苏州市中考数学试卷含答案解析(Word版)
江苏省苏州市2020年中考数学试题(Word版,含答案与解析)
江苏省苏州市2020年中考数学试卷一、选择题(共10题;共20分)1.在下列四个实数中,最小的数是()C. 0D. √3A. -2B. 13【答案】A【考点】实数大小的比较<√3,【解析】【解答】解:根据实数大小比较的方法,可得-2<0<13所以四个实数中,最小的数是-2.故答案为:A.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.2.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A. 1.64×10−5B. 1.64×10−6C. 16.4×10−7D. 0.164×10−5【答案】B【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.00000164=1.64×10-6,故答案为:B.【分析】绝对值小于1的数利用科学记数法表示的一般形式为a×10-n,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A. a2⋅a3=a6B. a3÷a=a3C. (a2)3=a5D. (a2b)2=a4b2【答案】 D【考点】同底数幂的乘法,同底数幂的除法,积的乘方,幂的乘方【解析】【解答】解:A、a2⋅a3=a5,此选项错误;B、a3÷a=a2,此选项错误;C、(a2)3=a6,此选项错误;D、(a2b)2=a4b2,此选项正确;故答案为:D.【分析】根据幂的运算法则逐一计算可得.4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】组合体从上往下看是横着放的三个正方形.故答案为:C.【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案.5.不等式2x−1≤3的解集在数轴上表示正确的是()A. B.C. D.【答案】C【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【解答】解:移项得,2x≤3+1,合并同类项得,2x≤4,系数化为1得,x≤2,在数轴上表示为:故答案为:C.【分析】先求出不等式的解集,再在数轴上表示出来即可.6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是()A. 0B. 0.6C. 0.8D. 1.1【答案】 D【考点】加权平均数及其计算【解析】【解答】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)故答案为:D.【分析】根据加权平均数的概念,列出算式,即可求解.7.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB= b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A. a+btanαB. a+bsinαC. a+btanα D. a+bsinα【答案】A【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】延长CE交AB于F,如图,根据题意得,四边形CDBF为矩形,∴CF=DB=b,FB=CD=a,在Rt△ACF中,∠ACF=α,CF=b,tan∠ACF= AFCF∴AF= CFtan∠ACF=btanα,AB=AF+BF= a+btanα,故答案为:A.【分析】延长CE交AB于F,得四边形CDBF为矩形,故CF=DB=b,FB=CD=a,在直角三角形ACF中,利用CF的长和已知的角的度数,利用正切函数可求得AF的长,从而可求出旗杆AB的长.8.如图,在扇形OAB中,已知∠AOB=90°,OA=√2,过AB⌢的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A. π−1B. π2−1 C. π−12D. π2−12【答案】B【考点】全等三角形的判定与性质,正方形的判定与性质,圆心角、弧、弦的关系,扇形面积的计算【解析】【解答】连接OC∵点C为AB⌢的中点∴∠AOC=∠BOC 在△CDO和△CEO中{∠AOC=∠BOC∠CDO=∠CEO=90°CO=CO∴△CDO≅△CEO(AAS)∴OD=OE,CD=CE 又∵∠CDO=∠CEO=∠DOE=90°∴四边形CDOE为正方形∵OC=OA=√2∴OD=OE=1∴S正方形CDOE=1×1=1由扇形面积公式得S扇形AOB=90π×(√2)2360=π2∴S阴影=S扇形AOB−S正方形CDOE=π2−1故答案为:B.【分析】连接OC,易证△CDO≅△CEO,进一步可得出四边形CDOE为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB的面积,最后根据阴影部分的面积等于扇形AOB的面积剪去正方形CDOE的面积就可得出答案.9.如图,在ΔABC中,∠BAC=108°,将ΔABC绕点A按逆时针方向旋转得到ΔAB′C′.若点B′恰好落在BC边上,且AB′=CB′,则∠C′的度数为()A. 18°B. 20°C. 24°D. 28°【答案】C【考点】三角形内角和定理,旋转的性质【解析】【解答】解:设 ∠C ′ =x°.根据旋转的性质,得∠C=∠ C ′ = x°, AC ′ =AC, AB ′ =AB.∴∠ AB ′B =∠B.∵ AB ′=CB ′ ,∴∠C=∠CA B ′ =x°.∴∠ AB ′B =∠C+∠CA B ′ =2x°.∴∠B=2x°.∵∠C+∠B+∠CAB=180°, ∠BAC =108° ,∴x+2x+108=180.解得x=24.∴ ∠C ′ 的度数为24°.故答案为:C.【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案.10.如图,平行四边形 OABC 的顶点A 在x 轴的正半轴上,点 D(3,2) 在对角线 OB 上,反比例函数 y =k x (k >0,x >0) 的图像经过C 、D 两点.已知平行四边形 OABC 的面积是 152 ,则点B 的坐标为( )A. (4,83)B. (92,3)C. (5,103)D. (245,165)【答案】 B【考点】坐标与图形性质,平行四边形的性质,相似三角形的判定与性质,反比例函数图象上点的坐标特征【解析】【解答】解:如图,分别过点D 、B 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交y 轴于点H∵四边形 OABC 是平行四边形∴易得CH=AF∵点 D(3,2) 在对角线 OB 上,反比例函数 y =kx (k >0,x >0) 的图像经过 C 、 D 两点∴k=2×3=6即反比例函数解析式为y=6x∴设点C坐标为(a,6a)∵DE∥BF∴△ODE∼△OBF∴DEBF =OEOF∴26a =3OF∴OF=3×6a2=9a∴OA=OF−AF=OF−HC=9a −a,点B坐标为(9a,6a)∵平行四边形OABC的面积是152∴(9a −a)⋅6a=152解得a1=2,a2=−2(舍去)∴点B坐标为(92,3)故答案为:B【分析】根据题意求出反比例函数解析式,设出点C坐标(a,6a),得到点B纵坐标,利用相似三角形性质,用a表示求出OA,再利用平行四边形OABC的面积是152构造方程求a即可.二、填空题(共8题;共8分)11.使√x−13在实数范围内有意义的x的取值范围是________.【答案】x≥1【考点】二次根式有意义的条件【解析】【解答】∵x-1≥0,∴x≥1.故答案是:x≥1.【分析】根据二次根式的被开方数是非负数,列出不等式,即可求解.12.若一次函数y=3x−6的图像与x轴交于点(m,0),则m=________.【答案】2【考点】一次函数图象与坐标轴交点问题【解析】【解答】解:∵一次函数y=3x-6的图象与x轴交于点(m,0),∴3m-6=0,解得m=2.故答案为:2.【分析】把点(m,0)代入y=3x-6即可求得m的值.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是________.【答案】38【考点】几何概率【解析】【解答】解:∵由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个区域中所占的比值= 616=38,∴小球停在黑色区域的概率是38;故答案为:38【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.14.如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是________ °.【答案】25【考点】三角形内角和定理,圆周角定理,切线的性质【解析】【解答】解:∵AC是⊙O的切线,∴∠OAC=90°∵∠C=40°,∴∠AOD=50°,∴∠B= 12∠AOD=25°故答案为:25.【分析】先由切线的性质可得∠OAC=90°,再根据三角形的内角和定理可求出∠AOD=50°,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出∠B的度数.15.若单项式2x m−1y2与单项式13x2y n+1是同类项,则m+n=________.【答案】4【考点】同类项【解析】【解答】解:∵单项式2x m−1y2与单项式13x2y n+1是同类项,∴m-1=2,n+1=2,解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n的值,再代入求解即可.16.如图,在ΔABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=________.【答案】1【考点】相似三角形的判定与性质【解析】【解答】∵BD=2DC∴BD DC=2∵E为AD的中点,∴AD=2DE,∴ADDE=2,∴BDDC =ADDE=2,∵AD⊥BC∴∠ADB=∠EDC=90°∴△ADB∼△EDC∴ABEC=BDDC=2∵AB=2∴EC=1故答案为:1.【分析】根据“两边对应成比例,夹角相等的两个三角形相似”证明△ADB∽△EDC,得ABEC =BDDC=2,由AB=2则可求出结论.17.如图,在平面直角坐标系中,点A、B的坐标分别为(−4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=________.【答案】145【考点】坐标与图形性质,三角形全等及其性质,相似三角形的判定与性质,三角形全等的判定(ASA)【解析】【解答】解:如图,过点C作CD⊥y轴,交y轴于点D,则CD∥AO,∴∠DCE=∠CAO,∵∠BCA=2∠CAO,∴∠BCA=2∠DCE,∴∠DCE=∠DCB,∵CD⊥y轴,∴∠CDE=∠CDB=90°,又∵CD=CD,∴△CDE≌△CDB(ASA),∴DE=DB,∵B(0,4),C(3,n),∴CD=3,OD=n,OB=4,∴DE=DB=OB-OD=4-n,∴OE=OD-DE=n-(4-n)=2n-4,∵A(-4,0),∴AO=4,∵CD∥AO,∴△AOE∽△CDE,∴AOCD =OEDE,∴43=2n−44−n,解得:n=145,故答案为:145.【分析】过点C作CD⊥y轴,交y轴于点D,则CD∥AO,先证△CDE≌△CDB(ASA),进而可得DE=DB=4-n,再证△AOE∽△CDE,进而可得43=2n−44−n,由此计算即可求得答案.18.如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再分别以点A、B为圆心,大于12AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=________.【答案】2425【考点】等腰三角形的性质,勾股定理,平行四边形的判定与性质,锐角三角函数的定义,作图-角的平分线【解析】【解答】连接AB交OD于点H,过点A作AG⊥ON于点G,由尺规作图步骤,可得:OD是∠MON的平分线,OA=OB,∴OH⊥AB,AH=BH,∵DE⊥OC,∴DE∥AB,∵AD∥ON,∴四边形ABED是平行四边形,∴AB=DE=12,∴AH=6,∴OH= √AO2−AH2=√102−62=8,∵OB∙AG=AB∙OH,∴AG= AB⋅OHOB = 12×810= 485,∴sin∠MON=AGOA = 2425.故答案是:2425.【分析】连接AB交OD于点H,过点A作AG⊥ON于点G,根据等腰三角形的性质得OH⊥AB,AH=BH,从而得四边形ABED是平行四边形,利用勾股定理和三角形的面积法,求得AG的值,进而即可求解.三、解答题(共9题;共81分)19.计算:√9+(−2)2−(π−3)0.【答案】解:原式=3+4−1=6.【考点】实数的运算【解析】【分析】根据算术平方根、乘方的定义、零指数幂法则计算即可.20.解方程:xx−1+1=2x−1.【答案】解:方程两边同乘以(x−1),得x+(x−1)=2.解这个一元一次方程,得x=32.经检验,x=32是原方程的解.【考点】解分式方程【解析】【分析】根据解分式方程的步骤解答即可.21.如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.【答案】(1)解:由题意,得a+2b=50,当a=20时,20+2b=50.解得b=15.(2)解:∵18≤a≤26,a=50−2b,∴{50−2b≥1850−2b≤26解这个不等式组,得12≤b≤16.答:矩形花园宽的取值范围为12≤b≤16.【考点】二元一次方程的应用,一元一次不等式组的应用【解析】【分析】(1)根据等量关系“围栏的长度为50”可以列出代数式,再将a=20代入所列式子中求出b的值;(2)由(1)可得a,b之间的关系式,用含有b的式子表示a,再结合18≤a≤26,列出关于b 的不等式组,接着不等式组即可求出b的取值范围.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是________.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.【答案】(1)方案三(2)解:①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数,∴这次竞赛成绩的中位数落在落在90≤x<95分数段内;∴该校1200名学生竞赛成绩的中位数落在90≤x<95分数段内;②由题意得:1200×70%=840(人).∴该校1200名学生中达到“优秀”的学生总人数为840人.【考点】全面调查与抽样调查,用样本估计总体,中位数【解析】【解答】解:要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.答案是:方案三;【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段;②用优秀率乘以该校共有的学生数,即可求出答案.23.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:ΔABE∽ΔDFA;(2)若AB=6,BC=4,求DF的长. 【答案】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD∥BC.∴∠AEB=∠DAF,∵DF⊥AE,∴∠DFA=90°.∴∠B=∠DFA,∴ΔABE∽ΔDFA.(2)解:∵ΔABE∽ΔDFA,∴ABDF =AEAD.∵BC=4,E是BC的中点,∴BE=12BC=12×4=2.∴在RtΔABE中,AE=√AB2+BE2=√62+22=2√10. 又∵AD=BC=4,∴6DF =2√104,∴DF=6√105.【考点】勾股定理,矩形的性质,相似三角形的性质,相似三角形的判定【解析】【分析】(1)根据矩形的性质可得,∠B=90°,AD∥BC.再根据“两直线平行,内错角相等”可得∠AEB=∠DAF,再由垂直的定义可得∠DFA=90°.从而得出∠B=∠DFA,再根据“有两组角对应相等的两个三角形相似”可得出结论;(2)根据中点的定义可求出BE=2,然后根据勾股定理求出AE= 2√10.再根据相似三角形的性质求解即可.24.如图,二次函数y=x2+bx的图像与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,−3).(1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形 PBCQ 为平行四边形.过点P 、Q 分别作x 轴的垂线,与抛物线交于点 P ′(x 1,y 1) 、 Q ′(x 2,y 2) .若 |y 1−y 2|=2 ,求 x 1 、 x 2 的值.【答案】 (1)解:∵直线 l 与抛物线 y =x 2+bx 的对称轴交于点 D(2,−3) ,∴抛物线 y =x 2+bx 的对称轴为直线 x =2 ,即 −b 2=2 ,∴ b =−4 .(2)解:由(1)得:抛物线的解析式为 y =x 2−4x ,把 y =−3 代入抛物线的解析式 y =x 2−4x ,得 x 2−4x =−3 ,解得 x =1 或3,∴B 、C 两点的坐标为 B(1,−3) , C(3,−3) ,∴ BC =2 ,∵四边形 PBCQ 为平行四边形,∴ PQ =BC =2 ,∴ x 2−x 1=2 ,又∵ y 1=x 12−4x 1 , y 2=x 22−4x 2 , |y 1−y 2|=2 ,∴ |(x 12−4x 1)−(x 22−4x 2)|=2 , ∴ |x 1+x 2−4|=1 ,∴ x 1+x 2=5 或 x 1+x 2=3 ,由 {x 2−x 1=2x 1+x 2=5 ,解得 {x 1=32x 2=72由 {x 2−x 1=2x 1+x 2=3 解得 {x 1=12x 2=52∴ x 1 、 x 2 的值为 {x 1=32x 2=72 或 {x 1=12x 2=52. 【考点】平行四边形的性质,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c 的性质【解析】【分析】(1)根据直线l与抛物线对称轴交于点D(2,−3)可得对称轴为直线x=2,由此即可求得b 的值;(2)先求得点B、C的坐标,可得BC=2,再根据四边形PBCQ为平行四边形可得PQ=BC=2,即x2−x1=2,最后根据y1=x12−4x1,y2=x22−4x2,|y1−y2|=2可得x1+x2=5或x1+x2=3,由此分别与x2−x1=2联立方程组求解即可.25.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD=90°.(1)求证:AB+CD=BC.(2)如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD= 90°.求AB+CDBC的值.【答案】(1)证明:∵∠B=90°,∴∠APB+∠BAP=90°.∵∠APD=90°,∴∠APB+∠CPD=90°.∴∠BAP=∠CPD.在△ABP和△PCD中,{∠B=∠C∠BAP=∠CPDPA=DP,∴△ABP≌△PCD(AAS).∴AB=PC,BP=CD,∴AB+CD=BP+PC=BC.问题2:(2)解:如图,分别过点A、D作BC的垂线,垂足为E、F.由(1)可知AE+DF=EF,在Rt△ABE和Rt△DFC中,∠B=∠C=45°,∴AE=BE,DF=CF,AB=AEsin45°=√2AE,CD=DFsin45°=√2DF.∴BC=BE+EF+CF=2(AE+DF),AB+CD=√2(AE+DF).∴AB+CDBC =√2(AE+DF)2(AE+DF)=√22.【考点】三角形全等及其性质,解直角三角形,三角形全等的判定(AAS)【解析】【分析】问题1:先根据AAS证明△ABP≌△PCD,可得AB=PC,BP=CD,由此即可证得结论;问题2:分别过点A、D作BC的垂线,垂足为E、F,由(1)可知AE+DF=EF,利用45°的三角函数值可得AB=AEsin45°=√2AE,CD=DFsin45°=√2DF,由此即可计算得到答案.26.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图像中线段BC所在直线对应的函数表达式.【答案】(1)解:200×(10−8)=400(元).答:截止到6月9日,该商店销售这种水果一共获利400元.(2)解:设点B坐标为(a,400).根据题意,得(10−8)×(600−a)+(10−8.5)×200=1200−400,解这个方程,得a=350.∴点B坐标为(350,400).设线段BC所在直线的函数表达式为y=kx+b,∵B,C两点的坐标分别为(350,400),(800,1200),∴{350k+b=400800k+b=1200解这个方程组,得{k=169b=−20009.∴线段BC所在直线的函数表达式为y=169x−20009.【考点】分段函数,一次函数的实际应用【解析】【分析】(1)根据利润= (售价-成本价)×销售量计算即可;(2)设点B坐标为(a,400),根据题意列出方程计算即可求得a=350,再利用待定系数法即可求得线段BC所在直线对应的函数表达式.销售量27.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT 于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.【答案】(1)解:由题可得:OP=8−t,OQ=t.∴OP+OQ=8−t+t=8(cm).(2)解:当t=4时,线段OB的长度最大.如图,过B作BD⊥OP,垂足为D,则BD//OQ.∵OT平分∠MON,∴∠BOD=∠OBD=45°,∴BD=OD,OB=√2BD.设线段BD的长为x,则BD=OD=x,OB=√2BD=√2x,PD=8−t−x.∵BD//OQ,∴△PBD∽△PQO,∴PDOP =BDOQ,∴8−t−x8−t =xt,解得:x=8t−t28.∴OB=√2⋅8t−t28=−√28(t−4)2+2√2.∴当t=4时,线段OB的长度最大,最大为2√2cm.(3)解:∵∠POQ=90°,∴PQ是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ是等腰直角三角形.∴S△PCQ=12PC⋅QC=12×√22PQ⋅√22PQ=14PQ2.在Rt△POQ中,PQ2=OP2+OQ2=(8−t)2+t2. ∴四边形OPCQ的面积S=S△POQ+S△PCQ=12OP⋅OQ+14PQ2=12t(8−t)+14[(8−t)2+t2]=4t−12t2+12t2+16−4t=16.∴四边形OPCQ的面积为16cm2.【考点】勾股定理,圆周角定理,相似三角形的判定与性质,二次函数y=ax^2+bx+c的性质,角平分线的定义【解析】【分析】(1)根据题意可得OP=8−t,OQ=t,由此可求得OP+OQ的值;(2)过B作BD⊥OP,垂足为D,则BD//OQ,设线段BD的长为x,可得BD=OD=x,OB=√2BD=√2x,PD=8−t−x,根据BD//OQ可得△PBD∽△PQO,进而可得PD OP=BD OQ,由此可得x=8t−t2 8,由此可得OB=√2⋅8t−t28=−√28(t−4)2+2√2,则可得到答案;(3)先证明△PCQ是等腰直角三角形,由此可得S△PCQ=14PQ2,再利用勾股定理可得PQ2=(8−t)2+t2,最后根据四边形OPCQ的面积S=S△POQ+S△PCQ即可求得答案.。
苏州初三数学试题及答案
苏州初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x ≥ 4D. x ≤ 4答案:A2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B3. 一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A4. 函数y = 2x + 3的图像经过点(1,5),那么这个函数的斜率是多少?A. 2B. 3C. 5D. 1答案:A5. 下列哪个选项是方程x^2 - 4x + 4 = 0的根?A. 2B. -2C. 1D. -1答案:A6. 一个等腰三角形的两边长分别为3和4,那么它的周长是多少?A. 10B. 11C. 14D. 15答案:B7. 一个数的倒数是1/2,那么这个数是多少?A. 2B. 1/2C. 1D. 0答案:A8. 一个矩形的长是宽的两倍,如果宽是4,那么它的面积是多少?A. 16B. 32C. 64D. 128答案:B9. 下列哪个选项是方程2x - 3y = 6的解?A. (3,0)B. (0,2)C. (2,1)D. (1,3)答案:C10. 一个数的立方是27,那么这个数是多少?A. 3B. -3C. 9D. -9答案:A二、填空题(每题4分,共20分)11. 如果一个数的绝对值是5,那么这个数可以是______或______。
答案:5,-512. 一个数的相反数是-8,那么这个数是______。
答案:813. 一个数的立方根是2,那么这个数是______。
答案:814. 如果一个角是直角的一半,那么这个角的度数是______。
答案:45°15. 一个数的平方是16,那么这个数可以是______或______。
答案:4,-4三、解答题(每题10分,共50分)16. 解方程:3x + 5 = 14。
2023年苏州市中考数学试卷(含答案解析)
2023年苏州市中考数学试卷(含答案解析)第一部分选择题1. 一件商品原价600元,现降价25%, 现价是多少元?A. 150B. 375C. 450D. 480答案:D解析:现价 = 原价 × (1 - 折扣) = 600 × (1 - 0.25) = 4802. 若x=2,y=-2,则xy的值是?A. 4B. -4C. -1/4D. 1/4答案:B解析:xy = 2 × (-2) = -43. 已知等式:(x+a)(x+b)=0,其中a,b均不等于0,则x的值为?A. -aB. -bC. 0D. a或b答案:D解析:当(x+a)(x+b)=0时,有x=-a或x=-b第二部分简答题1. 已知三角形ABC,其中∠B=90°,AB=l,AC=m,(l>m) 。
找出不等式关系。
答案:l>m解析:直角边对应的斜边最长2. 市政府决定,将现有室内篮球场地上的木板铺上塑胶面层,从而不再限制场地的使用。
该改变有多少好处?答案:至少两个好处解析:1.场地不受天气影响。
2.场地通用性增加。
3. 下列属于无理数的是()A. 4/5B. 0C. 1/2D. $\sqrt{2}$答案:D解析:$\sqrt{2}$ 不是有理数第三部分计算题1. 已知等差数列的前n项和为$S_n=\dfrac{3n^2+5n}{2}$ ,求该等差数列的首项和公差。
答案:首项为1,公差为2解析:将$S_n=\dfrac{3n^2+5n}{2}$ 代入$S_n=\dfrac{n(a_1+a_n)}{2}$,得到$a_1 = 1,d= 2$2. 若${a_n}$满足递推式$a_{n+2}+a_{n+1}-2a_n=10$ ,已知$a_1=2$,$a_2=-1$ ,则$a_7$的值是?答案:$-111$解析:先确定${a_n}$的通项公式,得到$a_n = 3 \cdot 2^n - (-1)^n$ ,再计算出$a_7$的值。
江苏省苏州中考数学试卷解析
苏州中考数学试卷解析一、选择题(本题共10个小题,每小题3分,共30分)1.2的相反数是()D.A.﹣2B.2C.﹣考点:相反数。
专题:常规题型。
分析:根据相反数的定义即可求解.解答:解:2的相反数等于﹣2.故选A.点评:本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2考点:二次根式有意义的条件。
分析:根据二次根式中的被开方数必须是非负数,即可求解.解答:解:根据题意得:x﹣2≥0,解得:x≥2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.3.一组数据2,4,5,5,6的众数是()A.2B.4C.5D.6考点:众数。
分析:根据众数的定义解答即可.解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.4.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率。
分析:确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选B.点评:本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.5.如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°考点:圆周角定理;圆心角、弧、弦的关系。
分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC 的度数.解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.点评:此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4B.6C.8D.10考点:菱形的判定与性质;矩形的性质。
2024年江苏省苏州市中考真题数学试卷含答案解析
2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。
2023年江苏省苏州市中考数学试卷含答案解析
绝密★启用前2023年江苏省苏州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 有理数23的相反数是( )A. −23B. 32C. −32D. ±232. 古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 如图,在正方形网格内,线段PQ的两个端点都在格点上,网格内另有A,B,C,D四个格点,下面四个结论中,正确的是( )A. 连接AB,则AB//PQB. 连接BC,则BC//PQC. 连接BD,则BD⊥PQD. 连接AD,则AD⊥PQ4. 今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A. 长方体B. 正方体C. 圆柱D. 三棱锥5. 下列运算正确的是( ) A. a 3−a 2=aB. a 3·a 2=a 5C. a 3÷a 2=1D. (a 3)2=a 56. 如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是( )A. 14B. 13C. 12D. 347. 如图,在平面直角坐标系中,点A 的坐标为(9,0),点C 的坐标为(0,3),以OA ,OC 为边作矩形OABC.动点E ,F 分别从点O ,B 同时出发,以每秒1个单位长度的速度沿OA ,BC 向终点A ,C 移动.当移动时间为4秒时,AC ·EF 的值为( )A. √ 10B. 9√ 10C. 15D. 308. 如图,AB 是半圆O 的直径,点C ,D 在半圆上,CD⏜=DB ⏜,连接OC ,CA ,OD ,过点B 作EB ⊥AB ,交OD 的延长线于点E.设△OAC 的面积为S 1,△OBE 的面积为S 2,若S 1S 2=23,则tan∠ACO 的值为( )A. √ 2B. 2√ 23C. 75D. 32第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)9. 若√ x+1有意义,则x的取值范围是.10. 因式分解:a2+ab=.11. 分式方程x+1x =23的解为x=.12. 在比例尺为1︰8000000的地图上,量得A,B两地在地图上的距离为3.5厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为.13. 小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是°.14. 已知一次函数y=kx+b的图象经过点(1,3)和(−1,2),则k2−b2=.15. 如图,在□ABCD中,AB=√ 3+1,BC=2,AH⊥CD,垂足为H,AH=√ 3.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1−r2=.(结果保留根号)16. 如图,∠BAC=90°,AB=AC=3√ 2.过点C作CD⊥BC,延长CB到E,使BE=13CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)三、解答题(本大题共11小题,共82.0分。
2022年江苏省苏州市中考数学真题(解析版)
2022年苏州市初中学业水平考试试卷数学一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1. 下列实数中,比3大的数是( )A. 5B. 1C. 0D. -2【答案】A【解析】【分析】根据有理数的大小比较法则比较即可.【详解】解:因为-2<0<1<3<5,所以比3大的数是5,故选:A .【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.2. 2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为( )A. 60.1412610´ B. 61.412610´ C. 51.412610´ D. 414.12610´【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:141260=51.412610´,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 下列运算正确的是( )A. 7=-B. 2693¸=C. 222a b ab +=D. 235a b ab×=【答案】B 【解析】a =,判断A 选项不正确;C 选项中2a 、2b 不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A. 7==,故A 不正确;B. 2366932¸=´=,故B 正确;C. 222a b ab +¹,故C 不正确;D. 236a b ab ×=,故D 不正确;故选B .【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.4. 为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为( )A. 60人B. 100人C. 160人D. 400人【答案】C【解析】【分析】根据参加“书法”的人数为80人,占比为20%,可得总人数,根据总人数乘以125%15%20%---即可求解.【详解】解:总人数为8020%400¸=.则参加“大合唱”的人数为()400125%15%20%160´---=人.故选C .【点睛】本题考查了扇形统计图,从统计图获取信息是解题的关键.5. 如图,直线AB 与CD 相交于点O ,75AOC Ð=°,125Ð=°,则2Ð的度数是( )A. 25°B. 30°C. 40°D. 50°【答案】D【解析】【分析】根据对顶角相等可得75BOD Ð=°,之后根据125Ð=°,即可求出2Ð.【详解】解:由题可知75BOD AOC Ð=Ð=°,125Ð=°Q ,217525BOD \Ð=Ð-Ð=°-°=50°.故选:D .【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.6. 如图,在56´的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB 的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A. 12pB. 24pC.D. 【答案】A【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:由图可知,总面积为:5×6=30,OB ==,∴阴影部分面积为:90105= 3602p p´g,∴飞镖击中扇形OAB(阴影部分)的概率是52= 3012pp,故选:A.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.60100100x x=- B.60100100x x=+ C.10010060x x=+ D.10010060x x=-【答案】B【解析】【分析】根据题意,先令在相同时间t内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100t,走路慢的人的速度60t,再根据题意设未知数,列方程即可【详解】解:令在相同时间t内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100 t ,走路慢的人的速度60t,设走路快的人要走x步才能追上,根据题意可得60100100xxtt=+´,\根据题意可列出的方程是60100100x x =+,故选:B.【点睛】本题考查应用一元一次方程解决数学史问题,读懂题意,找准等量关系列方程是解决问题的关键.8. 如图,点A的坐标为()0,2,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(),3m,则m的值为()A. B. C. D.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB===,可得=,即可解BD==OB==m得m=.【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:∵CD⊥x轴,CE⊥y轴,∴∠CDO=∠CEO=∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE−OA=CD−OA=1,∴AC BC AB====,在Rt△BCD中,BD==在Rt△AOB中,OB==∵OB+BD=OD=m,=,m化简变形得:3m4−22m2−25=0,解得:m=或m=(舍去),∴m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.a a×=_______.9. 计算:3【答案】a4【解析】【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案.【详解】解:a3•a,=a3+1,=a4.故答案为:a4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.10. 已知4x y +=,6-=x y ,则22x y -=______.【答案】24【解析】【分析】根据平方差公式计算即可.详解】解:∵4x y +=,6-=x y ,∴22()()4624x y x y x y -=+-=´=,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.11. 化简2222x x x x ---的结果是______.【答案】x【解析】【分析】根据分式的减法进行计算即可求解.【详解】解:原式=()22222x x x x x x x --==--.故答案为:x .【点睛】本题考查了分式的减法,正确的计算是解题的关键.12. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.【答案】6【解析】【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:∵△ABC 是等腰三角形,底边BC =3∴AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意;所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用【分类讨论思想是解题的关键.13. 如图,AB 是O e 的直径,弦CD 交AB 于点E ,连接AC ,AD .若28BAC Ð=°,则D Ð=______°【答案】62【解析】【分析】连接BD ,根据直径所对的圆周角是90°,可得90ADB Ð=°,由 CBCB =,可得BAC BDC Ð=Ð,进而可得90ADC BDC Ð=°-Ð.【详解】解:连接BD ,∵AB 是O e 的直径,∴90ADB Ð=°,Q CB CB=,\28BAC BDC Ð==а,\90ADC BDC Ð=°-Ð62=°故答案为:62【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.14. 如图,在平行四边形ABCD 中,AB AC ^,3AB =,4AC =,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AEC F 的周长为______.【答案】10【解析】【分析】根据作图可得MN AC ^,且平分AC ,设AC 与MN 的交点为O ,证明四边形AECF 为菱形,根据平行线分线段成比例可得AE 为ABC V 的中线,然后勾股定理求得BC ,根据直角三角形中斜边上的中线等于斜边的一半可得AE 的长,进而根据菱形的性质即可求解.【详解】解:如图,设AC 与MN 的交点为O ,根据作图可得MN AC ^,且平分AC ,AO OC \=,Q 四边形ABCD 是平行四边形,AD BC \∥,FAO OCE \Ð=Ð,又AOF COE Ð=ÐQ ,AO CO = ,AOF COE \V V ≌,AF EC \=,AF CE ∥Q ,\四边形AECF 是平行四边形,MN Q 垂直平分AC ,EA EC \=,\四边形AECF 是菱形,Q AB AC ^,MN AC ^,EF AB \∥,1EC OC BE AO \==,E \为BC 中点,Rt ABC △中, 3AB =,4AC =,5BC \==,1522AE BC ==,\四边形AEC F 的周长为410AE =.故答案为:10.【点睛】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.15. 一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为______.【答案】293【解析】【分析】根据函数图像,结合题意分析分别求得进水速度和出水速度,即可求解.【详解】解:依题意,3分钟进水30升,则进水速度为30103=升/分钟,Q 3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完直至容器中的水全部排完,则排水速度为810201283´-=-升/分钟,\20812a -=,解得293a =.的故答案为:293.【点睛】本题考查了函数图象问题,从函数图象获取信息是解题的关键.16. 如图,在矩形ABCD 中23=AB BC .动点M 从点A 出发,沿边AD 向点D 匀速运动,动点N 从点B 出发,沿边BC 向点C 匀速运动,连接MN .动点M ,N 同时出发,点M 运动的速度为1v ,点N 运动的速度为2v ,且12v v <.当点N 到达点C 时,M ,N 两点同时停止运动.在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA B N ¢¢.若在某一时刻,点B 的对应点B ¢恰好在CD 的中点重合,则12v v 的值为______.【答案】35【解析】【分析】在矩形ABCD 中23=AB BC ,设2,3AB a BC a ==,运动时间为t ,得到212,3,,CD AB a AD BC a BN v t AM v t ======,利用翻折及中点性质,在Rt B CN ¢D 中利用勾股定理得到253v t a BN ==,然后利用EDB B CN ¢¢D D :得到34DE a A E ¢==,在根据判定的A EM ¢D ()DEB ASA ¢@D 得到1AM v t a ==,从而代值求解即可.【详解】解:如图所示:在矩形ABCD 中23=AB BC ,设2,3AB a BC a ==,运动时间为t,212,3,,CD AB a AD BC a BN v t AM v t \======,在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA B N ¢¢,21,B N BN v t A M AM v t ¢¢\====,若在某一时刻,点B 的对应点B ¢恰好在CD 的中点重合,DB B C a ¢¢\==,在Rt B CN ¢D 中,2290,,,3C B C a B N v t CN a v t ¢¢Ð=°===-,则253v t a BN ==,90A B N B Ð=Ð=°¢¢Q ,90A B D CB N ¢¢¢\Ð+Ð=°,90CNB CB N ¢¢Ð+Ð=°Q ,A B D CNB ¢¢¢\Ð=Ð,EDB B CN ¢¢\D D :,35433DE B C B C a DB CN BC BN a a ¢¢\====¢--,DB B C a ¢¢==Q ,3344DE DB a ¢\==,则54B E a ¢===,53244A E A B B E a a a ¢¢¢¢\=-=-=,即34DE a A E ¢==,在A EM ¢D 和DEB ¢D 中,90A D A E DEA EM DEB Ð=Ð=°ìï=íïТ=Т¢î¢ \A EM ¢D ()DEB ASA ¢@D ,A MB D a ¢¢\==,即1AM v t a ==,11223553v v t AM a v v t BN a \====,故答案为:35.【点睛】本题属于矩形背景下的动点问题,涉及到矩形的性质、对称性质、中点性质、两个三角形相似的判定与性质、勾股定理及两个三角形全等的判定与性质等知识点,熟练掌握相关性质及判定,求出相应线段长是解决问题的关键.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17. 计算:)2321-+-.【答案】6【解析】【分析】先化简各式,然后再进行计算即可;【详解】解:原式341=+-6=【点睛】本题考查了零指数幂、绝对值、平方,准确化简式子是解题的关键.18. 解方程:311x x x +=+.【答案】32x =-【解析】【分析】根据解分式方程的步骤求出解,再检验即可.【详解】方程两边同乘以()1x x +,得()()2311x x x x ++=+.解方程,得32x =-.经检验,32x =-是原方程的解.【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.即去分母,去括号,移项,合并同类项,系数化为1,检验.19. 已知23230x x --=,求()2213x x x æö-++ç÷èø的值.【答案】24213x x -+,3【解析】【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解.【详解】原式222213x x x x =-+++24213x x =-+.∵23230x x --=,∴2213x x -=.∴原式22213x x æö=-+ç÷èø211=´+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.20. 一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)2次摸到的球恰好是1个白球和1个红球的概率为38【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)画树状图表示所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【小问1详解】解:∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,∴搅匀后从中任意摸出1个球,则摸出白球的概率为:11134=+ .故答案为:14;【小问2详解】解: 画树状图,如图所示:共有16种不同的结果数,其中两个球颜色不同的有6种,∴2次摸到的球恰好是1个白球和1个红球的概率为38.【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21. 如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为E ,AE 与CD 交于点F .(1)求证:DAF ECF △≌△;(2)若40FCE Ð=°,求CAB Ð度数.【答案】(1)见解析 (2)25CAB Ð=°【解析】【分析】(1)由矩形与折叠的性质可得AD BC EC ==,90D B E Ð=Ð=Ð=°,从而可得结论;(2)先证明40DAF ECF Ð=Ð=°,再求解904050EAB DAB DAF Ð=Ð-Ð=°-°=°, 结合对折的性质可得答案.【小问1详解】证明:将矩形ABCD 沿对角线AC 折叠,则AD BC EC ==,90D B E Ð=Ð=Ð=°.在△DAF 和△ECF 中,DFA EFC D E DA EC Ð=ÐìïÐ=Ðíï=î,,, ∴DAF ECF △≌△.【小问2详解】解:∵DAF ECF △≌△,∴40DAF ECF Ð=Ð=°.∵四边形ABCD 是矩形,∴90DAB Ð=°.∴904050EAB DAB DAF Ð=Ð-Ð=°-°=°, ∵FAC CAB Ð=Ð,∴25CAB Ð=°.【点睛】本题考查的是全等三角形的判定与性质,轴对称的性质,矩形的性质,熟练的运用轴对称的性质证明边与角的相等是解本题的关键.的22. 某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:成绩(分)678910划记正正正正培训前人数(人)124754成绩(分)678910划记一正正正正培训后人数(人)413915(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m ,培训后测试成绩的中位数是n ,则m ______n ;(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?【答案】(1)<(2)测试成绩为“6分”的百分比比培训前减少了25%(3)测试成绩为“10分”的学生增加了220人【解析】【分析】(1)先分别求解培训前与培训后的中位数,从而可得答案;(2)分别求解培训前与培训后得6分的人数所占的百分比,再作差即可;(3)分别计算培训前与培训后得满分的人数,再作差即可.【小问1详解】解:由频数分布表可得:培训前的中位数为:787.5,2m +== 培训后的中位数为:9+9=9,2n = 所以,m n < 故答案为:<;【小问2详解】124100%100%25%,3232´-´=答:测试成绩为“6分”的百分比比培训前减少了25%.【小问3详解】培训前:46408032´=,培训后:1564030032´=,30080220-=.答:测试成绩为“10分”的学生增加了220人.【点睛】本题考查的是频数分布表,中位数的含义,利用样本估计总体,理解题意,从频数分布表中获取信息是解本题的关键.23. 如图,一次函数()20y kx k =+¹的图像与反比例函数()0,0my m x x=¹>的图像交于点()2,A n ,与y 轴交于点B ,与x 轴交于点()4,0C -.(1)求k 与m 的值;(2)(),0P a 为x 轴上的一动点,当△APB 的面积为72时,求a 的值.【答案】(1)k 的值为12,m 的值为6 (2)3a =或11a =-【解析】【分析】(1)把()4,0C -代入2y kx =+,先求解k 的值,再求解A 的坐标,再代入反比例函数的解析式可得答案;(2)先求解()0,2B .由(),0P a 为x 轴上的一动点,可得4PC a =+.由CAP ABP CBP S S S =+△△△,建立方程求解即可.【小问1详解】解:把()4,0C -代入2y kx =+,得12k =.∴122y x =+.把()2,A n 代入122y x =+,得3n =.∴()2,3A .把()2,3A 代入m y x=,得6m =.∴k 的值为12,m 的值为6.【小问2详解】当0x =时,2y =.∴()0,2B .∵(),0P a 为x 轴上的一动点,∴4PC a =+.∴1142422CBP S PC OB a a =×=´+´=+△,113434222CAPA S PC y a a =×=´+´=+△.∵CAP ABP CBP S S S =+△△△,∴374422a a +=++.∴3a =或11a =-.【点睛】本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键.24. 如图,AB 是O e 的直径,AC 是弦,D 是 AB 的中点,CD 与AB 交于点E .F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 为O e 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若4CF =,2BF =,求AG 的长.【答案】(1)见解析 (2)AG =【解析】【分析】(1)方法一:如图1,连接OC ,OD .由OCD ODC Ð=Ð,FC FE =,可得OED FCE Ð=Ð,由AB 是O e 的直径,D 是 AB 的中点,90DOE Ð=°,进而可得90OCF Ð=°,即可证明CF 为O e 的切线;方法二:如图2,连接OC ,BC .设CAB x Ð=°.同方法一证明90OCF Ð=°,即可证明CF 为O e 的切线;(2)方法一:如图3,过G 作GH AB ^,垂足为H .设O e 的半径为r ,则2OF r =+.在Rt △OCF 中,勾股定理求得3r =,证明GH DO ∥,得出BHG BOD V ∽,根据BH BGBO BD=,求得,BH GH ,进而求得AH ,根据勾股定理即可求得AG ;方法二:如图4,连接AD .由方法一,得3r =.6AB =,D 是 AB的中点,可得AD BD ==,根据勾股定理即可求得AG .小问1详解】(1)方法一:如图1,连接OC ,OD .∵OC OD =,∴OCD ODC Ð=Ð.∵FC FE =,∴FCE FEC Ð=Ð. ∵OED FEC Ð=Ð,【∴OED FCE Ð=Ð.∵AB 是O e 的直径,D 是 AB 的中点,∴90DOE Ð=°.∴90OED ODC Ð+Ð=°.∴90FCE OCD Ð+Ð=°,即90OCF Ð=°.∴OC CF ^.∴CF 为O e 的切线.方法二:如图2,连接OC ,BC .设CAB x Ð=°.∵AB 是O e 的直径,D 是 AB 的中点,∴45ACD DCB Ð=Ð=°.∴()45CEF CAB ACD x Ð=Ð+Ð=+°.∵FC FE =,∴()45FCE FEC x Ð=Ð=+°. ∴BCF x Ð=°.∵OA OC =,∴ACO OAC x Ð=Ð=°.∴BCF ACO Ð=Ð.∵AB 是O e 的直径,∴90ACB Ð=°.∴90OCB ACO Ð+Ð=°.∴90OCB BCF Ð+Ð=°,即90OCF Ð=°.∴OC CF ^.∴CF 为O e 的切线.【小问2详解】解:方法一:如图3,过G 作GH AB ^,垂足为H .设O e 的半径为r ,则2OF r =+.在Rt △OCF 中,()22242r r +=+,解之得3r =.∵GH AB ^,∴90GHB Ð=°.∵90DOE Ð=°,∴GHB DOE Ð=Ð.∴GH DO ∥.BHG BOD\V ∽∴BH BG BO BD=.∵G 为BD 中点,∴12BG BD =.∴1322BH BO ==,1322GH OD ==.∴6AH AB BH =-=-∴AG ==.方法二:如图4,连接AD .由方法一,得3r =.∵AB 是O e 的直径,∴90ADB Ð=°.∵6AB =,D 是 AB 的中点,∴AD BD ==∵G 为BD 中点,∴12DG BD ==∴AG ===【点睛】本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.25. 某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m 千克甲种水果和3m 千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m 的最大值.【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m 的最大值为22【解析】【分析】(1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元,根据总费用列方程组即可;(2)设水果店第三次购进x 千克甲种水果,根据题意先求出x 的取值范围,再表示出总利润w 与x 的关系式,根据一次函数的性质判断即可.【小问1详解】设甲种水果进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得60401520,30501360.a b a b +=ìí+=î解方程组,得12,20.a b =ìí=î答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.【小问2详解】设水果店第三次购进x 千克甲种水果,则购进()200x -千克乙种水果,根据题意,得()12202003360x x +-£.解这个不等式,得80x ³.设获得的利润为w 元,根据题意,得()()()()1712302020035352000w x m x m x m =-´-+-´--=--+.的∵50-<,∴w 随x 的增大而减小.∴当80x =时,w 的最大值为351600m -+.根据题意,得351600800m -+³.解这个不等式,得1607m £.∴正整数m 的最大值为22.【点睛】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.26. 如图,在二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .其对称轴与线段BC 交于点E ,与x 轴交于点F .连接AC ,BD .(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求OBC Ð的度数;(2)若ACO CBD Ð=Ð,求m 的值;(3)若在第四象限内二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像上,始终存在一点P ,使得75ACP Ð=°,请结合函数的图像,直接写出m 的取值范围.【答案】(1)A (-1,0);B (2m +1,0);C (0,2m +1);45OBC Ð=°(2)1m =(3)0m <<【解析】【分析】(1)分别令,x y 等于0,即可求得,,A B C 的坐标,根据,90OC OB BOC =Ð=°,即可求得45OBC Ð=°;(2)方法一:如图1,连接AE .由解析式分别求得()21DF m =+,OF m =,1BF m =+.根据轴对称的性质,可得AE BE =,由1tan AE BE BF m ACE CE CE OF m+Ð====,建立方程,解方程即可求解.方法二:如图2,过点D 作DH BC ^交BC 于点H .由方法一,得()21DF m =+,1BF EF m ==+.证明AOC DHB ∽△△,根据相似三角形的性质建立方程,解方程即可求解;(3)设PC 与x 轴交于点Q ,当P 在第四象限时,点Q 总在点B 的左侧,此时CQA CBA Ð>Ð,即45CQA Ð>°.【小问1详解】当0y =时,22210x mx m -+++=.解方程,得11x =-,221x m =+.∵点A 在点B 的左侧,且0m >,∴()1,0A -,()21,0B m +.当0x =时,21=+y m .∴()0,21C m +.∴21OB OC m ==+.∵90BOC Ð=°,∴45OBC Ð=°.【小问2详解】方法一:如图1,连接AE .∵()()2222211y x mx m x m m =-+++=--++,∴()()2,1D m m +,(),0F m .∴()21DF m =+,OF m =,1BF m =+.∵点A ,点B 关于对称轴对称,∴AE BE =.∴45EAB OCB Ð=Ð=°.∴90CEA Ð=°.∵ACO CBD Ð=Ð,OCB OBC Ð=Ð,∴ACO OCB CBD OBC Ð+Ð=Ð+Ð,即ACE DBF Ð=Ð.∵EF OC ∥,∴1tan AE BE BF m ACE CE CE OF m+Ð====.∴()2111m m m m ++=+.∵0m >,∴解方程,得1m =.方法二:如图2,过点D 作DH BC ^交BC 于点H .由方法一,得()21DF m =+,1BF EF m ==+.∴2DE m m =+.∵45DEH BEF Ð=Ð=°,∴)2DH EH m m ===+,)1BE m ==+.∴)232BH BE HE m m =+=++.∵ACO CBD Ð=Ð,90AOC BHD Ð=Ð=°,∴AOC DHB ∽△△.∴OA DH OC BH =.∴121m =+,即1212m m m =++.∵0m >,∴解方程,得1m =.【小问3详解】0m <<设PC 与x 轴交于点Q ,当P 在第四象限时,点Q 总在点B 的左侧,此时CQA CBA Ð>Ð,即45CQA Ð>°.∵75ACQ Ð=°,∴60CAO Ð<°.tan CAO \Ð<,21OC m =+Q ,∴21m +<解得m <,又0m >,∴0m <<【点睛】本题考查了二次函数综合,求二次函数与坐标轴的交点,角度问题,解直角三角形,相似三角形的性质,三角形内角和定理,综合运用以上知识是解题的关键.27. (1)如图1,在△ABC 中,2ACB B Ð=Ð,CD 平分ACB Ð,交AB 于点D ,DE //AC ,交BC 于点E .①若1DE =,32BD =,求BC 的长;②试探究AB BE AD DE-是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,CBG Ð和BCF Ð是△ABC 的2个外角,2BCF CBG Ð=Ð,CD 平分BCF Ð,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为1S ,△CDE 的面积为2S ,△BDE 的面积为3S .若2132916S S S ×=,求cos CBD Ð的值.【答案】(1)①94BC =;②AB BE AD DE -是定值,定值为1;(2)3cos 8CBD Ð=【解析】【分析】(1)①证明CED CDB V V ∽,根据相似三角形的性质求解即可;②由DE AC ∥,可得AB BC AD DE =,由①同理可得CE DE =,计算AB BE AD DE-1=;(2)根据平行线的性质、相似三角形的性质可得12S AC BC S DE BE ==,又32S BE S CE =,则1322S S BC S CE ×=,可得916BC CE =,设9BC x =,则16CE x =.证明CDB CED ∽△△,可得12CD x =,过点D 作DH BC ^于H .分别求得BD BH ,,进而根据余弦的定义即可求解.【详解】(1)①∵CD 平分ACB Ð,∴12ACD DCB ACB Ð=Ð=Ð.∵2ACB B Ð=Ð,∴ACD DCB B Ð=Ð=Ð.∴32CD BD ==.∵DE AC ∥,∴ACD EDC Ð=Ð.∴EDC DCB B Ð=Ð=Ð.∴1CE DE ==.∴CED CDB V V ∽.∴CE CD =CD CB.∴94BC =.②∵DE AC ∥,∴AB BC AD CE=.由①可得CE DE =,∴AB BC AD DE=.∴1AB BE BC BE CE AD DE DE DE DE -=-==.∴AB BE AD DE -是定值,定值为1.(2)∵DE AC ∥,BDE BAC\∽△△BC AB AC BE BD DE\==∴12S AC BC S DE BE==.∵32S BE S CE=,∴1322S S BC S CE×=.又∵2132916S S S ×=,∴916BC CE =.设9BC x =,则16CE x =.∵CD 平分BCF Ð,∴12ECD FCD BCF Ð=Ð=Ð.∵2BCF CBG Ð=Ð,∴ECD FCD CBD Ð=Ð=Ð.∴BD CD =.∵DE AC ∥,∴EDC FCD Ð=Ð.∴EDC CBD ECD Ð=Ð=Ð.∴CE DE =.∵DCB ECD Ð=Ð,∴CDB CED ∽△△.∴CD CB CE CD=.∴22144CD CB CE x =×=.∴12CD x =.如图,过点D 作DH BC ^于H .∵12BD CD x ==,∴1922BH BC x ==.∴932cos 128x BH CBD BD x Ð===.【点睛】本题考查了相似三角形的性质与判定,求余弦,掌握相似三角形的性质与判定是解题的关键.。
2024年江苏省苏州市中考数学试卷(附答案解析)
2024年江苏省苏州市中考数学试卷(附答案解析)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A.﹣3B.1C.2D.3【解答】解:∵|﹣3|=3,|1|=1,|2|=2,|3|=3,而3<2<1,∴1与原点距离最近,故选:B.2.(3分)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A.3.(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.2.47×1010B.247×1010C.2.47×1012D.247×1012【答案】C.4.(3分)若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b【解答】解:若a>b﹣1,不等式两边加1可得a+1>b,故A不合题意,D符合题意,根据a>b﹣1,得不到a﹣1<b,a>b,故B、C不符合题意.故选:D.5.(3分)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为()A.45B.55°C.60°D.65°【解答】解:∵AB∥CD,∠1=65°,∴∠ACD=∠1=65°,∵∠2=∠ACD+∠3,∠2=120°,∴∠3=55°,故选:B.6.(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C.7.(3分)如图,点A为反比例函数y=﹣(x<0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y=(x>0)的图象交于点B,则的值为()A.B.C.D.【分析】作AG⊥x轴,BH⊥x轴,可证明△AGO∽△OHB,利用面积比等于相似比的平方解答即可.【解答】解:作AG⊥x轴,垂足为G,BH⊥x轴,垂足为H,∵点A在函数y=﹣图象上,点B在反比例函数y=图象上,=,S△BOH=2,∴S△AGO∵∠AOB=90°,∴∠AOG=∠HBO,∠AGO=∠OHB,∴△AGO∽△OHB,∴,∴.故选:A.8.(3分)如图,矩形ABCD中,AB=,BC=1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()A.B.C.2D.1【解答】解:连接AC,交EF于O,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,∵AB=,BC=1,∴AC===2,∵动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,∴CF=AE,∵AB∥CD,∴∠ACD=∠CAB,又∵∠COF=∠AOE,∴△COF≌△AOE(AAS),∴AO=CO=1,∵AG⊥EF,∴点G在以AO为直径的圆上运动,∴AG为直径时,AG有最大值为1,故选:D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.(3分)计算:x3•x2=.【解答】解:x3•x2=x5,故答案为:x5.10.(3分)若a=b+2,则(b﹣a)2=.【解答】解:∵a=b+2,∴b﹣a=﹣2,∴(b﹣a)2=(﹣2)2=4,故答案为:4.11.(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是.【解答】解:根据题意可知,正八边形转盘被分成八个面积相等的三角形,其中阴影部分的面积为3个面积相等的三角形,∴指针落在阴影部分的概率等于阴影部分的面积除以正八边形的面积,即,故答案为:.12.(3分)如图,△ABC是⊙O的内接三角形,若∠OBC=28°,则∠A=°.【解答】解:连接OC,∵OB=OC,∠OBC=28°,∴∠OCB=∠OBC=28°,∴∠BOC=180°﹣∠OCB﹣∠OBC=124°,∴,故答案为:62.13.(3分)直线l1:y=x﹣1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是.【分析】根据题意画出示意图,结合特殊角的三角函数值即可解决问题.【解答】解:如图所示,将x=0代入y=x﹣1得,y=﹣1,所以点B坐标为(0,﹣1).将y=0代入y=x﹣1得,x=1,所以点A的坐标为(1,0),所以OA=OB=1,所以∠OBA=∠OAB=45°.由旋转可知,∠BAC=15°,∴∠OAC=45°+15°=60°.在Rt△AOC中,tan∠OAC=,所以OC=,则点C的坐标为(0,).令直线l2的函数表达式为y=kx+b,则,解得,所以直线l2的函数表达式为y=.故答案为:y=.14.(3分)铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是△ABO的内心,若AB=2,则花窗的周长(图中实线部分的长度)=.(结果保留π)【解答】解:如图,过点C作CM⊥AB于点M,则AM=BM=AB=,∵六条等弧所对应的弦构成一个正六边形,中心为点O,∴∠AOB==60°,∵OA=OB,∴△AOB是正三角形,∵点O是△AOB的内心,∴∠CAB=∠CBA=×60°=30°,∠ACB=2∠AOB=120°,在Rt△ACM中,AM=,∠CAM=30°,∴AC==2,∴的长为=π,∴花窗的周长为π×6=8π.故答案为:8π.15.(3分)二次函数y=ax2+bx+c(a≠0)的图象过点A(0,m),B(1,﹣m),C(2,n),D(3,﹣m),其中m,n为常数,则的值为.【解答】解:将A(0,m),B(1,﹣m),D(3,﹣m)代入y=ax2+bx+c(a≠0),得:,∴,把C(2,n)代入,∴,∴,故答案为:.16.(3分)如图,△ABC中,∠ACB=90°,CB=5,CA=10,点D,E分别在AC,AB边上,AE=AD,连接DE,将△ADE沿DE翻折,得到△FDE,连接CE,CF.若△CEF的面积是△BEC面积的2倍,则AD=.【解答】解:∵,∴设AD=x,,∵△ADE沿DE翻折,得到△FDE,∴DF=AD=x,∠ADE=∠FDE,过E作EH⊥AC于H,设EF与AC相交于M,则∠AHE=∠ACB=90°,又∵∠A=∠A,∴△AHE∽△ACB,∴,∵CB=5,CA=10,,∴,∴EH=x,,则DH=AH﹣AD=x=EH,∴Rt△EHD是等腰直角三角形,∴∠HDE=∠HED=45°,则∠ADE=∠EDF=135°,∴∠FDM=135°﹣45°=90°,在△FDM和△EHM中,,∴△FDM≌△EHM(AAS),∴,,∴,=25﹣5x,∵△CEF的面积是△BEC的面积的2倍,∴,则3x2﹣40x+100=0,解得,x2=10(舍去),则,故答案为:.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(5分)计算:|﹣4|+(﹣2)0﹣.【分析】先化简,然后计算加减法即可.【解答】解:|﹣4|+(﹣2)0﹣=4+1﹣3=2.18.(5分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①﹣②得:4y=4,即y=1,将y=1代入①得:x=3,则方程组的解为.19.(6分)先化简,再求值:(+1)÷,其中x=﹣3.【解答】解:(+1)÷=•=•=,当x=﹣3时,原式==.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.20.(6分)如图,△ABC中,AB=AC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E.(1)求证:△ABD≌△ACD;(2)若BD=2,∠BDC=120°,求BC的长.【解答】(1)证明:由作图知:BD=CD.在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)解:∵△ABD≌△ACD,∠BDC=120°,∴∠BDA=∠CDA=∠BDC=×120°=60°,又∵BD=CD,∴DA⊥BC,BE=CE.∵BD=2,∴BE=BD•sin∠BDA=2×=,∴.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.21.(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,再由概率公式求解即可.【解答】解:(1)∵一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴从盒子中任意抽取1张书签,恰好抽到“夏”的概率为,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,∴抽取的书签恰好1张为“春”,1张为“秋”的概率为=.22.(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【解答】解:(1)此次调查的总人数为9÷15%=60(人),D项目的人数有60﹣6﹣18﹣9﹣12=15(人),补全条形统计图如下:(2)图②中项目E对应的圆心角的度数为360°×=72°;故答案为:72;(3)800×=240(名),答:估计本校七年级800名学生中选择项目B(乒乓球)的人数为240名.23.(8分)图①是某种可调节支撑架,BC为水平固定杆,竖直固定杆AB⊥BC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB=10cm,BC=20cm,AD=50cm.(1)如图②,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图③,当活动杆AD绕点A由水平状态按逆时针方向旋转角度α,且tanα=(α为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号).【解答】解:(1)过点C作CE⊥AD,垂足为E,由题意得:AB=CE=10cm,BC=AE=20cm,∵AD=50cm,∴ED=AD﹣AE=50﹣20=30(cm),在Rt△CED中,CD===10(cm),∴可伸缩支撑杆CD的长度为10cm;(2)过点D作DF⊥BC,交BC的延长线于点F,交AD′于点G,由题意得:AB=FG=10cm,AG=BF,∠AGD=90°,在Rt△ADG中,tanα==,∴设DG=3x cm,则AG=4x cm,∴AD===5x(cm),∵AD=50cm,∴5x=50,解得:x=10,∴AG=40cm,DG=30cm,∴DF=DG+FG=30+10=40(cm),∴BF=AG=40cm,∵BC=20cm,∴CF=BF﹣BC=40﹣20=20(cm),在Rt△CFD中,CD===20(cm),∴此时可伸缩支撑杆CD的长度为20cm.【点评】本题考查了解直角三角形的应用,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.(8分)如图,△ABC中,AC=BC,∠ACB=90°,A(﹣2,0),C(6,0),反比例函数y=(k ≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.【分析】(1)根据条件先求出点B坐标,再利用待定系数法求出直线AB解析式,将D坐标代入两个函数解析式得到mk的值;(2)先求出PQ=MQ,再设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,利用三角形==﹣,利用最值求出t和面积最大值及点P坐标即面积列出函数S△PMN可.【解答】解:(1)∵A(﹣2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(﹣2,0),B(6,8)代入y=ax+b得:,解得,∴直线AB的函数表达式为y=x+2.∴将点D(m,4)代入y=x+2,得m=2.∴D(2,4),将D(2,4)代入反比例函数解析式y=得:4=,解得k=8.(2)延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°,∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°,∵AB∥MP,∴∠MPL=∠BLP=45°,∠QMP=∠QPM=45°,∴QM=QP,设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,===﹣,∴S△PMN有最大值,此时P(3,).∴当t=3时,S△PMN【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、等腰直角三角形的性质,熟练掌握二次函数顶点式求最值是关键.25.(10分)如图,△ABC中,AB=4,D为AB中点,∠BAC=∠BCD,cos∠ADC=,⊙O是△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【分析】(1)先证明△BAC∽△BCD,得到,即可解答;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,在Rt△AED中,通过解直角三角形得到DE=1,,由△BAC∽△BCD得到,设CD=x,则,CE=x﹣1,在Rt△ACE中,根据勾股定理构造方程,求得CD=2,,由∠AFC=∠ADC得到sin∠AFC=sin∠ADC,根据正弦的定义即可求解.【解答】解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD,∴,∵,D为AB中点,∴,∴BC2=16,∴BC=4;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,∵在Rt△AED中,,,∴DE=1,∴,∵△BAC∽△BCD,∴,设CD=x,则AC=x,CE=x﹣1,∵在Rt△ACE中,AC2=CE2+AE2,∴,即x2+2x﹣8=0,解得x=2,x=﹣4(舍去),∴CD=2,AC=,∵∠AFC与∠ADC都是所对的圆周角,∴∠AFC=∠ADC,∵CF为⊙O的直径,∴∠CAF=90°,∴,∴,即⊙O的半径为.【点评】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理,掌握各种定理和判定方法是解题的关键.26.(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了分钟,从B站到C站行驶了分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①=.②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1﹣d2|=60,求t的值.【分析】(1)直接根据表中数据解答即可;(2)①分别求出D1001次列车、G1002次列车从A站到C站的时间,然后根据路程等于速度乘以时间求解即可;②先求出v2,A与B站之间的路程,G1002次列车经过B站时,对应t的值,从而得出当90≤t≤110时,D1001次列车在B站停车,G1002次列车经过B站时,D1001次列车正在B站停车,然后分25≤t <90,90≤t≤100,100<t≤110,110<t≤150讨论,根据题意列出关于t的方程求解即可.【解答】解:(1)D1001次列车从A站到B站行驶了90分钟,从B站到C站行驶了60分钟,故答案为:90,60;(2)①根据题意得:D1001次列车从A站到C站共需90+60=150分钟,G1002次列车从A站到C站共需35+60+30=125分钟,∴150v1=125v2,∴,故答案为:;②∵v1=4(千米/分钟),,∴v2=4.8(千米/分钟),∵4×90=360(千米),∴A与B站之间的路程为360千米,∵360÷4.8=75(分钟),∴当t=100时,G1002次列车经过B站,由题意可知,当90≤t≤110时,D1001次列车在B站停车,∴G1002次列车经过B站时,D1001次列车正在B站停车,i.当25≤t<90时,d1>d2,∴|d1﹣d2|=d1﹣d2,∴4t﹣4.8(t﹣25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1﹣d2|=d1﹣d2,∴360﹣4.8(t﹣25)=60,t=87.5(分钟),不合题意,舍去;ⅱi.当100<t≤110时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣360=60,t=112.5(分钟),不合题意,舍去;iv.当110<t≤150时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣[360+4(t﹣110)]=60,t=125(分钟);综上所述,当t=75或125时,|d1﹣d2|=60.【点评】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.27.(10分)如图①,二次函数y=x2+bx+c的图象C1与开口向下的二次函数图象C2均过点A(﹣1,0),B(3,0).(1)求图象C1对应的函数表达式;(2)若图象C2过点C(0,6),点P位于第一象限,且在图象C2上,直线l过点P且与x轴平行,与图象C2的另一个交点为Q(Q在P左侧),直线l与图象C1的交点为M,N(N在M左侧).当PQ=MP+QN时,求点P的坐标;(3)如图②,D,E分别为二次函数图象C1,C2的顶点,连接AD,过点A作AF⊥AD,交图象C2于点F,连接EF,当EF∥AD时,求图象C2对应的函数表达式.【解答】解:(1)将A(1,0),B(3,0代入y=x2+bx+c得,解得,∴图象C1对应的函数表达式:y=x2﹣2x﹣3;(2)设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),将点C(0,6)代入得,a=﹣2.∴C2对应的函数表达式为:y=﹣2(x+1)(x﹣3),其对称轴为直线x=1.又∵图象C1的对称轴也为直线x=1.作直线x=1,交直线l于点H(如答图①)由二次函数的对称性得,QH=PH,PM=NQ,又∵PQ=MP+QM,∴PH=PM.设PH=t(0<l<2),则点P的横坐标为t+1,点M的横坐标为2t+1,将x=t+1代入y=﹣2(x+1)(x﹣3),得y P=﹣2(t+2)(t﹣2),将x=2t+1代入y=(x+1)(x﹣3),得y M=(2t+2)(2t﹣2),∵y P=y M,∴﹣2(t+2)(t﹣2)=(2t+2)(2t﹣2),即6t2=12,解得,(舍去).∴点P的坐标为(+1,4);(3)连接DE,交x轴于点G,过点F作FI⊥ED于点I,过点F作FJ⊥x轴于点J,(如答图②),∵FI⊥ED,FJ⊥x轴,∴四边形IGJF为矩形,∴IF=GJ,IG=FJ,设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),∵点D,E分别为二次函数图象C1,C2的顶点,∴D(1,﹣4),E(1,﹣4a).∴DG=4,AG=2,EG=﹣4a,在Rt△AGD中,,∵AF⊥AD,∴∠FAB+∠DAB=90°,又∵∠DAG+∠ADG=90°,∴∠ADG=∠FAB,∴tmn∠FAB=tm∠ADG=,设GJ=m(0<m<2),则AJ=2+m,∴FJ=,F(m+1,),∵EF∥AD,∴∠FEl=∠ADG,∴tan∠FEl=tan∠ADG==,∴EI=2m,∵EG=EI+IG,∴,∴①,∵点F在C2上,a(m+1+1)(m+1﹣3)=,即a(m+2)(m﹣2)=,∵m+2≠0,∴a(m﹣2)=②,由①,②可得,解得m1=0(舍去),m2=,∴a=﹣,∴图象C2对应的函数表达式为.。
(完整版)苏州市中考数学试题及答案(Word完美版)
2010年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫M 黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫M 黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题; 4.考生答题全部答在答题卡上,答在本试卷和草稿纸上无效.一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上......... 1.32的倒数是 A .32 B .23C .32- D .23-2.函数11y x =-的自变量x 的取值范围是A .x ≠0B .x ≠1C .x ≥1D .x ≤13.据报道,2010年苏州市政府有关部门将在市区完成130万平方M 老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为 A .1.3×104 B .1.3×105 C .1.3×106D .1.3×107 4.有一组数据:10,30,50,50,70.它们的中位数是 A .30 B .45 C .50 D .70 5.化简211a a a a--÷的结果是A.1aB.a C.a-1 D.11a-6.方程组125x yx y+=⎧⎨-=⎩,的解是A.12.xy=-⎧⎨=⎩,B.23.xy=-⎧⎨=⎩,C.21.xy=⎧⎨=⎩,D.21.xy=⎧⎨=-⎩,7.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长度是A.4 B.5C.6 D.78.下列四个说法中,正确的是A.一元二次方程22452x x++=有实数根;B.一元二次方程23452x x++=有实数根;C.一元二次方程2545x x++=有实数根;D.一元二次方程x2+4x+5=a(a≥1)有实数根.9.如图,在菱形ABCD中,DE⊥AB,3cos5A=,BE=2,则tan∠DBE的值是A.12B.2 C.5D.510.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是A.2 B.1 C.22-D.22-二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的.......位置上....11.分解因式a2-a=▲.12.若代数式3x+7的值为-2,则x=▲.13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是▲.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是▲°.15.如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是▲.16.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于▲.(结果保留根号及π).17.若一元二次方程x2-(a+2)x+2a=0的两个实数根分别是3、b,则a+b=▲.18.如图,已知A、B两点的坐标分别为()23,、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为▲.三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:01243⎛⎫- ⎪⎝⎭.20.(本题满分5分)先化简,再求值:2a(a+b)-(a+b)2,其中3a =5b =21.(本题满分5分)解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩,22.(本题满分6分)解方程:()221120x x x x----=. 23.(本题满分6分)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD ≌△BCE ;(2)若∠D=50°,求∠B 的度数.24.(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大?▲月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?25.(本题满分8分)如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.(1)在△ABC中,AB=▲;(2)当x=▲时,矩形PMCN的周长是14;(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.26.(本题满分8分)如图,四边形OABC是面积为4的正方形,函数kyx=(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、M A′BC.设线段MC′、NA′分别与函数kyx=(x>0)的图象交于点E、F,求线段EF所在直线的解读式.27.(本题满分9分)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F(1)求证:OE∥AB;(2)求证:EH=12 AB;(3)若14BHBE=,求BHCE的值.28.(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC 重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐▲.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.29.(本题满分9分)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解读式;(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.。
苏州市中考数学试题及答案(Word完美版)(K12教育文档)
苏州市中考数学试题及答案(Word完美版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏州市中考数学试题及答案(Word完美版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏州市中考数学试题及答案(Word完美版)(word版可编辑修改)的全部内容。
2010年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫M 黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫M 黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题; 4.考生答题全部答在答题卡上,答在本试卷和草稿纸上无效.一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上......... 1.32的倒数是A .32B .23C .32-D .23-2.函数11y x =-的自变量x 的取值范围是A .x ≠0B .x ≠1C .x ≥1D .x ≤13.据报道,2010年苏州市政府有关部门将在市区完成130万平方M 老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为 A .1.3×104B .1.3×105C .1.3×106D .1.3×1074.有一组数据:10,30,50,50,70.它们的中位数是 A .30 B .45 C .50 D .70 5.化简211a a a a--÷的结果是A.1aB.a C.a-1 D.11a-6.方程组125x yx y+=⎧⎨-=⎩,的解是A.12.xy=-⎧⎨=⎩,B.23.xy=-⎧⎨=⎩,C.21.xy=⎧⎨=⎩,D.21.xy=⎧⎨=-⎩,7.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长度是A.4 B.5C.6 D.78.下列四个说法中,正确的是A.一元二次方程22452x x++=有实数根;B.一元二次方程2345x x++=有实数根;C.一元二次方程2545x x++=有实数根;D.一元二次方程x2+4x+5=a(a≥1)有实数根.9.如图,在菱形ABCD中,DE⊥AB,3cos5A=,BE=2,则tan∠DBE的值是A.12B.2 C.5D.510.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是A.2 B.1 C.222- D.22-二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置.........上..11.分解因式a2-a=▲.12.若代数式3x+7的值为-2,则x=▲.13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是▲.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是▲°.15.如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是▲.16.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于▲.(结果保留根号及π).17.若一元二次方程x2-(a+2)x+2a=0的两个实数根分别是3、b,则a+b=▲.18.如图,已知A 、B 两点的坐标分别为()230,、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为▲.三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分) 计算:01243⎛⎫-+ ⎪⎝⎭.20.(本题满分5分)先化简,再求值:2a(a+b )-(a+b)2,其中3a =5b =21.(本题满分5分)解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩,22.(本题满分6分)解方程:()221120x x x x----=.23.(本题满分6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BC E;(2)若∠D=50°,求∠B的度数.24.(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大?▲月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?25.(本题满分8分)如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.(1)在△ABC中,AB=▲;(2)当x=▲时,矩形PMCN的周长是14;(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.26.(本题满分8分)如图,四边形OABC是面积为4的正方形,函数kyx=(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、M A′BC.设线段MC′、NA′分别与函数kyx=(x>0)的图象交于点E、F,求线段EF所在直线的解读式.27.(本题满分9分)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F (1)求证:OE∥AB;(2)求证:EH=12 AB;(3)若14BHBE,求BHCE的值.28.(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF 沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合). (1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐▲.(填“不变”、“变大"或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.29.(本题满分9分)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解读式;(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.。
2023年苏州市中考数学考试卷及答案解析
2023年苏州市中考数学考试卷及答案解析一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.有理数23的相反数是()A.23- B.32 C.32- D.23±【答案】A【解析】【分析】根据互为相反数的定义进行解答即可.【详解】解:有理数23的相反数是23-,故选A【点睛】本题考查的是相反数,仅仅只有符号不同的两个数互为相反数,熟记定义是解本题的关键.2.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据中心对称图形和轴对称图形定义进行解答即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了轴对称图形和中心对称图形定义,关键是掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.如图,在正方形网格内,线段PQ 的两个端点都在格点上,网格内另有,,,A B C D 四个格点,下面四个结论中,正确的是()A.连接AB ,则AB PQ∥ B.连接BC ,则BC PQ ∥C.连接BD ,则BD PQ⊥ D.连接AD ,则AD PQ⊥【答案】B【解析】【分析】根据各选项的要求,先作图,再利用平行四边形的判定与性质,垂线的性质逐一分析判断即可.【详解】解:如图,连接AB ,取PQ 与格线的交点K ,则AP BK ∥,而AP BK ≠,∴四边形ABKP 不是平行四边形,∴AB ,PQ 不平行,故A 不符合题意;如图,取格点N ,连接,QC BN ,由勾股定理可得:,QN BC QC BN ====,∴四边形QCBN 是平行四边形,∴BC PQ ∥,故B 符合题意;如图,取格点,M T ,根据网格图的特点可得:,BM PQ AT QP ⊥⊥,根据垂线的性质可得:BD PQ ⊥,AD PQ ⊥,都错误,故C ,D 不符合题意;故选B【点睛】本题考查的是垂线的性质,勾股定理的应用,平行四边形的判定与性质,熟记网格图形的特点与基本图形的性质是解本题的关键.4.今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能...是()A.长方体B.正方体C.圆柱D.三棱锥【答案】D【解析】【分析】由长方体,正方体,圆柱的主视图是长方形,而三棱锥的主视图是三角形,从而可得答案.【详解】解:∵长方体,正方体,圆柱的主视图是长方形,而三棱锥的主视图是三角形,∴该礼物的外包装不可能是三棱锥,∴A ,B ,C 不符合题意,D 符合题意;故选D【点睛】本题考查的是简单几何体的主视图,熟记简单几何体的三种视图是解本题的关键.5.下列运算正确的是()A.32a a a-= B.325a a a ⋅= C.321a a ÷= D.()23a a=【答案】B【解析】【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a +⋅==,故B 选项正确;32a a a ÷=,故C 选项错误;()236a a =,故D 选项错误;故选B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.6.如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.14 B.13 C.12 D.34【答案】C【解析】【分析】根据灰色区域与整个面积的比即可求解.【详解】解:∵转盘中四个扇形的面积都相等,设整个圆的面积为1,∴灰色区域的面积为12,∴当转盘停止转动时,指针落在灰色区域的概率是12,故选:C .【点睛】本题考查了几何概率,熟练掌握概率公式是解题的关键.7.如图,在平面直角坐标系中,点A 的坐标为()9,0,点C 的坐标为()0,3,以,OA OC 为边作矩形OABC .动点,E F 分别从点,O B 同时出发,以每秒1个单位长度的速度沿,OA BC 向终点,A C 移动.当移动时间为4秒时,AC EF ⋅的值为()A.10B.910C.15D.30【答案】D【解析】【分析】根据题意,得出()4,0E ,()5,3F ,勾股定理求得10EF =,310AC =,即可求解.【详解】解:连接AC 、EF∵点A 的坐标为()9,0,点C 的坐标为()0,3,以,OA OC 为边作矩形OABC .∴()9,3B ,2239310AC =+=则9OA =,9BC OA ==依题意,414OE =⨯=,414BF =⨯=∴945AE =-=,则()4,0E ,∴945CF BC BF =-=-=∴()5,3F ,∴()2254310EF =-+,∵()0,3C ,∴AC EF ⋅3101030==故选:D .【点睛】本题考查了坐标与图形,勾股定理求两点坐标距离,矩形的性质,求得,E F 的坐标是解题的关键.8.如图,AB 是半圆O 的直径,点,C D 在半圆上, CDDB =,连接,,OC CA OD ,过点B 作EB AB ⊥,交OD 的延长线于点E .设OAC 的面积为1,S OBE △的面积为2S ,若1223S S =,则tan ACO ∠的值为()A.B.3C.75 D.32【答案】A【解析】【分析】如图,过C 作CH AO ⊥于H ,证明COD BOE CAO ∠=∠=∠,由1223S S =,即122132OA CH OB BE = ,可得23CH BE =,证明tan tan A BOE ∠=∠,可得23CH AH BE OB ==,设2AH m =,则3BO m AO CO ===,可得32OH m m m =-=,CH ==,再利用正切的定义可得答案.【详解】解:如图,过C 作CH AO ⊥于H,∵ CDBD =,∴COD BOE CAO ∠=∠=∠,∵1223S S =,即122132OA CH OB BE = ,∴23CH BE =,∵A BOE ∠=∠,∴tan tan A BOE ∠=∠,∴CH BE AH OB =,即23CH AH BE OB ==,设2AH m =,则3BO m AO CO ===,∴32OH m m m =-=,∴CH ==,∴22tan 2CH A AH m ∠===∵OA OC =,∴A ACO ∠=∠,∴tan ACO ∠=;故选A【点睛】本题考查的是圆周角定理的应用,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线构建直角三角形是解本题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.有意义的x 的取值范围是_______.【答案】1x ≥-【解析】【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.【详解】解:根据二次根式的定义可知被开方数必须为非负数,列不等式得:x +1≥0,解得x ≥﹣1.故答案为x ≥﹣1.【点睛】本题考查了二次根式有意义的条件,比较简单.10.因式分解:a 2+ab=_____.【答案】a (a+b ).【解析】【分析】直接提公因式a 即可.【详解】a 2+ab=a (a+b ).故答案为:a (a+b ).11.分式方程123x x +=的解为x =________________.【答案】3-【解析】【分析】方程两边同时乘以3x ,化为整式方程,解方程验根即可求解.【详解】解:方程两边同时乘以3x ,()312x x+=解得:3x =-,经检验,3x =-是原方程的解,故答案为:3-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.12.在比例尺为1:8000000的地图上,量得,A B 两地在地图上的距离为3.5厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为________________.【答案】72.810⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:728000000 2.810=⨯,故答案为:72.810⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是________________.【答案】72︒##72度【解析】【分析】根据“新材料”的占比乘以360︒,即可求解.【详解】解:“新材料”所对应扇形的圆心角度数是20%36072⨯︒=︒,故答案为:72︒.【点睛】本题考查了求扇形统计图的圆心角的度数,熟练掌握求扇形统计图的圆心角的度数是解题的关键.14.已知一次函数y kx b =+的图象经过点()1,3和()1,2-,则22k b -=________________.【答案】6-【解析】【分析】把点()1,3和()1,2-代入y kx b =+,可得32k b k b +=⎧⎨-=-⎩,再整体代入求值即可.【详解】解:∵一次函数y kx b =+的图象经过点()1,3和()1,2-,∴32k b k b +=⎧⎨-+=⎩,即32k b k b +=⎧⎨-=-⎩,∴()()()22326k b k b k b -=+-=⨯-=-;故答案为:6-【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.15.如图,在ABCD Y 中,1,2,AB BC AH CD ==⊥,垂足为,H AH =.以点A 为圆心,AH 长为半径画弧,与,,AB AC AD 分别交于点,,E F G .若用扇形AEF 围成一个圆锥的侧面,记这个圆锥底面圆的半径为1r ;用扇形AHG 围成另一个圆锥的侧面,记这个圆锥底面圆的半径为2r ,则12r r -=________________.(结果保留根号)【答案】24【解析】【分析】由ABCD Y ,1,2,AB BC AH CD =+=⊥,AH =,2AD BC ==,1DH ==,3cos 2AH DAH AD ==,1AB CD ==+,AB CD ∥,求解30DAH ∠=︒,CH AH ==,证明45ACH CAH ∠=∠=︒,可得45BAC ∠=︒,再分别计算圆锥的底面半径即可.【详解】解:∵在ABCD Y 中,1,2,AB BC AH CD =+=⊥,AH =,∴2AD BC ==,1DH ==,∵cos 2AH DAH AD ∠==,1AB CD ==+,∴30DAH ∠=︒,CH AH ==,∴45ACH CAH ∠=∠=︒,∵AB CD ∥,∴45BAC ∠=︒,∴14532180r ππ=,2303=2180r ππ,解得:138r =,2312r =,∴1233233242424r r -=-=;故答案为:24【点睛】本题考查的是平行四边形的性质,勾股定理的应用,锐角三角函数的应用,扇形的弧长的计算,圆锥的底面半径的计算,熟记圆锥的侧面展开图的扇形弧长等于底面圆的周长是解本题的关键.16.如图,90,BAC AB AC ∠=︒==.过点C 作CD BC ⊥,延长CB 到E ,使13BE CD =,连接,AE ED .若2ED AE =,则BE =________________.(结果保留根号)【答案】1+##1+【解析】【分析】如图,过E 作EQ CQ ⊥于Q ,设,==BE x AE y ,可得3,2CD x DE y ==,证明6BC ==,6CE x =+,CQE △为等腰直角三角形,()2226222QE CQ x ===+=,22AQ x =,由勾股定理可得:()()()2222222632222y x x y x x ⎧=++⎪⎪⎨⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩,再解方程组可得答案.【详解】解:如图,过E 作EQ CQ ⊥于Q,设,==BE x AE y ,∵13BE CD =,2ED AE =,∴3,2CD x DE y ==,∵90,BAC AB AC ∠=︒==∴6BC ==,6CE x =+,CQE △为等腰直角三角形,∴()6222QE CQ x ===+=,∴22AQ x =,由勾股定理可得:()()()2222222632222y x x y x x ⎧=++⎪⎪⎨⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩,整理得:2260x x --=,解得:1x =±经检验1x =∴1BE x ==故答案为:1+.【点睛】本题考查的是等腰直角三角形的性质,勾股定理的应用,一元二次方程的解法,作出合适的辅助线构建直角三角形是解本题的关键.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:223--.【答案】9【解析】【分析】先计算绝对值,算术平方根,乘方运算,再合并即可.【详解】解:223-229=-+9=.【点睛】本题考查的是实数的混合运算,熟记算术平方根的含义,乘方与绝对值的含义是解本题的关键.18.解不等式组:210,1 1.3x x x +>⎧⎪+⎨>-⎪⎩【答案】122x -<<【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:210113x x x +>⎧⎪⎨+>-⎪⎩①②解不等式①得:12x >-解不等式②得:2x <∴不等式组的解集为:122x -<<【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.19.先化简,再求值:221422211a a a a a a --⋅---+-,其中12a =.【答案】1a a -;1-【解析】【分析】先根据分式的乘法进行计算,然后计算减法,最后将字母的值代入求解.【详解】解:221422211a a a a a a --⋅---+-()()()22212211a a a a a a +--=⋅----2211a a a +=---1a a =-;当12a =时,原式12112=-1=-.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.20.如图,在ABC 中,,AB AC AD =为ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与,AB AC 分别交于点,E F ,连接,DE DF.(1)求证:ADE ADF V V ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.【答案】(1)见解析(2)20BDE ∠=︒【解析】【分析】(1)根据角平分线的定义得出BAD CAD ∠=∠,由作图可得AE AF =,即可证明ADE ADF V V ≌;(2)根据角平分线的定义得出40EAD ∠=︒,由作图得出AE AD =,则根据三角形内角和定理以及等腰三角形的性质得出70ADE ∠=︒,AD BC ⊥,进而即可求解.【小问1详解】证明:∵AD 为ABC 的角平分线,∴BAD CAD ∠=∠,由作图可得AE AF =,在ADE V 和ADF △中,AE AF BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴ADE ADFV V ≌()SAS ;【小问2详解】∵80BAC ∠=︒,AD 为ABC 的角平分线,∴40EAD ∠=︒由作图可得AE AD =,∴70ADE ∠=︒,∵AB AC =,AD 为ABC 的角平分线,∴AD BC ⊥,∴20BDE ∠=︒【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,角平分线的定义,熟练掌握等腰三角形的性质与判定是解题的关键.21.一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为________________.(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)【答案】(1)14(2)316【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)画树状图表示所有等可能出现的情况,从中找出符合条件的结果数,进而求出概率.【小问1详解】解:搅匀后从中任意摸出1个球,这个球的编号是2的概率为14;【小问2详解】如图,画树状图如下:所有可能的结果数为16个,第2次摸到的小球编号比第1次摸到的小球编号大1的结果数为3个,∴第2次摸到的小球编号比第1次摸到的小球编号大1的概率为:316.【点睛】本题考查简单随机事件的概率计算,利用列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.22.某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为________________;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?【答案】(1)合格(2)2.5分(3)240人【解析】【分析】(1)由32个数据排在最中间是第16个,第17个,这两个数据的平均数即为中位数,从而可得答案;(2)分别计算培训前与培训后的平均成绩,再作差即可;(3)利用总人数乘以良好与优秀所占的百分比即可得到答案.【小问1详解】解:32个数据排在最中间是第16个,第17个,这两个数据的平均数即为中位数,∴这32名学生在培训前得分的中位数对应等级应为合格;【小问2详解】32名学生在培训前的平均分为:()12525628332⨯+⨯+⨯=(分),32名学生在培训后的平均分为:()18216688 5.532⨯+⨯+⨯=(分),这32名学生培训后比培训前的平均分提高了5.53 2.5-=(分);【小问3详解】培训后检测等级为“良好”与“优秀”的学生人数之和是:16832024032+⨯=(人).【点睛】本题考查的是频数分布直方图,利用样本估计总体,求解平均数,掌握以上基础的统计知识是解本题的关键.23.四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,,,BE CD GF 为长度固定的支架,支架在,,A D G 处与立柱AH 连接(AH 垂直于MN ,垂足为H ),在,B C 处与篮板连接(BC 所在直线垂直于MN ),EF 是可以调节长度的伸缩臂(旋转点F 处的螺栓改变EF 的长度,使得支架BE 绕点A 旋转,从而改变四边形ABCD 的形状,以此调节篮板的高度).已知,208cm AD BC DH ==,测得60GAE ∠=︒时,点C 离地面的高度为288cm .调节伸缩臂EF ,将GAE ∠由60︒调节为54︒,判断点C 离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6︒≈︒≈)【答案】点C 离地面的高度升高了,升高了16cm .【解析】【分析】如图,延长BC 与底面交于点K ,过D 作DQ CK ^于Q ,则四边形DHKQ 为矩形,可得208QK DH ==,证明四边形ABCD 是平行四边形,可得AB CD ∥,当60GAE ∠=︒时,则60QCD QBA GAE ∠=∠=∠=︒,此时30CDQ ∠=︒,28820880CQ =-=,2160CD CQ ==,当54GAE ∠=︒时,则54QCD QBA GAE ∠=∠=∠=︒,cos541600.696CQ CD =︒≈⨯= ,从而可得答案.【详解】解:如图,延长BC 与底面交于点K ,过D 作DQ CK ^于Q ,则四边形DHKQ 为矩形,∴208QK DH ==,∵AD BC =,AD BC ∥,∴四边形ABCD 是平行四边形,∴AB CD ∥,当60GAE ∠=︒时,则60QCD QBA GAE ∠=∠=∠=︒,此时30CDQ ∠=︒,28820880CQ =-=,∴2160CD CQ ==,当54GAE ∠=︒时,则54QCD QBA GAE ∠=∠=∠=︒,∴cos541600.696CQ CD =︒≈⨯= ,而96>80,968016-=,∴点C 离地面的高度升高了,升高了16cm .【点睛】本题考查的是平行四边形的判定与性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.24.如图,一次函数2y x =的图象与反比例函数(0)k y x x=>的图象交于点()4,A n .将点A 沿x 轴正方向平移m 个单位长度得到点,B D 为x 轴正半轴上的点,点B 的横坐标大于点D 的横坐标,连接,BD BD 的中点C 在反比例函数(0)k y x x=>的图象上.(1)求,n k 的值;(2)当m 为何值时,AB OD ⋅的值最大?最大值是多少?【答案】(1)8n =,32k =(2)当6m =时,AB OD ⋅取得最大值,最大值为36【解析】【分析】(1)把点()4,A n 代入2y x =,得出8n =,把点()4,8A 代入(0)k y x x=>,即可求得32k =;(2)过点C 作x 轴的垂线,分别交,AB x 轴于点,E F ,证明ECB FCD △≌△,得出,BE DF CE CF ==,进而可得(8),4C ,根据平移的性质得出,(48)B m +,(12),0D m -,进而表示出AB OD ⋅,根据二次函数的性质即可求解.【小问1详解】解:把点()4,A n 代入2y x =,∴24n =⨯,解得:8n =;把点()4,8A 代入(0)ky x x =>,解得32k =;【小问2详解】∵点B 横坐标大于点D 的横坐标,∴点B 在点D 的右侧,如图所示,过点C 作x 轴的垂线,分别交,AB x 轴于点,E F,∵AB DF ∥,∴B CDF ∠=∠,在ECB 和FCD 中,BCE DCFBC CD B CDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ECB FCD ≌,∴,BE DF CE CF ==,∵8A EF y ==,∴4CE CF ==,∴(8),4C ,∵将点A 沿x 轴正方向平移m 个单位长度得到点B ,∴,(48)B m +,∴4BE DF m ==-,∴(12),0D m -,∴12OD m =-,∴()()212636AB OD m m m ⋅=-=--+,∴当6m =时,AB OD ⋅取得最大值,最大值为36.【点睛】本题考查了一次函数与反比例函数综合,二次函数的性质,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.25.如图,ABC 是O 的内接三角形,AB 是O 的直径,AC BC ==,点F 在AB 上,连接CF 并延长,交O 于点D ,连接BD ,作BE CD ⊥,垂足为E .(1)求证:DBE ABC △∽△;(2)若2AF =,求ED 的长.【答案】(1)证明见解析(2)355【解析】【分析】(1)分别证明90ACB BED ∠=︒=∠,CAB CDB ∠=∠,从而可得结论;(2)求解5AB ==,1tan 2AC ABC BC ∠==,可得3BF =,证明1tan tan2DE ABC DBE BE ∠=∠==,设DE x =,则2BE x =,BD =,证明ACF DBF ∽,可得AC AF CF BD DF BF ==,可得2DF x =,EF x DE ==,3BD BF ==,从而可得答案.【小问1详解】证明:∵AB 是O 的直径,BE CD ⊥,∴90ACB BED ∠=︒=∠,∵CAB CDB ∠=∠,∴DBE ABC △∽△.【小问2详解】∵AC BC ==,90ACB ∠=︒,∴5AB ==,1tan 2AC ABC BC ∠==,∵2AF =,∴3BF =,∵DBE ABC △∽△,∴ABC DBE ∠=∠,∴1tan tan 2DE ABC DBE BE ∠=∠==,设DE x =,则2BE x =,BD =,∵AFC BFD ∠=∠,CAB CDB ∠=∠,∴ACF DBF ∽,∴AC AF CF BD DF BF==,2DF =,则2DF x =,∴EF x DE ==,∴3BD BF ==,∴355DE =.【点睛】本题考查的是圆周角定理的应用,相似三角形的判定与性质,锐角三角函数的应用,熟记圆的基本性质与重要定理是解本题的关键.26.某动力科学研究院实验基地内装有一段笔直的轨道AB ,长度为1m 的金属滑块在上面做往返滑动.如图,滑块首先沿AB 方向从左向右匀速滑动,滑动速度为9m /s ,滑动开始前滑块左端与点A 重合,当滑块右端到达点B 时,滑块停顿2s ,然后再以小于9m /s 的速度匀速返回,直到滑块的左端与点A 重合,滑动停止.设时间为()s t 时,滑块左端离点A 的距离为()1m l ,右端离点B 的距离为()2m l ,记12,d l l d =-与t 具有函数关系.已知滑块在从左向右滑动过程中,当 4.5s t =和5.5s 时,与之对应的d 的两个值互为相反数;滑块从点A 出发到最后返回点A ,整个过程总用时27s (含停顿时间).请你根据所给条件解决下列问题:(1)滑块从点A 到点B 的滑动过程中,d 的值________________;(填“由负到正”或“由正到负”)(2)滑块从点B 到点A 的滑动过程中,求d 与t 的函数表达式;(3)在整个往返过程中,若18d =,求t 的值.【答案】(1)由负到正(2)12234d t =-+(3)当6t =或18t =时,18d =【解析】【分析】(1)根据等式12d l l =-,结合题意,即可求解;(2)设轨道AB 的长为n ,根据已知条件得出121l l n ++=,则12d l l =-181t n =-+,根据当 4.5s t =和5.5s 时,与之对应的d 的两个值互为相反数;则5t =时,0d =,得出91d =,继而求得滑块返回的速度为()()91115=6m/s -÷,得出()2612l t =-,代入12d l l =-,即可求解;(3)当18d =时,有两种情况,由(2)可得,①当010t ≤≤时,②当1227t ≤≤时,分别令18d =,进而即可求解.【小问1详解】∵12d l l =-,当滑块在A 点时,10l =,2d l =-0<,当滑块在B 点时,20l =,1d l =0>,∴d 的值由负到正.故答案为:由负到正.【小问2详解】解:设轨道AB 的长为n ,当滑块从左向右滑动时,∵121l l n ++=,∴211l n l =--,∴()12111221291181d l l l n l l n t n t n =-=---=-+=⨯-+=-+∴d 是t 的一次函数,∵当 4.5s t =和5.5s 时,与之对应的d 的两个值互为相反数;∴当5t =时,0d =,∴18510n ⨯-+=,∴91d =,∴滑块从点A 到点B 所用的时间为()911910-÷=()s ,∵整个过程总用时27s (含停顿时间).当滑块右端到达点B 时,滑块停顿2s ,∴滑块从点B 到点A 的滑动时间为27102=--15s ,∴滑块返回的速度为()()91115=6m/s -÷,∴当1227t ≤≤时,()2612l t =-,∴()12911906121626l l t t =--=--=-,∴()12162661212234l l t t t -=---=-+,∴d 与t 的函数表达式为12234d t =-+;【小问3详解】当18d =时,有两种情况,由(2)可得,①当010t ≤≤时,1891118t -+=,解得:6t =;②当1227t ≤≤时,1223418t -+=,解得:18t =,综上所述,当6t =或18t =时,18d =.【点睛】本题考查了一次函数的应用,分析得出91n =,并求得往返过程中的解析式是解题的关键.27.如图,二次函数268y x x =-+的图像与x 轴分别交于点,A B (点A 在点B 的左侧),直线l 是对称轴.点P 在函数图像上,其横坐标大于4,连接,PA PB ,过点P 作PM l ⊥,垂足为M ,以点M 为圆心,作半径为r 的圆,PT 与M 相切,切点为T .(1)求点,A B 的坐标;(2)若以M 的切线长PT 为边长的正方形的面积与PAB 的面积相等,且M 不经过点()3,2,求PM 长的取值范围.【答案】(1)()()2,0,4,0A B(2)1PM <<2PM <<或2PM >【解析】【分析】(1)令0y =求得点,A B 的横坐标即可解答;(2)由题意可得抛物线的对称轴为3x =,设()2,68P m m m -+,则()23,68M m m -+;如图连接MT ,则MT PT ⊥,进而可得切线长PT 为边长的正方形的面积为()223m r --;过点P 作PH x ⊥轴,垂足为H ,可得21682PAB S AB PH m m =⋅=-+ ;由题意可得()222368m r m m --=-+,解得1r =;然后再分当点M 在点N 的上方和下方两种情况解答即可.【小问1详解】解:令0y =,则有:2680x x -+=,解得:2x =或4x =,∴()()2,0,4,0A B .【小问2详解】解:∵抛物线过()()2,0,4,0A B ∴抛物线的对称轴为3x =,设()2,68P m m m -+,∵PM l ⊥,∴()23,68M m m -+,如图:连接MT ,则MT PT ⊥,∴()222223PT PM MT m r =-=--,∴切线PT 为边长的正方形的面积为()223m r --,过点P 作PH x ⊥轴,垂足为H ,则:21682PAB S AB PH m m =⋅=-+ ,∴()222368m r m m --=-+∵0r >,∴1r =,假设M 过点()3,2N ,则有以下两种情况:①如图1:当点M 在点N 的上方,即()3,3M ∴2683m m -+=,解得:5m =或1m =,∵4m >∴5m =;②如图2:当点M 在点N 的上方,即()3,1M∴2681m m -+=,解得:32m =∵4m >∴32m =±综上,32PM m =-=或2.∴当M 不经过点()3,2时,12PM <<22PM <<或2PM >.【点睛】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.。
江苏省苏州市中考数学试卷及答案解析()
江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A. B. C. D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B. C. D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=.12.当x=时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC 内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP 所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A. B. C. D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B. C. D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△AB C=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△B EF=•EF•BH=×2×=,故选C.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.当x=2时,分式的值为0.【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.要从甲、乙两名运动员中选出一名参加“里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【考点】条形统计图;扇形统计图.【分析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.不等式组的最大整数解是3.【考点】一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【考点】切线的性质;圆周角定理;扇形面积的计算.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC 内),连接AB′,则AB′的长为2.【考点】翻折变换(折叠问题).【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP 所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质.【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.【考点】实数的运算;零指数幂.【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3﹣1=7.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据分式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.先化简,再求值:÷(1﹣),其中x=.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【考点】二元一次方程组的应用.【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【考点】列表法与树状图法;坐标与图形性质;概率公式.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】菱形的性质;平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【考点】反比例函数与一次函数的交点问题.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n 的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【考点】圆的综合题.【分析】(1)直接利用圆周角定理得出AD⊥BC,劲儿利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,再求出AE的长,进而得出△AEG∽△DEA,求出答案即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【考点】圆的综合题.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,∴t=,故答案为.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD 交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8,∴MH=0.8(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴0.8(+1)≠,矛盾,∴假设不成立.∴直线MQ与⊙O不相切.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【考点】二次函数综合题.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为DM•OB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,所以d1+d2=BF,所以求出BF 的最小值即可,由题意可知,点F在以BM′为直径的圆上,所以当点F与M′重合时,BF可取得最大值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°6月30日。
苏州中考数学试题答案详解
苏州中考数学试题答案详解苏州中考数学试卷一、选择题1. 问题描述:给定一组数据,求其平均数。
答案解析:平均数是所有数值加起来除以数值个数。
例如,数据集3, 5, 7, 2的平均数为(3+5+7+2)/4=4。
2. 问题描述:一个等差数列的前三项分别是2x-1,3x+1,5x+3,求x 的值。
答案解析:等差数列中,任意两项的差是常数。
因此,(3x+1) - (2x-1) = (5x+3) - (3x+1),解这个方程可得x=1。
3. 问题描述:一个正方形的周长是16cm,求其面积。
答案解析:正方形的周长等于边长乘以4,所以边长是16/4=4cm。
面积等于边长的平方,即4*4=16平方厘米。
4. 问题描述:已知一个直角三角形的两条直角边分别为3cm和4cm,求斜边长。
答案解析:根据勾股定理,斜边长等于两直角边的平方和的平方根。
即√(3²+4²)=√(9+16)=√25=5cm。
5. 问题描述:一个圆的半径是7cm,求其周长和面积。
答案解析:圆的周长公式是C=2πr,面积公式是A=πr²。
所以周长是2*π*7≈43.96cm,面积约为π*7²≈153.89平方厘米。
二、填空题1. 问题描述:一个等比数列的前两项是3和6,求第三项。
答案解析:等比数列中,任意一项与前一项的比是常数。
所以第三项是6*(6/3)=12。
2. 问题描述:一个长方体的长、宽、高分别是5cm、3cm和2cm,求其体积。
答案解析:长方体的体积等于长、宽、高的乘积,即5*3*2=30立方厘米。
3. 问题描述:一个分数的分子是5,分母是8,求其倒数。
答案解析:一个分数的倒数是分子分母颠倒后的分数,所以5/8的倒数是8/5。
4. 问题描述:一个百分数是60%,求其对应的小数表示。
答案解析:百分数转换为小数,去掉百分号,将数值除以100,即60%=60/100=0.6。
5. 问题描述:一个多项式x²+3x+2可以分解为(x-a)(x-b)的形式,求a和b的值。
江苏省苏州市2021年中考数学真题试卷(Word版,含答案与解析)
江苏省苏州市2021年中考数学试卷一、单选题(共10题;共20分)1.计算(√3)2的结果是()A. √3B. 3C. 2√3D. 9【答案】B【考点】二次根式的性质与化简【解析】【解答】解:(√3)2=3,故答案为:B.【分析】根据二次根式的性质“(√a)2=|a|(a≥0)”可求解.2.如图所示的圆锥的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故答案为:A.【分析】主视图是从物体正面看所得到的图形;认真观察实物图,按照三视图的要求画图即可,其中看得到的棱长用实线表示,看不到的棱长用虚线的表示.3.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A. B.C. D.【答案】B【考点】旋转的性质,作图﹣旋转【解析】【解答】A、Rt△A′O′B是由Rt△AOB关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、Rt△A′O′B是由Rt△AOB绕点B按顺时针方向旋转90°后得到,故B选项符合题意;C、Rt△A′O′B与Rt△AOB对应点发生了变化,故C选项不符合题意;D、Rt△AOB是由Rt△AOB绕点B按逆时针方向旋转90°后得到,故D选项不符合题意.故答案为:B.【分析】由旋转的性质并结合各选项可判断求解.4.已知两个不等于0的实数a、b满足a+b=0,则ba +ab等于()A. -2B. -1C. 1D. 2 【答案】A【考点】完全平方公式及运用【解析】【解答】解:∵ba +ab=b2+a2ab,∴ba +ab=b2+a2ab=(a+b)2−2abab,∵两个不等于0的实数a、b满足a+b=0,∴ba +ab=(a+b)2−2abab=-2abab=-2,故答案为:A.【分析】将所求代数式通分并根据完全平方公式可得ba +ab=(a+b)2−2abab,然后整体代换即可求解.5.为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为()A. 5kgB. 4.8kgC. 4.6kgD. 4.5kg【答案】C【考点】平均数及其计算【解析】【解答】每个班级回收废纸的平均重量= 4.5+4.4+5.1+3.3+5.75=4.6kg.故答案为:C.【分析】根据平均数=各班的回收废纸的数量之和÷班级的个数可求解.6.已知点A(√2,m),B(32,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A. m>n B. m=n C. m<n D. 无法确定【答案】C【考点】一次函数的性质【解析】【解答】解:在一次函数y=2x+1中,∵k=2>0,∴y随x的增大而增大.∵2< 94,∴√2<32.∴m<n.故答案为:C【分析】由题意根据一次函数的性质“当k>0时,y随x的增大而增大.”并结合点A、B的横坐标即可判断求解.7.某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机 x 架,乙种型号无人机 y 架.根据题意可列出的方程组是( )A. {x =13(x +y)−11,y =12(x +y)+2B. {x =13(x +y)+11.y =12(x +y)−2C. {x =12(x +y)−11,y =13(x +y)+2D. {x =12(x +y)+11,y =13(x +y)−2 【答案】 D【考点】二元一次方程组的应用-和差倍分问题【解析】【解答】设甲种型号无人机 x 架,乙种型号无人机 y 架∵甲种型号无人机架数比总架数的一半多11架,∴ x =12(x +y)+11∵乙种型号无人机架数比总架数的三分之一少2架∴ y =13(x +y)−2联立可得: {x =12(x +y)+11y =13(x +y)−2 故答案为:D.【分析】由题意可得相等关系“甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架”,根据相等关系可列方程组.8.已知抛物线 y =x 2+kx −k 2 的对称轴在 y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则 k 的值是( )A. -5或2B. -5C. 2D. -2【答案】 B【考点】二次函数图象的几何变换【解析】【解答】解:∵抛物线y=x 2+kx-k 2的对称轴在y 轴右侧,∴x=−k 2>0 ,∴k <0.∵抛物线y=x 2+kx-k 2=(x +k 2)2−5k 24. ∴将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线的表达式是:y =(x +k 2−3)2−5k 24+1 ,∴将(0,0)代入,得0=(0+k 2−3)2−5k 24+1 , 解得k 1=2(舍去),k 2=-5.故答案为:B.【分析】先将二次函数配成顶点式,再根据二次函数平移的点的坐标变化规律“左加右减、上加下减”可得平移后的解析式,再根据平移后的抛物线经过原点可将(0,0)代入平移后的解析式得关于k的一元二次方>0,解不等式可得k的范围,结合范围可确程,解方程可求得k的值,再根据对称轴在y轴右侧可得x=-k2定k的值.9.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线翻折得到△AB′C,B′C交AD 于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=√6,则B′D的长是()A. 1B. √2C. √3D. √62【答案】B【考点】平行四边形的性质,等腰直角三角形【解析】【解答】解:∵四边形ABCD是平行四边形∴AB=CD ∠B=∠ADC=60°,∠ACB=∠CAD由翻折可知:BA=AB′=DC,∠ACB=∠AC B′=45°,∴△AEC为等腰直角三角形∴AE=CE∴Rt△AE B′≌Rt△CDE∴EB′=DE∵在等腰Rt△AEC中,AC=√6∴CE=√3∵在Rt△DEC中,CE=√3,∠ADC=60°∴∠DCE=30°∴DE=1在等腰Rt△DE B′中,EB′=DE=1∴B′D= √2故答案为:B【分析】由折叠的性质可得△AEC为等腰直角三角形,结合平行四边形的性质可证Rt△AE B′≌Rt△CDE,由全等三角形的性质可得E B′=DE,在等腰Rt△AEC中,用勾股定理可求得CE的值,解Rt△DEC可求得DE 的值,在等腰Rt△DE B′中,用勾股定理可求解.10.如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动,在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P的移动时间为(秒).两个圆锥的底面面积之和为S.则S关于t的函数图象大致是()A. B.C. D.【答案】 D【考点】圆锥的计算,二次函数的实际应用-几何问题【解析】【解答】解:根据题意,∵AB=10,AC=BD=1,且已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动,则0≤t≤8,∴PA=t+1,∴PB=10−(t+1)=9−t,由PA的长为半径的扇形的弧长为:60π(t+1)180=π(t+1)3∴用PA的长为半径的扇形围成的圆锥的底面半径为t+16∴其底面的面积为π(t+1)236由PB的长为半径的扇形的弧长为:60π(9-t)180=π(9−t)3∴用PB的长为半径的扇形围成的圆锥的底面半径为9-t6∴其底面的面积为π(9-t)236∴两者的面积和S=π(t+1)236+π(9−t)236=118π(t2−8t+41)∴图象为开后向上的抛物线,且当t=4时有最小值;故答案为:D.【分析】先用t的代数式表示出两个扇形的半径,根据扇形的弧长等于底面圆的周长求出两个圆锥底面圆的半径,最后列出两个圆锥底面积之和关于t的函数关系式,根据关系式即可判断出符合题意的函数图形.二、填空题(共8题;共9分)11.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是________.【答案】1.6×107【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:16 000 000=1.6×107,故答案为:1.6×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.12.因式分解x2−2x+1=________.【答案】(x﹣1)2【考点】因式分解﹣运用公式法【解析】【解答】解:x2−2x+1=(x﹣1)2.故答案为:(x﹣1)2.【分析】根据完全平方公式“a2-2ab+b2=(a-b)2”可求解.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是________.【答案】38【考点】几何概率【解析】【解答】解:∵由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个区域中所占的比值= 616=38,∴小球停在黑色区域的概率是3;8故答案为:38【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.14.如图.在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=________.【答案】54°【考点】三角形内角和定理,等腰三角形的性质【解析】【解答】∵ AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=36°,∵∠C=90°,∠A+∠B+∠C=180°,∴∠B=180°-∠A-∠C=54°.故答案为:54°.【分析】与等边对等角可得∠A=∠AEF,根据三角形的外角的性质可求得∠A的度数,再用三角形内角和定理可求解.15.若m+2n=1,则3m2+6mn+6n的值为________.【答案】3【考点】代数式求值【解析】【解答】∵m+2n=1,∴3m2+6mn+6n=3m(m+2n)+6n=3m+6n=3(m+2n)=3.故答案为:3.【分析】将所求代数式变形得原式=3m(m+2n)+6n,再整体代换可求解.16.若2x+y=1,且0<y<1,则x的取值范围为________.【答案】0<x<12【考点】一次函数的性质【解析】【解答】解:根据2x+y=1可得y=﹣2x+1,∴k=﹣2<0∵0<y<1,∴当y=0时,x取得最大值,且最大值为1,2当y=1时,x取得最小值,且最小值为0,∴0<x<12故答案为:0<x<12.【分析】将二元一次方程变形得:y=-2x+1,根据一次函数的性质可求解.17.如图,四边形ABCD为菱形,∠ABC=70°,延长BC到E,在∠DCE内作射线CM,使得∠ECM=15°,过点D作DF⊥CM,垂足为F,若DF=√5,则对角线BD的长为________.(结果保留根号)【答案】2√5【考点】菱形的性质【解析】【解答】解:连接AC,如图,∵四边形ABCD是菱形,∴AB//CD,∠DOC=90°,BD=2DO∴∠DCE=∠ABC=70°∵∠ECM=15°∴∠DCM=55°∵DF⊥CM∴∠CDF=35°∵四边形ABCD是菱形,∴∠CDB=12∠ADC=12∠ABC=35°∴∠CDF=∠CDO在ΔCDO和ΔCDF中,{∠CDO=∠CDF∠COD=∠CFD=90°CD=CD∴ΔCDO≌ΔCDF∴DO=DF=√5∴BD=2DO=2√5故答案为:2√5.【分析】连接AC,由菱形的性质和已知条件用角角边可证△CDO≌△CDF,由全等三角形的对应边相等可得DO=DF,由菱形的性质BD=2DO可求解.18.如图,射线OM、ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d≈________.【答案】245【考点】解直角三角形,旋转的性质【解析】【解答】如图所示,连接OA′、OB,过A′点作A′P⊥ON交ON与点P.∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′∴OA′=OA=8,∠B′OB=∠A′OA∴∠B′OB−∠BOA′=∠A′OA−∠BOA′即∠B′OA′=∠BOA∵点B在线段OA的垂直平分线l上∴OC=12OA=12×8=4,OB=AB=5BC=√OB2−OC2=√52−42=3∵ ∠B ′OA ′=∠BOA∴ sin ∠B ′OA ′=A ′P A ′O =sin ∠BOA =BC OB∴ A ′P 8=35 ∴ d =A ′P =245【分析】连接OA ′、OB , 过A ′点作A ′P ⊥ON 交ON 与点P ,由旋转的性质可得OA ′=OA =8 ,∠B ′OB =∠A ′OA , 由角的构成得∠B´OA´=∠BOA ,由线段的垂直平分线的性质“线段的垂直平分线上的点到线段两端点的距离相等”可得OC=12OA ,用勾股定理求得BC 的值;于是根据sin ∠B´OA´=A ·PA ·O =sin ∠BOA=BC OB 可求得A´P 的值,则d=A´P 可求解. 三、解答题(共10题;共78分)19.计算: √4+|−2|−32 .【答案】 解: √4+|−2|−32=2+2−9=−5【考点】实数的运算【解析】【分析】由算术平方根可得√4=2,然后根据有理数的加减混合运算法则计算即可求解.20.解方程组: {3x −y =−4x −2y =−3. 【答案】 解: {3x −y =−4①x −2y =−3②由②得:x=-3+2y ③,把③代入①得,3(-3+2y )-y=-4,解得y=1,把y=1代入③得:x=-1,则原方程组的解为: {x =−1y =1【考点】解二元一次方程组【解析】【分析】观察方程②中未知数x 的系数是1,所以由方程②变形可将x 用含y 的代数式表示,把x 的代入方程①可消去未知数y ,求得未知数x 的值,把x 的值代入其中一个方程计算可求得y 的值,再写出结论可求解.21.先化简再求值: (1+1x−1)⋅x 2−1x ,其中 x =√3−1 . 【答案】 解:原式 =x−1+1x−1⋅(x+1)(x−1)x=x +1 当 x =√3−1 时,原式 =√3【考点】利用分式运算化简求值【解析】【分析】由题意先将括号内的分式通分,再将每一个分式的分子和分母分解因式并约分,即可将分式化简,再把x的值的代入化简后的分式计算可求解.22.某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程.为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查.并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为▲名.补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占________%;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?【答案】(1)解:50;画图并标注相应数据,如下图所示.(2)10=200(名).(3)解:由题意得:1000×1050答:选择“刺绣”课程有200名学生【考点】用样本估计总体,扇形统计图,条形统计图【解析】【解答】解:(1)15÷30%=50(人),所以,参加问卷调查的学生人数为50名,参加“剪纸”课程的人数为:50-15-10-5=20(名)画图并标注相应数据,如下图所示.故答案为:50;(2)5÷50=0.1=10%故答案为10;【分析】(1)观察条形图和扇形图可知折扇的频数和百分数,根据样本容量=频数÷百分数可求得参加问卷调查的学生人数;根据样本容量等于各小组频数之和可求得剪纸的频数,于是可补充条形图;(2)根据百分数=频数÷样本容量可求得陶艺的百分数;(3)用样本估计总体可求解.23.4张相同的卡片上分别写有数字0、1、−2、3,将卡片的背面朝上,洗匀后从中任意抽取1张.将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为________;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜:否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由).【答案】(1)14(2)解:用树状图或表格列出所有等可能的结果:∵共有12种等可能的结果,两个数的差为非负数的情况有6种,∴P(结果为非负数)=612=12,P(结果为负数)=612=12.∴游戏规则公平【考点】列表法与树状图法【解析】【解答】解:(1)共有4种等可能的结果,其中数字是负数情况占1种P(数字是负数)= 14;【分析】(1)用概率公式可求解;(2)由题意画出树状图,根据树状图的信息可知:共有12种等可能的结果,两个数的差为非负数的情况有6种,然后用概率公式可求得小敏获胜的概率,根据概率的大小可判断游戏是否公平.24.如图,在平面直角坐标系中.四边形OABC为矩形,点C、A分别在x轴和y轴的正半轴上,点D为AB的中点已知实数k≠0,一次函数y=−3x+k的图象经过点C、D,反比例函数y= kx(x>0)的图象经过点B,求k的值.【答案】解:把y=0代入y=−3x+k,得x=k3.∴C(k3,0).∵BC⊥x轴,∴点B横坐标为k3.把x=k3代入y=kx,得y=3.∴B(k3,3).∵点D为AB的中点,∴AD=BD.∴D(k6,3).∵点D(k6,3)在直线y=−3x+k上,∴3=−3×k6+k.∴k=6【考点】反比例函数与一次函数的交点问题【解析】【分析】根据直线与x轴相交于点C可令y=0,求得x的值可得点C的坐标;由BC⊥x轴可得点B的横坐标和点C的横坐标相等,把点B的横坐标代入反比例函数的解析式可得点B的纵坐标,由线段中点定义可得点D的坐标,再根据点D在反比例函数的图象上可将点D的坐标代入直线解析式可得关于k 的方程,解方程可求解.25.如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.【答案】(1)证明:∵四边形ABCD是圆的内接四边形,∴∠A+∠BCD=180°.∵∠DCE+∠BCD=180°,∴∠A=∠DCE.∵∠1=∠2,∴AD⌢=CD⌢,∴AD=CD.在△ABD和△CED中,{AB=CE ∠A=∠DCE AD=CD∴△ABD≌△CED(SAS),∴BD=ED(2)解:如图,过点D作DM⊥BE,垂足为M.∵BC=6,AB=CE=4,∴BE=BC+CE=10.由(1)知BD=ED.∴BM=EM=12BE=5.∴CM=BC−BM=1.∵∠ABC=60°,∠1=∠2,∴∠2=30°.∴DM=BM⋅tan30°=5×√33=5√33.∴tan∠DCB=DMCM =5√33【考点】圆的综合题【解析】【分析】(1)由圆内接四边形的对角互补和邻补角的性质可得∠A=∠DCE,由∠1=∠2可得弧AD=弧CD,于是AD=CD,然后用边角边可证△ABD≌△CED,由全等三角形的对应边相等可求解;(2)过点D作DM⊥BE,垂足为M,在直角三角形BDM中,用锐角三角函数tan30°=DMBM可求得DM的值;于是tan∠BCD=DMCM可求解.26.如图,二次函数y=x2−(m+1)x+m(m是实数,且−1<m<0)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C,已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC.连接ED并延长交y轴于点F,连接AF.(1)求A、B、C三点的坐标(用数字或含m的式子表示);(2)已知点Q在抛物线的对称轴上,当△AFQ的周长的最小值等于125,求m的值. 【答案】(1)解:令y=0,则x2−(m+1)x+m=0,∴(x−1)(x−m)=0,∴x1=m,x2=1,∴A(m,0),B(1,0),∴对称轴为直线x=m+12,∴C(m+12,0)(2)解:在Rt△ODB中,CD⊥OB,OD⊥BD,∴∠ODB=∠OCD=90°,∵∠DOC=∠BOD,∴△COD∽△CDB,∴CDCB =COCD,∵C(m+12,0),B(1,0),∴OC=m+12,BC=1−m+12=1−m2.∴CD2=OC⋅CB=m+12⋅1−m2=1−m24.∵CD⊥x轴,OF⊥x轴,∴CD//OF.∵OC=EC,∴OF=2CD.∴OF2=4CD2=1−m2.在Rt△AOF中,AF2=OA2+OF2,∴AF2=m2+1−m2=1,即AF=1.(负根舍去)∵点A与点B关于对称轴对称,∴QA=QB.∴如图,当点F、Q、B三点共线时,FQ+AQ的长最小,此时△AFQ的周长最小.∴△AFQ的周长的最小值为125,∴FQ+AQ的长最小值为125−1=75,即BF=75.∵OF2+OB2=BF2,∴1−m2+1=4925.∴m=±15.∵−1<m<0,∴m=−15【考点】二次函数的实际应用-几何问题【解析】【分析】(1)由题意令y=x2−(m+1)x+m=0,解得x=1或m,可得点A、B的坐标分别为(m,0)、(1,0),则点C的横坐标为12(m+1),即可求解;(2)由题意根据有两个角对应相等的两个三角形相似可得△COD∽△CDB,于是可得比例式CDCB =COCD,由C、B的坐标可将OC、BC用含m的代数式表示出来,则CD2也可用含m的代数式表示出来,由OF=2CD,于是OF2用含m的代数式表示出来,在直角三角形AOF中,用勾股定理可求得AF的值,再由轴对称的性质可得QA=QB,当点F、Q、B三点共线时,FQ+AQ的长最小,此时△AFQ的周长最小;由三角形AFQ的周长的最小值可求得BF的值,在直角三角形BOF中,用勾股定理可得关于m的方程,解方程可求解.27.如图①,甲,乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH 是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.(1)求容器甲,乙的容积分别为多少立方米?(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度,容器乙的水位高度记为ℎ乙,设ℎ乙−ℎ甲=ℎ,已知ℎ(米)关于注水时间t(小时)的记为ℎ甲函数图象如图③所示,其中MN平行于横轴.根据图中所给信息,解决下列问题:①求a的值;②求图③中线段PN所在直线的解析式.【答案】(1)解:由图知,正方形ABCD的边长AB=10,∴容器甲的容积为102×6=600立方米.如图,连接FH,∵ ∠FEH =90° ,∴ FH 为直径.在 Rt △EFH 中, EF =2EH , FH =10 ,根据勾股定理,得 EF =4√5 , EH =2√5 ,∴容器乙的容积为 2√5×4√5×6=240 立方米(2)解:根据题意可求出容器甲的底面积为 10×10=100 平方米,容器乙的底面积为 2√5×4√5=40 平方米.①当 t =4 时, ℎ=4×2540−4×25100=2.5−1=1.5 . ∵ MN 平行于横轴,∴ M(4,1.5) , N(6,1.5) .由上述结果,知6小时后高度差仍为1.5米,∴ 25×640−25×6+2a 100=1.5 .解得 a =37.5 .②设注水b 小时后, ℎ乙−ℎ甲=0 ,则有 25b 40−25b+(b−4)×37.5+(b−6)×50100=0 . 解得 b =9 ,即 P(9,0) .设线段 PN 所在直线的解析式为 ℎ=kt +m ,∵ N(6,1.5) 、 P(9,0) 在直线 PN 上,∴ {1.5=6k +m 0=9k +m, 解得: {k =−12m =92. ∴线段 PN 所在直线的解析式为 ℎ=−12t +92(6≤t ≤9)【考点】一次函数的实际应用【解析】【分析】(1)连接FH ,解直角三角形EFH 求出EH ,然后根据容器的容积=长×宽×高可求解; (2)① 根据题意可求出容器甲的底面积为10×10=100 平方米,容器乙的底面积=长×宽可求得容器乙的底面积,根据6小时后的高度差为1.5米,可得h=4×2540−4×25100=1.5,然后根据25×640−25×6+2a1001.5,解方程求出a的值即可;②当注t小时后,由h乙−h甲=0,可得25b40−25b+(b−4)×37.5+(b−6)×50100=0,解方程b的值可得点P的坐标,N的坐标,然后用待定系数法可求解.28.如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H与P2F交于点Q.已知AG:GD=AE:EB=1:2.设AG=a,AE=b.(1)四边形EBHP的面积________四边形GPFD的面积(填“ >”、“ =”或“ <”);(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求S1S2的值.【答案】(1)=(2)证明:∵PP1=PG,PP2=PE,由(1)中PE⋅PH=2ab,PG⋅PF=2ab,∴PP2⋅PH=PP1⋅PF,即PP2PP1=PFPH,∵∠FPP2=∠HPP1,∴△PP2F∽△PP1H. ∴∠PFP2=∠PHP1. ∵∠P1QF=∠P2QH,∴△P1FQ∽△P2HQ(3)解:解法一:连接P1P2,FH,∵PP2CH =a2a=12,PP1CF=b2b=12,∴PP2CH =PP1CF.∵∠P1PP2=∠C=90°,∴△PP1P2∽△CFH.∴P1P2FH =PP1CF=12,S△PP1P2S△CFH=(P1P2FH)2=14.由(2)△P1FQ∽△P2HQ,得P1QP2Q =FQHQ,∴P1QFQ =P2QHQ.∵∠P1QP2=∠FQH,∴△P1QP2∽△FQH.∴S△P1QP2S△FQH =(P1P2FH)2=14.∵S1=S△PP1P2+S△P1P2Q,∴S1=14S△CFH+14S△FQM=14(S△CFH+S△FQM)=14S2.∴S1S2=14.解法二:连接P1P2、FH.∵PP2CH =a2a=12,PP1CF=b2b=12,∴PP2CH =PP1CF.∵∠P1PP2=∠C=90°,∴△PP1P2∽△CFH.∴P1P2FH =PP1CF=12,∠PP1P2=∠CFH,∠PP2P1=∠CHF.由(2)中△P1FQ∽△P2HQ,得P1QP2Q =FQHQ,∴P1QFQ =P2QHQ.∵∠P1QP2=∠FQH,∴△P1QP2∽△FQH.∴P1QFQ =P2QQH=P1P2FH=12,∠P2P1Q=∠HFQ,∠P1P2Q=∠FHQ.∴P1QFQ =P2QHQ=PP1CF=PP2CH=12,∠PP1Q=∠CFQ,∠PP2Q=∠CHQ.又∠P1PP2=∠C,∠P1QP2=∠FQH,∴四边形PP1OP2∽的四边形CFQH.∴S1S2=(PP1CF)2=14【考点】四边形的综合【解析】【解答】解:(1)∵四边形ABCD为矩形,∴∠BAD=∠B=∠C=90°.∵GH//AB,∴∠B=∠GHC=90°,∠BAD=∠PGD=90°.∵EF//AD,∴∠PGD=∠HPF=90°.∴四边形PFCH为矩形.同理可得:四边形AGPE、GDFP、EPHB均为矩形.∵AG=a,AE=b,AG:GD=AE:EB=1:2,∴PE=a,PG=b,GD=PF=2a,EB=PH=2b.∴四边形EBHP的面积=PE⋅PH=2ab,四边形GPFD的面积=PG⋅PF=2ab..四边形EBHP的面积=四边形GPFD的面积.【分析】(1)由题意根据有三个角是直角的四边形是矩形易证四边形PFCH、AGPE、GDFP、EPHB均为矩形,然后分别用含a,b的代数式表示出四边形EBHP和四边形GPFD的面积并作比较即可求解;(2)由(1)可得得边的比例关系,先证△PP2F∽△PP1H得∠PFP2=∠PHP1,再根据对顶角相等并根据有两个角对应相等的两个三角形相似即可得△P1FQ∽△P2HQ;(3)连接P1P2,FH,先证△P1PP2∽△CFH可得线段比例关系,从而得面积比例关系,再证△P1QP2∽△FQH,得出面积比例关系,最后根据面积关系即可求得s1s2的值.。
苏州中考试卷真题数学答案
苏州中考试卷真题数学答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 2.718281828459B. 3.1415926535C. πD. √2答案:C2. 一个圆的半径是5,那么它的直径是:A. 10B. 15C. 20D. 25答案:A3. 绝对值不等式 |x-3| < 2 的解集是:A. (-1, 5)B. (1, 5)C. (-2, 4)D. (2, 4)答案:A4. 如果一个二次方程 ax² + bx + c = 0 有两个实根,那么:A. b² - 4ac > 0B. b² - 4ac ≥ 0C. b² - 4ac < 0D. b²- 4ac ≤ 0答案:B5. 下列哪个是等差数列?A. 2, 4, 6, 8B. 3, 6, 9, 12C. 1, 3, 6, 10D. 5, 4, 3, 2答案:A6. 一个三角形的内角和为:A. 180°B. 360°C. 90°D. 120°答案:A7. 函数 y = x² - 4x + 4 的最小值是:A. -4B. 0C. 4D. 8答案:B8. 如果一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2答案:A9. 一个正数的倒数是:A. 1/xB. x²C. x/1D. 1答案:A10. 下列哪个是奇函数?A. y = x²B. y = |x|C. y = sin(x)D. y = cos(x)答案:D二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的立方根是2,那么这个数是 _______。
答案:812. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是 _______。
答案:513. 一个数的平方是25,那么这个数是 _______。
2023年江苏省苏州市中考数学试卷及答案解析
2023年江苏省苏州市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应的位置上.1.(3分)有理数的相反数是()A.B.C.﹣D.±2.(3分)古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图,在正方形网格内,线段PQ的两个端点都在格点上,网格内另有A,B,C,D四个格点,下面四个结论中,正确的是()A.连接AB,则AB∥PQ B.连接BC,则BC∥PQC.连接BD,则BD⊥PQ D.连接AD,则AD⊥PQ4.(3分)今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是()A.长方体B.正方体C.圆柱D.三棱锥5.(3分)下列运算正确的是()A.a3﹣a2=a B.a3•a2=a5C.a3÷a2=1D.(a3)2=a5 6.(3分)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.B.C.D.7.(3分)如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC•EF的值为()A.B.9C.15D.308.(3分)如图,AB是半圆O的直径,点C,D在半圆上,,连接OC,CA,OD,过点B作EB⊥AB,交OD的延长线于点E.设△OAC的面积为S1,△OBE的面积为S2,若,则tan∠ACO的值为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.(3分)若有意义,则x的取值范围是.10.(3分)因式分解:a2+ab=.11.(3分)分式方程的解为x=.12.(3分)在比例尺为1:8000000的地图上,量得A,B两地在地图上的距离为3.5厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为.13.(3分)小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是°.14.(3分)已知一次函数y=kx+b的图象经过点(1,3)和(﹣1,2),则k2﹣b2=.15.(3分)如图,在▱ABCD中,AB=+1,BC=2,AH⊥CD,垂足为H,AH=.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF 围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2=.(结果保留根号)16.(3分)如图,∠BAC=90°,AB=AC=3,过点C作CD⊥BC,延长CB到E,使BE=CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推算步骤获文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(5分)计算:|﹣2|﹣+32.18.(5分)解不等式组:.19.(6分)先化简,再求值:•﹣,其中a=.20.(6分)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.21.(6分)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为;(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)22.(8分)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?23.(8分)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH 垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)24.(8分)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A(4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.(1)求n,k的值;(2)当m为何值时,AB•OD的值最大?最大值是多少?25.(10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,AC=,BC=2,点F在AB上,连接CF并延长,交⊙O于点D,连接BD,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=2,求ED的长.26.(10分)某动力科学研究院实验基地内装有一段笔直的轨道AB,长度为1m的金属滑块在上面做往返滑动.如图,滑块首先沿AB方向从左向右匀速滑动,滑动速度为9m/s,滑动开始前滑块左端与点A重合,当滑块右端到达点B时,滑块停顿2s,然后再以小于9m/s的速度匀速返回,直到滑块的左端与点A重合,滑动停止.设时间为t(s)时,滑块左端离点A的距离为l1(m),右端离点B的距离为l2(m),记d=l1﹣l2,d与t具有函数关系,已知滑块在从左向右滑动过程中,当t=4.5s和5.5s时,与之对应的d的两个值互为相反数;滑块从点A出发到最后返回点A,整个过程总用时27s(含停顿时间).请你根据所给条件决下列问题:(1)滑块从点A到点B的滑动过程中,d的值;(填“由负到正”或“由正到负”)(2)滑块从点B到点A的滑动过程中,求d与t的函数表达式;(3)在整个往返过程中,若d=18,求t的值.27.(10分)如图,二次函数y=x2﹣6x+8的图象与x轴分别交于点A,B(点A在点B的左侧),直线l是对称轴.点P在函数图象上,其横坐标大于4,连接PA,PB,过点P 作PM⊥l,垂足为M,以点M为圆心,作半径为r的圆,PT与⊙M相切,切点为T.(1)求点A,B的坐标;(2)若以⊙M的切线长PT为边长的正方形的面积与△PAB的面积相等,且⊙M不经过点(3,2),求PM长的取值范围.2023年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应的位置上.1.【分析】绝对值相等,但符号不同的两个数互为相反数,特别地,0的相反数是0;据此即可得出答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查相反数的定义,此为基础概念,必须熟练掌握.2.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、原图不是中心对称图形,是轴对称图形,故此选项不合题意;B、原图既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C、原图既是中心对称图形,也是轴对称图形,故此选项符合题意;D、原图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【分析】根据平行的本质是平移,将线段AB、线段BC平移至线段PQ上,若重合则平行,若不重合则不平行.延长线段DB、线段DA与线段PQ相交,观察所成的角是否为直角判定是否垂直.【解答】解:连接AB,将点A平移到点P,即为向上平移3个单位,将点B向上平移3个单位后,点B不在PQ直线上,∴AB与PQ不平行,选项A错误,连接BC,将点B平移到点P,即为向上平移4个单位,再向右平移1个单位,将点C按点B方式平移后,点C在PQ直线上,∴BC∥PQ,选项B正确,连接BD、AD,并延长与直线PQ相交,根据垂直的意义,BD、AD与PQ不垂直,选项C、D错误.故选:B.【点评】本题考查了学生在网格中的数形结合的能力,明确平行的本质是平移,将线段平移后观察是否重合从而判定是否平行是解决本题的关键.4.【分析】根据主视图即可判断出答案.【解答】解:根据主视图可知,只有D选项不可能.故选:D.【点评】本题考查了由三视图判断几何体,熟练掌握主视图的定义是解题的关键.5.【分析】利用合并同类项法则,同底数幂乘法法则,同底数幂除法法则,幂的乘方法则将各项计算后进行判断即可.【解答】解:A.a3与a2不是同类项,无法合并,则A不符合题意;B.a3•a2=a3+2=a5,则B符合题意;C.a3÷a2=a,则C不符合题意;D.(a3)2=a6,则D不符合题意;故选:B.【点评】本题考查整式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.6.【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在灰色区域的概率.【解答】解:∵圆被等分成4份,其中灰色区域占2份,∴指针落在灰色区域的概率为=.故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.【分析】利用点的坐标,分别计算AC和EF,再相乘即可.【解答】解:连接AC、EF.∵四边形OABC为矩形,∴B(9,3).又∵OE=BF=4,∴E(4,0),F(5,3).∴AC===3,EF==,∴AC•EF=3×=30.故选:D.【点评】本题主要考查矩形的性质及坐标,较为简单,直接计算即可.8.【分析】如图,过C作CH⊥AO于H,证明∠COD=∠BOE=∠CAO,由,即,可得=,证明tan∠A=tan∠BOE,可得,设AH=2m,则BO=3m=AO=CO,可得OH=3m﹣2m=m,CH=m,再利用正切的定义可得答案.【解答】解:如图,过C作CH⊥AO于H,∵,∴∠COD=∠BOE=∠CAO,∵,即,∴,∵∠A=∠BOE,∴tan∠A=tan∠BOE,∴,即,设AH=2m,则BO=3m=AO=CO,∴OH=3m﹣2m=m,∴CH=,∴tan∠A==,∵OA=OC,∴∠A=∠ACO,∴tan∠ACO=;故选A.【点评】本题考查的是圆周角定理的应用,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线构建直角三角形是解本题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.【分析】二次根式的被开方数x+1是非负数.【解答】解:根据题意,得x+1≥0,解得,x≥﹣1;故答案是:x≥﹣1.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.【分析】直接把公因式a提出来即可.【解答】解:a2+ab=a(a+b).故答案为:a(a+b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.11.【分析】本题考查分式方程的运算,其基本思路是将分式方程转化为整式方程再计算.【解答】解:方程两边乘3x,得,3(x+1)=2x,解得,x=﹣3,检验:当x=﹣3时,3x≠0,所以,原分式方程的解为:x=﹣3.故答案为:﹣3.【点评】本题考查的是分式方程的运算,解题的关键是去分母转化成整式方程,解出来检验最简公分母是否为零,再写解.12.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:28000000=2.8×107,故答案为:2.8×107.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.13.【分析】用360°乘“新材料”所占百分比20%即可.【解答】解:新材料”所对应扇形的圆心角度数是:360°×20%=72°.故答案为:72.【点评】本题考查扇形统计图,解题的关键是将统计图中的信息有效关联起来.14.【分析】利用待定系数法即可解得.【解答】解:由题意得,将点(1,3)和(﹣1,2)代入y=kx+b得:,解得:,∴,另一种解法:由题意得,将点(1,3)和(﹣1,2)代入y=kx+b得:,∴k2﹣b2=(k+b)(k﹣b)=﹣(k+b)(﹣k+b)=﹣3×2=﹣6.故答案为:﹣6.【点评】本题考查了待定系数法,二元一次方程组,熟练掌握待定系数法是解题关键.15.【分析】根据平行四边形的性质以及正弦函数的定义求出∠D=60°,∠BAC=45°,利用弧长公式以及圆的周长公式求出r1,r2即可.【解答】解:在▱ABCD中,AB=+1,BC=2,∴AD=BC=2,CD=AB=+1,AB∥CD.∵AH⊥CD,垂足为H,AH=,∴sin D==,∴∠D=60°,∴∠DAH=90°﹣∠D=30°,∴DH=AD=1,∴CH=CD﹣DH=+1﹣1=,∴CH=AH,∵AH⊥CD,∴△ACH是等腰直角三角形,∴∠ACH=∠CAH=45°,∵AB∥CD,∴∠BAC=∠ACH=45°,∴=2πr1,解得r1=,=2πr2,解得r2=,∴r1﹣r2=﹣=.故答案为:.【点评】本题考查了圆锥的计算,平行四边形的性质,解直角三角形,弧长公式,求出∠D=60°,∠BAC=45°是解决本题的关键.16.【分析】如图,过E作EQ⊥CQ于Q,设BE=x,AE=y,可得CD=3x,DE=2y,证明BC=AB=6,CE=6+x,△CQE为等腰直角三角形,QE=CQ=CE=(6+x)=3+x,AQ=x,由勾股定理可得:,再解方程组可得答案.【解答】解:如图,过E作EQ⊥CQ于Q,设BE=x,AE=y,∵BE=CD,ED=2AE,∴CD=3x,DE=2y,∵∠BAC=90°,AB=AC=3,∴BC=AB=6,CE=6+x,△CQE为等腰直角三角形,∴QE=CQ=CE=(6+x)=3+x,∴AQ=x,由勾股定理可得:,整理得:x2﹣2x﹣6=0,解得:x=1±,经检验x=1﹣不符合题意;∴BE=x=1+;故答案为:1+.【点评】本题考查的是等腰直角三角形的性质,勾股定理的应用,一元二次方程的解法,作出合适的辅助线构建直角三角形是解本题的关键.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推算步骤获文字说明.作图时用2B铅笔或黑色墨水签字笔.17.【分析】根据绝对值性质,算术平方根,有理数的乘方进行计算即可.【解答】解:原式=2﹣2+9=0+9=9.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.18.【分析】先分别求出两个不等式的解集,进一步求出公共解集即可.【解答】解:解不等式2x+1>0得x>﹣,解不等式得x<2.∴不等式组的解集是.【点评】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】直接利用分式的混合运算法则化简,再把已知数据代入得出答案.【解答】解:原式=•﹣=﹣==,当a=时,原式==﹣1.【点评】此题主要考查了分式的化简求值,正确化简分式是解题关键.20.【分析】(1)由角平分线定义得出∠BAD=∠CAD.由作图知:AE=AF.由SAS可证明△ADE≌△ADF;(2)由作图知:AE=AD.得出∠AED=∠ADE,由等腰三角形的性质求出∠ADE=70°,则可得出答案.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD.由作图知:AE=AF.在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)解:∵∠BAC=80°,AD为△ABC的角平分线,∴∠EAD=∠BAC=40°,由作图知:AE=AD.∴∠AED=∠ADE,∴∠ADE=×(180°﹣40°)=70°,∵AB=AC,AD为△ABC的角平分线,∴AD⊥BC.∴∠BDE=90°﹣∠ADE=20°.【点评】本题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,熟练掌握全等三角形的判定是解题的关键.21.【分析】(1)直接利用概率公式求出即可;(2)用列表法或树状图法列举出所有等可能的结果,从中找出第2次摸到的小球编号比第1次摸到的小球编号大1的结果,然后利用等可能事件的概率公式求出即可.【解答】解:(1)∵一共有4个编号的小球,编号为2的有一个,∴P(任意摸出1个球,这个球的编号是2)=;(2)画树状图如下:一共有在16个等可能的结果,其中第2次摸到的小球编号比第1次摸到的小球编号大1出现了3次,∴P(第2次摸到的小球编号比第1次摸到的小球编号大1)=.【点评】本题考查概率公式,列表法和树状图法求等可能事件的概率,掌握列表法和树状图法求等可能事件的概率的方法是解题的关键.22.【分析】(1)中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);(2)根据加权平均数的计算公式计算即可;(3)用样本估计总体即可.【解答】解:(1)由题意得,这32名学生在培训前得分的中位数对应等级应为合格,故答案为:合格;(2)培训前的平均分为:(25×2+5×6+2×8)÷32=3(分),培调后的平均分为:(8×2+16×6+8×8)÷32=5.5(分),培训后比培训前的平均分提高2.5分;(3)解法示例:样本中培训后“良好”的比例为:=0.50,样本中培训后“优秀”的比例为:==0.25,∴培训后考分等级为“合格”与“优秀”的学生共有320×75%=240(名).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.【分析】当∠GAE=60°时,过点C作CK⊥HA,交HA的延长线于点K,根据已知易得BC∥AH,从而可得四边形ABCD是平行四边形,进而可得AB∥CD,然后利用平行线的性质可得∠ADC=∠GAE=60°,再根据已知可得DK=80cm,最后在Rt△CDK中,利用锐角三角函数的定义求出CD的长;当∠GAE=54°,过点C作CQ⊥HA,交HA 的延长线于点Q,在Rt△CDQ中,利用锐角三角函数的定义求出DQ的长,然后进行计算,即可解答.【解答】解:点C离地面的高度升高了,理由:如图,当∠GAE=60°时,过点C作CK⊥HA,交HA的延长线于点K,∵BC⊥MN,AH⊥MN,∴BC∥AH,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD,∴∠ADC=∠GAE=60°,∵点C离地面的高度为288cm,DH=208cm,∴DK=288﹣208=80(cm),在Rt△CDK中,CD===160(cm),如图,当∠GAE=54°,过点C作CQ⊥HA,交HA的延长线于点Q,在Rt△CDQ中,CD=160cm,∴DQ=CD•cos54°≈160×0.6=96(cm),∴96﹣80=16(cm),∴点C离地面的高度升高约16cm.【点评】本题考查了解直角三角形的应用,三角形的稳定性,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.【分析】(1)首先将点A(4,n)代入y=2x可求出n,再将点A的坐标代入y=k/x即可求出k;(2)过点C作直线EF⊥x轴于F,交AB于E,先证△ECB和△FCD全等,得BE=DF,CE=CF=4,进而可求出点C(8,4),根据平移的性质得点B(m+4,8),则BE=DF =m﹣4,OD=12﹣m,据此可得出AB•DD=m(12﹣m),最后求出这个二次函数的最大值即可.【解答】解:(1)将点A(4,n)代入y=2x,得:n=8,∴点A的坐标为(4,8),将点A(4,8)代入,得:k=32.(2)∵点B的横坐标大于点D的横坐标,∴点B在点D的右侧.过点C作直线EF⊥x轴于F,交AB于E,由平移的性质得:AB∥x轴,AB=m,∴∠B=∠CDF,∵点C为BD的中点,∴BC=DC,在△ECB和△FCD中,,∴△ECB≌△FCD(ASA),∴BE=DF,CE=CF.∵AB∥x轴,点A的坐标为(4,8),∴EF=8,∴CE=CF=4,∴点C的纵坐标为4,由(1)知:反比例函数的解析式为:,∴当y=4时,x=8,∴点C的坐标为(8,4),∴点E的坐标为(8,8),点F的坐标为(8,0),∵点A(4,8),AB=m,AB∥x轴,∴点B的坐标为(m+4,8),∴BE=m+4﹣8=m﹣4,∴DF=BE=m﹣4,∴OD=8﹣(m﹣4)=12﹣mAB•OD=m(12﹣m)=﹣(m﹣6)2+36∴当m=6时,AB•OD取得最大值,最大值为36.【点评】此题主要考查了反比例函数的图象、二次函数的图象和性质,点的坐标平移等,解答此题的关键是熟练掌握待定系数法求函数的解析式,理解点的坐标的平移,难点是在解答(2)时,构造二次函数求最值.25.【分析】(1)根据圆周角定理得∠BDE=∠BAC,进而可以证明结论;(2)过点C作CG⊥AB,垂足为G,证明△DBE∽△ABC,得=,代入值即可解决问题.【解答】(1)证明:∵AB为直径,∴∠ACB=90°,∵BE⊥CD,∴∠BED=90°,∵所对的圆周角为∠BDE和∠BAC,∴∠BDE=∠BAC,∴△DBE∽△ABC;(2)解:如图,过点C作CG⊥AB,垂足为G,∵∠ACB=90°,AC=,BC=2,∴AB==5,∵CG⊥AB,∴AG=AC cos A=×=1,∵AF=2,∴FG=AG=1,∴AC=FC,∴∠CAF=∠CFA=∠BFD=∠BDF,∴BD=BF=AB﹣AF=5﹣2=3,∵△DBE∽△ABC,∴=,∴=,∴ED=.【点评】本题考查圆周角定理、相似三角形的判定与性质、解直角三角形、勾股定理等知识点,解决本题的关键是得到△DBE∽△ABC.26.【分析】(1)根据等式d=l1﹣l2,结合题意,即可求解;(2)设轨道AB的长为n,根据已知条件得出l1+l2+1=n,则d=l1﹣l2=18t﹣n+1,根据当t=4.5s和5.5s时,与之对应的d的两个值互为相反数;则t=5时,d=0,得出d=91,继而求得滑块返回的速度为(91﹣1)÷15=6(m/s),得出l2=6(t﹣12),代入d=l1﹣l2,即可求解;(3)当d=18时,有两种情况,由(2)可得,①当0≤t≤10时,②当12≤t≤27时,分别令d=18,进而即可求解.【解答】(1)解:∵d=l1﹣l2,当滑块在A点时,l1=0,d=﹣l2<0,当滑块在B点时,l2=0,d=l1>0,∴d的值由负到正.(2)设轨道AB的长为n,当滑块从左向右滑动时,∵l1+l2+1=n,∴l2=n﹣l1﹣1,:d=l1﹣l2=l1﹣(n﹣l1﹣2)=2l1﹣n+1=2×9t﹣n+1=18t﹣n+1∴d是t的一次函数,∵当t=4.5s和5.5s时,与之对应的d的两个值互为相反数;∴当t=5时,d=0,∴18×5﹣n+1=0,∴d=91,∴滑块从点A到点B所用的时间为(91﹣1)÷9=10(s),∵整个过程总用时27s(含停顿时间).当滑块右端到达点B时,滑块停顿2s,∴滑块从B返回到A所用的时间为27﹣10﹣2=15s.∴滑块返回的速度为:(91﹣1)÷15=6(m/s),∴当12≤t≤27时,l2=6(t﹣12),∴l1=91﹣1﹣l2=90﹣6(t﹣12)=162﹣6t,∴l1﹣l2=162﹣6t﹣6(t﹣12)=﹣12t+234,∴d与t的函数表达式为:d=﹣12t+234;(3)当d=18时,有两种情况:由(2)可得,①当0≤t≤10时,18t﹣90=18,∴t=6;②当12≤t≤27时,﹣12t+234=18,∴t=18.综上所述,当t=6或18时,d=18.【点评】本题考查了一次函数的应用,分析得出n=91,并求得往返过程中的解析式是解题的关键.27.【分析】(1)令y=0,代入二次函数y=x2﹣6x+8中即可求解.(2)利用配方法求出二次函数的对称轴,设出P点坐标,求出M点坐标,连接MT,则MT⊥PT,求出PT2=PM2﹣MT2=(m﹣3)2﹣r2,即以切线长PT为边长的正方形的面积为(m﹣3)2﹣r2,过点P作PH⊥x轴,垂足为H,求出三角形PAB的面积,进而得出半径,假设⊙M经过点N(3,2),分两种情况:①当点M在点N的上方,②当点M 在点N的下方,即可求解.【解答】解:(1)令y=0,则x2﹣6x+8=0,解得x1=2,x2=4,∴A(2,0),B(4,0).答:点A的坐标为(2,0),点B的坐标为(4,0).(2)∵y=x2﹣6x+8=(x﹣3)2﹣1,∴对称轴为x=3.设P(m,m2﹣6m+8),∵PM⊥l,∴M(3,m2﹣6m+8),连接MT,则MT⊥PT,∴PT2=PM2﹣MT2=(m﹣3)2﹣r2,即以切线长PT为边长的正方形的面积为(m﹣3)2﹣r2,过点P作PH⊥x轴,垂足为H,则,∴(m﹣3)2﹣r2=m2﹣6m+8,∵r>0,∴r=1.假设⊙M经过点N(3,2),则有两种情况:①如图,当点M在点N的上方,∴M(3,3),∴m2﹣6m+8=3,解得m=5或1,∵m>4,∴m=5.②如图,当点M在点N的下方,∴M(3,1),∴m2﹣6m+8=1,解得,∵m>4,∴,综上所述,PM=m﹣3=2或,∴当⊙M不经过点N(3,2)时,PM长的取值范围为:或<PM<2或PM>2.答:PM长的取值范围为:或<PM<2或PM>2.【点评】本题考查了二次函数的综合应用,解题的关键是作辅助线,利用分类讨论的思想方法。
最新江苏省苏州市中考数学测试试卷附解析
江苏省苏州市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.方程(2)0x x +=的根是( )A .2x =B .0x =C .120,2x x ==-D .120,2x x == 2.将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是( )A .关于x 轴对称B .关于y 轴对称C .原图形向x 轴负方向平移1个单位D .原图形向y 轴负方向平移1个单位3.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数4.已知ΔABC 中,∠A ∶∠B ∶∠C=3∶7∶8,则ΔABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .都有可能 5.在△ABC 中,∠A 是锐角,那么△ABC 是( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 6.“羊”字象征着美好和吉祥,下列图案都与“羊”字有关,其中轴对称图形的个数是 ( )A .1个B .2个C .3个D .4个 7.长方形的周长是36(cm ),长是宽的2倍,设长为x (cm ),则下列方程正确的是( ) A .x+2 x =36 B .1362x x +=C .2(x +2x )=36D .12()362x x += 8.设某数为x ,“比某数的12大3的数等于5的相反数”,列方程为 ( )A .1352x -+=-B .1352x +=- C .1(3)52x -+= D .1352x -=- 9.下列说法错误的是( ) A .一个教同 0相乘,仍得0B .一个数同 1 相乘,仍得原教C .一个数同一 1 相乘,得原教的相反数D .互为相反数的两数积为负数10.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最爱好的阳光体育运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如上的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为( )A .120oB .144oC .180oD .72o二、填空题11.计算:2sin303cos60tan 45o o O -+的结果是 .12.一段楼梯,高 BC=3m ,斜边 AB 为 6m ,在这个楼梯上铺地毯,至少需要地毯 m .13.将某样本数据分析整理后分成6组,且组距为5,画频数分布折线图时,从左到右第三组的组中值为20.5,则分布两端虚设组组中值为 和 .14. 在△ABC 中,∠= 90°,若 AB= 8,BC=1,则 AC= .15.某市居民用水的价格是2.2元/m 3,设小煜家用水量为x(m 3),所付的水费为y 元,则y 关于x 的函数解析式为 ;当x=15时,函数值y 是 ,它的实际意义 是 ;若这个月小煜家付了35.2元水费,则这个月小煜家用了 m 3水.16.如图,∠C=∠D=90°,请你再添加一个条件,使△ABD ≌△BAC ,并在添加的条件后的( )内写出判定全等的依据.(1) ( );(2) ( );(3) ( );(4) ( ).17.如图,△ABC 经过旋转变换得到△AB ′C ′,若∠CAC ′=32°,则∠BAB ′= . 18.当x = 时,分式146x -与323x-的值相等. 19.某校七年级(2)班期末数学考试成绩的条形统计图如图所示,根据统计图回答下列问题:(1)全班共有 人,成绩为 的学生最多;(2)成绩在中等以下的学生占全班人数的百分比是 (精确到0.1%).20.已知0a b <<,且||||a b >,则323||a b a b -++= .21.最小的自然数是 ,最大的负整数是 ,绝对值最小的有理数是 .22.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.三、解答题23.如图,直线l 的解析式为443y x l =+,与x 轴,y 轴分别交于点A B ,. (1)求原点O 到直线l 的距离;(2)有一个半径为1的⊙C 从坐标原点出发,以每秒1个单位长的速度沿y 轴正方向运动,设运动时间为t (秒).当⊙C 与直线l 相切时,求t 的值.24.一个口袋中有 10 个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程. 实验中总共摸了 200 次,其中有 50 次接到红球.25.如图,在直角梯形ABCD 中,AD ∥BC ,∠C= 90°,BC=16,DC= 12,AD=21. 动点P 从点D 出发,沿射线DA 的方向以每秒 2个单位长度的速度运动,动点 Q 从点C 出发,在线段CB 上以每秒 1个单位长度的速度向点 B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动. 设运动的时间为t (s).(1)当 t =2s 时,求△BPQ 的面积;(2)若点A ,B ,Q ,P 构成的四边形为平行四边形,求运动时间 t ;(3)当 t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?26.如图,在ΔABC 中,AB=AC ,E ,F 分别为AB ,AC 上的点(E ,F 不与A 重合),且EF ∥BC .将AEF △沿着直线EF 向下翻折,得到A EF '△,再展开.(1)请证明四边形AEA F '为菱形;(2)当等腰ΔABC 满足什么条件时,按上述方法操作,四边形AEA F '将变成正方形?(只写结果,不作证明)27. 已知31x =+,31y =-,求代数式2222x y x y xy -+的值.28.如图,在△ABC 中,AB=AC ,∠A= 50°,AB 的垂直平分线 ED 交AC 于 D ,交 AB 于 E ,求∠DBC 的度数.29.当整数x 取何值时,分式31x +的值是整数? 0,2,4x =±-30. 某商店以销售 1000 元为基准,超过 50 元记作+50 元,不足 30 元记作 -30 元,那 么销售 1120 元、销售 860 元各记作什么?+ 220 元、-15 元各表示什么意思?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.C5.D6.B7.D8.B9.D10.答案:B二、填空题11.1212.3+.5.5,40.514..y=2.2x ,33,用水量为15吨时所付水费为33元,l616.(1)AD=BC ,HL (2)BD=AC ,HL (3)∠DAB=∠CBA ,AAS (4)∠DBA=∠CAB ,AAS 17.32°18.4319. (1)3,良好;(2)15.1%20.2b 21.0,-1,022.70三、解答题23.解:(1)在443y x =+中,令0x =,得4y =,得4BO =. 令0y =,得3x =-,得3AO =,5AB ∴==. 设点O 到直线AB 的距离为h ,1122AOB S AO BO AB h ==△, ∴4.2=⋅=AB BO AO h . (2)如图,设⊙C 与直线l 相切于点D ,连CD ,则CD AB ⊥,90AO BO=⊥,ABO CBD ∠=∠CD ABO AO∴,△由(1)得345AO BO AB ===,,, x1557453333BC BC OC ∴=∴=∴=-=,,,73t CO ∴==(秒). 根据对称性得53BC BC '==,517174333OC t OC ''∴=+=∴==,(秒). ∴当⊙C 与直线l 相切时,73t =秒或173秒. 24. 设口袋中有x 个白球随着实验次数增加,频率接近于概率, 所以501020010x =+,∴x =30,∴有 30 个白球25.(1)84 (2)5s 或373s (3)163s 或72s26.思路:(1)可证四边形AEA F '的四条边相等;(2)∠BAC=90°时,按上述方法操作,四边形AEA F '将变成正方形.27.128.15°29.0,2,4x =±-30.+120 元、-140 元;1220 元、985 元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·2018·江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3、00分)在下列四个实数中,最大数是()A.﹣3 B.0 C.D.2.(3、00分)地球与月球之间平均距离大约为384000km,384000用科学记数法可表示为()A.3、84×103B.3、84×104C.3、84×105D.3、84×1063.(3、00分)下列四个图案中,不是轴对称图案是()A. B.C. D.4.(3、00分)若在实数范围内有意义,则x取值范围在数轴上表示正确是()A.B.C.D.5.(3、00分)计算(1+)÷结果是()A.x+1 B. C. D.6.(3、00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分概率是()A.B.C.D.7.(3、00分)如图,AB是半圆直径,O为圆心,C是半圆上点,D是上点,若∠BOC=40°,则∠D度数为()A.100°B.110°C.120° D.130°8.(3、00分)如图,某海监船以20海里/小时速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间距离(即PC长)为()A.40海里B.60海里C.20海里D.40海里9.(3、00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E 作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF长为()A.3 B.4 C.2 D.310.(3、00分)如图,矩形ABCD顶点A,B在x轴正半轴上,反比例函数y=在第一象限内图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k值为()A.3 B.2 C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3、00分)计算:a4÷a=.12.(3、00分)在“献爱心”捐款活动中,某校7名同学捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据众数是.13.(3、00分)若关于x一元二次方程x2+mx+2n=0有一个根是2,则m+n=.14.(3、00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2值为.15.(3、00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺一边上,AB与直尺另一边交于点D,BC与直尺两边分别交于点E,F.若∠CAF=20°,则∠BED度数为°.16.(3、00分)如图,8×8正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥侧面,记这个圆锥底面半径为r1;若用扇形OCD围成另个圆锥侧面,记这个圆锥底面半径为r2,则值为.17.(3、00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3、00分)如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE中点.当点P在线段AB上移动时,点M,N之间距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5、00分)计算:|﹣|+﹣()2.20.(5、00分)解不等式组:21.(6、00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6、00分)如图,在一个可以自由转动转盘中,指针位置固定,三个扇形面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中数字是奇数概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中数字,求这两个数字之和是3倍数概率(用画树状图或列表等方法求解).23.(8、00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示不完整条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目学生有多少人?24.(8、00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机价格分别是多少元?(2)如果学校购买A型电脑和B型打印机预算费用不超过20000元,并且购买B型打印机台数要比购买A型电脑台数多1台,那么该学校至多能购买多少台B 型打印机?25.(8、00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B 左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD长;(2)平移该抛物线得到一条新拋物线,设新抛物线顶点为C′.若新抛物线经过点D,并且新抛物线顶点和原抛物线顶点连线CC′平行于直线AD,求新抛物线对应函数表达式.26.(10、00分)如图,AB是⊙O直径,点C在⊙O上,AD垂直于过点C切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10、00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC面积为S,△DEC面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD面积为S,△EFC面积为S′.请你利用问题1解法或结论,用含字母n代数式表示.28.(10、00分)如图①,直线l表示一条东西走向笔直公路,四边形ABCD是一块边长为100米正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上点G处,最后沿公路l回到点A处.设AE=x 米(其中x>0),GA=y米,已知y与x之间函数关系如图②所示,(1)求图②中线段MN所在直线函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x值;如果不可以,说明理由.·2018·江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3、00分)在下列四个实数中,最大数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大数即可.【解答】解:根据题意得:﹣3<0<<,则最大数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题关键.2.(3、00分)地球与月球之间平均距离大约为384000km,384000用科学记数法可表示为()A.3、84×103B.3、84×104C.3、84×105D.3、84×106【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3、84×105.故选:C.【点评】此题考查科学记数法表示较大数方法,准确确定a与n值是关键.3.(3、00分)下列四个图案中,不是轴对称图案是()A. B.C. D.【分析】根据轴对称概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形概念.轴对称图形关键是寻找对称轴,图形两部分折叠后可重合.4.(3、00分)若在实数范围内有意义,则x取值范围在数轴上表示正确是()A.B.C.D.【分析】根据二次根式有意义条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查是二次根式有意义条件,掌握二次根式中被开方数是非负数是解题关键.5.(3、00分)计算(1+)÷结果是()A.x+1 B. C. D.【分析】先计算括号内分式加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式混合运算,解题关键是掌握分式混合运算顺序和运算法则.6.(3、00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分概率是()A.B.C.D.【分析】根据几何概率求法:飞镖落在阴影部分概率就是阴影区域面积与总面积比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分概率是,故选:C.【点评】本题考查几何概率求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域面积在总面积中占比例,这个比例即事件(A)发生概率.7.(3、00分)如图,AB是半圆直径,O为圆心,C是半圆上点,D是上点,若∠BOC=40°,则∠D度数为()A.100°B.110°C.120° D.130°【分析】根据互补得出∠AOC度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC度数.8.(3、00分)如图,某海监船以20海里/小时速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间距离(即PC长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形应用﹣方向角问题,解题关键是证明PB=BC,推出∠C=30°.9.(3、00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E 作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF长为()A.3 B.4 C.2 D.3【分析】取BC中点G,连接EG,根据三角形中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC中点G,连接EG,∵E是AC中点,∴EG是△ABC中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形判定和性质、三角形中位线定理,作辅助线构建三角形中位线是本题关键.10.(3、00分)如图,矩形ABCD顶点A,B在x轴正半轴上,反比例函数y=在第一象限内图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E坐标,由反比例函数经过点D、E列出关于a方程,解之求得a值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点坐标特征,解题关键是根据题意表示出点D、E坐标及反比例函数图象上点横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3、00分)计算:a4÷a=a3.【分析】根据同底数幂除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂除法,对于相关同底数幂除法法则要求学生很熟练,才能正确求出结果.12.(3、00分)在“献爱心”捐款活动中,某校7名同学捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据众数是8.【分析】根据众数概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现次数最多,∴这组数据众数是8,故答案为:8.【点评】本题考查是众数确定,一组数据中出现次数最多数据叫做众数.13.(3、00分)若关于x一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程解定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入方法进行计算.【解答】解:∵2(n≠0)是关于x一元二次方程x2+mx+2n=0一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程解(根):能使一元二次方程左右两边相等未知数值是一元二次方程解.又因为只含有一个未知数方程解也叫做这个方程根,所以,一元二次方程解也称为一元二次方程根.14.(3、00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式结构即可解答.15.(3、00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺一边上,AB与直尺另一边交于点D,BC与直尺两边分别交于点E,F.若∠CAF=20°,则∠BED度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线性质,解题时注意:两直线平行,同位角相等.16.(3、00分)如图,8×8正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥侧面,记这个圆锥底面半径为r1;若用扇形OCD围成另个圆锥侧面,记这个圆锥底面半径为r2,则值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥计算,解题关键是掌握圆锥体底面周长与母线长间关系式及勾股定理.17.(3、00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,==,∴S△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形性质和判定,能正确作出辅助线是解此题关键.18.(3、00分)如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE中点.当点P在线段AB上移动时,点M,N之间距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形性质、勾股定理二次函数性质等知识,解题关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5、00分)计算:|﹣|+﹣()2.【分析】根据二次根式运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数运算,解题关键是熟练运用运算法则,本题属于基础题型.20.(5、00分)解不等式组:【分析】首先分别求出每一个不等式解集,然后确定它们解集公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组解集为x>2.【点评】本题考查是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”原则是解答此题关键.21.(6、00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形判定和性质、平行线性质等知识,解题关键是正确寻找全等三角形全等条件,属于中考常考题型.22.(6、00分)如图,在一个可以自由转动转盘中,指针位置固定,三个扇形面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中数字是奇数概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中数字,求这两个数字之和是3倍数概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、33个转盘中,奇数有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能情况数,得出这两个数字之和是3倍数情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、33个转盘中,奇数有1、3这2个,∴指针所指扇形中数字是奇数概率为,故答案为:;(2)列表如下:由表可知,所有等可能情况数为9种,其中这两个数字之和是3倍数有3种,所以这两个数字之和是3倍数概率为=.【点评】此题考查了列表法或树状图法求概率.用到知识点为:概率=所求情况数与总情况数之比.23.(8、00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示不完整条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”人数,补全图形即可;(2)用“篮球”人数占被调查人数比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形圆心角度数是72°;(3),答:估计该校选择“足球”项目学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同统计图中得到必要信息是解决问题关键.条形统计图能清楚地表示出每个项目数据;扇形统计图直接反映部分占总体百分比大小.24.(8、00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机价格分别是多少元?(2)如果学校购买A型电脑和B型打印机预算费用不超过20000元,并且购买B型打印机台数要比购买A型电脑台数多1台,那么该学校至多能购买多少台B 型打印机?【分析】(1)设每台A型电脑价格为x元,每台B型打印机价格为y元,根据“1台A型电脑钱数+2台B型打印机钱数=5900,2台A型电脑钱数+2台B型打印机钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑钱数+a台B型打印机钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑价格为x元,每台B型打印机价格为y元,根据题意,得:,解得:,答:每台A型电脑价格为3500元,每台B型打印机价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组应用,解题关键是理解题意,找到题目蕴含相等关系或不等关系,并据此列出方程组与不等式.25.(8、00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B 左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD长;(2)平移该抛物线得到一条新拋物线,设新抛物线顶点为C′.若新抛物线经过点D,并且新抛物线顶点和原抛物线顶点连线CC′平行于直线AD,求新抛物线对应函数表达式.【分析】(1)解方程求出点A坐标,根据勾股定理计算即可;(2)设新抛物线对应函数表达式为:y=x2+bx+2,根据二次函数性质求出点C′坐标,根据题意求出直线CC′解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D坐标为(0,2),∴AD==2;(2)设新抛物线对应函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查是抛物线与x轴交点、待定系数法求函数解析式,掌握二次函数性质、抛物线与x轴交点求法是解题关键.26.(10、00分)如图,AB是⊙O直径,点C在⊙O上,AD垂直于过点C切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22、5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22、5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22、5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线性质、全等三角形判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形判定与性质等知识.此题难度适中,本题相等角较多,注意各角之间关系,注意掌握数形结合思想应用.27.(10、00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC面积为S,△DEC面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD面积为S,△EFC面积为S′.请你利用问题1解法或结论,用含字母n代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积比等于对应底边比,则==,根据相似三角形面积比等于相似比平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1解法可知:===,根据相似三角形性质得:=,可得结论;解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S=S,△ADCS△ABC=,由问题1结论可知:=,证明△CFM∽△CDA,根据相似三角形面积比等于相似比平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,=,∴S△ADC=S,S△ABC=,∴S△ADC由问题1结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,=×S,∴S△CFM∴S=S△EMC+S△CFM=+×S=,△EFC∴=.【点评】本题考查了相似三角形性质和判定、平行线分线段成比例定理,熟练掌握相似三角形性质:相似三角形面积比等于相似比平方是关键,并运用了类比思想解决问题,本题有难度.28.(10、00分)如图①,直线l表示一条东西走向笔直公路,四边形ABCD是一块边长为100米正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上点G处,最后沿公路l回到点A处.设AE=x 米(其中x>0),GA=y米,已知y与x之间函数关系如图②所示,(1)求图②中线段MN所在直线函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x值;如果不可以,说明理由.【分析】(1)根据点M、N坐标,利用待定系数法即可求出图②中线段MN所在直线函数表达式;(2)分FE=FG、FG=EG及EF=EG三种情况考虑:①考虑FE=FG是否成立,连接EC,通过计算可得出ED=GD,结合CD⊥EG,可得出CE=CG,根据等腰三角形性质可得出∠CGE=∠CEG、∠FEG>∠CGE,进而可得出FE≠FG;②考虑FG=EG是否成立,由正方形性质可得出BC∥EG,进而可得出△FBC∽△FEG,根据相似三角形性质可得出若FG=EG则FC=BC,进而可得出CG、DG长度,在Rt△CDG中,利用勾股定理即可求出x值;③考虑EF=EG是否成立,同理可得出若EF=EG则FB=BC,进而可得出BE长度,在Rt△ABE中,利用勾股定理即可求出x值.综上即可得出结论.【解答】解:(1)设线段MN所在直线函数表达式为y=kx+b,将M(30,230)、N(100,300)代入y=kx+b,,解得:,∴线段MN所在直线函数表达式为y=x+200.(2)分三种情况考虑:①考虑FE=FG是否成立,连接EC,如图所示.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE,∴FE≠FG;②考虑FG=EG是否成立.。