算术平方根、平方根知识点

合集下载

平方根与算术平方根的学习要点

平方根与算术平方根的学习要点

平方根与算术平方根的学习要点平方根是一门非常重要的数学知识,它在日常生活中以及科学技术中都有着广泛的应用。

今天我们就来聊聊平方根,包括它的定义、数学特性以及计算方法。

首先,什么是平方根?平方根是一类幂函数,可以表示平方根的数学记号是“√”,它的定义是指某个数a的p次幂(p≥2)等于一个数M时,a称为M的p次平方根,写作M^1/p 。

例如,数字8的平方根就是2,因为2^2=8,因此8的平方根是2。

其次,复平方根和算术平方根的区别。

按照参数的不同可以将平方根分为两种:\复平方根和算术平方根。

复平方根的参数中可以有复数,而算术平方根的参数只能有实数。

另外,算术平方根一定是正的,也就是说复数的平方根中,存在两个实部相同的复数,其中一个的实部正负分别为±平方根的值。

再次,平方根的特性。

平方根是可交换律的,即可以交换根号内外的数。

平方根也具有乘法结合律,即可以将平方根取出,并推广到根号内任意多个因子上。

此外,平方根是分配律的,可以将平方根化简为连续的根号,即凡是可以分配的,就可以把根号内的数乘法分开。

最后,如何计算平方根。

计算平方根常见的方法有:(1)法则相乘法。

即用待开根号的数除以另一个数,等于另一个数,则除数即为待开根号数的平方根。

例如225的平方根=15:15x15=225;(2)求解法。

有一种叫求解法的求根号的方法,将原式展开成一个二次方程,一般可求出两个解,其中一个就是我们要求的根号。

例如√225=15,把它展开成一个二次方程,你就会得到两个解,一个是+15,另一个是-15。

(3)原式法。

即直接用开根号的方法求其平方根。

将待求的数分解为几个质数之乘积,开根号时除以质数,把根号内的质数变成几个单项式的相乘。

以上就是关于复平方根和算术平方根的学习要点,希望能够帮助大家对平方根有更深入的认识,有更全面的掌握,从而更好地应用在日常生活以及科学技术中。

平方根与算术平方根(知识解读)(原卷版)

平方根与算术平方根(知识解读)(原卷版)

平方根与算术平方根知识点 1 :平方根1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);,读作“的算术平方根”,叫做被开方数. 注意:有意义时,≥0,≥0. 2.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.知识点2:平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同: 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.注意:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点3:平方根的性质知识点4:平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..x a 2x a =x a a a a a a a a a 2x a =x a a a a (0)a a ≥a a a ±a 20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20aaa =≥62500250=62525= 6.25 2.5=0.06250.25=【典例分析】【考点1:算术平方根】【典例1】求下列各数的算术平方根:(1)100;(2);(3)0.0001.【变式1-1】求下列各数的算术平方根.(1)196 (2)(3)0.04 (4)100 (5)(﹣6)2.【变式1-2】求下列各式的值:(1);(2);(3)【考点2:算术平方根的性质】【典例2】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2+=0,则a+b的值是()A.﹣2B.2C.﹣1D.0【变式2-1】(2021秋•滨海县期末)已知实数x,y满足+(y+1)2=0,则x﹣y等于()A.1B.﹣1C.﹣3D.3【变式2-2】(2022春•绥江县期中)若(a﹣1)2+=0,则(a﹣b)2022=()A.1B.﹣1C.0D.2022【考点3:算术平方根的估算】【典例3】(2022•东丽区二模)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-1】(2022•河西区模拟)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-2】(2020秋•福田区期末)设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.10【变式3-3】(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【典例4】(2015秋•萧山区期中)已知,则0.005403的算术平方根是()A.0.735B.0.0735C.0.00735D.0.000735【变式4-1】(2019春•港口区期中)若=5.036,则=.【变式4-2】(2022春•渝中区校级月考)若≈7.149,≈22.608,则的值约为()A.71.49B.226.08C.714.9D.2260.8【考点4:平方根】【典例5】求下列各数的平方根(1)49;(2);(3);(4)0.0016.【变式5-1】(2021秋•卫辉市月考)求下列各数的平方根(1)49 (2);(3)2;(4)0.36;(5)(﹣)2.【变式5-2】(2022秋•青羊区校级期中)若m2=4,则m=()A.2B.﹣2C.±2D.±【考点5 :利用平方根的定义解方程】【典例6】(2022秋•莲湖区校级月考)求下列各式中x的值.(1)9x2﹣25=0;(2)(x﹣1)2=36.【变式6-1】(2022秋•江阴市校级月考)求下列各式中x的值:(1)x2﹣4=0;(2)(x﹣1)2﹣9=0.【变式6-2】(2022秋•新城区期中)已知2x2﹣8=0,求x的值.【考点6:利用平方根的定义求参数】【典例7】(2021春•昭阳区校级月考)若一个正数的平方根是2m﹣4与3m﹣1,求这个正数的算术平方根.【变式7-2】(2022春•仁怀市校级月考)若m是169的正的平方根,n是121的负的平方根,求:(1)m+n的值;(2)(m+n)2的平方根.【变式7-3】(2021秋•河南月考)已知一个数m的两个不相等的平方根分别为a+2和3a﹣18.(1)求a的值;(2)求这个数m.【变式7-3】(2022秋•朝阳区校级月考)已知一个正数m的平方根为2n+1和4﹣3n.(1)求m的值;(2)|a﹣1|++(c﹣n)2=0,a+b+c的平方根是多少?【考点7:平方根的实际应用】【典例8】(2022秋•南岗区校级期中)小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为2:3,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.【变式8】(2022秋•市北区期中)某新建学校计划在一块面积为256m2的正方形空地上建一个面积为150m2的长方形花园(长方形花园的边与正方形空地的边平行),要求长方形花园的长是宽的2倍.请你通过计算说明该学校能否实现这个计划.。

算术平方根、平方根知识点

算术平方根、平方根知识点

算术平方根、平方根知识点-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小. 规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分. 例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.平方根与算术平方根的区别与联系例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a 也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( ) A.2 B.-1 C.1 D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.16 2.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根D.0没有算术平方根 3.下列整数中,与 最接近的是( ) A.4 B.5 C.6 D.7 4.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间 5.81的平方根是( )A.3±B.3C.9±D.9 6.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = .2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

算术平方根、平方根知识点辅差

算术平方根、平方根知识点辅差

知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )A.2B.-1C.1D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.81的平方根是( )A.3±B.3C.9±D.96.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = . 2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

算术平方根、平方根知识点汇编

算术平方根、平方根知识点汇编

学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.平方根与算术平方根的区别与联系例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根. 规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )A.2B.-1C.1D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.81的平方根是( )A.3±B.3C.9±D.96.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = .2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

最新算术平方根、平方根知识点

最新算术平方根、平方根知识点

学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )A.2B.-1C.1D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.81的平方根是( )A.3±B.3C.9±D.96.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = . 2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

平方根和算术平方根

平方根和算术平方根

§12、1平方根与算术平方根一、知识点=2,则x叫做1、如果一个数的平方等于a,那么这个数叫做a的平方根,即x aa的平方根=2,则x=2、平方根的表示方法若x a3、平方根的性质:正数平方根有两个个,它们互为相反数即相加得0 ,0的平方根是0 ,负数没有平方根。

4、算术平方根是指正的平方根(1)a≥≥05、注意:平方根即开平方是平方的逆运算。

6、会背1~20各个数的平方,会背1~10各个数的立方例1 求下列各数的平方根(1)81 (2)0.16 (3)(-3)2 (4)7例2 一个数的平方根为a+2和3a-10,求这个数例3例 4 一个自然数的算术平方根为m,则和这个自然数相邻的下一个自然数的算术平方根为______例5,①a ,2a都是一个大于等于0的数②他们之中任意两个或两个以上的和等于0时,即a +2b =0,a+ =0 2a=0时,只有他们同时满足a=0.,b=0才成立根据上述材料,解下列问题1 2x +,求2x y2已知实数a满足2012a a -=,求22012a -的值3已知x ,y,都是有理数3y =,则3x-2y=例647923<<<<∴<<∴在两个连续的整数2和3之间,它的整数部分为2-2例7解方程49(x-1)2 -225=0一、选择题二、填空题1、2的平方根是 4的算术平方根是2、972的平方根是 1691的算术平方根是 3、22的平方根是22-)(的平方根是 4、3±表示 的平方根,11的算术平方根是 5是 的算术平方根5、16的算术平方根是 196的平方根是6、若m -2与12+m 是同一个数的平方根,则这个数是7、15在两个连续整数a 与b 之间,则a= ,b= 。

8、求下列各式中x 的值:9、已知3-2±的平方根是b a ,1-2b a +的算术平方根是4,,求3b -2a 的值10、若6+-b a 与8-+b a 互为相反数,求4a+3b的算术平方跟。

算术平方根与平方根的概念及性质

 算术平方根与平方根的概念及性质

第六章实数专题6 算术平方根与平方根的概念及性质知识要点1.算术平方根:如果一个正数x 的平方等于a ,即x ²=a ,那么这个正数x 叫作a 的算术,读作“根号a ”,a 叫作被开方数.规定:0的算术平方根是0.2.平方根:如果一个数x 的平方等于a ,即x ²=a ,那么这个数x 叫作a 的平方根或二次方根,a 叫作被开方数.正数a 的正的平方根,即为a 的算术平方根。

①正数a 有两个互为相反数的平方根:,读作“正负根号a ”;②负数没有平方根;③0的平方根是0.3.求一个非负数的平方根的运算叫作开平方,平方和开平方互为逆运算。

4.如果被开方数的小数点向左(或向右)移动2位,它的算术平方根的小数点就相应向左(或向右)移动1b =10b 0.1b =.5.算术平方根的双重非负性满足关系式:①a ≥0(被开方数为非负数);≥0(算术平方根为非负数)。

6.算术平方根的性质:若a >b ≥07.两个结论:①2a = (a ≥0)a =. 典例精析例1 (1)求下列各数的算术平方根:①81;②2536;③()23π-;④()2x - (2)求下列各数的平方根:①0.49;②124;③()232---;④4x【分析】分别按照平方根和算术平方根的定义来求值,要注意两者符号书写的不同.【解】(1)因为9²=81,所以;②因为2525636⎛⎫= ⎪⎝⎭56③因为π>3,所以π-3>0a =33ππ-=-;④因为()22x x =-==x(2)①因为()20.70.49±=,所以=±0.7;②因为23924⎛⎫±= ⎪⎝⎭,所以32==±;③因为()2525±=,5=±;④因为()()2222224x x x x x x x x x ±==⋅=⋅⋅⋅=,2x ±.【点评】①遇到带分数,需要先把带分数化为假分数;②求一个式子的平方根或算是平方根,需要先求出该算式的值;③一个正数的平方根总是成对出现的,不要遗漏.拓展与变式1 ___________.拓展与变式2 若m +1是9的平方根,则m =_________拓展与变式3 若一个正数的两个平方根为x -1和2x +1,则这个正数为_________. 拓展与变式4 若整式x -1和2x +1都可以表示一个正数的平方根,求这个正数.【反思】①审题时,要注意按照定义运算,”的作用.②需要灵活判断和运用平方运算和它的逆运算---开平方的运算例2 已知:(m +1)²,求式子3n m -的值.【分析】两个非负数的和为0,则这两个数均为0.【解】依题意得1030m n +=⎧⎨-=⎩解得13m n =-⎧⎨=⎩,所以3n m -=()331--=4 【点评】灵活借助平方结构和算式平方根的非负性进行分析和求解.拓展与变式5 已知:()21m -=m +n 的值为_________.拓展与变式6 0=,a 的值为___________拓展与变式7 已知:()2210m t n --=,代数式2m n t ++的值为_______.【反思】①学过的具有非负性的式子有20a ≥,0a ≥0≥(a ≥0).②学会运用和区别算术平方根的非负和被开方数非负两个性质.例3 )A .3与4之间B . 4与5之间C . 5与6之间D . 6与7之间【解】因为20<30<36且a >b ≥00>≥.所以答案为C【点评】利用被开平方数的范围进行估算,需要寻找与其大小最接近的两个平方数.拓展与变式8 1________3.拓展与变式9 a ,小数部分为b ,求a 、b 的值【反思】若1m m <+(m 为非负整数)m -m . 专题突破1.(1)x 是81的算术平方根,那么x 的算术平方根是( )A .3±B .9±C .3D .9(24±34132=+;④22,其中正确的个数是( )A .0B .1C .2D .32.如图6-1所示,点A ,B ,C ,D ,O 分别表示的数是1,2,3,4,0.图6-1(1)点P 从O 2秒后,点P 在线段______上;(2)点P 从B 1秒后,点P 在线段______上.3.a ,b 满足关系式b ab 的平方根.4.解方程:(1)x ²=4; (2)(a -1)²=4; (3)(x -2)²-1=4。

平方根与算术平方根

平方根与算术平方根

平方根与算术平方根1.平方根:如果一个数x 的平方等于a ,即x 2=a ,那么这个x 就叫a 的平方根,表示为±a ,也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,即±=9±3.2.算数平方根: 若一个正数x 的平方等于a ,即x 2=a ,则这个正数x 就叫做a 的算术平方根.记为“a ”读作“根号a ”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即0=0. 9的算术平方根只有一个是3.即39=.3.平方根的性质:一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.4.算数平方根的性质:非负数(正数和0)才有算术平方根,负数没有算术平方根. 即用式子表示为a (a ≥0)一定为非负数4.平方根与算术平方根的区别与联系1、联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.2、区别:(1)定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫a 的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a .(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。

练 习1.9的平方根是( )A .3B .-3C .±3D .32.下列说法中正确的是( )A .任何数都有平方根B .一个正数的平方根的平方就是它的本身C .只有正数才有算术平方根D .不是正数没有平方根3.下列各式正确的是( )A .1691=45B .414=221 C .25.0=0.05 D .-49-=-(-7)=7 4.下列说法正确的是( )A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根5.下列各式无意义的是( )A .-5B .25-C .51- D .2)5(- 6.3-2的算术平方根是( ) A .61 B .31C .3D .6 7.(-23)2的平方根是( ) A .±8 B .8 C .-8D .不存在 8.使x -有意义的x 的值是( )A .正数B .负数C .0D .非正数9.一个自然数的算术平方根是n ,那么大于这个自然数且与它相邻的自然数是( )A.n +1B.n 2+1C.12+n D.n +110.若x 2=2,则x 的准确值是多少? 如何表示?请填写下列各空:(1)∵42=16,∴16的算术平方根是 ,用符号表示出来为 ; (2)∵94)32(2=,∴94的算术平方根是 ;用符号表示出来为 ; (3)∵( )2=6,∴6的算术平方根是 .11.若一个数的算术平方根是5,则这个数是_________.12.8116的平方根是____________,(21-)2的算术平方根是____________. 13.y =x x -+-33+2,则x =__________,y =__________.14.一个数的算术平方根是它本身,这个数是______________.15.252-242的平方根是__________,0.04的负的平方根是____________.16.若2-a +|b -3|=0,则a +b -5=____________.17.若4x 2=9,则x =____________.18.81的算术平方根为_________.16的平方根是____________19. (-π)2的算术平方根为_____.20.求下列各数的算术平方根,并用符号表示出来:(1)(7.1)2; (2)(-3.5)2; (4)241.21、求各式的值-01.0 2)5(- 610-22、计算32÷(-3)2+|-61|×(-6)+49.23、求下列各式中x 的值.(1) 25x 2-36=0; (2) (x +1)2-81=0;24、12-x +(y +2)2=0,求x -3+y 3的值.25、 |2a -5|与2+b 互为相反数,求ab 的值.26、已知x ,y 满足x x y 211121-+-=+3,求x y27、请你在数轴上画出表示5的点,并简要说出你的画法.。

算术平方根、平方根知识点

算术平方根、平方根知识点

学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果,那么m 的取值范围是( )17-=m A. B. C. D.10<<m 21<<m 32<<m 43<<m 知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.平方根与算术平方根的区别与联系定义一般地,如果一个数的平方等于a,那么这个数叫做a 的平方根或二次方根,即如果,a x =2那么x 叫做a 的平方根.表示方法正数a 的平方根表示为“”,读作“正、负根号a”,a ±例如,36的平方根是±6,记作.636±=±定义求一个数a 的平方根的运算,叫做开平方特征开平方是一种运算,它与平方运算是互逆运算,这与加法、减法以及乘法、除法的关系是一样的,开平方运算的结果就是平方根,我们就是利用开平方与平方的互逆关系求一个数的平方根.例2.求下列各数的平方根和算术平方根:(1)0.0009 (2) (3)812525-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.规律小结:一个正数a 的平方根有两个记作,表示a 的正的平方根和负的平方根,其中正的平方根a ±也叫做a 的算术平方根.a 注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是,则a 的值为( )31-+a a 与A.2 B.-1 C.1 D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是的算术平方根D.0没有算术平方根()26-3.下列整数中,与 最接近的是( )A.4 B.5 C.6 D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.的平方根是( )81 A. B.3 C. D.93±9±6.下列语句正确的是( )A.-2是-4的平方根B.2是的算术平方根C.的平方根是2D.的平方根是2或-()22-()22-427.,,则a+b 的值是( )252=a 3=b A.-8 B. C. D.或8±2±8±2±二、填空题1.化简:(1)= ; (2) = .4122.大于且小于的整数是 .253.使式子成立的未知数的值是 。

算术平方根平方根知识点

算术平方根平方根知识点

算术平方根平方根知识点算数平方根和平方根是数学中的基本概念,它们在数学和现实生活中都有着重要的应用。

本文将详细介绍算数平方根和平方根的定义、性质以及它们在数学中的应用。

一、算术平方根1.定义2.性质(1)非负数的算术平方根是唯一的。

例如,16的算术平方根是4,没有其他数字的平方等于16(2)正数的算术平方根一定是正数。

(3)零的算术平方根是0。

(4)负数没有实数的算术平方根。

3.求算术平方根的方法(1)直接开方法:对一个给定的数开平方根,找到一个数使得它的平方等于给定数。

例如,√16=4(2)近似开方法:通过计算和估算找到一个数,使得它的平方与给定数值相近。

例如,√25≈54.算术平方根的应用(1)几何学:算术平方根被用于计算直角三角形的斜边长度。

(2)物理学:算术平方根被用于计算速度、加速度和力的大小。

(3)经济学:算术平方根被用于计算方差和标准差,用于测量数据的离散程度。

二、平方根1.定义平方根是指一个数与自身相乘等于给定数的非负根。

例如,4的平方根为2,因为2×2=4、平方根也可以用符号√a来表示。

2.性质(1)非负数的平方根是唯一的。

例如,16的平方根是4,没有其他数字与自身相乘等于16(2)正数的平方根一定是正数。

(3)零的平方根是0。

(4)负数没有实数的平方根。

3.求平方根的方法(1)直接开方法:对一个给定的数开平方根,找到一个数使得它与自身相乘等于给定数。

例如,√16=4(2)近似开方法:通过计算和估算找到一个数,使得它与自身相乘与给定数相近。

例如,√25≈54.平方根的应用平方根在数学、物理学、工程学等领域有广泛的应用:(1)数学:平方根被用于解方程和求解二次函数的根。

(2)物理学:平方根被用于计算速度、加速度和力的大小。

(3)工程学:平方根被用于计算电阻、电容和感应电流等电路的参数。

综上所述,算术平方根和平方根是数学中的重要概念,它们具有丰富的性质和广泛的应用。

了解算数平方根和平方根的定义、性质以及求解方法,有助于加深对数学的理解,并在实际生活和学习中灵活运用。

算术平方根、平方根知识点17191

算术平方根、平方根知识点17191

学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小. 规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分. 例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展 1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.平方根与算术平方根的区别与联系例2.求下列各数的平方根和算术平方根:(1) (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根. 规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )随堂巩固一、选择题.1. 4的算术平方根是( )± 2.下列说法正确的是( )是25的算术平方根 是4的算术平方根 是()26-的算术平方根 没有算术平方根3.下列整数中,与 最接近的是( )4.一个正方形的面积是15,估计它的边长大小在( ) 与3 之间 与4 之间 与5之间 与6之间5.81的平方根是( )A.3± C.9± 6.下列语句正确的是( )是-4的平方根 是()22-的算术平方根 C.()22-的平方根是2 D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( ) B.8± C.2± D.8±或2±二、填空题301.化简:(1)412= ; (2) = . 2.大于2且小于5的整数是 . 3.使式子11=-x 成立的未知数x 的值是 。

算术平方根、平方根知识点88616

算术平方根、平方根知识点88616

学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.平方根与算术平方根的区别与联系例2.求下列各数的平方根和算术平方根:(1) (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根. 规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )随堂巩固一、选择题.1. 4的算术平方根是( )± 2.下列说法正确的是( )是25的算术平方根 是4的算术平方根 是()26-的算术平方根 没有算术平方根3.下列整数中,与 最接近的是( )4.一个正方形的面积是15,估计它的边长大小在( )与3 之间 与4 之间 与5之间 与6之间 5.81的平方根是( )A.3± C.9±6.下列语句正确的是( )是-4的平方根 是()22-的算术平方根 C.()22-的平方根是2 D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = .2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

平方根、算术平方根和立方根

平方根、算术平方根和立方根

唯一性
对于非负实数$a$,其算 术平方根是唯一的。
递增性
随着$a$的增大, $sqrt{a}$也增大。
算术平方根的运算规则
乘法运算
$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$b geq 0$)。
加法运算
$sqrt{a} + sqrt{b} = sqrt{(a + b)^2 - ab}$($a geq 0$,$b geq 0$)。
能够正确计算各种平 方根、算术平方根和 立方根的值。
02 平方根的概念和性质
平方根的定义
平方根
如果一个数的平方等于给定的数, 则这个数称为给定数的平方根。
算术平方根
非负数的平方根称为算术平方根, 表示为√。
立方根
如果一个数的立方等于给定的数, 则这个数称为给定数的立方根。
平方根的性质
01
02
03
平方根、算术平方根和立方根
目 录
• 引言 • 平方根的概念和性质 • 算术平方根的概念和性质 • 立方根的概念和性质 • 平方根、算术平方根和立方根的应用 • 总结与回顾
01 引言
主题简介
平方根
平方根是数学中的一个概念,它表示一 个数的平方等于给定值。例如,4的平方 根是±2,因为2^2=4和-2^2=4。
例如
如果 $a^3 = b$,则 $a$ 是 $b$ 的立 方根。
立方根的性质
非负性
01
一个数的立方根总是非负的。
奇偶性
02
如果一个数是奇数,那么它的立方根也是奇数;如果一个数是
偶数,那么它的立方根也是偶数。
连续性
03
在实数范围内,任何两个不相等的实数都有唯一的介于它们之

第一讲 平方根与算术平方根(解析版)

第一讲 平方根与算术平方根(解析版)

第一讲平方根与算数平方根目录必备知识点 (1)考点一平方根与算术平方根 (1)考点二算术平方根的双重非负性 (6)考点三平方根的性质 (7)必备知识点1.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根,从定义可知,a≥0。

2.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。

从定义可知,只有当a≥0时,a才有算术平方根。

3.正数有两个平方根,它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.算术平方根的双重非负性①a≥0,②a≥05.平方根的性质①2(0)a a=≥aaaì==í-î()()aa<≥考点一平方根与算术平方根1.64的平方根是( )A.±4B.4C.±8D.8【解答】解:∵±8的平方都等于64;∴64的平方根是±8.故选:C.2.已知实数a的一个平方根是4,则它的另一个平方根是( )a知识导航A.2B.﹣2C.﹣4D.±2【解答】解:∵数a的一个平方根是4,∴a=16,∴a的另一个平方根是﹣4,故选:C.3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是( )A.9B.1C.7D.49或【解答】解:∵2a﹣1和﹣a+4是一个正数的平方根,∴①2a﹣1+4﹣a=0,解得a=﹣3,把a=﹣3代入4﹣a得7,∴这个正数的值是49;②2a﹣1=4﹣a,解得a=,把a=代入4﹣a得=,∴这个正数的值是;故选:D.4.若x+3是9的一个平方根,则x的值为( )A.0B.﹣6C.0或﹣6D.±6【解答】解:∵x+3是9的一个平方根,∴x+3=3或x+3=﹣3,解得:x=0或x=﹣6.故选:C.5.下列说法正确的是( )A.4的平方根是2B.﹣4的平方根是﹣2C.(﹣2)2没有平方根D.2是4的一个平方根【解答】解:A、4的平方根是±2,故A错误;B、﹣4没有平方根,故B错误;C、(﹣2)2=4,有平方根,故C错误;D、2是4的一个平方根,故D正确.故选:D.6.下列判断正确的是( )A.0.25的平方根是0.5B.﹣7是﹣49的平方根C.只有正数才有平方根D.a2的平方根为±a【解答】解:A、0.25的平方根是±0.5,故此选项错误;B、﹣7是49的平方根,故此选项错误;C、正数和0都有平方根,故此选项错误;D、a2的平方根为±a,正确.故选:D.7.下列说法中不正确的个数是( )①(﹣5)2的平方根是±5;②﹣a2没有平方根;③非负数a的平方根是非负数;④因为负数没有平方根,所以平方根不可能为负;⑤0和1的平方根等于本身.A.1个B.2个C.3个D.4个【解答】解:①(﹣5)2的平方根是±5,故①正确;②a=0时,﹣a2有平方根,故②错误;③非负数a的平方根是互为相反数,故③错误;④负数没有平方根,一个正数的平方根有两个,互为相反数,故④错误;⑤0的平方根等于它本身,1的平方根是±1,故⑤错误;故选:D.8.若(x+2)2=2,则x的值是( )A.+4B.﹣2C.+2或﹣2D.﹣2或﹣﹣2【解答】解:因为(x+2)2=2,所以x+2=±,所以x=﹣2,或x=﹣﹣2.故选:D.9.7的平方根是( )A.±B.C.D.14【解答】解:7的平方根是:±.故选:A.10.“的平方根是±”用数学式子可表示为( )A.=±B.C.±=±D.﹣=【解答】解:,故选:C.11.“的平方根是±”用数学式表示为( )A.=±B.=C.±=±D.﹣=﹣【解答】解:“的平方根是±”用数学式表示为±=±.故选:C.12.如果自然数a的平方根是±m,那么a+1的平方根用m表示为( )A.±(m+1)B.(m2+1)C.D.【解答】解:由题意得:这个自然数a为:m2,比这个自然数大1的数为m2+1,即a+1=m2+1故a+1的平方根用m表示为:±,故选:D.13.81的算术平方根是( )A.3B.9C.﹣3D.﹣9【解答】解:∵81=92,∴81的算术平方根是9,故选:B.14.10的算术平方根是( )A.10B.C.﹣D.±【解答】解:∵10的平方根为±,∴10的算术平方根为.故选:B.15.的值是( )A .﹣3B .3或﹣3C .3D .9【解答】解:=3.故选:C .16.下列运算正确的是( )A .=4B .﹣|﹣2|=2C .=±3D .23=6【解答】解:A .根据算术平方根的定义,,那么A 正确,故A 符合题意.B .根据绝对值的定义,﹣|﹣2|=﹣2,那么B 错误,故B 不符合题意.C .根据算术平方根的定义,=3,那么C 错误,故C 不符合题意.D .根据有理数的乘方,23=8,那么D 错误,故D 不符合题意.故选:A .17.的平方根是( )A .B .C .±2D .2【解答】解:∵=2,∴的平方根是±.故选:B .18.的平方根是( )A .B .﹣C .±D .±【解答】解:=,的平方根是±.故选:D .19.下列叙述中,正确的是( )A .a 的平方根是B .(﹣a )2的平方根是﹣aC .一个数总有两个平方根D .﹣a 是a 2的一个平方根【解答】解:A 、a 的平方根是±.故本选项错误;B 、(﹣a )2的平方根是a 故本选项错误;C 、负数没有平方根.故本选项错误;D 、﹣a 是a 2的一个平方根.故本选项正确.故选:D .考点二算术平方根的双重非负性20.已知|a﹣5|+=0,那么a﹣b=( )A.2B.3C.﹣2D.8【解答】由题意可得a﹣5=0,b﹣3=0,故a=5,b=3,所以a﹣b=5﹣3=2故选:A.21.若实数m,n满足(m﹣6)2+=0,则的值是( )A.2B.2C.2D.4【解答】解:∵实数m,n满足(m﹣6)2+=0,∴m﹣6=0,n+2=0,∴m=6,n=﹣2,∴===2.故选:B.22.若y=﹣6,则xy的值为( )A.﹣2B.2C.﹣3D.3【解答】解:由题意,得x﹣≥0且﹣x≥0,所以x﹣=0.所以x=,则y=﹣6,故xy=×(﹣6)=﹣3,故选:C.23.计算:(1)已知实数a,b,c在数轴上的对应点如图所示,化简+|c﹣a|+;(2)已知x、y满足y=,求5x+6y的值.【解答】解:(1)原式=|a|+|c﹣a|+|b﹣c|=﹣a+c﹣a+c﹣b=﹣2a﹣b+2c;(2)由题意得:,解得:x=±3,∵x﹣3≠0,解得:x≠3,∴x=﹣3,则y=﹣,∴5x+6y=﹣16.24.已知a为实数,且b2++9=6b;(1)若a、b为△ABC的两边,求第三边c的取值范围;(2)若a、b为△ABC的两边,第三边c=5,求△ABC的面积.【解答】解:(1)∵b2++9=6b,∴b2﹣6b+9+=0,即(b﹣3)2+=0,∴b﹣3=0,a﹣4=0,解得a=4,b=3,∵a、b为△ABC的两边,∴第三边c的取值范围为:1<c<7;(2)∵a=4,b=3,c=5,∴a2+b2=c2,∴△ABC是直角三角形,∴△ABC的面积为:×3×4=6.考点三平方根的性质25.计算的结果是 4 .【解答】解:==4.故答案为:4.26.计算= π﹣3 ,= π﹣3 .【解答】解:=π﹣3,=π﹣3.故答案π﹣3.27.求下列各式的值.(1)±= ±11 ;(2)﹣= ﹣0.8 ;(3)﹣= ﹣3 ;(4)﹣= ﹣14 ;(5)= 0.04 ;(6)= 0.04 .【解答】解:(1)±=±11;(2)﹣=﹣0.8;(3)﹣=﹣3;(4)﹣=﹣14;(5)=0.04;(6)=0.04.故答案分别为±11,﹣0.8,﹣3,﹣14,0.04,0.04.28.若实数a、b、c在数轴上的位置如图,则化简= c .【解答】解:由数轴可得出:a<b<0<c,∴a+b<0,b﹣c<0,∴=﹣a+(a+b)+c﹣b,=c.故答案为:c.29.实数a、b、c在数轴上的对应点的位置如图,化简:= ﹣3a .【解答】解:由题得,c>0>b>a,∴=﹣a﹣a﹣b+c﹣a+b﹣c=﹣3a.故答案为﹣3a.。

算术平方根和平方根

算术平方根和平方根
知识回顾
算术平方根 定义:一般地,如果一个正数x的平方等于 a,即x2=a,那么这个正数x就叫做a的算术 平方根,记作 a ,读作“根号a”。
特别地,我们规定:0的算术平方根是0, 即 0 0
特别注意的几点
1. 负数没有算术平方根
2. 当式子 a 有意义时,a一定表示一个非 负数。
3. 算术平方根是它本身的数只有0和1
相反数练习题
已知2a-1与-a+2是m的平方根,求m的值。
解:根据题意,可分为
常用数
11 121
2
需识记
2 1.414 3 1.732 5 2.236
12 144
2
13 169
2
14 196
2
15 225
2
练习题
• 1、求下列各数的平方根
• 121
23
1 2 4
64 9
9 4 16
106
106
81
6
2
练习题
• ① ② ③ ④ ⑤ 2、下列说法中正确的是() 1的平方根是1 1是1的平方根 -1的平方根是-1 0的平方根是0 只有正数才有平方根
4. 算术平方根 a 是一个非负数
平方根
• 定义:一般地,如果一个数x的平方等于 a,即x2=a,那么这个数x就叫做a的平方根 (也叫做二次方根)。
一个正数有两个平方根; 0只有一个平方根; 负数没有平方根。
平方根
• 正数a有两个平方根,一个是a的算术平方根,
• 另一个是 a ,他们互为相反数,这两个平方 • 根合起来可以记作
练习题
• 3、求下列各数的值
2
49 121
64

算术平方根平方根知识点辅差

算术平方根平方根知识点辅差

算术平方根平方根知识点辅差一、算术平方根以一个整数为例来计算算术平方根。

我们可以通过试探的方法来逐步逼近这个平方根。

例如,我们要计算25的平方根,首先猜测一个数,例如5,然后将这个数的平方与25进行比较。

如果猜测的数的平方大于25,我们可以进一步逼近平方根,如果猜测的数的平方小于25,我们可以增大猜测的数。

通过多次逼近,我们最终可以得到数字5,这就是25的平方根。

实际上,我们可以通过更有效的方法来计算平方根。

牛顿迭代法是一种常用的方法。

它的基本思想是通过不断逼近来找到平方根。

迭代公式为:X(n+1)=(Xn+S/Xn)/2其中X(n+1)表示下一次逼近的结果,Xn表示上一次逼近的结果,S表示要计算平方根的数。

通过重复迭代,我们可以得到更接近实际平方根的结果。

二、平方根的知识点在数学中,平方根是一个重要的概念,它有许多应用。

以下是一些与平方根相关的重要知识点:1.平方根的性质:-平方根是非负数:任何一个数的平方根都是非负数。

-平方根的特殊值:2的平方根是根号2,3的平方根是根号3,以此类推。

-平方根的运算规则:两个数的平方根的积等于这两个数的平方根的和的平方。

2.平方根的应用:-平方根在几何学中的应用:平方根可以帮助我们计算直角三角形的斜边长度。

-平方根在物理学中的应用:平方根可以帮助我们计算物体的速度、加速度等物理量。

三、辅差的概念辅差是指在求平方根时,与所求数的平方之差。

对于任何一个数值x,它的平方与x之差的绝对值称为辅差。

辅差的公式可以表示为:x^2-S其中,S表示要计算平方根的数。

辅差在计算平方根时起到辅助作用,通过与一个较小的辅差进行比较,我们可以逐步逼近所求的平方根。

通过不断减小辅差,我们最终可以得到较为精确的平方根。

四、总结算术平方根和平方根是数学中基础概念之一,它们在实际问题中的应用广泛。

通过试探法或者更高效的方法(如牛顿迭代法),我们可以计算平方根。

平方根具有许多重要的性质,它在几何学和物理学中都有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科教师辅导讲义
知识点2:估算
估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.
规律小结
确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.
例2.如果17-=m ,那么m 的取值范围是( )
A.10<<m
B.21<<m
C.32<<m
D.43<<m
知识点3:平方根、开平方的概念及符号表示
延伸拓展
1.平方根的理解
(1)被开方数a 一定是非负数(即正数或0);
(2)平方与开平方是互逆运算;
2.平方根与算术平方根的区别与联系
例2.求下列各数的平方根和算术平方根:
(1)0.0009 (2)8125
(3)25-)

知识点4:平方根的性质
平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根. 规律小结:一个正数a 的平方根有两个记作a ±
,表示a 的正的平方根和负的平方根,其中正的平方根a
也叫做a 的算术平方根.
注:一个正数的平方根有两个,而它的算术平方根只有一个.
例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )
A.2
B.-1
C.1
D.0
随堂巩固
一、选择题.
1. 4的算术平方根是( )
A.2
B.-2
C.±2
D.16
2.下列说法正确的是( )
A.5是25的算术平方根
B.16是4的算术平方根
C.-6是()2
6-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )
A.4
B.5
C.6
D.7
4.一个正方形的面积是15,估计它的边长大小在( )
A.2与3 之间
B.3与4 之间
C.4与5之间
D.5与6之间
5.81的平方根是( )
A.3±
B.3
C.9±
D.9
6.下列语句正确的是( )
A.-2是-4的平方根
B.2是()22-的算术平方根
C.()22-的平方根是2
D.4的平方根是2或-2
7.252=a ,3=b ,则a+b 的值是( )
A.-8
B.8±
C.2±
D.8±或2±
二、填空题
1.化简:(1)4
12= ; (2) = . 2.大于2且小于5的整数是 .
3.使式子11=-x 成立的未知数x 的值是 。

4.已知一个正数的平方根是23-x 和65+x ,则这个数是
5.已知m,n 为两个连续的整数,且n m <<11,则n m += .
三、解答题
1.求下列各式的值.
3004.0
(1)225 (2)0004.0- (3)4112
± (4)()21.0--
2.解下列方程. (1)0252=-x (2)81162=x (3)016252=-x (4)()04
1212=--x
6.已知12-a 的平方根是3±,13-+b a 的算术平方根是4,求b a 2+的平方根.。

相关文档
最新文档