ansys确定分析结束时的时间
(最新整理)ANSYS热分析详解
(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。
ANSYS地震时程分析
在ANSYS里做地震分析时,需要对结构施加地震惯性荷载,地震惯性力是通过加速度的方式输入进结构的,然后与结构的质量一起形成动力计算时的惯性荷载,下面说一下在ANSYS 里施加地震惯性力的方法。
首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01-0.413893E-02 -0.168195E+00 0.261523E+01-0.574753E-02 -0.157890E+00 0.809014E-01-0.731227E-02 -0.152996E+00 0.119975E+01-0.876865E-02 -0.138102E+00 0.130902E+01-0.101067E-01 -0.131582E+00 0.143611E+00 .......................然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据:0.100000E-010.200000E-010.300000E-010.400000E-010.500000E-010.600000E-01.......................编写如下的命令流文件,并命名为acce.inp*dim,ACCEXYZ,TABLE,2000,3 !01行*vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行*vread,ACCEXYZ(1,0),time,txt !04行(e16.6) !05行ACCEXYZ(0,1)=1 !06行ACCEXYZ(0,2)=2 !07行,同上ACCEXYZ(0,3)=3 !08行,同上finish/SOLUANTYPE,transbtime=0.01 !定义计算起始时间etime=15.00 !定义计算结束时间dtime=0.01 !定义计算时间步长*DO,itime,btime,etime,dtimetime,itimeAUTOTS,0NSUBST,1, , ,1KBC,1acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度SOLVE*ENDDO最后,在命令窗口里输入/input,acce,inp即可对结构进行地震动力分析。
ANSYS分析结果的后处理(1)
轴正向一致,负值表示力
F,NODE,Lab, Vlaue,Vlaue2,MEND,NINC
的方向与坐标轴正向相反
GUI:…|Loads>Define Loads>Apply>Structural>Pressure>On On Keypoints
(或On Nodes) 参数说明:
KOPI、NODE-关键点、节点 Lab:=FX,FY,FZ(力)或MX,MY,MZ(力矩)
Load
❖ Tim4 e
第5章 ANSYS分析结果的后处理
中南大学
从时间的概念上讲,载荷步就是作用在给定时间间隔内的一系列
载荷;子步为载荷步中的时间点,并在这些点上求得中间解。
4.1.2 加载方式及其优缺点
在ANSYS程序中,用户可以把载荷施加在实体模型(关键点、 线、面、体等)上,也可以施加在有限元模型(结点、单元) 上。如果载荷施加在几何模型上,ANSYS在求解前先将载荷转化 到有限元模型上。这两种情况各有各自的优缺点。
GUI:….|Loads|Apply|Structual>Pressure>On Nodes
采用GUI操作,在弹出拾取对话框后,在模型上选取几个相连的节点(要施加分 布载荷的节点),单击OK按钮,弹出如下所示分布载荷大小设置对话框:
电场分析:电势(电压)、电流、电荷、电荷密度、无限表面等;
流体分析:流速、压力等
对不同学科的载荷而言,程序中的载荷可以分为六类:
(1) DOF constraint(DOF约束):定义节点的自由度值,也就是 将某个自由度赋予一个已知值。在结构分析中该约束被指定为 位移和对称边界条件;在热力分析中被指定为温度和热通量平 行的边界条件。
ansys有限元分析实用教程2篇
ansys有限元分析实用教程2篇第一篇:ansys有限元分析实用教程(上)有限元分析是一种广泛应用的数值分析方法,可用于模拟和分析各种结构和系统的受力、变形及其他物理行为。
在ansys软件平台下,有限元分析功能十分强大,能够对各种工程问题进行有效的分析和解决。
本文将介绍ansys有限元分析的基础操作和实用技巧。
一、建立模型在进行有限元分析前,首先需要建立准确的模型。
在ansys中,可以通过多种方式进行几何建模,包括手工绘制、导入CAD文件、复制现有模型等。
为了确保模型的准确性,需要注意以下几个方面:1.确定模型的几何形状,包括尺寸、几何特征等。
2.选择适当的单元类型,不同形状的单元适用于不同的工程问题。
3.注意建模过程中的单位一致性,确保模型的尺寸和材料参数等单位一致。
4.检查模型建立后的性质,包括质量、连接性和几何适应性等。
二、设置材料参数和加载条件建立模型后,需要设置材料的弹性参数和加载条件。
在ansys中,可以设置各种材料属性,包括弹性模量、泊松比、密度等。
此外,还需要设置加载条件,包括加速度、力、位移等。
在设置过程中,需要注意以下几个方面:1.根据实际情况选择材料参数和加载条件。
2.确保材料参数和加载条件设置正确。
3.考虑到不同工况下的加载条件,进行多组加载条件的设置。
三、网格划分网格划分是有限元分析中的关键步骤,它将模型分割成许多小单元进行计算。
在ansys中,可以通过手动划分、自动划分或导入外部网格等方式进行网格划分。
在进行网格划分时,需要注意以下几个方面:1.选择适当的单元类型和网格密度,确保模型计算结果的准确性。
2.考虑网格划分的效率和计算量,采用合理的网格划分策略。
3.对于复杂模型,可以采用自适应网格技术,提高计算效率和计算精度。
四、求解模型建立模型、设置材料参数和加载条件、网格划分之后,即可进行模型求解。
在ansys中,可以进行静态分析、动态分析、热分析、流体分析等多种分析类型。
ANSYS接触实例分析参考
ANSYS接触实例分析参考1.实例描述一个钢销插在一个钢块中的光滑销孔中。
已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是 4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。
钢块与钢销的弹性模量均为36e6,泊松比为0.3.由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。
现在要对该问题进行两个载荷步的仿真。
(1)要得到过盈配合的应力。
(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。
2.问题分析由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。
进行该分析,需要两个载荷步:第一个载荷步,过盈配合。
求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。
第二个载荷步,拔出分析。
往外拉动钢销1.7 units,对于耦合节点上使用位移条件。
打开自动时间步长以保证求解收敛。
在后处理中每10个载荷子步读一个结果。
本篇先谈第一个载荷步的计算。
下篇再谈第二个载荷步的计算。
3.读入几何体首先打开ANSYS APDL然后读入已经做好的几何体。
从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框找到ANSYS自带的文件(每个ansys都自带的)\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp【OK】后,四分之一几何模型被导入。
4.定义单元类型只定义实体单元的类型SOLID185。
至于接触单元,将在下面使用接触向导来定义。
5.定义材料属性只有线弹性材料属性:弹性模量36E6和泊松比0.36.划分网格打开MESH TOOL,先设定关键地方的网格划分份数然后在MESH TOOL中设定对两个体均进行扫略划分,在volumeSweeping中选择pick all,按下【Sweep】按钮,在主窗口中选择两个体,进行网格划分。
有限元分析软件ANSYS命令流中文说明4 4
有限元分析软件ANSYS命令流中文说明4 4有限元分析软件ANSYS命令流中文说明4/42010-05-23 21:151设置分析类型ANTYPE,Antype,status,ldstep,action其中antype表示分析类型STATIC:静态分析MODAL:模态分析TRANS:瞬态分析SPECTR:谱分析2 KBC,KEY制定载荷为阶跃载荷还是递增载荷EKY=0递增方式KEY=1阶跃方式3 SOLVE开始一个求解运算4 LSSOLVE读入并求解多个载荷步5 TIME,time设置求解时间有时在分析中需要进入后处理,然后在保持进入后处理之前的状态的情况下接着算下去,可以使用以下的方法:PARSAV,ALL,PAR,TXT!PARSAV命令是储存ANSYS的参数,ALL代表所有参数,PAR是文件名,TXT是扩展名/SOLU ANTYPE,REST,CruStep-1,,CONTINUE!ANTYPE是定义分析类型的命令,REST代表重启动,CruStep代表本载荷步的编号PARRES,NEW,PAR,TXT!PARRES是恢复参数的命令,NEW表示参数是以刷新状态恢复,PAR和TXT 代表了储存了参数的文件名和扩展名如果有单元生死的问题,可以这样处理:ALLSEL,ALL*GET,E_SUM_MAX,ELEM,NUM,MAX!得到单元的最大编号,即单元的总数ESEL,S,LIVE!选中"生"的单元*GET,E_SUM_AL,ELEM,COUNT*DIM,E_POT_AL,E_SUM_MAX!单元选择的指示*DIM,E_NUM_AL,E_SUM_AL!单元编号的数组J=0!读出所选单元号*DO,I,1,E_SUM_MAX*VGET,E_POT_AL(I),ELEM,I,ESEL!对所有单元做循环,被选中的单元标志为"1"*IF,E_POT_AL(I),EQ,1,THEN J=J+1 E_NUM_AL(J)=I*ENDIF*ENDDO ALLSEL,ALL在重启动之后恢复单元生死状态*if,E_SUM_AL,ne,0,then*do,i,1,Num_Alive esel,a,E_NUM_AL(i)*enddo ealive,all allsel*endif/WINDOW,WN,XMIN,XMAX,YMIN,YMAX,NCOPY注意x的坐标是-1到1.67,y坐标是-1到1 Xmin=off on,FULL,LEFT,RIGH,TOP,BOT,LTOP,LBOT,RTOP,RBOT注意一个问题,除了1号窗口外,其他的不能用鼠标操作,只用先发/view 和/dist,然后用/replot。
ansys基本过程手册
ANSYS使用手册第1章开始使用ANSYS1.1完成典型的ANSYS分析ANSYS软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
在ANSYS分析指南手册中有关于它开展不同工程应用领域分析的具体过程。
本章下面几节中描述了对绝大多数分析皆适用的一般步骤。
一个典型的ANSYS分析过程可分为三个步骤:●建立模型●加载并求解●查看分析结果1.2建立模型与其他分析步骤相比,建立有限元模型需要花费ANSYS用户更多时间。
首先必须指定作业名和分析标题,然后使用PREP7前处理器定义单元类型、单元实常数、材料特性和几何模型。
1.2.1 指定作业名和分析标题该项工作不是强制要求的,但ANSYS推荐使用作业名和分析标题。
1.2.1.1定义作业名作业名是用来识别ANSYS作业。
当为某项分析定义了作业名,作业名就成为分析过程中产生的所有文件名的第一部分(文件名)。
(这些文件的扩展名是文件类型的标识,如.DB)通过为每一次分析给定作业名,可确保文件不被覆盖。
如果没有指定作业名,所有文件的文件名均为FILE或file(取决于所使用的操作系统)。
可按下面方法改变作业名。
●进入ANSYS程序时通过入口选项修改作业名。
可通过启动器或ANSYS执行命令。
详见ANSYS 操作指南。
●进入ANSYS程序后,可通过如下方法实现:命令行方式:/FILENAMEGUI:Utility Menu>File>Change Jobname/FILENAME命令仅在Begin level(开始级)才有效,即使在入口选项中给定了作业名,ANSYS 仍允许改变作业名。
然而该作业名仅适用于使用/FILNAME后打开的文件。
使用/FILNAME命令前打开的文件,如记录文件Jobname.LOG、出错文件Jobname.ERR等仍然是原来的作业名。
1.2.1.2 定义分析标题/TITLE命令(Utility Menu>File>Change Title)可用来定义分析标题。
ansys命令流----前后处理和求解常用命令之求解与后处理
ansys命令流----前后处理和求解常用命令之求解与后处理ansys命令流----前后处理和求解常用命令之求解与后处理.txt都是一个山的狐狸,你跟我讲什么聊斋,站在离你最近的地方,眺望你对别人的微笑,即使心是百般的疼痛只为把你的一举一动尽收眼底.刺眼的白色,让我明白什么是纯粹的伤害。
3 /soluu /solu 进入求解器3.1 加边界条件u D, node, lab, value, value2, nend, ninc, lab2, lab3, ……lab6 定义节点位移约束Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.Lab: ux,uy,uz,rotx,roty,rotz,allValue,value2: 自由度的数值(缺省为0)Nend, ninc: 节点范围为:node-nend,编号间隔为nincLab2-lab6: 将lab2-lab6以同样数值施加给所选节点。
注意:在节点坐标系中讨论3.2 设置求解选项u antype, status, ldstep, substep, actionantype: static or 1 静力分析buckle or 2 屈曲分析modal or 3 模态分析trans or 4 瞬态分析status: new 重新分析(缺省),以后各项将忽略rest 再分析,仅对static,full transion 有效ldstep: 指定从哪个荷载步开始继续分析,缺省为最大的,runn数(指分析点的最后一步)substep: 指定从哪个子步开始继续分析。
缺省为本目录中,runn文件中最高的子步数action, continue: 继续分析指定的ldstep,substep说明:继续以前的分析(因某种原因中断)有两种类型singleframe restart: 从停止点继续需要文件:jobname.db 必须在初始求解后马上存盘jobname.emat 单元矩阵jobname.esav 或 .osav : 如果.esav坏了,将.osav改为.esavresults file: 不必要,但如果有,后继分析的结果也将很好地附加到它后面注意:如果初始分析生成了.rdb, .ldhi, 或rnnn 文件。
ANSYS结构分析指南结构线性静力分析
ANSYS结构分析指南第二章结构线性静力分析2.1 静力分析的定义静力分析计算在固定不变载荷作用下结构的响应,它不考虑惯性和阻尼影响--如结构受随时间变化载荷作用的情况。
可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)的作用。
静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。
固定不变的载荷和响应是一种假定,即假定载荷和结构响应随时间的变化非常缓慢。
静力分析所施加的载荷包括:外部施加的作用力和压力稳态的惯性力(如重力和离心力)强迫位移温度载荷(对于温度应变)能流(对于核能膨胀)关于载荷,还可参见§2.3.4。
2.2 线性静力分析与非线性静力分析静力分析既可以是线性的也可以是非线性的。
非线性静力分析包括所有类型的非线性:大变形、塑性、蠕变、应力刚化、接触(间隙)单元、超弹性单元等。
本章主要讨论线性静力分析。
对非线性静力分析只作简单介绍,其详细论述见《ANSYS Structural Analysis Guide》§8。
2.3 静力分析的求解步骤2.3.1 建模首先用户应指定作业名和分析标题,然后通过PREP7 前处理程序定义单元类型、实常数、材料特性、模型的几何元素。
这些步骤是大多数分析类型共同的,并已在《ANSYS Basic Analysis Guide》§1.2 论述。
有关建模的进一步论述,见《ANSYS Modeling and Meshing Guide》。
2.3.1.1 注意事项在进行静力分析时,要注意如下内容:1、可以采用线性或非线性结构单元。
2、材料特性可以是线性或非线性,各向同性或正交各向异性,常数或与温度相关的:必须按某种形式定义刚度(如弹性模量EX,超弹性系数等)。
对于惯性载荷(如重力等),必须定义质量计算所需的数据,如密度DENS。
anys19.0帮助文件-瞬态热分析
瞬态热分析瞬态热分析确定温度和其他随时间变化的热量。
温度分布随时间的变化在许多应用中都是令人感兴趣的,例如电子封装的冷却或热处理的淬火分析。
同样令人感兴趣的是温度分布导致热应力,从而导致失效。
在这种情况下,来自瞬态热分析的温度被用作用于热应力评估的结构分析的输入。
瞬态热分析可以使用ANSYS,Samcef,或ABAQUS求解器进行。
许多传热应用,如热处理问题、电子封装设计、喷嘴、发动机块、压力容器、流体-结构相互作用问题等,都涉及瞬态热分析。
瞬态热分析可以是线性的,也可以是非线性的。
温度相关的材料特性(热导率、比热或密度),或温度相关的对流系数或辐射效应,可以导致非线性分析,需要迭代过程才能获得精确的解。
大多数材料的热性能随温度的变化而变化,因此分析通常是非线性的。
创建分析系统关于本专题的基本一般信息这种分析类型的...:从工具箱中,将瞬态热(Samcef)或瞬态热(ABAQUS)模板拖动到项目原理图。
定义工程数据关于本专题的基本一般信息这种分析类型的...:瞬态热分析必须定义热导率、密度和比热。
热导率可以是各向同性的,也可以是各向同性的。
所有的性质都可以是恒定的,也可以是温度相关的..附加几何关于本专题的基本一般信息这种分析类型的...:对于瞬态热分析没有特殊的考虑。
定义零件行为关于本专题的基本一般信息这种分析类型的...:在热分析中,机械不支持刚体。
有关更多信息,请参见刚体的刚度行为文档。
您可以为此分析类型定义一个热点质量。
定义连接关于本专题的基本一般信息这种分析类型的...:在热分析中,只有接触是有效的。
任何接头或弹簧都被忽略。
在整个热分析过程中,保持接触的初始状态,即任何封闭的接触面都将保持封闭,任何开放的接触面在热分析期间都将保持开放。
在封闭接触面上的热传导被设置为足够高的值(基于热导率和模型大小),以模拟具有最小热阻的完美接触。
如果需要,您可以通过手动输入热导值来模拟不完美的接触。
默认情况下,联系结果(通过用户定义的结果通过CONTSTAT或CONT FLUX访问-请参阅机械APDL解决方案部分的用户定义结果)。
ANSYS瞬态传热分析教程
ANSYS瞬态传热分析教程瞬态传热分析的定义瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。
在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。
瞬态热分析的基本步骤与稳态热分析类似。
主要的区别是瞬态热分析中的载荷是随时间变化的。
为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步。
载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示。
对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。
瞬态热分析中的单元及命令瞬态热分析中使用的单元与稳态热分析相同。
要了解每个单元的详细说明,请参阅《A NSYS Element Reference Guide》ANSYS 瞬态热分析的主要步骤建模加载求解后处理建模确定jobname、title、units, 进入PREP7;定义单元类型并设置选项;如果需要,定义单元实常数;定义材料热性能:一般瞬态热分析要定义导热系数、密度及比热;建立几何模型;对几何模型划分网格。
加载求解1、定义分析类型如果第一次进行分析,或重新进行分析GUI: Main Menu>Solution>Analysis Type>New Analysis>TransientCommand: ANTYPE,TRANSIENT,NEW如果接着上次的分析继续进行(例如增加其它载荷)GUI: Main Menu>Solution>Analysis Type>RestartCommand: ANTYPE,TRANSIENT,REST2、获得瞬态热分析的初始条件①、定义均匀温度场如果已知模型的起始温度是均匀的,可设定所有节点初始温度Command:TUNIFGUI: Main Menu> Solution>-Loads->Settings>Uniform Temp如果不在对话框中输入数据,则默认为参考温度,参考温度的值默认为零,但可通过如下方法设定参考温度:Command:TREFGUI: Main Menu> Solution>-Loads->Settings>Reference Temp注意:设定均匀的初始温度,与如下的设定节点的温度(自由度)不同Command:DGUI: Main Menu>Solution>-Loads->Apply>-Thermal->Temperature>On Nodes初始均匀温度仅对分析的第一个子步有效;而设定节点温度将保持贯穿整个瞬态分析过程,除非通过下列方法删除此约束:Command:DDELEGUI: Main Menu> Solution>-Loads->Delete>-Thermal-Temperature>On Nodes②、设定非均匀的初始温度在瞬态热分析中,节点温度可以设定为不同的值:Command:ICGUI: Main Menu> Solution>Loads>Apply>-Initial Condit'n>Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件:设定载荷(如已知的温度、热对流等)将时间积分设置为OFF:Command: TIMINT, OFFGUI: Main Menu> Preprocessor>Loads>-Load Step Opts-Time/Frequen c>Time Integration设定一个只有一个子步的,时间很小的载荷步(例如0.001):Command: TIMEGUI: Main Menu> Preprocessor>Loads>-Load Step Opts-Time/Frequen c>Time and Substps写入载荷步文件:Command:LSWRITEGUI: Main Menu> Preprocessor>Loads>Write LS File或先求解:Command:SOLVEGUI: Main Menu> Solution>Solve>Current LS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同。
ansys动力学瞬态分析详解
§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。
可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较重要。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。
ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。
两个连续时间点间的时间增量称为积分时间步长(integration time step)。
§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。
例如,可以做以下预备工作:1.首先分析一个较简单模型。
创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。
2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。
在某些场合,动力学分析中是没必要包括非线性特性的。
3.掌握结构动力学特性。
通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。
同时,固有频率对计算正确的积分时间步长十分有用。
4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。
<<高级技术分指南>>中将讲述子结构。
§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。
ANSYS结构分析教程篇
ANSYS结构分析教程篇ANSYS结构分析基础篇⼀、总体介绍进⾏有限元分析的基本流程:1.分析前的思考1)采⽤哪种分析(静态,模态,动态...)2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六⾯体⽹格采⽤零件,但零件间需定义bond接触)3)单元类型选择(线单元,⾯单元还是实体单元)4)是否可以简化模型(如镜像对称,轴对称)2.预处理1)建⽴模型2)定义材料3)划分⽹格4)施加载荷及边界条件3.求解4.后处理1)查看结果(位移,应⼒,应变,⽀反⼒)2)根据标准规范评估结构的可靠性3)优化结构设计⾼阶篇:⼀、结构的离散化将结构或弹性体⼈为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。
这⼀步要解决以下⼏个⽅⾯的问题:1、选择⼀个适当的参考系,既要考虑到⼯程设计习惯,⼜要照顾到建⽴模型的⽅便。
2、根据结构的特点,选择不同类型的单元。
对复合结构可能同时⽤到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
3、根据计算分析的精度、周期及费⽤等⽅⾯的要求,合理确定单元的尺⼨和阶次。
4、根据⼯程需要,确定分析类型和计算⼯况。
要考虑参数区间及确定最危险⼯况等问题。
5、根据结构的实际⽀撑情况及受载状态,确定各⼯况的边界约束和有效计算载荷。
⼆、选择位移插值函数?1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利⽤节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。
位移插值函数需要满⾜相容(协调)条件,采⽤多项式形式的位移插值函数,这⼀条件始终可以满⾜。
但近年来有⼈提出了⼀些新的位移插值函数,如:三⾓函数、样条函数及双曲函数等,此时需要检查是否满⾜相容条件。
2、位移插值函数的收敛性(完备性)要求:?1)位移插值函数必须包含常应变状态。
2)位移插值函数必须包含刚体位移。
3、复杂单元形函数的构造对于⾼阶复杂单元,利⽤节点处的位移连续性条件求解形函数,实际上是不可⾏的。
ansys确定分析结束时的时间
!确定分析开始时的时间,存储在变量BTIM中
*GET,BTIM,ACTIVE,0,TIME,CPU
!分析代码
!。
!确定分析结束时的时间,存储在变量ETIM中
*GET,ETIM,ACTIVE,0,TIME,CPU
!确定消耗的CPU时间并存储在变量CPUTIME里CPUTIME=ETIM-BTIM
值得一提的是,*GET,BTIM,ACTIVE,0,TIME,CPU
这个命令中的最末个参数"CPU"还可以改为参数"WALL"。
WALL指的是W ALL CLOCK TIME,它和CPU TIME 是不同的。
某个特定任务的WALLT TIME的大小和同一台机器上运行的其他任务有关,如果同时有几个任务在
运行,WALL TIME可能会比较大。
而CPUT TIME为CPU在处理该特定任务所花费的净时间。
不管机器在运行你的任务的同时还在运行
其他多少个任务,CPU TIME不变的。
ansys时间步长的确定
ANSYS 瞬态动力学分析中的时间步长的选择对于瞬态动力学分析问题,如何选取合适的时间步长,才能保证得到正确的计算结果呢?这是我们在瞬态动力学分析中需要关注的一个问题。
积分时间步长的选取决定了瞬态动力学问题的求解精度:时间步长越小,则计算精度越高。
太大的时间步长会导致高阶模态的响应出错,从而会影响到整体的响应。
但是太小的时间步长会浪费计算资源。
要得到一个较好的时间步长,应该遵循下述原则:(1)分析响应的频率。
时间步长应该小到可以分析结构的响应。
既然结构的动力响应可以看成是一系列模态的组合,时间步长应该可以求解对响应有贡献的最高阶模态。
对NEWMARK 积分方案而言,发现可以使用感兴趣结果的最高阶频率的每个周期内取20个点就可以得到大致合适的解答。
这就是说,ft 201=∆ 上式中,t ∆为时间步长,f 为所关注系统的最高频率。
如果需要计算加速度,则上述时间步长需要更小一些。
对于HHT 时间积分方法,可以使用同样的时间步长。
在使用相同的时间步长和时间积分参数的前提下,HHT 方法比NEWMARK 方法更精确一些。
(2)分析加载的载荷-时间曲线。
时间步长应该足够的小到能跟踪载荷历程。
响应一般要比施加的载荷慢半拍,阶跃载荷尤其如此。
它需要较小的时间步以便能紧密的跟踪载荷的改变。
它应该小到1/180f 会较合适。
(3)分析接触频率。
在包含接触(碰撞)的问题中,时间步长应该小到足以捕捉接触面之间的动力传递。
否则,会产生明显的能量损失,而碰撞将不再是理想弹性的。
时间步长可以由接触频率得到 c Nf t 1=∆ mk f c π21=这里,k是间隙的刚度,m是施加在间隙上的有效质量,N是每个周期的点数目。
要最小化能量损失,每个周期至少需要30个点(N=30)。
如果计算加速度,需要更多的点。
对于缩减法和模态叠加法,至少需要7个点。
如果接触周期和接触质量比全局的瞬态时间和系统质量小很多,则可以使用少于30个点,因为总体响应上的能量损失效果比较小。
ansys esol命令求应变时程曲线
ANSYS是目前工程领域中应用十分广泛的有限元分析软件,它的ESOL命令能够用来求解应变时程曲线。
在工程实践中,我们经常需要了解材料在受力作用下的应变变化情况,而应变时程曲线正是能够很好地反映材料应变随时间的变化规律。
本文将重点介绍ANSYS中ESOL命令的应变时程曲线求解方法,希望能够对工程技术人员提供一些参考和帮助。
一、ESOL命令概述1. ESOL命令是ANSYS中用于求解非线性动态分析问题的一种命令。
它能够对结构在受力作用下的动态响应进行分析,包括应变、应力等参数的变化情况。
2. ESOL命令主要包括了动态显式分析、动态隐式分析、多步动态分析等功能,能够满足不同分析需求。
3. 在实际工程应用中,ESOL命令可以结合材料的本构模型、加载条件等参数,对结构在复杂受力情况下的应变时程曲线进行求解,为工程设计提供重要参考。
二、应变时程曲线的意义1. 应变时程曲线是指材料在受力作用下,应变随时间的变化曲线。
它能够直观地反映材料的变形和破坏情况,是工程分析和设计中重要的参考依据之一。
2. 通过应变时程曲线,我们可以了解材料在受力作用下的变形情况,判断结构的安全性和稳定性,为工程实践提供重要的依据。
3. 应变时程曲线还能够为材料性能参数的确定提供数据支持,对于新材料的应用和开发有着重要的意义。
三、ESOL命令求应变时程曲线的方法1. 在ANSYS中,使用ESOL命令求解应变时程曲线的方法通常包括以下几个步骤:(1)建立有限元模型。
首先需要根据实际工程情况,建立相应的有限元模型,包括结构几何形状、材料属性、边界条件等。
(2)设置加载条件。
根据实际受力情况,设置加载条件,包括动态载荷、静载荷等。
(3)定义材料参数。
根据材料的本构模型,定义材料参数,如弹性模量、泊松比等。
(4)求解应变时程曲线。
通过ESOL命令,进行应变时程曲线的求解和分析,得到材料在受力作用下的应变变化情况。
2. 在实际应用中,需要根据具体的工程情况和分析要求,灵活选择ESOL命令的参数设置和求解方法,以获得准确、可靠的分析结果。
ANSYS流体分析
ANSYS流体分析第⼀章 FLOTRAN 计算流体动⼒学(CFD)分析概述FLOTRAN CFD 分析的概念ANSYS程序中的FLOTRAN CFD分析功能是⼀个⽤于分析⼆维及三维流体流动场的先进的⼯具,使⽤ANSYS中⽤于FLOTRAN CFD分析的FLUID 141和FLUID 142 单元,可解决如下问题:作⽤于⽓动翼(叶)型上的升⼒和阻⼒超⾳速喷管中的流场弯管中流体的复杂的三维流动同时,FLOTRAN还具有如下功能:计算发动机排⽓系统中⽓体的压⼒及温度分布研究管路系统中热的层化及分离使⽤混合流研究来估计热冲击的可能性⽤⾃然对流分析来估计电⼦封装芯⽚的热性能对含有多种流体的(由固体隔开)热交换器进⾏研究FLOTRAN 分析的种类FLOTRAN可执⾏如下分析:层流或紊流传热或绝热可压缩或不可压缩⽜顿流或⾮⽜顿流多组份传输这些分析类型并不相互排斥,例如,⼀个层流分析可以是传热的或者是绝热的,⼀个紊流分析可以是可压缩的或者是不可压缩的。
层流分析层流中的速度场都是平滑⽽有序的,⾼粘性流体(如⽯油等)的低速流动就通常是层流。
紊流分析紊流分析⽤于处理那些由于流速⾜够⾼和粘性⾜够低从⽽引起紊流波动的流体流动情况,ANSYS中的⼆⽅程紊流模型可计及在平均流动下的紊流速度波动的影响。
如果流体的密度在流动过程中保持不变或者当流体压缩时只消耗很少的能量,该流体就可认为是不可压缩的,不可压缩流的温度⽅程将忽略流体动能的变化和粘性耗散。
热分析流体分析中通常还会求解流场中的温度分布情况。
如果流体性质不随温度⽽变,就可不解温度⽅程。
在共轭传热问题中,要在同时包含流体区域和⾮流体区域(即固体区域)的整个区域上求解温度⽅程。
在⾃然对流传热问题中,流体由于温度分布的不均匀性⽽导致流体密度分布的不均匀性,从⽽引起流体的流动,与强迫对流问题不同的是,⾃然对流通常都没有外部的流动源。
可压缩流分析对于⾼速⽓流,由很强的压⼒梯度引起的流体密度的变化将显著地影响流场的性质,ANSYS对于这种流动情况会使⽤不同的解算⽅法。
ansys有限元分析软件 第七章时间历程后处理-xia
变量与数组相互赋值
移பைடு நூலகம்数组中的数据到变量中
GUI:Main Menu > TimHist Postpro >Table operations> Variable to Par
弹出[Move a variable into an Array Parameter]对话框,在[Array parameter] 文本框中输入刚才定义的数组名Arr1,在[Variable Containing data]文本 框中输入变量的参考号10,在[Time at start of data]文本框中输入变量的 起始时间0。单击OK即可。
对话框中有3种存储变量的方式 在 [Export Variables]对话框中有 种存储变量的方式。 对话框中有 种存储变量的方式。 存储为APDL数组:选中Export to APDL array 选项,然后在文本框中输 数组:选中 选项, 存储为 数组 入要保存的数组名。 入要保存的数组名。
变量存储
数学运算
下面假设已经定义了两个位移变量UX_2和UX_3 ,要 和 下面假设已经定义了两个位移变量 通过数学运算得到一个新变量 alpha = (UX _ 3 − UX _ 2) / 1.5 。 其操作步骤如下: 其操作步骤如下:
在变量名输入框中输入alpha,在表达式输入框中输入(-)/1.5。 ,在表达式输入框中输入 在变量名输入框中输入 。 把活动光标移到“ 前面 然后在变量下拉列表框中选择[UX_3]选项, 前面, 选项, 把活动光标移到“-”前面,然后在变量下拉列表框中选择 选项 再把光标移动到“ 后面 在变量下拉列表框中选择[UX_2]选项,最后 后面, 选项, 再把光标移动到“-”后面,在变量下拉列表框中选择 选项 得到的表达式, 下图所示。 得到的表达式,如 下图所示。 单击回车键或直接按回车键即可生成新的变量alpha. 单击回车键或直接按回车键即可生成新的变量
ANSYS nCode DesignLife疲劳分析之时间步定义
Time Step Access Mechanical
• highlight Model cell of Mechanical system Bending Load FY TimeStep > RMB > Edit
4
Time Step Verify Boundary Conditions
• Fixed end • Use 6 separate steps apply FY load history
• Load mapping for this case will be Auto-Configured • Run and compare results with TimeStep approach
Time Step Exit DesignLife
• File > Exit
Time Step Exit Workbench
Time Step View load/stress history
Note: Can manually reorder the stress history by switching off Auto-Configure and building your own Time Step history of load cases
• File > Exit
Time Step Setup an equivalent TimeSeries approach
• Edit nCode and make available load history .s3t file
Time Step Setup an equivalent TimeSeries approach
Time Step Solve
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!确定分析开始时的时间,存储在变量BTIM中
*GET,BTIM,ACTIVE,0,TIME,CPU
!分析代码
!。
!确定分析结束时的时间,存储在变量ETIM中
*GET,ETIM,ACTIVE,0,TIME,CPU
!确定消耗的CPU时间并存储在变量CPUTIME里CPUTIME=ETIM-BTIM
值得一提的是,*GET,BTIM,ACTIVE,0,TIME,CPU
这个命令中的最末个参数"CPU"还可以改为参数"WALL"。
WALL指的是W ALL CLOCK TIME,它和CPU TIME 是不同的。
某个特定任务的WALLT TIME的大小和同一台机器上运行的其他任务有关,如果同时有几个任务在
运行,WALL TIME可能会比较大。
而CPUT TIME为CPU在处理该特定任务所花费的净时间。
不管机器在运行你的任务的同时还在运行
其他多少个任务,CPU TIME不变的。