第8章 常见几何图形

合集下载

《小学数学课程与教学》第八章图形与几何

《小学数学课程与教学》第八章图形与几何


形与几何”,将几何学习的视野拓宽到学生生活的空间,强调了数学课程的特

性。“空间与图形”在本质上是表述一种存在,而图形与几何是基于这种存在
提a
抽象出概念。这是数学本质之所在,也是数学教育本质之所在。

“图形与几何”主要分为四个部分:图形的认识、测量、图形的运动、图
形与位置。本节主要对这四部分内容进行分析,并简述教学要求及其变化。
正文 . 第八章
“图形与几何”的地位和作用
“图形与几何”的内容分析和要求
第 12 页
“图形与几何”的教学策略
一、《标准(2011版)》中“图形与几何”的内容分析
(一)图形的认识
1.认识常见图形
《标准(2011版)》对“图形的认识”的内容安排,体现了从生活到数学、从直观到 抽象、从整体到局部的特点,且三维、二维、一维图形交替出现,教学要求逐渐提高。小 学阶段的教材对“图形的认识”这一内容,是按从立体到平面再到立体的顺序进行编排的。 从历史发展过程来看,我国传统小学教材最初是按点、线、面、体的逻辑顺序讲的。到了 20世纪90年代,教材内容发生了变化,即先讲立体,再讲平面,再回到立体。当时变化的 原因是很多教师反映高年级学生对识别几何立体图形的能力比较差,学习比较困难。这部 分是个难点,若分阶段安排,则可以分散难点。
特 在解决“图形与几何”的问题时,常常要运用观察、操作、猜想、作图与设计等各种手
别 段进行推理,这样有助于增强学生的好奇心,加深对数学的理解,形成创新意识。借助
提a
生活经验和动手操作,让学生对现实世界中的物体、几何体和平面图形的形状、大小、 位置关系及其变换等方面进行准确的描述,形成表象,建立空间观念。
正文 . 第八章
“图形与几何”的地位和作用

高三数学一轮复习 8.2 空间几何体的表面积与体积

高三数学一轮复习 8.2 空间几何体的表面积与体积

考点1
考点2
考点3
-16-
对点训练1如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条互相垂直的半径.若该几何体的体积是 283π, 则它的表面积 是( )
由三视图可知该几何体是球截去18后所得几何体, 则 所78以A×.它1473π的π×B表R.13面=8π2积83πC为,.解2078得×πD4Rπ.2R=82π2+, 34×πR2=14π+3π=17π.
(3)设正四面体棱长为 a,则正四面体表面积为 S1=4·43·a2= 3a2,
其内切球半径为正四面体高的14,即 r=14 ·36a=126a,因此内切球表面积
为 S2=4πr2=π6������2,则������������12 =
3������2 π6������2
=
6π3.
考点1
考点2
考点3
考点1
考点2
考点3
-28-
(2)设球半径为R,过AB作相互垂直的平面α,β,设圆M的直径为AC, 圆N的直径为AD,则BD⊥BC,BC2+BD2+4=(2R)2=12,
∴CD=2 2, ∵M,N分别是AC,AD的中点, ∴MN的长度是定值 2,故选B.
考点1
考点2
考点3
-29-
1.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构 特点与平面几何知识来解决.
2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面. 3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位置,确定有关元素间的数量关系, 并作出合适的截面图.
考点1
考点2
考点3
-27-
解析 (1)∵AB=AC=3,∠BAC=23π,

七年级下册数学第8章讲解

七年级下册数学第8章讲解

七年级下册数学第8章讲解七年级下册数学第8章是关于图形的章节,主要讲解了平面图形的性质及计算方法。

本章内容包括:平面图形的分类、平行四边形、特殊的四边形(矩形、正方形、菱形)、三角形、全等三角形、相似三角形等。

下面是该章节的参考内容:1. 平面图形的分类:平面图形是由直线和曲线所构成的,根据其形状和性质,可以分类为:多边形、圆、曲线。

2. 多边形的性质:多边形是由多条线段相连而成的封闭图形,根据边的个数,可以分为:三角形、四边形、五边形、六边形等。

多边形还有一些性质:内角和公式、外角和公式等。

3. 平行四边形的性质和计算方法:平行四边形是具有两对对边平行的四边形,它有一些特殊的性质:对角线互相平分、对边相等、同底异边三角形面积相等等。

平行四边形的周长和面积计算方法也在本章中介绍。

4. 特殊的四边形(矩形、正方形、菱形)的性质:矩形是由四条边和四个直角组成的四边形,有一些特殊性质:对角线相等、扇形面积公式等。

正方形是具有相等边和相等角的矩形,有一些特殊性质:对角线相等、内切圆面积等。

菱形是由四条边相等的四边形,有一些特殊性质:对角线互相垂直、内切圆面积等。

5. 三角形的性质和计算方法:三角形是由三条边和三个内角组成的图形,根据边长和角度的不同,可以分为:等边三角形、等腰三角形、直角三角形、钝角三角形、锐角三角形等。

三角形的周长和面积计算方法也在本章中介绍。

6. 全等三角形的性质:全等三角形是具有相等边长和相等角度的三角形,全等三角形有一些性质:边对边对应相等、角对角应相等等。

7. 相似三角形的性质:相似三角形是具有对应角相等的三角形,相似三角形有一些性质:对应边成比例、高成比例等。

以上是七年级下册数学第8章的相关内容参考。

通过学习本章,学生们将能够理解并应用图形的性质及计算方法,进一步提升数学的应用能力和解决问题的能力。

第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)

第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)

81 C. 4 π
D.16π
(1)如图,设 PE 为正四棱锥 P-ABCD 的高,则正四棱锥 P-ABCD 的 外接球的球心 O 必在其高 PE 所在的直线上,延长 PE 交球面于一点 F,连接 AE,AF.
由球的性质可知△PAF为直角三角形且AE⊥PF,
又底面边长为4, 所以AE=2 2 , PE=6, 所以侧棱长PA=
3
在Rt△CDE中,
故二面角B-AP-C的正切值为2.
tanCED CD 2 3 2, DE 3
归纳总结
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
的表面积为 16π,则 O 到平面 ABC 的距离为
A. 3
3 B.2
√C.1
3 D. 2
解析 如图所示,过球心O作OO1⊥平面ABC, 则O1为等边三角形ABC的外心. 设△ABC的边长为a, 则 43a2=943,解得 a=3, ∴O1A=23× 23×3= 3. 设球O的半径为r,则由4πr2=16π,得r=2,即OA=2. 在 Rt△OO1A 中,OO1= OA2-O1A2=1,
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行, 则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任 一平面与此平面的交线与该直线平行(简记为“线面平行⇒线 线平行”).
2.平面与平面平行
则直线 PB 与 AD1 所成的角为( )
A.
2

了解了哪些常见的几何图形和几何关系

了解了哪些常见的几何图形和几何关系

了解了哪些常见的几何图形和几何关系一、常见的几何图形1.点:几何学中最基本的元素,只有位置,没有大小和形状。

2.线段:连接两个点的线,具有长度和有限的两端点。

3.射线:起点固定,无限延伸的直线。

4.直线:无限延伸的线,无起点和终点。

5.三角形:由三条线段组成的图形,具有三个顶点和三个角。

6.四边形:由四条线段组成的图形,具有四个顶点和四个角。

7.矩形:四边形中,对边平行且相等,四个角都是直角的图形。

8.正方形:矩形中,四条边相等的图形。

9.圆形:平面上所有点到圆心的距离都相等的图形。

10.扇形:圆的一部分,由圆心、圆弧和两条半径组成。

二、几何关系1.邻边:在四边形中,相邻的两条边。

2.对边:在四边形中,相对的两条边。

3.平行线:在同一平面内,永不相交的两条直线。

4.垂线:与另一条直线相交,且交角为90度的直线。

5.直径:圆上通过圆心的线段,长度是圆的半径的两倍。

6.半径:从圆心到圆上任意一点的线段。

7.弧:圆上任意两点间的部分。

8.弦:圆上任意两点间的线段,不经过圆心。

9.切线:与圆相切且只有一个交点的直线。

10.圆周角:圆心所对的圆周上的角,等于其所对圆心角的一半。

11.同弧所对的圆周角:在同圆或等圆中,同弧所对的圆周角相等。

12.圆内接四边形:四个顶点都在圆上的四边形。

13.圆外切四边形:四边形的四个顶点都在圆外,且四边形的对边与圆相切。

14.相似图形:形状相同,大小不同的图形。

15.相等图形:形状和大小都相同的图形。

以上就是中学阶段常见的几何图形和几何关系,掌握这些基础知识,有助于更好地理解和解决几何问题。

习题及方法:1.习题:判断下列哪个图形是矩形。

A. 有一个角是直角的平行四边形B. 有三个角是直角的平行四边形C. 有四个角都是直角的平行四边形D. 有一个角是直角的梯形方法:根据矩形的定义,矩形是四个角都是直角的平行四边形。

所以选项C是正确的。

2.习题:计算一个半径为5cm的圆的周长和面积。

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)初中几何常见基本图形1.基本图形及结论A、B、C、D分别为四边形的顶点,AC=BD,AD=BC,∠AOC=∠BOD,∠AOD=∠BOC。

2.直角三角形在直角三角形ABC中,∠C=90°,OA为斜边的中线,OD⊥XXX。

3.等腰三角形在等腰三角形ABC中,AB=AC,AD为角A的平分线,BD=CD。

4.三角形的面积公式在三角形ABC中,AB2=BD×BC,AC2=CD×BC。

5.三角形内角和公式在三角形ABC中,∠A+∠B+∠C=180°。

6.平行四边形在平行四边形ABCD中,∠A+∠B=∠C+∠D,AC平分∠BAD。

7.直角三角形的斜边中线在直角三角形ABC中,BD为斜边AC的中线,∠B=∠D。

8.直角三角形的高线在直角三角形ABC中,PA⊥AB,PB⊥AC,PC⊥BC,且PA=PB+PC,∠P=∠A/2.9.直角三角形的内心在直角三角形ABC中,∠P=∠A/2,PD为角A的平分线,AD=BD=AC=DC。

10.直角三角形的外心在直角三角形ABC中,∠P=90°-∠A/2,以AB的中点O为圆心,AB为半径作圆,交AC于点P,则P为三角形ABC的外心。

11.等腰三角形的中线在等腰三角形ABC中,AB=CB,BD为角B的平分线,且BC∥AD。

12.等边三角形在等边三角形ABC中,AB=AC=BC。

13.等角三角形在等角三角形ABC中,∠A=∠B=∠C。

14.三角形的相似在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,则称三角形ABC与DEF相似。

15.圆的基本性质在圆O中,AB为直径,则∠C=90°,且AC=BC=OD。

16.圆的切线在圆O中,以点A为圆心,AB为半径作圆,则CD为圆O的切线。

17.圆的割线在圆O中,以点A为圆心,AC为半径作圆,则BD为圆O的割线。

18.圆的弦在圆O中,AB为圆O的弦,R为圆O的半径,则弦长公式为AB2=BD×BC,且弦AB平分∠AOB。

高中数学第八章立体几何初步8.1基本立体图形3教案第二册

高中数学第八章立体几何初步8.1基本立体图形3教案第二册

8。

1 基本几何图形第2课时圆柱、圆锥、圆台、球、简单组合体立体几何是研究三维空间中物体的形状、大小、位置关系的一门数学学科,而三维空间是人们生存发展的现实空间,学习立体几何对我们更好地认识客观世界,更好地生存与发展具有重要意义。

在立体几何初步部分,学生将先从对空间几何体观察入手、认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系。

本节内容既是义务教育阶段“空间与图形"课程的延续和提高,也是后续研究空间点、线、面位置关系的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

课程目标1.认识圆柱、圆锥、圆台、球的结构特征.2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.数学学科素养1.数学抽象:简单组合体概念的理解;2.逻辑推理:圆柱、圆锥、圆台、球的结构特点;3。

直观想象:判断空间几何体;4。

数学运算:球的相关计算、最短距离等;5.数学建模:通过平面展开图将空间问题转化为平面问题解决,体现了转化的思想方法。

重点:掌握圆柱、圆锥、圆台、球的结构特征;难点:旋转体的相关计算.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练.教学工具:多媒体.一、情景导入上节课学了常见的多面体:棱柱、棱锥、棱台,那么常见的旋转体有哪些?又有什么结构特点?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察。

研探.二、预习课本,引入新课阅读课本101-104页,思考并完成以下问题1、旋转体包含哪些图形?2、圆柱、圆锥、圆台、球是怎样定义的?又有什么结构特点?3、什么是简单组合体,特点是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究一、常见的旋转体1、圆柱:定义:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。

旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆柱用表示它的轴的字母表示,如圆柱O’O。

(8)六年级下第八章几何图形导学案修改1

(8)六年级下第八章几何图形导学案修改1

课题:8.1.1几何图形(一)年月日一、学习目标1、通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形。

2、正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类。

3、探索平面图形与立体图形之间的关系.二、教材导学(一)、知识回顾我们的世界是五彩缤纷、绚丽多彩的。

我们生活在这样美丽的图画世界里,学习,生活是多么幸福啊!让我们一起来认真观察下面的几幅图,这些图形形状各异,可以说是多姿多彩,看看哪些图形是熟悉的。

(二)、自主学习下面是一个纸盒,对于各种各样的物体,数学中关注的是它们的形状、大小、位置。

例如:这个纸盒,从整体上看它是一个,从侧面看它是,只看一条横棱是一条,用类似的方法我们还可以得到点,这些都是我们要研究的几何图形。

(一)、强化新知几何图形:从实物中抽象出来的图形我们把它们叫做几何图形。

立体图形:各部分不都在同一平面内的几何图形叫做立体图形。

平面图形:各部分都在同一平面内的图形叫做平面图形。

(二)、例题示范请同学们来认识下面这些立体图形:(三)、补充练习(1)常见的平面图形有哪些呢?答:(2)常见的立体图形有哪些呢?答:四、学习反馈1、把相应的实物与图形用线连起来。

2、下面立体图形的表面中包含哪些平面图形?试指出这些平面图形在立体图形中的五、课后作业1、连连看2、将下列几何体分类,并说明你分类的理由.3、圆柱和圆锥的不同之处在于()A .底面的形状B .底面的个数C .侧面的个数D .无法确定4、四棱柱共有()个面.A .5B .6C .7D .85、长方体有_____个顶点,经过每个顶点有______条边,共有_____条边.6、图(1)中的几何体有_____个面,面与面相交成______条线.(1) (2) (3)7、数一数图(2)中共有_____个三角形.8、如图(3)所示,图形绕虚线旋转一周得到的立体图形是______.9、一矩形绕其一边旋转形成的几何体是________.10、一个画家有14个边长为1m 的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积是(• ).A .19cm 2B .21cm 2C .33cm 2D .34cm2课题:8.1.1几何图形(二)年 月 日一、学习目标1、初步了解三视图,体会立体图形与平面图形之间的关系。

几何图形PPT课件

几何图形PPT课件

面积计算公式
面积 = (底 × 高) / 2,其中底和高是 任意两边及其之间的距离。
周长计算公式
周长 = 三边之和。
四边形
定义
四边形是由四条边和它们之间的角组成的平面图形。
性质
四边形可以分为平行四边形、梯形、菱形等不同类型;四 边形的内角和等于360度。
面积计算公式
面积 = (底 × 高) / 2,其中底和高是任意一边及其对角线长 度。
度量单位的换算与计算
度量单位换算
将一种度量单位转换为另一种度量单位,如将厘米转换为米或将千克转换为吨等。
计算方法
根据度量单位的不同,采用不同的计算方法,如乘法、除法、开方等。
06 几何图形的拓展知识
几何图形的对称性
01
02
03
轴对称
图形关于某一直线对称, 如等腰三角形、矩形、正 多边形等。
中心对称

图案设计
各种图案和花纹的创作都离不 开几何图形,如纺织品、壁纸 、地毯等。
工程绘图
工程绘图和机械制图都以几何 图形为基础,用于描述物体的 形状和尺寸。
数学教育
几何图形是数学教育中的重要 内容,有助于培养学生的逻辑
思维和空间想象力。
02 平面几何图形
圆形
定义
性质
圆是一种平面图形,由所有到定点距离等 于定长的点组成。
面积计算公式
面积 = π × 长轴^2 / 2,其中长轴是椭圆上距离最远的两点之间的距 离。
周长计算公式
周长 = 4a,其中 a 为椭圆的长轴长度。
三角形
定义
三角形是由三条边和它们之间的角组 成的平面图形。
性质
三角形具有稳定性,是轴对称图形; 三角形的内角和等于180度,且任意 两边之和大于第三边。

新教材高中数学第八章立体几何初步8.4.2空间点、直线、平面之间的位置关系课件新人教A版必修第二册

新教材高中数学第八章立体几何初步8.4.2空间点、直线、平面之间的位置关系课件新人教A版必修第二册

位置关系
直线 a 外
直线 a 与平
直线 a 与
面 α 相交
平面 α 平行
公共点
有且只有 _无__数___个__公共点 __一___个___公共点 _没__有___公共点
符号表示
a⊂α
a∩α=A
a∥α
图形表示
■名师点拨 一般地,直线 a 在平面 α 内时,应把直线 a 画在表示平面 α 的平行 四边形内;直线 a 与平面 α 相交时,应画成直线 a 与平面 α 有且只 有一个公共点,被平面 α 遮住的部分画成虚线或不画;直线 a 与平 面 α 平行时,应画成直线 a 与表示平面 α 的平行四边形的一条边平 行,并画在表示平面α 的平行四边形外.
【解析】 经探究可知直线 A1B 与直线 D1C 在平面 A1BCD1 中,且 没有交点,则两直线平行,所以①应该填“平行”;点 A1、B、B1 在平面 A1BB1 内,而 C 不在平面 A1BB1 内,则直线 A1B 与直线 B1C 异面.同理,直线 AB 与直线 B1C 异面.所以②④应该填“异面”; 直线 D1D 与直线 D1C 相交于 D1 点,所以③应该填“相交”. 【答案】 ①平行 ②异面 ③相交 ④异面
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条
直线.
其中真命题的个数为( )
A.1
B.2
C.3
D.4
【解析】 因为直线 l 虽与平面 α 内无数条直线平行,但 l 有可 能在平面 α 内,所以 l 不一定平行于 α,所以①是假命题. 因为直线 a 在平面 α 外包括两种情况:a∥α 和 a 与 α 相交,所 以 a 和 α 不一定平行,所以②是假命题. 因为直线 a∥b,b⊂α,则只能说明 a 和 b 无公共点,但 a 可能 在平面 α 内,所以 a 不一定平行于 α,所以③是假命题. 因为 a∥b,b⊂α,所以 a⊂α 或 a∥α,所以 a 可以与平面 α 内 的无数条直线平行,所以④是真命题. 综上,真命题的个数为 1. 【答案】 A

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A­BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥P­ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则四棱锥A 1­BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S­ABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1­BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D­ABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABC­A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D­ABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ­ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥A­ECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ­ABC =V N ­ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC ­A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC ­A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC ­A 1B 1C 1的体积为V ,则V =3VB 1­ABC =3VA ­B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABC­A1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥P­ABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥Q­BCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q ­BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCD­A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ­ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D ­MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D ­MAB =V M ­DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥P­ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。

人教A版高中数学必修第二册教学课件-第八章 -8-2立体图形的直观图

人教A版高中数学必修第二册教学课件-第八章 -8-2立体图形的直观图
新知学习
知识点一 水平放置的平面图形的直观图的画法
用斜二测画法画水平放置的平面图形的直观图的步骤
45° 135° 水平面
的线段
x′轴或y′轴
保持原长度不变
一半
高中数学 必修第二册 RJ·A
知识点二 空间几何体直观图的画法
立体图形直观图的画法步骤
(1)画轴:与平面图形的直观图画法相比多了一个 轴,直观图中与之对应的是 (2)画底面:平面 x′O′y′ 表示水平平面,平面 y′O′z′和 x′O′z′ 表示竖z′直平面,按照平面图形的画法,画底面的直观图. (3)画侧棱:已知图形中平行于z轴(或在z轴上)的线段,在其直观图中 平行性 和 长度都不变. (4)成图:去掉辅助线,将被遮挡的部分改为 虚线 .

y′轴平行,且A′B′=A′C′,那么△ABC是
A.等腰三角形
B.钝角三角形
C.等腰直角三角形
D.直角三角形
解析 因为水平放置的△ABC的直观图中,∠x′O′y′=45°,A′B′=A′C′,且A′B′∥x′轴, A′C′∥y′轴,所以AB⊥AC,AB≠AC,所以△ABC是直角三角形.
高中数学 必修第二册 RJ·A
高中数学 必修第二册 RJ·A
跟踪训练
用斜二测画法画出六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面 上的投影是正六边形的中心O.(尺寸自定)
高中数学 必修第二册 RJ·A
解 画法: (1)画出六棱锥P-ABCDEF的底面.①在正六边形ABCDEF中,取AD所在的直线为x轴, 对称轴MN所在的直线为y轴,两轴相交于点O,如图(1); 画出相应的x′轴、y′轴、z′轴,三轴相交于O′,使∠x′O′y′=45°,∠x′O′z′=90°,如图(2);

高考理科数学总复习第八章 第六节 双曲线 (2)

高考理科数学总复习第八章  第六节 双曲线 (2)

1.双曲线的定义中易忽视 2a<|F1F2|这一条件.若 2a=|F1F2|, 则轨迹是以 F1,F2 为端点的两条射线,若 2a>|F1F2|,则轨迹 不存在. 2.注意区分双曲线中的 a,b,c 大小关系与椭圆中的 a,b,c 关系,在椭圆中 a2=b2+c2,而在双曲线中 c2=a2+b2. 3.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在 x 轴上,渐近线斜率为±ba,当焦点在 y 轴上,渐近线斜率为±ab.
2.双曲线的标准方程和几何性质
标准方程
xa22-by22=1(a>0,b>0)
ay22-xb22=1(a>0,b>0)
图形
标准方程
xa22-by22=1(a>0,b>0) ay22-xb22=1(a>0,b>0)
范围 x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R
对称轴: 坐标轴 性 对称性 对称中心: 原点
第八章 平面解析几何 第六节 双曲线
C目录 ONTENTS
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
高考·导航
1.了解双曲线的定义、几何图形和标准方程. 2.知道双曲线的简单几何性质.
主干知识 自主排查
1.双曲线的定义 满足以下三个条件的点的轨迹是双曲线: (1)在平面内; (2)与两定点 F1,F2 的距离的差的绝对值 等于非零常数; (3)非零常数 小于 |F1F2|.
mn
m1 ,n1异号,所以 mn<0.综上,“mn<0”是“方程 mx2+ny2=1 表示双曲线”的充要条件.
答案:C
3.(2017·高考全国卷Ⅲ)已知双曲线C:
x2 a2

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版
(2)该几何体为一个半圆柱中间挖去一个四面体, ∴体积 V=12π×22×4-13×12×2×4×4=8π-136. 答案 (1)C (2)A
考点三 多面体与球的切、接问题
典例迁移
【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V
的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
故S球=4πR2=169π.
【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几 何体外接球的表面积.
解 设外接球的半径为 R,由三视图可知该几何体是两个正四棱锥的组合体(底面重
合),上、下两顶点之间的距离为 2R,正四棱锥的底面是边长为 2R 的正方形,由
R2+

22R2=32 解得
解析 由三视图可知,该几何体是一个底面为直角梯形的直 四棱柱,所以该几何体的体积 V=12×(1+2)×2×2=6. 答案 6
考点一 简单几何体的表面积
【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其主视图如 图所示,则该四棱锥的侧面积是( )
A.4 3
B.4 5
C.4( 5+1)
答案 A
角度2 简单几何体的体积 【例2-2】 (一题多解)(2018·天津卷)如图,已知正方体ABCD-A1B1C1D1的棱长为1,
则四棱锥A1-BB1D1D的体积为________.
解析 法一 连接 A1C1 交 B1D1 于点 E,则 A1E⊥B1D1,A1E⊥BB1,则 A1E⊥平面
BB1D1D,所以 A1E 为四棱锥 A1-BB1D1D 的高,且 A1E= 22,矩形 BB1D1D 的长和宽
【训练3】 (2019·广州模拟)三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA= PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为( )

初中数学必修——几何图形篇

初中数学必修——几何图形篇

初中数学必修——几何图形篇在初中数学中,几何图形是必修的一部分。

几何图形是我们日常生活中所见到的形状和图像,如正方形、圆形、长方形等。

在数学中,我们会用几何图形进行测量、计算和推理,以帮助我们更好地理解数学。

一、平面图形在初中数学中,我们首先学习的是平面图形,即长方形、正方形、三角形和圆形。

这些形状经常出现在我们生活中,因此学习它们的特征和如何计算它们的面积和周长非常重要。

1. 长方形和正方形长方形和正方形是最基本的平面图形之一。

其中正方形是一种特殊的长方形,它的四边相等且角度为90度。

在计算长方形和正方形的周长和面积时,需要知道其长度和宽度。

周长是指边的总长度,面积是指图形所覆盖的区域大小。

2. 三角形三角形是由三条线段连接在一起而形成的图形。

它们有不同的类型,如等边三角形、等腰三角形和直角三角形。

计算三角形的面积时,我们需要知道其底边和高度。

计算三角形的周长时,我们需要知道三角形的三边长度。

3. 圆形圆形是由曲线连接在一起而形成的图形。

它的轮廓是由一个完美的圆弧定义的,其周长被称为圆周,面积被称为圆面积。

在计算圆形的周长和面积时,我们需要知道其半径或直径。

圆的周长等于半径或直径的长度乘以$\pi$,面积等于半径的平方乘以$\pi$。

二、立体图形立体图形是由平面图形组成的。

初中数学中会涉及到许多不同类型的立体图形,如立方体、正方体、棱柱、棱锥和圆柱体等。

1. 立方体和正方体立方体和正方体是最基本的立体图形之一。

立方体有六个面,每个面都是正方形。

正方体是一种特殊的立方体,每个面都是正方形且边相等。

在计算立方体和正方体的表面积和体积时,我们需要知道它们的长和宽。

表面积是指所有面的总面积,体积是指图形所占的体积大小。

2. 棱柱和棱锥棱柱和棱锥都是由多边形围成的立体图形。

棱锥的底部是一个多边形,而棱柱的两个底分别是相等的多边形。

在计算棱柱和棱锥的表面积和体积时,我们需要知道它们的底面积和高度。

表面积是指所有面的总面积,体积是指图形所占的体积大小。

基本的几何图形(整理)

基本的几何图形(整理)
四边形
四边形在建筑中应用广泛,如矩形、正方形和长方形等。这些四边形是构成建筑框架的基础,如墙、地板和天花板。它们提供了稳定性和功能性,是建筑设计中不可或缺的元素。
多边形
多边形在建筑设计中主要用于构造复杂的几何图案和装饰元素。例如,地面拼花、墙面浮雕和天花板图案等。多边形能够创造出丰富的视觉效果,增强建筑的视觉冲击力。
圆形的周长和面积
周长公式
C = 2πr,其中r为圆的半径。
面积公式
A = πr^2,其中r为圆的半径。
PART THREE
三角形
三角形的定义
三角形是最简单的多边形,也是最基础且最重要的几何图形之一。
由不在同一直线上的三条线段首尾顺次连接而成的图形。
三角形的性质
三角形的内角和为180度。 三角形具有稳定性,即三角形三条边的长度确定后,其形状和大小就固定了。 三角形的任意两边之和大于第三边,任意两边之差小于第三边。
圆形、三角形、四边形和多边形的应用
06
建筑学中的应用
圆形
在建筑学中,圆形常用于设计圆形屋顶、圆形窗户和圆形装饰元素。它给人一种完整、和谐的感觉,能够营造出优雅和舒适的氛围。
三角形
三角形具有稳定性,因此在建筑设计中常被用来构造稳固的结构。例如,金字塔就是利用大量的三角形来构建的。此外,三角形还常用于装饰元素中,如尖顶和山墙。
感谢您的观看
CLICK HERE TO ADD A TITLE
THANKS
演讲人姓名
几何图形的基本概念
02
PART TWO
圆形
圆形的定义
圆可以看作是围绕圆心旋转任意角度的射线与另一条射线交点的轨迹。
圆是一个平面图形,由所有到定点(圆心)的距离等于定长(半径)的点的集合组成。

高中数学必修第二册 第八章 立体几何初步8.1基本立体图形

高中数学必修第二册 第八章 立体几何初步8.1基本立体图形

S 顶点
各部分名称如图.
侧棱
侧面
表示:
D A
C
用顶点和底面各顶点的
B 底面
字母表示: 如: 棱锥 S-ABCD.
2. 棱锥的结构特征
一般地, ①有一个面是多边形, 其余各面都是有
一个②公共顶点的③三角形, 由这些面所围成的几何体
叫做棱锥.
S 顶点
特征:
侧棱
侧面 ① 底面四边形ABCD (多边形); ② 侧棱 SA, SB, SC, SD交于
(4)
(12)
(5) (8)
(6) (15)
(10)
(7)
(9) (1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
一般地, 我们把由若干个平面多边形围成的几 何体叫做多面体 (如图). 围成多面体的各个多边形 叫做多面体的面, 相邻两个面的公共边叫做多面体 的棱, 棱与棱的公共点叫做多面体的顶点.
1. 棱柱的结构特征
一般地, ①有两个面互相平行, ②其余各面都是四边 形, ③并且每相邻两个四边形的公共边都互相平行, 由 这些面围成的几何体叫做棱柱.
底面是三角形、四边形、五边形……的棱柱分别 叫做三棱柱、四棱柱、五棱柱……






2. 棱锥的结构特征
一般地, ①有一个面是多边形, 其余各面都是有 一个②公共顶点的③三角形, 由这些面所围成的几何体 叫做棱锥.
2. 棱柱的几何特征
(1) 有两个面平行;
(2) 其余各面都是四边形;

数学高一第八章图形知识点

数学高一第八章图形知识点

数学高一第八章图形知识点在高一的数学课程中,第八章图形是一个重要的知识点。

通过学习这一章节,我们将了解到不同类型的几何图形以及它们的性质和计算方法。

本文将为大家简要介绍数学高一第八章图形的主要内容和要点。

一、平面图形的分类平面图形是由点和线组成的,可以分为基本图形和复合图形两类。

基本图形包括点、线、线段、射线和角等,复合图形是由基本图形组合而成的,如多边形、圆形等。

1. 多边形多边形是由线段组成的封闭图形,根据边的个数不同可以分为三角形、四边形、五边形等。

三角形是最简单的多边形,根据边长和角度的不同,三角形又可以分为等边三角形、等腰三角形和普通三角形。

2. 圆形圆形是由一条曲线组成的封闭图形,它的所有点到圆心的距离都相等。

圆的重要性质是半径、直径、弧和扇形等。

通过这些性质,我们可以计算圆的周长和面积。

3. 其他图形除了多边形和圆形,还有梯形、矩形、正方形和长方形等图形。

每种图形都有其特定的性质和计算方法。

二、图形的性质和计算方法除了了解不同图形的分类,我们还需要掌握它们的性质和计算方法。

下面将介绍几个常见的图形性质和计算方法。

1. 三角形的性质和计算三角形的性质包括内角和、外角和、边长关系等。

我们可以利用三角形的性质计算未知角度和边长。

例如,根据三角形的角度和边长关系,可以利用正弦定理、余弦定理和正切定理等计算未知角度和边长。

2. 圆的性质和计算圆的性质包括半径、直径、弧和扇形等。

我们可以利用圆的性质计算圆的周长和面积。

例如,圆的周长公式是2πr,其中r为半径;圆的面积公式是πr²,其中r为半径。

3. 多边形的性质和计算多边形的性质包括边长、内角和、外角和等。

我们可以利用多边形的性质计算未知边长和角度。

例如,正多边形的内角和公式是 (n-2) × 180°,n为边数。

三、应用题解析在数学高一的学习中,图形知识的应用非常广泛。

我们经常会遇到一些与几何图形相关的实际问题,需要利用所学的图形知识进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C. 73
2
D.
75 2
E
M
H
解 (取特殊值法)
令 E 与 D重合
A
G
B
C
D ★(2011年)
N
F
A
D( E ) N
H
在 RtMDN 中, MD 4,
3 DN 2

法二
9 73 MN 16 . 4 2
B F
E ( A)
M
G
C
RH N D
3、圆
O
r
S r C 2 r d
周长,面积
S



菱形: 邻边相等的平行四边形。 对角线的性质:菱形的对角线互相垂直平分 c. 梯形
M
a
h
N
1 S梯 (a b) h 2
中线
1 | MN | (a b) 2
b
例 在平面上,正方形共有( A )条对称轴。
A. 4 B. 3 C. 2 D. 1 (2012年)

厚忽略不计)放有一个半径为1分米的球。若盒子 随意翻动,则该盒子的内表面接触不到球的那部分 的面积是( C )平方分米。 A. 24 B. 60 C. 72 D. 96 (2012年)
解 盒子内表面的每个面上能接触到 球的那部分面积为: (4 2) 2 4
所求的面积为:
(4 2 4) 6 72.
h 10
V r h
2
2
r
3 8 72
例 一个盛满水的圆柱形容器,其底面半径为1,
母线长为3。将该容器在水平的桌面上平稳地倾斜 2 使水缓慢流出。当容器中剩下的水为原来的 时, 3 圆柱的母线与水平面所成的角等于( B ). A. 30
1 1 面积 S r l r 2 2 2
5、平面图形的全等和相似关系 设 A 、B 是两个平面图形 全等:若其形状和大小完全一样。 记作: A≌ B 两个全等的平面图形必然可以移动至重合。 相似:若其形状相同。 记作: A∽B 即 对应边成比例,对应角相等。
● 相似三角形的识别: ① 定义。 ② 两角对应相等,两三角形相似。 ③ 三边对应成比例,两三角形相似。 ④ 两边对应成比例,且夹角相等,两三角形相似。 由上知:
3, 4,5
6,8,10
● 直角三角形斜边上的中线 = 斜边长的一半。 ● 直角三角形外接圆的直径 = 斜边长。
补 某直角三角形中,斜边上的中线长为2.5,周长
为12,则此三角形面积为( D )。 25 A. 12.5 B. 12 C. D. 4 解 由题知,斜边长为 5.
6
5
b
ab 7 {a 2 b2 25

D
E H
G
a
C
F B
设小正方形边长为 a ,则
A

2
S a
2
2
BC (2a ) (2a ) 2 2a
AB (3a) 2 (3a) 2 3 2a
2
2a 3 2a S S 2 故 a 12
例 在四边形ABCD 中对角线 AC 、BD 垂直相交
于 O 点,若AC 30 , BD 36 ,则四边形 ABCD 的面积为( D ). A. 1080 B. 840 C. 720 (P81 第5题) D. 540 (05年)
4
1
2、圆柱体 ①
h
r
2 r

V 底面积 2 r h S侧 2 r h

h
例 一圆柱体的高与一正方体的高相等,且它们的
侧面积也相等,则圆柱体的体积与正方体的体积 的比值为多少? (P80 例2)

由题知,
h
r
2
h
2 r h 4 h r 2 h
2
2 2 4 r 2 V柱 r h ( ) ( ) 3 h h V正
a b c 14 {2(ab bc ac) 22 {2(ab bc ac) 22 即 2 (a b c) 36 方程两边分别相加,得 abc 6
a b c 14
2 2 2
2
故 所有棱长和为:
4(a b c) 24
例 一个棱长为4分米的密封的正方体盒子里(壁

p( p a)( p b)( p c)
abc (p ) 2
直角三角形 ● 三角形的分类 a. 直角三角形 锐角三角形 钝角三角形
A
c
b
B a C

a 2 b2 c2 A B 90
a b a sin A , cos A , tan A b c c

B
A
D
S ABCD S ABD SCBD
1 1 BD AO BD CO 2 2 1 BD( AO CO) 2
O
C
1 BD AC 540 2
例 如图,面积为9平方厘米的正方形 EFGH 在面积 为25平方厘米的正方形 ABCD 所在平面上移动,
DH 的 始终保持 EF // AB 。记线段 CF 的中点为 M , 中点为 N ,则线段 MN 的长度是( C )厘米. 25 73 C B M A. B. 4 4 F G
S圆 r
2
(08年)
设正方形边长为 a, 则
a 8
2
A
M
E
D
N
a2 5 2 在 Rt 中,r a ( ) a 10 2 4
2 2
过圆心 O 做 OE AD a 则 AE 2
a r
B O C

S圆 10
4、扇形 弧长
O
l r
( 用弧度制)
r
l

2
● 圆周角、圆心角的定义及结论
▽ ① 在同圆或等圆中,
等弧所对的圆周角相等; 等弧所对的圆心角相等。
② 同弧所对的圆周角是圆心角的一半。
★③ 直径所对的圆周角为直角。
BC 6 , 例 在 ABC 中,AB 10 , AC 8 ,
过 C 点以 C 到 AB 的距离为直径作圆,该圆与 AB 有公共点,且交 AC 与 M ,交 BC 与 N ,则 MN 等于( B )。 ★★(P80 第2题) 1 1 A. 3 3 B. 4 4 C. 7 D. 13 (05年) 3 2 5 4 C 解 由题知, ABC 为直角三角形 M 6 8 C 为直角 N
ab 12
a

1 1 S ab 12 6 2 2

补 某三角形的三边长分别为
3, 4,5 ,则其外接圆
直径的长等于( C )。 A.
3
B.
4
C.
5
D.
6
b. 等腰三角形

c. 等边三角形
三边相等、三内角相等
例 如图,直角 ABC 中 C 是直角,点 E 和点 D 、 F 分别在直角边 AC 和斜边 AB 上,且 AF FE ED DC CB ,则 A ( C )。 A. B. C. D. ★(P81 第3题) 11 10 8 9 (04年) 解 B D B 4A F
关键求 x.
在 Rt 中,
(8 x) 2 42 x 2
解之,
x5
D, E 分别是 AB, AC 上的点, 例 正三角形 ABC 中,
F , G 分别是 DE , BC 的中点。已知 BD 8cm, A CE 6cm, 则 FG ( B )厘米.
A. C.
13
B. D.
★★ 第8章
常见几何图形
一、常见平面几何图形
(三角形、四边形、圆、扇形)
二、常见空间几何图形
(长方体、圆柱体、圆锥体、球、四面体)
一、常见平面几何图形 1、三角形
A
c
B
b 1
三个内角、三条边
a
C
A B C 180
C 的外角: 1 A B
1 S 底 高 (任一边均可作为底) 2 1 1 1 ab sin C bc sin A ac sin B 2 2 2
平方厘米。 A. 10 B. 12.5 C. 20 D. 25
★(P81 第7题)
(06年)
D
OF
解 设大半圆半径为 R,小半圆半径为 r
过圆心 O 作
OD AB
A
M E
B
N
S S

大半圆S小半圆Fra bibliotek1 1 2 1 25 2 2 2 R r (R r ) 2 2 2 2
A
10
D
B
又 AB CD AC BC 即
又 M 、N 在圆上 MN 为直径。 故 MN CD
10 CD 8 6
4 CD 4 5
例 如图,小半圆的直径 EF 落在大半圆的直径 MN 上,大半圆的弦 AB 与 MN 平行且与小半圆相切, 弦 AB 10 厘米,则图中阴影部分的面积为( B )
C
E
A
A B

5A

2
A

10
2
例 已知长方形的长为8,宽为4,
将长方形沿一条对角线折起压平 则阴影三角形的面积为( B ). A. 8 B. 10 C. 12 D. 14
x
4
8
(P80 第1题) (06年)
.
解 S 1 底 高 2 1 x4 2 1 5 4 10 2
例 边长分别为8厘米和6厘米的两个正方形 ABCD
与 BEFG 并排放在一起,如图所示,直线 EG 交 DC 于P , AC 交 PG 于 K ,则三角形 AEK 的面积是( B )。 (2012年) A. 48 B. 49 C. 50 D. 51
相关文档
最新文档