,则t 的取值范围是( )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <6二、填空题:(本大题共4个小题,每小题4分,共16分.)9、如图,将函数y=12(x-2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A C DC B A O O O O x yx y x y y x(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是。
中考数学知识点训练题(代数综合测练)
代数综合测练【复习要点】初中代数综合题的特点:代数综合题是初中数学中知识覆盖面最广,综合性最强,解题方法灵活、多样的题型之一.近几年的中考综合题多以代数知识为主.解代数综合题必须认真审题、正确分析理解题意.解题过程中常用到转化、数形结合、分类讨论、方程等数学思想与方法.【例题解析】例1: 某化工原料经销公司购进7O00 kg 某种化工原料,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元,市场调查发现:单价定为每千克70元时,日均销售60kg ;单价每降低l 元时,均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时。
按一天计算).设销售单价为 x 元,日均获利为y 元.(1)求y 关于 x 的函数关系式及 的取值范围;(2)用(1)中求得的函数关系式 指出单价定为多少元时日均获利最多?为多少元?(3)若将这种化工原料全部售出。
比较|{均获利最多和销售单价最高这两种销售方式,哪一种获总利较多?多多少?解析:此题要抓住“日均获利=每千克获利×销售量-每天支出”这个数量关系。
(1)因为销售单价为x 元,则每千克降低(70一x )元,日均多售2(70--x)kg ,日均销量[60+2(70—x)] kg , 每千克获利(x 一30)元,依题意得y=(x 一30) [60+2(70一x)]一500,即为y=(x —30) (200 —2x) —500= -2x 2+260x-6500 (30~x ≤7O). ①(2)由式①得Y=一2(x 一65)+1 950.故单价为65元时,日均获利最多为1950元.(3)当日均获利最多时,单价为65元,日均销售60+2(70一65)=70(kg)。
总利润为1 950× 1 00=195 000(元).当销售单价最高为70元时,日均销售为60kg ,销售l l7天,获总利为(70-30)×7 000-117×500=221 500(元) , 221 500 -195 000=26 500(元).所以,销售单价最高时获总利较多,多获利26 500元.反思:解数学应用题的主要思路是构建数学模型,建立函数关系,再利用函数的特征来求解.例2 、(2009湖州市)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加。
(2020编)中考数学代数综合专题试卷精选汇编(有解析答案)-推荐
代数综合专题东城区20. 已知关于x 的一元二次方程()2320x m x m -+++=.(1) 求证:无论实数m 取何值,方程总有两个实数根;(2) 若方程有一个根的平方等于4,求m 的值.20. (1)证明:()()2=+3-42m m ∆+()2=+1m∵()2+10m ≥,∴无论实数m 取何值,方程总有两个实根. -------------------2分(2)解:由求根公式,得()()1,231=2m m x +±+, ∴1=1x ,2=+2x m .∵方程有一个根的平方等于4,∴()2+24m =.解得=-4m ,或=0m . -------------------5分西城区20.已知关于x 的方程2(3)30mx m x +--=(m 为实数,0m ≠).(1)求证:此方程总有两个实数根.(2)如果此方程的两个实数根都为正整数,求整数m 的值.【解析】(1)2222(3)4(3)691269(3)0m m m m m m m m ∆=--⨯-=-++=++=+≥∴此方程总有两个不相等的实数根.(2)由求根公式,得(3)(3)2m m x m --±+=, ∴11x =,23x m=-(0m ≠). ∵此方程的两个实数根都为正整数,∴整数m 的值为1-或3-.海淀区20.关于x 的一元二次方程22(23)10x m x m --++=.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数..,判断方程根的情况. 20.解:(1)∵m 是方程的一个实数根,∴()222310m m m m --++=. ………………1分 ∴13m =-. ………………3分(2)24125b ac m ∆=-=-+.∵0m <,∴120m ->.∴1250m ∆=-+>. ………………4分∴此方程有两个不相等的实数根.丰台区20.已知:关于x 的一元二次方程x 2 - 4x + 2m = 0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数....,且该方程的根都是整数..,求m 的值.20.解:(1)∵方程有两个不相等的实数根,∴Δ>0.∴Δ=24421680m m --⋅=->().∴2m <. ………………………2分(2)∵2m <,且m 为非负整数,∴=0m 或1. ………………………3分当m =0时,方程为240x x -=,解得方程的根为01=x ,24x =,符合题意;当m =1时,方程为2420x x -+=,它的根不是整数,不合题意,舍去.综上所述,m =0. ………………………5分石景山区20.关于x 的一元二次方程2(32)60mx m x +--=.(1)当m 为何值时,方程有两个不相等的实数根;(2)当m 为何整数时,此方程的两个根都为负整数.20.解:(1)∵24b ac ∆=-2(32)24m m =-+2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分 (2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数,∴1m =-或2m =-. ∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分朝阳区20. 已知关于x 的一元二次方程0)1(2=+++k x k x .(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k 的取值范围.20. (1)证明:依题意,得k k 4)1(2-+=∆ …………………1分.)1(2-=k …………………………………2分∵0)1(2≥-k ,∴方程总有两个实数根. ………………………3分(2)解:由求根公式,得11-=x ,k x -=2. …………………………4分∵方程有一个根是正数,∴0>-k .∴0<k .………………………………5分燕山区21.已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k 的值.21.(1) 证明:因为[])(14)12(4222k k k ac b +⨯⨯-+-=- 01〉=所以有两个不等实根 …………3′..(2)当x=1 时,01)12(12=++⨯+-k k k 02=-k k ′1021==k k 或 ………5′门头沟区22. 已知关于x 的一元二次方程22410x x k ++-=有实数根.(1)求k 的取值范围;(2)若k 为正整数,且方程有两个非零的整数根,求k 的取值.22(本小题满分5分)解:(1)由题意得,168(1)0k ∆=--≥.………………………………………1分∴3k ≤. ………………………………………2分(2)∵k 为正整数,∴123k =,,.当1k =时,方程22410x x k ++-=有一个根为零;……………………3分当2k =时,方程22410x x k ++-=无整数根; ……………………4分当3k =时,方程22410x x k ++-=有两个非零的整数根.综上所述,1k =和2k =不合题意,舍去;3k =符合题意.……………5分大兴区20. 已知关于x 的一元二次方程01632=-+-k x x 有实数根,k 为负整数.(1)求k 的值;(2)如果这个方程有两个整数根,求出它的根.20.解:(1)根据题意,得Δ=(-6)2-4×3(1-k )≥0.解得2≥-k .……………………………………………………………1分∵k 为负整数,∴k =-1,-2.……………………………………… 2分(2)当1=-k 时,不符合题意,舍去; ………………………………… 3分当2=-k 时,符合题意,此时方程的根为121==x x .………… 5分平谷区20.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.20.解:(1)∵关于x 的一元二次方程有两个不相等的实数根.∴()2Δ2410k =--> ····················1 =8-4k >0.∴2k < ··························2(2)∵k 为正整数,∴k =1. (3)解方程220x x +=,得120,2x x ==-. (5)怀柔区20.已知关于x 的方程226990-+-=x mx m .(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x 1,x 2,其中x 1>x 2,若x 1=2x 2,求m 的值.20.(1)∵△=(-6m)2-4(9m 2-9) ……………………………………………………………………1分=36m 2-36m 2+36=36>0.∴方程有两个不相等的实数根……………………………………………………………2分(2)66332m x m ±===±.……………………………………………………3分 ∵3m+3>3m -3,∴x 1=3m+3,x 2=3m-3, …………………………………………………………………………4分 ∴3m+3=2(3m -3) .∴m=3. …………………………………………………………………………………………5分 延庆区20.已知:∠AOB 及边OB 上一点C .求作:∠OCD ,使得∠OCD=∠AOB .要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个..即可) 2.请你写出作图的依据.C B O A20. (1)作图(略) ……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ……5分顺义区20.已知关于x 的一元二次方程()21260x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m 的取值范围.20.(1)证明:∵()214(26)m m ⎡⎤∆=----⎣⎦221824m m m =-+-+21025m m =-+()25m =-≥0 …………………………………………………… 2分 ∴ 方程总有两个实数根. ………………………………………………… 3分(2)解:∵1(5)2m m x -±-==, ∴ 13x m =-,22x =. ……………………………………………… 4分 由已知得 30m -<.∴ 3m <. ………………………………………………………………… 5分。
初三代数综合题复习
-----代数综合问题设置类型(前三种常见)一:求抛物线解析式二:求参数的取值范围三:求二次函数最值四:求代数式的值五:与面积有关问题解题思路一:求抛物线解析式根据不同已知条件进行答题二:求参数的取值范围三:求二次函数最值知识讲解1.顶点式:2()y a x h k=-+2.交点式:1()()y a x x x x=--bxaxy++=2常用数学思想:数形结合,分类讨论函数值的大小比较:先看a,次看轴,画草图,比大小。
求二次函数y=ax2+bx+c(a,b,c为常数且a≠0)最值的方法1、若自变量x的取值范围是全体实数,则函数在顶点处取得最大值(或最小值),即若a>0,当x=—时,y最小值=;若a<0,当x=—时,y最大值=。
2、若自变量的取值范围是x1≤x≤x2,且a>0.若x=—在自变量范围x1≤x≤x2内,如图1,当x=—时,y最小值=;当x=x1时,y最大值=ax12+bx1+c.若x=—不在自变量范围x1≤x≤x2内,如图2,当x=x2时,y最小值=ax12+bx1+c;当x=x2时,y最大值=ax22+bx2+c. 在对称轴左侧相反。
四:求代数式的值(找到代数式与根的关系,通过整体代入进行还原求值)五:与面积有关问题(求面积最大值时点的坐标—列出来面积有关的一元二次方程,求二次方程的最值)整数点问题1.已知:关于x 的一元二次方程222(23)41480x m x m m --+-+= (1)若0,m >求证:方程有两个不相等的实数根;(2)若12<m <40的整数,且方程有两个整数根,求m 的值2. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.3.(2016东城一模)已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.4.已知:关于x 的一元二次方程23(1)230mx m x m --+-=()m 为实数 (1) 若方程有两个不相等的实数根,求m 的取值范围; (2)求证:无论m 为何值,方程总有一个固定的根;(3)若m 为整数,且方程的两个根均为正整数,求m 的值.5、已知关于x 的方程()03132=+++x m mx .(1)求证:不论为m 任意实数,此方程总有实数根;(2)若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P (1x ,1y )与点Q (n x +1,2y )在(2)中抛物线上,(点P 、Q 不重合),且21y y =,求代数式81651242121++++n n n x x 的值有公共点,求取值范围1. (2009年中考) 已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围.2.(2016海淀一模)在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线 与图象G 有两个交点,结合函数的图象,求k 的取值范围.xOy 224y mx mx m =-+-+(0)y kx b k =≠3.(2016通州一模)已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C . (1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;4.(2016怀柔一模)在平面直角坐标系中,二次函数y=x2+mx+2m-7的图象经过点(1,0).(1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H,求此时函数的取值范围;y(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.5.(2016延庆一模)已知:抛物线y=x²+bx+c经过点A(2,-3)和B(4,5). (1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G1,求图象G1的表达式;(3)设B点关于对称轴的对称点为E,抛物线G2:y=ax2(a≠0)与线段EB恰有一个公共点,结合函数图象,求a的取值范围6.(2016西城一模)在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,. (1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE V 的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.7.(2016海淀一模)在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线 与图象G 有两个交点,结合函数的图象,求k 的取值范围.xOy 224y mx mx m =-+-+(0)y kx b k =≠8.已知关于的一元二次方程有两个不相等的实数根. (1)求的取值范围;(2)当取最小的整数时,求抛物线的顶点坐标以及它与轴的交点坐标; (3)将(2)中求得的抛物线在轴下方的 部分沿轴翻折到轴上方,图象的 其余部分不变,得到一个新图象. 请你画出这个新图象,并求出新图象 与直线有三个不同公共点时的值.x 032)1(222=--++-k k x k x k k 32)1(222--++-=k k x k x y x x x x m x y +=m9.已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0 (m>1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b 的图象与此图象有两个公共点时,b的取值范围.10.(2014年北京中考)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.11.已知关于x的一元二次方程x2+(4-m)x+1-m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是-3,在平面直角坐标系xOy中,将抛物线y=x2+(4-m)x+1-m 向右平移3个单位,得到一个新的抛物线,当直线y=x+b与这个新抛物线有且只有一个公共点时,求b的值.12.(10年门头沟一模第23题)关于x 的一元二次方程22(1)2(2)10m x m x ---+=. ⑴当m 为何值时,方程有两个不相等的实数根;⑵点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; ⑶在⑵的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.数形结合1.(2013年中考)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B 。
初中数学专题复习代数综合题(含答案)
初中数学专题复习代数综合题(含答案)代数综合题是一类综合题,主要包括方程、函数、不等式等内容,需要用到化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等数学思想方法。
解决代数综合题需要注意归纳整理教材中的基础知识、基本技能、基本方法,抓住题意,化整为零,层层深入,各个击破。
同时,需要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,从而达到解决问题的目的。
已知关于x的一元二次方程x-(k+1)x-6=0的一个根是2,求方程的另一根和k的值。
解:设方程的另一根为x1,由韦达定理:2 x1 =-6,∴x1 =-3.由韦达定理:-3+2= k+1,∴k=-2.已知关于x的一元二次方程(k+4)x+3x+k-3k-4=0的一个根为2,求k的值。
解:把x=0代入这个方程,得k-3k-4=0,解得k1=1,k2=-4.因为k+4≠0,所以k≠-4,所以k=1.需要注意需满足k+4的系数不能为0,即k≠-4.已对方程2x+3x-l=0,求作一个二次方程,使它的两根分别是已知方程两根的倒数。
解:设2x+3x-l=0的两根为x1、x2,则新方程的两根为1/x1、1/x2.得到1/x1+1/x2=3,所以新方程为y2-3y-2=0.某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y(件)之间的关系如下表:x(元)xxxxxxxx… y(件)xxxxxxxx…(省略号表示数据继续往下延伸)。
⑴在草稿纸上描点,观察点的分布,建立y与x的恰当函数模型。
⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴经观察发现各点分布在一条直线上,∴设y=kx+b(k≠0)。
⑵由题意可知每件产品的销售价应为20元,此时每日销售利润为200元。
1、根据题意可列出函数关系:y=ax^2+bx+c,代入三组数据得到三个方程组成的线性方程组:begin{cases} 8.6=1990a+1990b+c \\ 10.4=1995a+1995b+c \\ 12.9=2000a+2000b+c \end{cases}$$解得:$a=0.45,b=-1792.5,c=xxxxxxx$,所以二次函数为$y=0.45x^2-1792.5x+xxxxxxx$,代入$x=15$得到2005年该市国内生产总值为14.1亿元人民币。
中考数学专项练习 代数式(含解析)-人教版初中九年级全册数学试题
代数式一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.20162.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是,第n个式子是(n为正整数).5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要根钢管.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.8.一盒铅笔12支,n盒铅笔共有支.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为,第n个等式为.(n是正整数)10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.代数式参考答案与试题解析一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.2016【考点】平面镶嵌(密铺).【专题】压轴题;规律型.【分析】根据图象显示的规律找到,1个三角形,2个三角形,3个三角形组成的周长,得到规律为第n个三角形的周长为3+(n﹣1),所以可求得2016个这样的三角形镶嵌而成的四边形的周长.【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2016个这样的三角形镶嵌而成的四边形的周长是3+2015=2018.故选A.【点评】本题需注意要以第一图为基数来找规律.2.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)【考点】平行四边形的性质.【专题】压轴题;规律型.【分析】从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.【解答】解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选B.【点评】本题为找规律题,从前三个图形各自找出有多少个平行四边形,从中观察出规律,然后写出与n有关的代数式来表示第n个中的平行四边形的数目.3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144【考点】由实际问题抽象出二元一次方程组.【专题】几何图形问题;压轴题.【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则x+y=12,故A选项正确;B、根据小正方形的面积可以求得该正方形的边长是2,则x﹣y=2,故B选项正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4xy=144﹣4=140,xy=35,故C选项正确;D、(x+y)2=x2+y2+2xy=144,故D选项错误.故选:D.【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是﹣,第n个式子是(﹣1)n(n为正整数).【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察给出的一列数,发现这一列数的分母a的指数分别是1、2、3、4…,与这列数的项数相同,故第7个式子的分母是a7,第n个式子的分母是a n;这一列数的分子b的指数分别是2、5、8、11,…即第一个数是3×1﹣1=2,第二个数是3×2﹣1=5,第三个数是3×3﹣1=8,第四个数是3×4﹣1=11,…每个数都比项数的3倍少1,故第7个式子的分子是b3×7﹣1=b20,第n个式子的分子是b3n﹣1;特别要注意的是这列数字每一项的符号,它们的规律是奇数项为负,偶数项为正,故第7个式子的符号为负,第n个式子的符号为(﹣1)n.【解答】解:第7个式子是﹣,第n个式子是(﹣1)n.故答案为:﹣,(﹣1)n.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.对于本题而言难点就是变化的部分太多,有三处发生变化:分子、分母、分式的符号.学生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出分式的符号的变化规律是难点中的难点.5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要83 根钢管.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】根据题意分析可得:搭建如图①的单顶帐篷需要17根钢管,从串第2顶帐篷开始,每多串一顶帐篷需多用11根钢管.【解答】解:第一顶帐篷用钢管数为17根;串二顶帐篷用钢管数为17+11×1=28根;串三顶帐篷用钢管数为17+11×2=39根;以此类推,串七顶帐篷用钢管数为17+11×6=83根.故答案为:83.【点评】本题考查图形中的计数规律,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.【考点】规律型:数字的变化类;倒数.【专题】压轴题;规律型.【分析】理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解答】解:根据差倒数定义可得: ==, =4,.显然每三个循环一次,又2009÷3=669余2,故a2009和a2的值相等.【点评】此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有15 个边长是1的正六边形.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】分割含有边长是1的正六边形,其实你可以看个底部,要数六边形,可以看出三角形的三个顶点小三角形是不包含在内的,一开始你可以忽略它们,而底部每个小三角形都由一个正六边形所独有的底三角形,当大的正三角形边长为N时,所以底部有六边形有N﹣2个,上一层的两个顶点小三角形又可以忽略,而第二层有小三角形N﹣1个,所以第二层有六边形有N﹣1﹣2个,即N﹣3个,如此类推,再上几层就是N﹣4,N﹣5,N﹣6个,一直到从上数下第三层,再上一层的三角形已经不能再当六边形的底了,所以到此为止,所以共有的六边形是N﹣2+N﹣3+N﹣4+…+2+1=[(1+N﹣2)(N﹣2)]÷2=.【解答】解:故当N=7时, =15个.【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.8.一盒铅笔12支,n盒铅笔共有12n 支.【考点】列代数式.【专题】应用题.【分析】本题考查列代数式,要注意文字中的数学关系,一盒12支,n盒则共有12n支.【解答】解:12•n=12n.【点评】本题考查列代数式,要明确一盒12支与n盒的关系.解决问题的关键是读懂题意,找到所求的量的等量关系.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为62﹣42=4×5 ,第n个等式为(n+2)2﹣n2=4×(n+1).(n是正整数)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察几个式子可得①32﹣12=4×2可化为:(1+2)2﹣12=4×(1+1);②42﹣22=4×3可化为(2+2)2﹣22=4×(2+1);故第4个等式为62﹣42=4×5;第n个等式为(n+2)2﹣n2=4×(n+1).【解答】解:62﹣42=4×5,(n+2)2﹣n2=4×(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为37 .表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b【考点】规律型:图形的变化类.【专题】压轴题;图表型.【分析】每一竖行相隔的数是相同的,每相邻两个横行之间相隔的数也相隔1.【解答】解:表二从竖行看,下边的数应比上面的数大3,∴a=14+3=17.表三从竖行看,下边的数比上边的数大6,那么后面那行下边的数就该比上边的数大7.∴b=13+7=20∴a+b的值为37.【点评】关键是通过归纳与总结,得到其中的规律.11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是(6,5).【考点】坐标确定位置.【专题】压轴题;规律型.【分析】寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案为:(6,5).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是 6 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】由题中可以看出,以2为底的幂的末位数字是2,4,8,6顺次循环.那么2008÷4=502,则22008的末位数是应是循环的最后一个6.【解答】解:∵以2为底的幂的末位数字是2,4,8,6顺次循环,且2008÷4=502,∴22008的末位数是应是循环的最后一个6.【点评】解决本题的关键是得到以2为底的幂的末位数字的循环规律.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子3n+1 枚.(用含n的代数式表示)【考点】规律型:图形的变化类.【专题】规律型.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第一个图需棋子4;第二个图需棋子4+3=7;第三个图需棋子4+3+3=10;…第n个图需棋子4+3(n﹣1)=3n+1枚.故答案为:3n+1.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有60个★.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是37 .【考点】规律型:数字的变化类.【专题】规律型.【分析】第一个数是12+1=2;第二个数是22+1=2;缺少的是第6个数应为62+1=37.【解答】解:缺少的是第6个数应为62+1=37.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到数列中的数和相应的数的平方之间的关系.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.【考点】坐标确定位置.【专题】压轴题;规律型.【分析】观察图表寻找规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.据此规律解答.【解答】解:观察图表可知以下规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.故(9,2)表示第9行,从左到右第2个数,即=.故答案填:.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有8 次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析可得:第一行分别为1的1,2,3,…的倍数;第二行分别为2的1,2,3,…的倍数;第三行分别为3的1,2,3,…的倍数;…;2008=1×2×2×2×251;故2008在表格中出现的次数共有8次.【解答】解:2008=1×2×2×2×251,故2008在表格中出现的次数共有8次.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】通过观察数据找到规律,并以规律解题即可.【解答】解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出分式的符号的变化规律是此类题目中的难点.。
2020年苏科版九年级中考数学复习专题 代数与几何综合类(无答案)
专题代数与几何综合类一、函数应用类例1如图是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额−总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价。
下面给出的四个图象中虚线表示新的销售方式中利润与销售量的函数图象,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②例2一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。
为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器。
设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→BB.B→A→CC.B→O→CD.C→B→O例3为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等。
设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=14t+25(1⩽t⩽20,且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系为y2=12t+40(21⩽t⩽40,且t为整数).下面我们就来研究销售这种商品的有关问题。
(1)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)的关系式。
(2)试预测未来40天中哪一天的日销售利润最大,最大利润是多少?(3)在实际销售的前20天中,该公司决定每销售1件商品就捐赠a元利润(a<4)给希望工程。
最新中考数学专项训练:代数综合问题(基础)(含答案解析)
中考冲刺:代数综合问题(基础)一、选择题1. 如图所示,已知函数和y=kx(k≠0)的图象交于点P,则根据图象可得,关于的二元一次方程组的解是( )A. B. C. D.2.(2016•河北模拟)如图,点A是x轴正半轴上的任意一点,过点A作EF∥y轴,分别交反比例函数和的图象于点E、F,且,连接OE、OF,有下列结论:①这两个函数的图象关于x轴对称;②△EOF的面积为(k1﹣k2);③;④当∠EOF=90°时,,其中正确的是()A.①③ B.②④ C.①④ D.②③3.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确的命题有()A. 1 个B. 2 个C. 3 个D. 4 个二、填空题4.如图所示,是二次函数(a≠0)和一次函数(n≠0)的图象,观察图象写出y2≥y1时,x的取值范围______________.5.已知二次函数若此函数图象的顶点在直线y=-4上,则此函数解析式为______.6. (2016•历下区二模)已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论:①abc<0;②4a+2b+c>0;③b2﹣4ac<0;④b>a+c;⑤a+2b+c>0,其中正确的结论有______.三、解答题7.(北京校级期中)已知关于x的一元二次方程mx2﹣(m+1)x+1=0(1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m的整数值;(3)在(2)中开口向上的抛物线y=mx2﹣(m+1)x+1与x轴交于点A,与y轴交于点B,直线y=﹣x上有一个动点P.求使PA+PB取得最小值时的点P的坐标,并求PA+PB的最小值.8. 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?9. 已知P()和Q(1,)是抛物线上的两点.(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值.10. 已知:关于x的一元二次方程,其中.(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式;(3)已知点E(a,)、F(2a,y)、G(3a,y)都在(2)中的抛物线上,是否存在含有、y、y,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.答案与解析【答案与解析】一、选择题1.【答案】C;【解析】本题考查方程组的解(数)与直线交点(形)坐标之间的关系.2.【答案】B;【解析】①∵点E在反比例函数的图象上,点F在反比例函数的图象上,且,∴k1=OA•EA,k2=﹣OA•FA,∴,∴这两个函数的图象不关于x轴对称,即①错误;②∵点E在反比例函数y1=的图象上,点F在反比例函数y2=的图象上,∴S△OAE=k1,S△OAF=﹣k2,∴S△OEF=S△OAE+S△OAF=(k1﹣k2),即②正确;③由①可知,∴③错误;④设EA=5a,OA=b,则FA=3a,由勾股定理可知:OE=,OF=.∵∠EOF=90°,∴OE2+OF2=EF2,即25a2+b2+9a2+b2=64a2,∴b2=15a2,∴=,④正确.综上可知:正确的结论有②④.3.【答案】B;【解析】若式子有意义,则x≥1,①错误;由∠α=27°得∠α的补角是=180°-27=153°,②正确.把x=2 代入方程x2-6x+c=0得4-6×2+c=0,解得c=8,③正确;反比例函数中,若x>0 时,y 随x 的增大而增大,得:k-2<0,∴k<2,④错误.故选B.二、填空题4.【答案】-2≤x≤1;【解析】本题考查不等式与比较函数值的大小之间的关系.5.【答案】,;【解析】∵顶点在直线y=-4上,∴.,m=±1.∴此函数解析式为:,.6.【答案】①②④⑤;【解析】∵抛物线开口朝下,∴a<0,∵对称轴x=﹣=1,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①正确;根据图象知道当x=2时,y=4a+2b+c>0,故②正确;根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;根据图象知道当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④正确;∵对称轴x=﹣=1,∴b=﹣2a,∴a+2b+c=﹣3a+c,∵a<0,c>0,∴a+2b+c=﹣3a+c>0,故⑤正确.故答案为:①②④⑤.三、解答题7.【答案与解析】(1)证明:由题意得m≠0,∵△=(m+1)2﹣4m×1=(m﹣1)2≥0,∴此方程总有两个实数根;(2)解:方程的两个实数根为x=,∴x1=1,x2=,∵方程的两个实数根都是整数,且m为整数,∴m=±1;(3)由(2)知,m=±1.∵抛物线y=mx2﹣(m+1)x+1的开口向上,∴m=1,则该抛物线的解析式为:y=x2﹣2x+1=(x﹣1)2.易求得A(1,0),B(0,1).如图,点B关于直线y=﹣x的对称点C的坐标为(﹣1,0),连接AC,与直线y=﹣x的交点即为符合条件的点P.此时点P与原点重合,则P(0,0).所以PA+PB=AC=2.8.【答案与解析】(1)设y=kx,当x=1时,y=2,解得k=2,∴y=2x(0≤x≤20).(2)当0≤x<4时,设y=a(x-4)2+16.由题意,∴a=-1,∴y=-(x-4)2+16,即当0≤x<4时,.当4≤x≤10时,y=16.(3)设小迪用于回顾反思的时间为x(0≤x≤10)分钟,学习收益总量为y,则她用于解题的时间为(20-x)分钟.当0≤x<4时,.当x =3时,.当4≤x≤10时,y=16+2(20-x)=56-2x.y随x的增大而减小,因此当x=4时,,综上,当x=3时,,此时20-x=17.答:小迪用于回顾反思的时间为3分钟,用于解题的时间为17分钟时,学习收益总量最大.9.【答案与解析】解:(1)因为点P、Q在抛物线上且纵坐标相同,所以P、Q关于抛物线对称轴对称并且到对称轴距离相等.所以抛物线对称轴,所以.(2)由(1)可知,关于的一元二次方程为=0.因为,=16-8=80.所以,方程有两个不同的实数根,分别是,.(3)由(1)可知,抛物线的图象向上平移(是正整数)个单位后的解析式为.若使抛物线的图象与轴无交点,只需无实数解即可.由==<0,得又是正整数,所以的最小值为2.10.【答案与解析】解:(1)将原方程整理,得,△=>0∴.∴或.(2)由(1)知,抛物线与轴的交点分别为(m,0)、(4,0),∵A在B的左侧,.∴A(m,0),B(4,0).则,.∵AD·BD=10,∴AD2·BD2=100.∴.解得.∵,∴.∴,.∴抛物线的解析式为.(3)答:存在含有、y、y,且与a无关的等式,如:(答案不唯一).证明:由题意可得,,.∵左边=.右边=--4=.∴左边=右边.∴成立.。
2020人教版 初中数学中考二轮复习讲练---代数综合题(含解析)
代数综合题知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点. (1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。
中考数学专题练习 代数式(含解析)-人教版初中九年级全册数学试题
代数式一、选择题1.一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是()A.﹣3y2B.2x2+y2C.3y2﹣2x2D.3y22.若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.3.下列各组代数式中,属于同类项的是()A.b与B.a2b与a2cC.22与34D.p与q4.下列计算正确的是()A.3x2﹣x2=3 B.3a2﹣2a2=1 C.3x2+5x3=8x5D.3a2﹣a2=2a25.如果a=255,b=344,c=433,则a、b、c的大小关系是()A.a>c>b B.b>a>c C.b>c>a D.c>b>a6.一个两位数,十位数字是x,个位数字是y,如果在它们中间加上一个0得到的数是()A.10x+y B.100x+y C.100y+x D.x+10y7.如果=0,则下列等式成立的是()A.a=b=0 B.a=b C.a+b=0 D.ab=08.设A、B均为实数,且,,则A、B的大小关系是()A.A>B B.A=B C.A<B D.A≥B9.下列多项式属于完全平方式的是()A.x2﹣2x+4 B.x2+x+C.x2﹣xy+y2 D.4x2﹣4x﹣110.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+1二、填空题11.一台电视机的成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为元.12.已知=0 则a+b=.13.如果最简二次根式与是同类二次根式,则a=.14.把a3+ab2﹣2a2b分解因式的结果是.15.观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是.三、解答下列各题16.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.17.已知A=a+2,B=a2﹣a+5,C=a2+5a﹣19,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.18.已知a、b、c为△ABC三边,利用因式分解说明b2﹣a2+2ac﹣c2的符号.19.某餐厅中1X餐桌可坐六人,有以下两种摆放方式(如图1和2).一天中午,餐厅要接待98位顾客共同就餐,但餐厅只有25X这样的餐桌,若你是这个餐厅的经理,你应该选择哪种拼接方式来摆餐桌?请说明理由.20.计算:.代数式参考答案与试题解析一、选择题1.一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是()A.﹣3y2B.2x2+y2C.3y2﹣2x2D.3y2【考点】整式的加减.【分析】先根据题意列出式子,再去括号后合并同类项即可.【解答】解:这个代数式是(x2+2y2)+(x2﹣y2)=x2+2y2+x2﹣y2=2x2+y2,故选B.【点评】本题考查了整式的加减的应用,解此题的关键是能根据题意列出算式.2.若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.3.下列各组代数式中,属于同类项的是()A.b与B.a2b与a2cC.22与34D.p与q【考点】同类项.【分析】根据字母相同且相同的字母的指数也相同是同类项,可得答案.【解答】解:A、相同字母的指数不同,故A不是同类项;B、字母不同,故B不是同类项;C、常数也是同类项,故C是同类项;D、字母不同,故D不是同类项;故选:C.【点评】本题考查了同类项,注意常数也是同类项.4.下列计算正确的是()A.3x2﹣x2=3 B.3a2﹣2a2=1 C.3x2+5x3=8x5D.3a2﹣a2=2a2【考点】合并同类项.【分析】先判断是否是同类项,如果是同类项,根据合并同类项法则合并即可.【解答】解:A、结果是2x2,故本选项错误;B、结果是a2,故本选项错误;C、不是同类项,不能合并,即结果是3x2+5x3,故本选项错误;D、结果是2a2,故本选项正确;故选D.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5.如果a=255,b=344,c=433,则a、b、c的大小关系是()A.a>c>b B.b>a>c C.b>c>a D.c>b>a【考点】幂的乘方与积的乘方.【分析】a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,从而可得出a、b、c的大小关系.【解答】解:∵a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,∴b>c>a.故选C.【点评】本题考查了幂的乘方和积的乘方,解答本题关键是掌握幂的乘方法则.6.一个两位数,十位数字是x,个位数字是y,如果在它们中间加上一个0得到的数是()A.10x+y B.100x+y C.100y+x D.x+10y【考点】列代数式.【分析】中间加上一个0得到的数是三位数.百位数字是x,十位数字是0,个位数字是y,这个数表示为(100x+y),由此得出答案.【解答】解:百位数字是x,十位数字是0,个位数字是y,这个数表示为(100x+y).故选:B.【点评】此题考查列代数式,关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.7.如果=0,则下列等式成立的是()A.a=b=0 B.a=b C.a+b=0 D.ab=0【考点】立方根.【分析】根据立方根的和为0,可得被开方数互为相反数,可得答案.【解答】解:∵=0,∴a+b=0.故选:C.【点评】本题考查了立方根,立方根的和为0,被开方数的和为0.8.设A、B均为实数,且,,则A、B的大小关系是()A.A>B B.A=B C.A<B D.A≥B【考点】实数大小比较.【分析】根据算术平方根的定义得出A是一个非负数,且m﹣3≥0,推出3﹣m≤0,得出B≤0,即可得出答案,【解答】解:∵,∴A是一个非负数,且m﹣3≥0,∴m≥3,∵,∵3﹣m≤0,即B≤0,∴A≥B,故选D.【点评】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.9.下列多项式属于完全平方式的是()A.x2﹣2x+4 B.x2+x+C.x2﹣xy+y2 D.4x2﹣4x﹣1【考点】完全平方式.【分析】根据完全平方公式的公式结构对各选项分析判断利用排除法求解.【解答】解:A、x2﹣2x+4不是完全平方式,故本选项错误;B、x2+x+=(x+)2,故本选项正确;C、x2﹣xy+y2,不是完全平方式,故本选项错误;D、4x2﹣4x﹣1,不是完全平方式,故本选项错误.故选B.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.10.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+1【考点】根据实际问题列一次函数关系式;规律型:图形的变化类.【分析】由图可知:第一图:有花盆3个,每条边有2盆花,那么3=3×(2﹣1);第二图:有花盆6个,每条边有3盆花,那么6=3×(3﹣1);第三图:有花盆9个,每条边有4盆花,那么9=3×(4﹣1);…由此可知S与n的关系式为S=3(n﹣1).【解答】解:根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以S=3n﹣3,即S=3(n﹣1).故选B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.本题要注意给出的图片中所包含的规律,然后根据规律列出函数关系式.二、填空题11.一台电视机的成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为元.【考点】列代数式.【分析】每台实际售价=销售价×70%.根据等量关系直接列出代数式即可.【解答】解:a(1+25%)×70%=70%(1+25%)a=元.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意销售价比成本价增加25%后,再按销售价的70%出售.12.已知=0 则a+b=.【考点】分式的值为零的条件;非负数的性质:绝对值;非负数的性质:偶次方;二次根式有意义的条件.【专题】计算题.【分析】分式的值为零,则分子为零,且分母不为零、二次根式的被开方数是非负数;据此列出关于a、b的方程组,通过解该方程组即可求得a、b的值.【解答】解:根据题意,得,解得,,则a+b=2+=;故答案是:.【点评】本题考查了分式的值为零的条件、非负数的性质以及二次根式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如果最简二次根式与是同类二次根式,则a= 5 .【考点】同类二次根式;最简二次根式.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.14.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式继续进行二次因式分解.【解答】解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.【点评】本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.15.观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是.【考点】规律型:数字的变化类.【分析】通过观察可以看出两个数的和等于两个数的积,分数的分母比分子小一,而相乘的整数和相加的整数也比分母大一,由此规律得出答案即可.【解答】解:由所给的各式可知,不妨设分母为n,则分子为n+1,另一个因数和加数也为n+1,因此可知律为.故答案为:.【点评】此题考查数字的变化规律,找出式子之间的联系,由特殊找出一般规律解决问题.三、解答下列各题16.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.【考点】整式的混合运算.【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【解答】解:S剩下=S大圆﹣S小圆1﹣S小圆2=π•()2﹣π•()2﹣π•()2==;答:剩下的钢板的面积是.【点评】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.17.已知A=a+2,B=a2﹣a+5,C=a2+5a﹣19,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.【考点】因式分解的应用;整式的加减.【专题】分类讨论.【分析】计算B﹣A后结论,从而判断A与B的大小;同理计算C﹣A,根据结果来比较A与C的大小.【解答】解:(1)B﹣A=(a﹣1)2+2>0,所以B>A;(2)C﹣A=a2+5a﹣19﹣a﹣2,=a2+4a﹣21,=(a+7)(a﹣3).因为a>2,所以a+7>0,从而当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.【点评】本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.18.已知a、b、c为△ABC三边,利用因式分解说明b2﹣a2+2ac﹣c2的符号.【考点】因式分解的应用;三角形三边关系.【分析】原式后三项提取﹣1变形后,利用完全平方公式分解因式,再利用平方差公式分解因式;由a,b及c为三角形的三边,利用两边之和大于第三边即可判断出因式分解后积的正负.【解答】解:原式=b2﹣(a2+c2﹣2ac)=b2﹣(a﹣c)2=(a+b﹣c)(﹣a+b+c);∵a,b,c为△ABC的三边长,∴(a+b﹣c)(﹣a+b+c)中,(a+b﹣c)>0,(﹣a+b+c)>0,∴(a+b﹣c)(﹣a+b+c)>0.【点评】此题考查了因式分解的应用,以及三角形的三边关系,灵活运用完全平方公式及平方差公式是解本题的关键.19.某餐厅中1X餐桌可坐六人,有以下两种摆放方式(如图1和2).一天中午,餐厅要接待98位顾客共同就餐,但餐厅只有25X这样的餐桌,若你是这个餐厅的经理,你应该选择哪种拼接方式来摆餐桌?请说明理由.【考点】规律型:图形的变化类.【分析】能够根据桌子的摆放发现规律,分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.【解答】解:∵第一种中,只有一X桌子是6人,后边多一X桌子多4人.即有nX桌子时是6+4(n ﹣1)=4n+2.第二种中,有一X桌子是6人,后边多一X桌子多2人,即6+2(n﹣1)=2n+4.∴当n=25时,4n+2=4×25+2=102>98,当n=25时,2n+4=2×25+4=54<98,所以,选用第一种摆放方式.【点评】此题主要考查了图形的变化类,关键是通过归纳与总结,得到其中的规律.20.计算:.【考点】分式的乘除法.【分析】分式的除法计算首先要转化为乘法运算,然后对式子进行化简,化简的方法就是把分子、分母进行分解因式,然后进行约分.【解答】解:原式==.【点评】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.。
九年级数学总复习--数与代数综合练习
九年级数学总复习--数与代数综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数与代数》综合练习一、选择题.1、在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数; ③有理数比无理数小; ④无限小数不一定是无理数. 其中正确的是( ).(A )②③; (B )②③④; (C )①②④; (D )②④.2、下列运算正确的是( ).(A )1535·a a a =; (B )1025a a =)(-; (C )235a a a =-; (D )932-=-.3、“鸡兔同笼”是我国民间流传的诗歌形式的数学题,“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几只鸡儿几只兔?”解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( ).(A )⎩⎨⎧=+=+1004236y x y x ; (B )⎩⎨⎧=+=+100236y x y x ;(C )⎩⎨⎧=+=+1002236y x y x ; (D )⎩⎨⎧=+=+1002436y x y x .4、如图,已知函数b ax y +=和kx y =的图象交于点P ,根据图象可得,关于y x 、的二元一次方程组⎩⎨⎧=+=kx y bax y 的解是( ). (A )⎩⎨⎧==23y x ; (B )⎩⎨⎧=-=23y x ;(C )⎩⎨⎧-==23y x ; (D )⎩⎨⎧-=-=23y x .5、已知0>>b a ,则下列不等式不一定成立.....的是( ).(A )2b ab >; (B )c b c a +>+; (C )ba 11<; (D )bc ac >.6、将抛物线2x y =向左平移4个单位后,再向下平移2个单位,则所得到的抛物线的解析式为( ).(A )2)4(2++=x y ;(B )2)4(2-+=x y ;(C )2)4(2+-=x y ; (D )2)4(2--=x y .二、填空1、2313()()a bc ---= .2、地球的表面积约为510000000平方千米,用科学记数法可以表示为 平方千米.3、当x 时,分式242--x x 的值为0.4、已知:533y x a +与3+-b xy 是同类项,则b a += .5、请你写出满足73<<-x 的整数x = .6、分解因式:2269y xy x ++= .7、已知实数y x 、满足45-++y x =0,则代数式2007)(y x +的值为 .8、已知方程组⎩⎨⎧=+=+8302by x y ax 的解是⎩⎨⎧-==12y x ,则a = ,b= .9、抛物线x x y 42+=的顶点坐标是 . 10、如图,P 是反比例函数xky =图象上的一点,x PA ⊥轴于A 点,y PB ⊥轴于B 点,若矩形OAPB 的面积为2,则此反比例函数的关系式为 . 11、如图,已知二次函数c bx ax y ++=21和一次函数n mx y +=2的图象,由图象知,当12y ≥y 时,x 的取值范围是: .12、一只跳蚤在一条数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次停下来休息时,此时离原点的距离是 个单位. 三、解答题.1、计算:3÷12)1()2(02-+-⨯--;2、先化简,后求值:aa a 21a a a ÷1a 12222++--+-,其中3=a ,结果精确到0.01.3、解方程x x 22+=2.4、解不等式组⎪⎩⎪⎨⎧->--x x x ≥3121)1(215、如图,在矩形ABCD 中,AB =4,AD =10,动点P 由点A (起点)沿着折线AB -BC -CD 向点D (终点)移动,设点P 移动的路程为x ,△PAD 的面积为S ,试写出S 与x 之间的函数关系式.6、在“情系灾区”的捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息:信息一:甲班共捐款300元,乙班共捐款232元;信息二:乙班平均每人捐款数是甲班平均每人捐款数的54; 信息三:甲班的人数比乙班的人数多2人. 根据以上信息,请你求出甲、乙两班的人数各是多少?7、某酒店客房部有三人间,双人间客房,收费标准如下表:为吸引游客,实行团体入住5折优惠措施.一个50人的旅游团在优惠期间入住该酒店,住了一些三人普通间和双人普通间客房,且每间客房正好住满,住一天共花去住宿费1510元,问旅游团住了三人普通间和双人普通间客房各多少间?8、某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购车数量搭配方案有哪几种?(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案?9、某市A 、B 两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C 、D 两个冷冻厂,已知C 厂可储存240吨,D 厂可储存260吨;从A 村运往C 、D 两厂的费用分别为每吨20元和25元,从B 村运往C 、D 两厂的费用分别为每吨15元和18元,设从A 村运往C 厂的柑桔重量为x 吨,A 、B 两村运往两厂的柑桔运输费用分别y A 元和y B 元.(1)请根据题意填写下表:(2)分别求出A y 、B y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若B 村的柑桔运费不得超过4830元,在这种情况下,请问怎样调配数量,才能使两村所花运费之和最小?并求出这个最小值.10、某环保器材公司销售一种新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元/件)存在如图所示的一次函数关系,每年销售该产品的总开支z(万元)(不含进价成本)与年销售y(万件)存在函数关系z=10y+42.5.(1)求y与x之间的函数关系式;(2)试求出该公司销售该产品年获利w(万元)与销售单价x(元/件)的函数关系式(年获利=年销售总收入金额-年销售产品的总进价-年总开支金额);当销售单价x为何值时,年获利最大最大值是多少(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)题中的函数图象确定x的取值范围.。
2020年初三中考数学复习:代数式含答案
2020年初三中考数学复习:代数式一、单选题1.“a与b的的差”,用代数式表示为( )A. B. C. D.2.a+1的相反数是()A. -a+1B. -(a+1)C. a-1D.3.每100千克小麦可出x千克面粉,y千克小麦可出面粉的千克数为()A. B. C. D.4.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A. 4B. ﹣4C. 16D. ﹣165.设,则代数式的值为( ).A. -6B. 24C.D.6.某冰箱降价30%后,每台售价a元,则该冰箱每台原价应为()A. 0.3a元B. 0.7a元C. 元D. 元7.x的2倍加上y的和乘以x的2倍减去y的差,所得的积写成代数式为()A. (2x+y)·2x-yB. 2x+y·(2x-y)C. 2x+y·2x-yD. (2x+y)(2x-y)8.下列图案是我国古代窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第10个图中所贴剪纸“○”的个数为()A. 32个B. 33个C. 34个D. 35个9.观察图中正方形四个顶点所标的数字规律,可得出数2017应标在()A. 第504个正方形的左下角B. 第504个正方形的右上角C. 第505个正方形的左下角D. 第505个正方形的右上角10.下列代数式中符合书写要求的是()A. ab2×4B. xyC. 2a2bD. 6xy2÷311.有理数a,b在数轴上对应的位置如图所示,那么代数式的值是()A. ﹣1B. 0C. 1D. 212.如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A. 231πB. 210πC. 190πD. 171π13.已知:,则的值是()A. B. C. 3 D. -314.若正整数按如图所示的规律排列,则第8行第5列的数字是()A. 64B. 56C. 58D. 6015.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P2018﹣P2017的值为()A. B. C. D.二、填空题16.用同样大小的黑色棋子按如图所示的规律摆放,则第2 017个图共有________枚棋子.17.已知a—2b的值是2018,则1—2a+4b的值等于________.18.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有1499个黑棋子,则n=________.19.如果定义新运算“※”,满足a※b=a×b﹣a÷b,那么1※2=________.20.已知的值为,则代数式的值为________.三、计算题21.当x=3,y= –2时,求下列代数式的值.(1)(2)22.计算:已知|x|= ,|y|= ,且x<y<0,求6÷(x﹣y)的值.23.观察下列等式:,,,……(1)按此规律写出第5个等式;(2)猜想第n个等式,并说明等式成立的理由.24.已知a2+b2=5,ab=-2,求代数式2(4a2+2ab-b2)-3(5a2-3ab+2b2)+b2的值.25.如果有理数、满足,试求…… 的值.四、解答题26.如图,试用字母,表示阴影部分的面积,并求出当a=12cm,b=4cm,π≈3时各自阴影部分的面积.27.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.28.说出下列代数式的意义:(1)2a﹣3c;(2);(3)ab;(4)a2﹣b2.五、综合题29.观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:① 1× =1-② 2× =2-③ 3× =3-……(1)在下面给出的四个正方形中画出第四个图形,并在右边写出与之对应的等式;________;________(2)猜想并写出与第n个图形相对应的等式:________。
2020年中考数学总复习:代数压轴综合题
解析 (1B(0,4).
∵点B向右平移5个单位长度得到点C,
∴C(5,4).
(2)将y=0代入y=4x+4得x=-1,
∴A(-1,0).
将点A(-1,0)代入抛物线解析式y=ax2+bx-3a得0=a-b-3a,即b=-2a,
∴抛物线的对称轴为直线x=- b =- 2a =1.
解析 (1)令y=0,即0=x2-4x+3, 解得x=1或x=3. ∵抛物线y=x2-4x+3与x轴交于点A,B(点A在点B的左侧), ∴点A,B的坐标分别为(1,0),(3,0). 令x=0,得y=3. ∵抛物线y=x2-4x+3与y轴交于点C, ∴点C的坐标为(0,3). 设直线BC的表达式为y=kx+b,k≠0,
2.(2018北京,26,6分)在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx-3a经 过点A,将点B向右平移5个单位长度,得到点C. (1)求点C的坐标; (2)求抛物线的对称轴; (3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
2020年中考数学总复习
代数压轴综合题
中考真题
1.(2019北京,26,6分)在平面直角坐标系xOy中,抛物线y=ax2+bx- 1 与y轴交于点A,将点A向右平移2个单位长 a
度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含a的式子表示);
(2)求抛物线的对称轴;
(3)已知点P 12 ,
∴a<- 4 . 3
若抛物线的顶点在线段BC上,则顶点为(1,4),如图3.
图2 图3
将点(1,4)代入抛物线的解析式得4=a-2a-3a, ∴a=-1.
初三代数题目练习
故选 B. 点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是 多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止. 6 考点:因式分解-十字相乘法等;因式分解的意义。1923992 分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变 形叫做把这个单项式因式分解,注意分解的结果要正确. 解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错 误; B、运用十字相乘法分解 m2+m﹣6=(m+3)(m﹣2),正确; C、是整式的乘法,不是分解因式,故本选项错误; D、没有平方和的公式,x2+y2 不能分解因式,故本选项ቤተ መጻሕፍቲ ባይዱ误. 故选 B. 点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是 多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
其身正,不令而行;其身不正,虽令不从。——《论语》 人人好公,则天下太平;人人营私,则天下大乱。——刘鹗
分析:首先找到它后面那个整数 x+1,然后根据完全平方公式解答. 解答:解:x2 是一个正整数的平方,它后面一个整数是 x+1, ∴它后面一个整数的平方是:(x+1)2=x2+2x+1. 故选 C. 点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式: (a±b)2=a2±2ab+b2. 5, 考点:因式分解-十字相乘法等;因式分解的意义。1923992 分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变 形叫做把这个单项式因式分解,注意分解的结果要正确. 解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错 误; B、运用十字相乘法分解 m2+m﹣6=(m+3)(m﹣2),正确; C、是整式的乘法,不是分解因式,故本选项错误; D、没有平方和的公式,x2+y2 不能分解因式,故本选项错误.
九年级数学代数精炼练习集
九年级数学代数精炼练习集一、简答题1. 计算下列各式的值:a) $3(2x - 4) - (x + 5)$,其中$x = 6$b) $\frac{3}{4} (6y - 8) - \frac{1}{2} (2y + 1)$,其中$y = 2$2. 求解下列方程:a) $5x + 12 = 7x - 6$b) $3(2y - 5) = 4y - 7$3. 将下列各式化简:a) $2x - (3x + 4) + (5 - x)$b) $\frac{7x + 9}{x} - \frac{2x - 5}{x}$二、填空题1. 在下列各组数中,判断哪些是互为相反数的?a) 3和-3b) -1.5和1.5c) 0和-0.025d) -10和102. 求解下列方程的解集:a) $3(x - 2) + 2 = 8 - (2x + 1)$b) $2(3y + 5) - y = 9$三、解答题1. 已知$m = 5$,求下列各式的值:a) $3m + 2$b) $4m - 7$2. 计算下列各式的值:a)$x(x + 3) - 2(x - 1)$,其中$x = 4$b) $2(3y - 4)^2 - 3(2y + 1)$,其中$y = 2$四、应用题小明有一些铅笔,小红也有一些铅笔。
如果小明把自己手中的铅笔全部给小红,那么小红手中的铅笔数将是小明给她的铅笔数的两倍减1。
设小明手中的铅笔数为$x$,小红手中的铅笔数为$y$,求解下列方程:$(x - n) + n = 2(x - n) - 1$其中$n$为小明先从自己的铅笔中拿出的数量。
五、解答题1. 计算下列各式的值:a) $2(a - 1)^2 - (a + 3)^2$,其中$a = -2$b) $3(b + 2)^3 - 4(b - 1)^3$,其中$b = 1$2. 化简下列各式:a) $(x + 1)(x + 2) + (x - 1)(x - 3)$b) $(2x - 3)^2 - (4x - 1)(4x + 1)$以上是九年级数学代数精炼练习集的题目,每题都带有解答。
九年级数学练习题之代数几何综合题
九年级数学练习题之代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题要点点是借助几何直观解题,运用方程、函数的思想解题,灵便运用数形结合,由形导数,以数促形,综合运用代数几何知识解题 . Ⅱ、典型例题剖析【例 1】 ( 温州, 12 分 ) 如图,已知四边形ABCD内接于⊙ O,A 是的中点, AEAC于 A,与⊙O及 CB的延长线分别交于点F、E,且, EM切⊙O于 M。
⑴ △ADC∽△ EBA;⑵ AC2=BC⑶若是 AB=2,EM=3,求 cotCAD 的值。
解: ⑴∵四边形 ABCD内接于⊙ O, CDA=ABE,∵, DCA=BAE,△CAD∽△ AEB⑵过 A 作 AHBC于 H(如图 )∵A是中点, HC=HB=BC,∵CAE=900, AC2=CHCE=BCCE⑶∵A是中点, AB=2,AC=AB=2,∵EM是⊙O的切线, EBEC=EM2①∵AC2=BCCE,BCCE=8②①+②得: EC(EB+BC)=17,EC2=17∵EC2=AC2+AE2, AE=∵△ CAD∽△ ABE, CAD=AEC,cotCAD=cotAEC=点拨:此题的要点是成立转变思想,将未知的转变为已知的 . 此题表现的特别突出 . 如,将 CAD转变为 AEC就特别要点 . 【例 2】( 自贡 ) 如图 2-5-2 所示,已知直线 y=2x+2 分别与 x 轴、 y 轴交于点 A、 B,以线段 AB为直角边在第一象限内作等腰直角△ABC,BAC=90○。
过 C 作 CDx轴, D 为垂足 .(1)求点 A 、 B 的坐标和 AD的长 ;(2)求过B、A、C 三点的抛物线的剖析式。
解: (1) 在 y=2x+2 中分别令 x=0,y=0.得 A(l ,0) , B(0, 2).易得△ ACD≌△ BAO,所以AD=OB=2.(2) 因为 A(1 ,0) , B(0, 2) ,且由 (1) ,得 C(3,l).设过过 B、 A、C 三点的抛物线为所以所以点拨:此题的要点是证明△ACD≌△ BAO.【例 3】( 重庆, 10 分 ) 如图,在平面直角坐标系内,已知点A(0 , 6) 、点 B(8 , 0) ,动点 P 从点 A 开始在线段 AO上以每秒 1 个单位长度的速度向点O搬动,同时动点Q从点 B 开始在线段 BA上以每秒 2 个单位长度的速度向点 A 搬动 , 设点 P、Q搬动的时间为t 秒 .(1)求直线 AB的剖析式 ;(2) 当 t 为何值时,△APQ与△ AOB 相似 ?(3)当 t 为何值时,△ APQ 的面积为个平方单位 ?解: (1) 设直线 AB的剖析式为y=kx+b由题意,得解得所以,直线AB的剖析式为y=-x+6.(2) 由 AO=6, BO=8 得 AB=10所以 AP=t ,AQ=10-2t1 当 APQ=AOB时,△ APQ∽△ AOB.所以 =解得t=(秒)2 当 AQP=AOB时,△ AQP∽△ AOB.所以 =解得t=(秒)(3)过点 Q作 QE垂直 AO于点 E.在 Rt△AOB中, SinBAO==在 Rt△AEQ中, QE=AQSinBAO=(10-2t)=8 -t 所以,S△APQ=APQE=t(8-t)=-+4t=解得t=2(秒)或t=3(秒).( 注:过点P 作 PE垂直 AB于点 E 也可,并相应给分)点拨:此题的要点是随着动点P 的运动,△ APQ 的形状也在发生着变化,所以应分情况:①APQ=AOB=90○② APQ=ABO这.样,就获取了两个时间限制. 同时第 (3) 问也可以过P 作PEAB.【例 4】( 南充,10 分 ) 如图 2-5-7 ,矩形 ABCD中,AB=8,BC=6,对角线 AC上有一个动点 P( 不包括点 A 和点 C). 设 AP=x,四边形 PBCD的面积为 y.(1)写出 y 与 x 的函数关系,并确定自变量x 的范围 .(2)有人提出一个判断:关于动点P,⊿ PBC面积与⊿ PAD 面积之和为常数 . 请你说明此判断可否正确,并说明原由.解: (1) 过动点 P 作 PEBC于点 E.在 Rt⊿ABC中, AC=10, PC=AC-AP=10-x.∵PEBC, ABBC,⊿ PEC∽⊿ ABC.故,即⊿PBC面积 =又⊿ PCD面积 =⊿PBC 面积 =即 y , x 的取值范围是 0(2) 这个判断是正确的 .原由:由 (1) 可得,⊿ PAD 面积 =⊿PBC面积与⊿ PAD 面积之和 =24.点拨:由矩形的两边长6,8. 可得它的对角线是10,这样PC=10-x,而面积y 是一个不规则的四边形,所以可以把它看作规则的两个三角形:△PBC、△ PCD.这样问题就特别容易解决了 .Ⅲ、综合牢固练习(100 分 90 分钟 )1、如图 2-5-8 所示,在直角坐标系中,△ABC 各极点坐标分别为 A (0 ,) , B(-1 ,0) 、 C(0, 1) 中,若△ DEF 各极点坐标分别为 D(,0) 、E(0 ,1) 、F(0 ,-1) ,则以下判断正确的选项是( ) A.△DEF 由△ ABC绕 O点顺时针旋转 90○获取 ;B.△DEF 由△ ABC绕 O点逆时针旋转 90○获取 ;C.△DEF 由△ ABC绕 O点顺时针旋转 60○获取 ;D.△DEF 由△ ABC绕 O点顺时针旋转120○获取2.如图 2-5-9, 已知直线 y=2x+1 与 x 轴交于 A 点,与 y 轴交于 B 点,直线 y=2x1 与 x 轴交于 C 点,与 y 轴交于 D 点,试判断四边形 ABCD的形状 .3.如图 2-5-10 所示,在矩形 ABCD中,BD=20,ADAB,设ABD=,已知 sin 是方程 25z2-35z+ 12=0 的一个实根 . 点 E、 F 分别是 BC、 DC上的点, EC+CF=8,设 BE=x,△ AEF面积等于 y.⑴求出 y 与 x 之间的函数关系式;⑵当 E、 F 两点在什么地址时y 有最小值 ?并求出这个最小值 .4.(10分)如图2-5-11所示,直线y=-x+ 4与x轴、y轴分别交于点M、N.(1)求 M、 N 两点的坐标 ;(2)若是点 P 在坐标轴上,以点 P 为圆心,为半径的圆与直线y=-x+ 4 相切,求点 P 的坐标 .5.(10 分 ) 如图 2-5-12 所示,已知等边三角形 ABC中,AB=2,点 P 是 AB边上的任意一点 ( 点 P 可以与点 A 重合,但不与点B 重合 ) ,过点 P 作 PEBC.垂足为 E; 过点 E 作 EFAC,垂足为F; 过点 F 作 FQAB,垂足为 Q.设 BP=x, AQ=y.⑴写出 y 与 x 之间的函数关系式;⑵当 BP的长等于多少时,点P 与点 Q重合 ;⑶当线段 PE、 FQ订交时,写出线段PE、 EF、 FQ所围成三角形的周长的取值范围( 不用写出解题过程)6.(12分)如图2-5-13所示,已知A 由两点坐标分另为(28 ,0)和 (0 ,28) ,动点 P 从 A 点开始在线段 AO上以每秒 3 个长度单位的速度向原点O运动,动直线EF 从 x 轴开始以每秒1 个长度单位的速度向上平行搬动( 即 EF∥x轴 ) 并且分别交y 轴,线段 AB交于 E、 F 点 . 连接 FP,设动点P 与动直线EF 同时出发,运动时间为t 秒.⑴当 t=1 秒时,求梯形 OPFE的面积, t 为何值时,梯形 OPFE 的面积最大,最大面积是多少?⑵当梯形OPFE的面积等于△ APF 的面积时,求线段PF 的长 .⑶设 t 的值分别取t1 ,t2 时 (t1t2),所对应的三角形分别为△ AF1P1 和△ AF2P2 ,试判断这两个三角形可否相似,请证明你的判断 .7.(12 分 ) 如图 2-5-14 所示,在直角坐标系中,矩形 ABCD的极点, A 的坐标为 (1 ,0) ,对角线的交点 P 的坐标为 ( , 1)⑴写出 B、 C、 D 三点的坐标 ;⑵若在 AB上有一点 E 作,入过 E 点的直线将矩形ABCD的面积分为相等的两部分,求直线l 的剖析式 ;⑶若过 C 点的直线将矩形 ABCD的面积分为 4: 3 两部分,并与y 轴交于点 M,求过点 C、D、M三点的抛物线的剖析式 . 8.(10分 ) 已知矩形 ABCD在平面直角坐标系中,极点 A、 B、D 的坐标分别为A(0, 0) ,B(m, 0) ,D(0, 4) 其中 m0.⑴写出极点 C 的坐标和矩形ABCD的中心 P 点的坐标 ( 用含 m 的代数式表示 )⑵若一次函数y=kx-1 的图象把矩形ABCD分成面积相等的两部分,求此一次函数的剖析式( 用含 m的代数式表示 )⑶在⑵的前提下,又与半径为 1 的⊙M相切,且点 M(0 ,1) ,求此矩形 ABCD的中心 P 点的坐标 .9.(10分)如图2-5-15所示,等边三角形ABC的边长为 6,点 D、 E 分别在边 AB,AC上,且 AD=AE=2,若点 F 从点 B 开始以每秒二个单位长度的速度沿射线BC方向运动,设点F 运动的时间为 t 秒,当 t0 时,直线 FD 与过点 A 且平行于 BC 的直线订交于点G,GE的延长线与BC的延长线订交于点H,AB与GH订交于点 O.⑴设△ EGA 的面积为 S,写出 S 与 t的函数剖析式;⑵当 t 为何值时, AB⑶请你证明△ GFH 的面积为定值 .10. (10 分 ) 如图 2-5-16 ,在矩形 ABCD中,AB=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)若抛物线C 2:y =ax 2(a ≠0)与线段AB 恰有一个公共点,结合函数的图象求a 的取值范围.2. 在平面直角坐标系xOy 中,抛物线y =2x 2+mx +n 经过点A (0,-2),B (3,4). (1)求抛物线的函数解析式及对称轴; (2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上的一动点,记抛物线在A ,B 之间的部分为图象G (包 含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.3.在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B. (1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的函数解析式;(3)若该抛物线在-2<x <-1这一段位于直线l 的上方,并且在2<x <3这一段位于直线AB 的下方,求该抛物线的函数解析式.4. 已知二次函数y =(t +1)x 2+2(t +2)x +32在x =0和x =2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y =kx +6的图象与二次函数的图象都经过点A (-3,m ),求m 和k 的值; (3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧),将二次函数的图象在点B ,C 间的部分(含点B 和点C )向左平移n (n >0)个单位长度后得到的图象记为G ,同时将(2)中得到的直线y =kx +6向上平移n 个单位长度.请结合图象回答:当平移后的直线与图象G 有公共点时,求n 的取值范围.5. 在平面直角坐标系xOy 中,二次函数y =mx 2+()m -3x -3()m >0的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P ()n ,0是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x轴的直线交这个一次函数的图象于点M ,交二次函数y =mx 2+()m -3x -3()m >0的图象于点N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.6. 在平面直角坐标系xOy 中,抛物线y =12x 2-x +2与y 轴交于点A ,顶点为B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的函数解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (t >0)个单位后与直线BC 只有一个公共点,求t 的取值范围.7. 如图Z8-4,将抛物线M 1:y =ax 2+4x 向右平移3个单位长度,再向上平移3个单位长度,得到抛物线M 2,直线y =x 与M 1的一个交点记为A ,与M 2的一个交点记为B ,点A 的横坐标是-3.(1)求a 的值及M 2的函数解析式.(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线y =x +n 恰好经过正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线y =x +n 与正方形CDEF 始终没有公共点,求n 的取值范围(直接写出结果).8. 已知二次函数y 1=x 2+bx +c 的图象C 1经过(-1,0),(0,-3)两点. (1)求C 1对应的函数解析式;(2)将C 1先向左平移1个单位长度,再向上平移4个单位长度,得到抛物线C 2,将C 2对应的函数解析式记为y 2=x 2+mx +n ,求C 2对应的函数解析式;(3)设y 3=2x +3,在(2)的条件下,如果在-2≤x ≤a 内存在..某一个x 的值,使得y 2≤y 3成立,利用函数图象直接写出a 的取值范围.9.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +1()a ≠0过点A ()-1,0,B ()1,1,与y 轴交于点C.(1)求抛物线y =ax 2+bx +1()a ≠0的函数解析式.(2)若点D 在抛物线y =ax 2+bx +1()a ≠0的对称轴上,当△ACD 的周长最小时,求点D 的坐标.(3)在抛物线y =ax 2+bx +1()a ≠0的对称轴上是否存在点P ,使△ACP 成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.10.在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -3(m ≠0)与x 轴交于A (3,0),B 两点. (1)求抛物线的函数解析式及点B 的坐标;(2)将-2<x <3时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点C (4,2)的直线y =kx +b (k ≠0)与图象M 在第三象限内有两个公共点,结合图象求b 的取值范围.11. 二次函数y =ax 2+bx +c (a ≠0)的图象与一次函数y 1=x +k 的图象交于A (0,1),B 两点,C (1,0)为二次函数图象的顶点.(1)求二次函数y =ax 2+bx +c (a ≠0)的解析式;(2)在平面直角坐标系中画出二次函数y =ax 2+bx +c (a ≠0)的图象和一次函数y 1=x +k 的图象;(3)把(1)中的二次函数y =ax 2+bx +c (a ≠0)的图象平移后得到新的二次函数y2=ax 2+bx +c +m (a ≠0,m 为常数)的图象,定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为y 1或y 2,如果y 1≠y 2,函数f 的函数值等于y 1,y 2中的较小值;如果y 1=y 2,函数f 的函数值等于y 1(或y 2).”当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.12.在平面直角坐标系xOy 中,抛物线y =mx 2-2mx +m +4与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的函数解析式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y =kx +b 经过点D 和点E (-1,-2),求直线DE 的函数解析式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.13. 在平面直角坐标系xOy 中,抛物线y =x 2-(m -1)x -m (m >0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C.(1)求点A 的坐标;(2)当S △ABC =15时,求该抛物线的函数解析式;(3)在(2)的条件下,经过点C 的直线l :y =kx +b (k <0)与抛物线的另一个交点为D .该抛物线在直线l 上方的部分与线段CD 组成一个新函数的图象.请结合图象回答:若新函数的最小值大于-8,求k 的取值范围.14. 已知抛物线y =ax 2+x +c (a ≠0)经过A (-1,0),B (2,0)两点,与y 轴相交于点C ,点D 为该抛物线的顶点.(1)求该抛物线的函数解析式及点D 的坐标;(2)点E 是该抛物线上一动点,且位于第一象限,当点E 到直线BC 的距离为22时,求点E 的坐标; (3)在(2)的条件下,在x 轴上有一点P ,且∠EAO +∠EPO =∠α,当tan α=2时,求点P 的坐标.15.在平面直角坐标系xOy 中,二次函数y =(a -1)x 2+2x +1的图象与x 轴有交点,a 为正整数. (1)求a 的值;(2)将二次函数y =(a -1)x 2+2x +1的图象向右平移m 个单位长度,再向下平移(m 2+1)个单位长度,当-2≤x ≤1时,二次函数有最小值-3,求实数m 的值.1.解:(1)当y =2时,2=x -1,x =3.∴A (3,2). ∵点A ,B 关于直线x =1对称,∴B (-1,2).(2)把(3,2),(-1,2)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧2=9+3b +c ,2=1-b +c ,解得⎩⎪⎨⎪⎧b =-2,c =-1. ∴抛物线C 1的解析式为y =x 2-2x -1,顶点坐标为(1,-2).(3)如图,当C 2过点A ,点B 时为临界状态,将A (3,2)代入y =ax 2,则9a =2,a =29,将B (-1,2)代入y =ax 2,则a =2,∴29≤a<2.2.解:(1)∵y =2x 2+mx +n 经过点A (0,-2),B (3,4),∴⎩⎪⎨⎪⎧n =-2,18+3m +n =4,解得⎩⎪⎨⎪⎧m =-4,n =-2. ∴抛物线的函数解析式为y =2x 2-4x -2.∴对称轴为直线x =1. (2)由题意可知C (-3,-4).二次函数y =2x 2-4x -2的最小值为-4.如图,由图象可以看出点D 纵坐标的最小值即为-4,最大值为直线BC 与抛物线对称轴的交点的纵坐标. 由B (3,4),C (-3,-4)可知直线BC 的函数解析式为y =43x .当x =1时,y =43.∴-4≤t ≤43.3.解:(1)当x =0时,y =-2,∴A (0,-2),抛物线的对称轴为直线x =--2m2m=1,∴B (1,0). (2)易得点A 关于对称轴直线x =1的对称点为A ′(2,-2),点B 关于对称轴对称的点仍为点B , ∴直线l 经过点A ′,B.设直线l 的函数解析式为y =kx +b (k ≠0).则⎩⎪⎨⎪⎧2k +b =-2,k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =2,故直线l 的函数解析式为y =-2x +2. (3)∵抛物线的对称轴为直线x =1,∴抛物线在2<x <3这一段与在-1<x <0这一段关于对称轴对称. 如图,结合图象可以观察到抛物线在-2<x <-1这一段位于直线l 的上方,在-1<x <0这一段位于直线l 的下方,∴抛物线与直线l 的交点的横坐标为-1. 当x =-1时,y =-2×(-1)+2=4, ∴抛物线与直线l 的一个交点为(-1,4). 当x =-1时,m +2m -2=4, 解得m =2,∴抛物线的函数解析式为y =2x 2-4x -2.4.解:(1)∵二次函数y =(t +1)x 2+2(t +2)x +32在x =0和x =2时的函数值相等,∴0+0+32=4(t +1)+4(t +2)+32,解得t =-32,∴二次函数的解析式是y =-12x 2+x +32.(2)把A (-3,m )代入y =-12x 2+x +32得m =-12×(-3)2-3+32=-6,即A (-3,-6).将A (-3,-6)代入y =kx +6,得-6=-3k +6,解得k =4,故m =-6,k =4.(3)由题意可知,点B ,C 间的部分图象的函数解析式是y =-12(x -3)(x +1)(-1≤x ≤3),则抛物线平移后得到图象G 的函数解析式是y =-12(x -3+n )(x +1+n )(-n -1≤x ≤3-n ),此时直线平移后的解析式是y =4x +6+n .如果平移后的直线与平移后的二次函数图象相切,则方程4x +6+n =-12(x -3+n )(x +1+n )有两个相等的实数解,即-12x 2-(n +3)x -12n 2-92=0有两个相等的实数解,Δ=[-(n +3)]2-4×(-12)×(-12n 2-92)=6n =0,解得n =0.∵与已知n >0相矛盾,∴平移后的直线与平移后的抛物线不相切,∴结合图象可知,如果平移后的直线与抛物线有公共点, 则两个临界的交点为(-n -1,0),(3-n ,0), ∴0=4(-n -1)+6+n ,解得n =23.0=4(3-n )+6+n ,解得n =6. 故n 的取值范围是23≤n ≤6.5.解:(1)∵点A ,B 是二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴的交点,∴令y =0,即mx 2+(m -3)x -3=0, 解得x 1=-1,x 2=3m.又∵点A 在点B 左侧且m >0, ∴点A 的坐标为(-1,0). (2)由(1)可知点B 的坐标为(3m ,0).∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为(0,-3).∵∠ABC =45°,∴3m=3,解得m =1.(3)由(2)得,二次函数的解析式为y =x 2-2x -3.依题意并结合图象(如图)可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2, 由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y =kx +b 中,得⎩⎪⎨⎪⎧-2k +b =5,2k +b =-3,解得⎩⎪⎨⎪⎧k =-2,b =1. ∴一次函数的解析式为y =-2x +1.6.解:(1)∵抛物线y =12x 2-x +2与y 轴交于点A ,∴点A 的坐标为(0,2).∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的对称轴为直线x =1,顶点B 的坐标为(1,32). 又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的函数解析式为y =kx +b . ∵直线BC 经过点B (1,32)和点C (2,2),∴⎩⎪⎨⎪⎧k +b =32,2k +b =2.解得⎩⎪⎨⎪⎧k =12,b =1.∴直线BC 的函数解析式为y =12x +1. (2)如图所示,∵抛物线y =12x 2-x +2中,当x =4时,y =6,∴点D 的坐标为(4,6).∵直线y =12x +1中,当x =0时,y =1,当x =4时,y =3,∴点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点A ′,点D 平移后的对应点为点D ′.当图象G 向下平移至点A ′与点E 重合时,点D ′在直线BC 上方,此时t =1; 当图象G 向下平移至点D ′与点F 重合时,点A ′在直线BC 下方,此时t =3.结合图象可知,符合题意的t 的取值范围是1<t ≤3.7.解:(1)∵点A 在直线y =x 上,且点A 的横坐标是-3,∴A (-3,-3).把A (-3,-3)代入y =ax 2+4x , 解得a =1.∴M 1:y =x 2+4x ,顶点坐标为(-2,-4), ∴抛物线M 2的顶点坐标为(1,-1).∴抛物线M 2的函数解析式为y =x 2-2x .(2)①如图,由题意,知C (2,2),∴F (4,2). ∵直线y =x +n 经过点F ,∴2=4+n . 解得n =-2.②n >3或n <-6.8.解:(1)∵二次函数y 1=x 2+bx +c 的图象C 1经过(-1,0),(0,-3)两点,∴⎩⎪⎨⎪⎧1-b +c =0,c =-3.解得⎩⎪⎨⎪⎧b =-2,c =-3.∴抛物线C 1的函数解析式为y 1=x 2-2x -3.(2)∵y 1=x 2-2x -3=(x -1)2-4, ∴抛物线C 1的顶点坐标为(1,-4). ∴平移后抛物线C 2的顶点坐标为(0,0),∴C 2对应的函数解析式为y 2=x 2. (3)a ≥-1(如图).9.解:(1)∵抛物线y =ax 2+bx +1()a ≠0过点A ()-1,0,B ()1,1,∴⎩⎪⎨⎪⎧a -b +1=0,a +b +1=1.∴⎩⎪⎨⎪⎧a =-12,b =12.∴抛物线的函数解析式为y =-12x 2+12x +1.(2)∵x =-b 2a =12,∴抛物线y =-12x 2+12x +1的对称轴为直线x =12.设点E 为点A 关于直线x =12的对称点,则点E 的坐标为()2,0.连接EC 交直线x =12于点D ,此时△ACD 的周长最小.设直线EC 的函数解析式为y =kx +m ,代入点E ,C 的坐标,则⎩⎪⎨⎪⎧2k +m =0,m =1.解得⎩⎪⎨⎪⎧k =-12,m =1.∴直线EC 的函数解析式为y =-12x +1. 当x =12时,y =34.∴点D 的坐标为⎝ ⎛⎭⎪⎫12,34. (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点P 1.∵AO ⊥OC ,AC ⊥AP 1,∴∠AOM =∠CAM =90°. ∵C ()0,1,A ()-1,0,∴OA =OC =1.∴∠CAO =45°,∴∠OAM =∠OMA =45°,∴OA =OM =1. ∴点M 的坐标为()0,-1.设直线AM 对应的一次函数的解析式为y =k 1x +b 1,代入点A ,M 的坐标,则⎩⎪⎨⎪⎧-k 1+b 1=0,b 1=-1.解得⎩⎪⎨⎪⎧k 1=-1,b 1=-1. ∴直线AM 的函数解析式为y =-x -1.令x =12,则y =-32.∴点P 1的坐标为⎝ ⎛⎭⎪⎫12,-32.②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点P 2,交x 轴于点N .与①同理可得Rt △CON 是等腰直角三角形, ∴OC =ON =1,∴点N 的坐标为()1,0. ∵CP 2⊥AC ,AP 1⊥AC , ∴CP 2∥AP 1,∴直线CP 2的函数解析式为y =-x +1. 令x =12,则y =12.∴点P 2的坐标为⎝ ⎛⎭⎪⎫12,12.综上所述,在对称轴上存在点P 1⎝ ⎛⎭⎪⎫12,-32,P 2⎝ ⎛⎭⎪⎫12,12,使△ACP 成为以AC 为直角边的直角三角形.10.解:(1)将A ()3,0代入y =mx 2-2mx -3,解得m =1.∴抛物线的函数解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,解得x 1=3,x 2=-1,∴点B 的坐标为()-1,0. (2)y =x 2-2x -3=()x -12-4.∵当-2<x <1时,y 随x 增大而减小;当1≤x <3时,y 随x 增大而增大, ∴当x =1,y min =-4;当x =-2,y ma x =5.∴y 的取值范围是-4≤y <5.(3)如图,当直线y =kx +b 经过点B ()-1,0,C ()4,2时,其函数解析式为y =25x +25.当直线y =kx +b 经过点()-2,-5,C ()4,2时,其函数解析式为y =76x -83.结合图象可得b 的取值范围是-83<b <25.11.解:(1)设抛物线的函数解析式为y =a (x -1)2.由抛物线过点A (0,1),可得y =x 2-2x +1. (2)如图①:(3)如图②③,由图可知-4<m <0.12.解:(1)∵抛物线y =mx 2-2mx +m +4与y 轴交于点A (0,3),∴m +4=3,解得m =-1,∴抛物线的函数解析式为y =-x 2+2x +3.∵抛物线y =-x 2+2x +3与x 轴交于点B ,C ,∴令y =0,即-x 2+2x +3=0.解得x 1=-1,x 2=3.又∵点B 在点C 左侧, ∴点B 的坐标为(-1,0),点C 的坐标为(3,0).(2)∵y =-x 2+2x +3=-(x -1)2+4,∴抛物线的对称轴为直线x =1. ∵抛物线的对称轴与x 轴交于点D ,∴点D 的坐标为(1,0). ∵直线y =kx +b 经过点D (1,0)和点E (-1,-2), ∴⎩⎪⎨⎪⎧k +b =0,-k +b =-2.解得⎩⎪⎨⎪⎧k =1,b =-1.∴直线DE 的函数解析式为y =x -1.(3)t <1或t >3.13.解:(1)∵抛物线y =x 2-(m -1)x -m (m >0)与x 轴交于A ,B 两点,∴令y =0,即x 2-(m -1)x -m =0.解得x 1=-1,x 2=m .又∵点A 在点B 左侧,且m >0,∴点A 的坐标为(-1,0). (2)由(1)可知点B 的坐标为(m ,0).∵抛物线与y 轴交于点C ,∴点C 的坐标为(0,-m ).∵m >0,∴AB =m +1,OC =m . ∵S △ABC =15,∴12(m +1)m =15.解得m =-6或m =5.∵m >0,∴m =5,∴抛物线的函数解析式为y =x 2-4x -5. (3)由(2)可知点C 的坐标为(0,-5).∵直线l :y =kx +b (k <0)经过点C ,∴b =-5,∴直线l 的解析式为y =kx -5(k <0).∵y =x 2-4x -5=(x -2)2-9,∴当点D 在抛物线顶点处或对称轴左侧时,新函数的最小值均为-9,不符合题意. 当点D 在抛物线对称轴右侧时,新函数的最小值有可能大于-8(如图).令y =-8,即x 2-4x -5=-8.解得x 1=1(不合题意,舍去),x 2=3. ∴抛物线经过点(3,-8).当直线y =kx -5(k <0)经过点(3,-8)时,可求得k =-1. 由图象可知,当-1<k <0时新函数的最小值大于-8.14.解:(1)∵抛物线y =ax 2+x +c (a ≠0)经过A (-1,0),B (2,0)两点,∴⎩⎪⎨⎪⎧a -1+c =0,4a +2+c =0,解得⎩⎪⎨⎪⎧a =-1,c =2. ∴抛物线的函数解析式为y =-x 2+x +2, ∴点D 的坐标为(12,94).(2)如图①,作EN ∥BC ,交y 轴于点N ,过点C 作 CM ⊥EN 于点M .令x =0,得y =2,∴OC =OB =2,∴∠OCB =45°.∵EN ∥BC , ∴∠CNM =∠OCB =45°.∵CM ⊥EN 于点M , ∴∠CNM =∠MCN =45°,∴MN =CM =22,∴CN =1.∴直线NE 的函数解析式为y =-x +3. 由⎩⎪⎨⎪⎧y =-x +3,y =-x 2+x +2,解得⎩⎪⎨⎪⎧x =1,y =2.∴点E 的坐标为(1,2).(3)如图②,过点E 作EF ⊥AB 于点F . 由(2)知tan ∠EOF =2,又∵tan α=2,∴∠EOF =∠α.∵∠EOF =∠EAO +∠AEO =∠α,∠EAO +∠EPO =∠α, ∴∠EPO =∠AEO .∵∠EAO =∠PAE ,∴△AEP ∽△AOE , ∴AP AE =AE AO.∵AE =22+22=2 2,AO =1,∴AP =8,∴OP =7,∴P ()7,0, 由对称性可得P ′()-5,0.∴点P 的坐标为()7,0或()-5,0.15.解:(1)∵二次函数y =(a -1)x 2+2x +1的图象与x 轴有交点,令y =0,则(a -1)x 2+2x +1=0, ∴4-4(a -1)≥0,解得a ≤2. ∵a 为正整数,∴a 为1或2.又∵y =(a -1)x 2+2x +1是二次函数, ∴a -1≠0,∴a ≠1, ∴a 的值为2.(2)∵a =2,∴二次函数的解析式为y =x 2+2x +1.将二次函数y =x 2+2x +1化成顶点式为y =(x +1)2,二次函数图象向右平移m 个单位长度,再向下平移(m 2+1)个单位长度后的函数解析式为y =(x +1-m )2-(m 2+1).此时函数图象的顶点坐标为(m -1,-m 2-1).当m -1<-2,即m <-1时,在x =-2处二次函数有最小值-3,∴-3=(-1-m )2-(m 2+1), 解得m =-32,符合题目要求.当-2≤m -1≤1,即-1≤m ≤2时,在x =m -1处二次函数有最小值-3,即-m 2-1=-3, 解得m =± 2.∵m =-2不符合-1≤m ≤2的条件,舍去. ∴m = 2.当m -1>1,即m >2时,在x =1处二次函数有最小值-3,∴-3=(2-m )2-(m 2+1),解得m =32,不符合m >2的条件,舍去.综上所述,m 的值为-32或 2.。