第三章几何光学
第三章几何光学球面反射折射物像公式
例3.4:
一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为 2cm。若在 离哑铃左端5cm处的轴上有一物点,试求像的位置和性质。
[解]:两次折射成像问题。
n
P
O1
n
P’1 n` O 2
1、P为物, 对球面O1折射成像P1’
已知 : s1 5cm , r1 2cm , n 1, n ' 1.6 n n n n 由折射成像公式 ' r1 s1 s1
沿轴线段
A、凡光线与主轴交点在顶点右方者线段长度数值为正; 凡光线与主 轴交点在顶点左方者线段长度数值为负; B、物点或像点至主轴的距离在主轴上方为正,下方为负。 ② 光线的倾角均从主轴或球面法线算起,并取小于900的角度;由主轴 (或法线)转向有关光线时: A、顺时针转动,角度为正;B、逆时针转动,角度为负。 (注意:角度的正负与构成它的线段的正负无关)
2
r
2
s r
'
2
2 r s ' r cos
光程 PAP ' nl nl ' n
r 2 r s 2 2 r r s cos r
2
n
s r
'
2
2 r s r cos
1、高斯公式:
球面反射 : f ' f 1 1 2 ' s s r
六、理想成象的两个普适公式
n' n n' n 将物像公式 ' 变形为 : s s r n' n r r ' ' ' f f n n n n 1 1 ' ' s s s s
光学 第3章 几何光学的基本原理
(1) 偏向角
i1
又
i2
i2
i2 '
i1'i2
A
'
i1 i1' A
(2) 最小偏向角0
当i1改变时 、i1'均随之而改变,当 i1 i1'时,偏向角取最小 0。
0 2i1 A
A
此时在棱镜内传播的光线平行于底边,有:
i2
i2 '
A 2
,i1
i1'
0
2
A
2. 棱镜的折射率
3、折射定律:(1) 折射线在入射线和法线决定的平面内; (2) 折射线、入射线分居法线两侧; (3) 折射角和入射角满足斯涅尔定律:n1sini1=n2sini2
i1 i1'
n1
n2
i2
7 反射和折射定律光路图
3、光的独立传播定律:几个光源发出的光在空间传播并相遇后, 它们将各自保持自己原有的特性(频率、波长、偏振状态)沿原来 的方向继续传播,互不影响。 4、光路可逆原理:当光线的方向反转时,它将逆着同一路径传 播,称为光路可逆原理。
i2 i2
A2 x2,0
i1 i1
B2 n2
x
n1
晰,像的深度由上式确定,y‘ 叫做像似深度 ,y是物的实际深度。
20
(3)像散现象:当i1≠0,即入射光束倾斜入射时,折射光线会发生像散现象。如沿 着倾斜的角度观察水中的物体时,像的清晰度由于像散而被破坏。
例1: 使一束向P点会聚的光在到达P点之前通过一平行玻璃板。如果将玻璃板 垂直于光束的轴竖放,问会聚点将朝哪个方向移动?移动的距离为多少?
A1 A2
P
P'
M
《光学教程》姚启钧原著-第三章-几何光学的基本原理
第三章
3.4 光连续在几个球面界面上的折射
子系统1
子系统m
子系统N
物
像
y1 y
y’N y’
一、共轴光具组
1、光轴 (optical axis) ---- 光学系统的对称轴 各球面的球心位于同一条直线上 连接各球心的直线为光轴
共轴光具组
实际成像系统通常由多个折射球面级联构成
r
n
n’
F
F’
O
C
像方焦点F’:与光轴上无穷远处物点对应的像点 像方焦距f’:与像方焦点对应的像距 像方焦平面:过F’点垂直于光轴的平面
像方焦距:
四、球面折射对光束单心性的破坏
物方焦点F : 与光轴上无穷远处像点对应的物点 物方焦距f :与物方焦点对应的物距。 物方焦平面:过F点垂直于光轴的平面。
1
1’
O
二、几何光学的基本实验定律
1
1’
O
2
(3)光的折射定律
二、几何光学的基本实验定律
(4)光的独立传播定律和光路可逆原理
二、几何光学的基本实验定律
适用条件: R远大于光波长λ (否则,用衍射光学)
二、几何光学的基本实验定律
三、 费马原理
(一)、概念 光程:
B
A
低损耗
玻璃 几千dB/km
石英光纤 0.2 dB/km
2) 信带宽、容量大、速度快
3) 电气绝缘性能好 无感应 无串话
5) 资源丰富 价格低
4) 重量轻 耐火 耐腐蚀 可用在许多恶劣环境下
折射棱镜
四、棱镜
四、棱镜
五脊棱镜
直角棱镜
使像转过900
反射棱镜
: 借助光在棱镜中的全反射,改变光进行的方向.
光学第三章几何光学
联系光与电磁波
3、λ ——光波长
是否趋近于零 区分几何光学与波动光
学 4、χ ——介质的电极化率
其对光场响应是线性与非线性区分线性 与非线性光学
费马原理
一、费马原理:光在指定的两点间传播时,
实际的光程总是一个极值。其数学表达式为:
B nds 极值(极大值、极小值或恒定值) A
射光束都是单心光束的成像。这也是我们
着重研究的情况。
3、物、像与人眼
问题:
‘
这里的像就是人眼视网膜上所成的
像吗?人眼能否区分物与像?
结论:
对人眼来所,物与像都是进入瞳孔的发
射光束的顶点。物、像、虚像人眼不能分辨。
但对于像,其光束有一定的限制,必须在特定
的范围才能观察到。
光在平面界面上的反射和折射 光学纤维 棱镜
第 三 章 几 何 光 学
三角形孔夫琅禾费衍射图像
本章内容
光线的概念 几何光学的基本定律 费马原理 光束 实象和虚像 平面反射和折射,棱镜的最小偏向角,光
学纤维 光在球面界面上的反射和折射、符号法则 近轴物点近轴光线成像的条件 薄透镜 理想光具组的基点和基面
光线的概念、几何光学的基本定律
B
或: nds 0 A
或:t 1
B
nds 0
ccA
二、几何光学的基本实验定律与费马原理
1、几何光学的基本实验定律或费马原理都可以 作为几何光学出发点,从而建立几何光学内容 体系。 2、由费马原理可以推导几何光学的基本实验 定律。 (1)、光在均匀介质中的直线传播
S
1
l = ([ - r)2 +(r - s)2 + (2 - r)( r - s)cos ] 2
第三章几何光学
sin
l s l s
n n n n s s r
定义:光焦度(m-1)
n n r
表征球面的 光学特性
讨论:
2. 物空间: 入射光束行进的空间 不在物空间的物为 “虚物”!
像空间: 出射光束行进的空间
3. 物方焦点 F , 物方焦距
开
关
4. 测三棱镜折射率
A
偏向角的概念:
i1 i 1i 2 i2
( i1 i1 ) ( i2 i2 ) i1 i2 a
B
n
C
i1 i2 a
a min sin 2 n a sin 2
最小偏向角法
min : i1 i2 min a i2 2
入射光为单心光束时:设n1>n2
2 n1 x y( 2 - 1)tg 3 i1 n2 2 n2 n1 y y [1 ( 2 - 1)tg 2 i1 ]3 / 2 n1 n2
i2
i2+ i2
n2
o
P2 P1
P
x x1
P
x
i1+ i1
i1
改变眼睛的位置,像的位置也改变。 讨论:
最小偏向角入射时, 棱镜内的折射光线 与 底 边 平 行
作业:21、22、3、4
§3.3
光在球面上的反射和折射
3.5
一些专用名词介绍: 顶点、曲率中心、曲率半径
主截面(入射面), 光轴:光学系统中各光学元件的对称轴. (亦称:主轴或主光轴)
一. 符号法则
光线方向
n
A r O
n
u
光学教程___第3章_几何光学的基本原理
i2 ic的光线折射出光纤;i2 ic 的光线在两层介质间多次全
反射从一端传到另一端.
内窥镜、光导通讯……
为了使更大范围内的光束能在纤维中传播,应选择n1和n2的差
值较大的材料去制造光学纤维。
/ 77
20
四.棱镜
主截面:垂直于两界面的截面. 偏向角:出射线与入射线间的夹角.
=(i1-i2 )+(i1 -i2 )= i1 +i1 -A
由P点所发出的单心光束经球面反射后,单心性被破坏
/ 77
26
三、近轴光线条件下球面反射的物像公式
当φ很小时,cosφ 1
l r2 r s2 2 rr s r r s2 s
l' r2 s' r 2 2 r s' r r s' r 2 s'
由:
A
d l
n 2rs rsin 0 P
l
l
-u
i
-i′ l '
-u`
C
P` -s` O
化简有:r l
s
s r l'
0
-r -s
即:1 l'
1 l
1 r
s l'
s l
对一定的球面和发光点P(S一定),不同的入射点对应有不同的S‘。
即:同一个物点所发出的不同光线经球面反射后不再交于一点。
第三章 几何光学的基 本原理
/ 77
1
干涉和衍射现象揭示了光的波动性,所有 光学现象都能够用波动概念解释。但是在波面 线度远大于波长时,研究光的反射,折射成象 等问题,如果不用波长、位相等波动概念而代 之以光线和波面等概念,即用几何的方法来研 究,将更为方便。
几何光学的基本原理
——象似深度
[例3-1] 使一束向P点会聚的光在到达P点之 前通过一平行玻璃板,如桌将玻璃板垂直 于光束的轴竖放,问会聚点将朝哪个方向 移动?移动多少距离?
22
三、全反射 光学纤维 对光线只有反射而无折射的现象叫全反射
n2 iC sin n1
1
——临界角
23
光学纤维
i sin
1
n n
第三章 几何光学的基本原理
安庆师范学院物理系 张 杰
1
第三章 几何光学的基本原理
§3-1 光线的概念 §3-2 费马原理 §3-3 单心光束 实象和虚象 §3-4 光在平面界面上的反射和折射 光学纤维 §3-5 光在球面上的反射和折射 §3-6 光连续在几个球面界面上的折射 虚物的概念 §3-7 薄透镜 §3-8 近轴物点近轴光线成象的条件 §3-9 理想光具组的基点和基面 §3-10 理想光具组的放大率 基点和基面的性质 §3-11 一般理想光具组的作图求象法
折射光束的单心性已被破坏
2 1 2 2
20
一条是点所描出的P’,一条是P 1P 2 这样的两条线段称为象线。 位于图面内的象线 P ——弧矢象线 1P 2 由点P’所描出的垂直于图面的象线 ——子午象线 只要光束的波面元不是严格的球面, 都具有象散特性
21
x 0 n2 y y1 y2 y n1
2 1
2 2
24
四、棱镜
出射线和入射线之间的交角——偏向角
i2 ) (i1 i2 ) (i1 A i1 i1
2
与 i1 对称的入射角为 i1
0 A
棱镜材料的折射率 sin i1 0 A A n sin sin 2 2 sin i2
第三章几何光学
第三章几何光学
1证明反射定律符合费马原理
i2二AJ =60 -38.68 =21 19
又根据折射定律
sin h_ 1
sin i2n
所以i^si n°(si n 21019‘)=35034‘
5.—种恒偏向棱镜,它相当于两个300-600-900棱镜与一个450-450-900棱镜
按图示方式组合在一起,白光沿i方向入射,我们旋转这个棱镜来改变 哥,从而使任
解:光线从向右传播,s=-::s=2r
根据近轴光线条件下球面折射的物像公式
11.有一折射率为1.5、半径为4cm的玻璃球,物体在距离表面6cm处,求:(1) 从物所成的像到球心之间的距离;(2)求像的横向放大率。
解:(1)玻璃球可以看做是一个透镜,它的等效焦距为
j nR 1.54小f 6 cm
2(n-1) 2(1.5-1)
证明:物体经过玻璃板成的像位置在过去物体的前边,两者的距离等于
p?dn“)n
n小
物体经过玻璃板所成的像对于凹透镜来说是虚物,那么放入该玻璃板后使像移动 的距离与把凹面镜向物体移动d(n-1)n的一段距离的效果相同。
10.欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问 这透明球体的折射率为多少?
证明:设界面两边分布着两种均匀介质, 折射率为m和n2(如图所示)。光线通过 第一介质中指定的A点后到达同一介质中指定的B点。
(1)反正法:如果反射点为C',位于ox轴与A和B点所著称的平面之外,那么 在ox轴线上找到它的垂足点c"点,.由于AC'AC'', BC'BC",故光线ACB所对应的 光程总是大于光线AC''B所对应的光程而非极小值,这就违背了费马原理。故入射面 和反射面在同一平面内。
第三章几何光学的基本原理1
i1 0 x 0 n2 y y1 y 2 y n1
i1
y2 y1 P(0, y) P′(x′, y′)
n1
y
此时,弧矢象线和子午象线合为一点,折射光 束为单心光束,象散消失。
34
由以上的讨论可知: 1)光在平面界面上的反射不破坏光束的单心 性,所成的象为完善虚象。 2)光在平面界面上折射,光束的单心性遭到 破坏,折射光束为象散光束,各光线的反 向延长线交于互相垂直的线段——弧矢象 线和子午象线。 3)发光点在平面界面上折射所成的象为不完 善虚象(象散现象)。
P
L(QP) n(r )ds L(l )
Q (l )
是路径(l)的函数,平稳值要求变分为零,
n(r )ds 0,或 L(l ) 0
Q (l )
P
11
*费马原理与三个实验定律 1、光在均匀介质中直线传播 2、反射定律 Q P
M
M’
Q’ 要点:反射光线在入射面,反射角等于入射角,光程最短。
12
3、折射定律
y
Q(x1, y1) i1
A
n1 n2
M(x, 0)
i2 B
x P(x2,y2)
(1)折射光线在入射面内,方法和反射定律推导一样。 (2)入射角和折射角的关系; QMP的光程:
L n1 QM n2 MP n1 y1 ( x x1 ) 2 n2 y2 ( x2 x) 2
后发生漫反射,因而可以看见白纸上的亮点。
而虚象则不能在白纸上显现出来。
物方空间:对某一光学系统,入射光束所在的空间。
象方空间:对某一光学系统,出射光束所在的空间。
(不是指光束的心所在的空间,光学系统的物可以不
第三章-几何光学的基本原理课件
作业: P159---第3、4题
第三章 几何光学的基本原理 §3.3光在球面上的反射和折射
§3.3 光在球面上的反射和折射
3.3.1 几个概念和符号法则 1.物空间和像空间 物空间: 入射光束所在的几何空间 像空间: 经光学系统变换后的光束所在的几何空间 2.球面的顶点、主轴、主截面
为高斯最先建立起光线理想成像的定律。
第三章 几何光学的基本原理 §3.3 光在球面上的反射和折射 当s=- 时,
焦距可写为
则有:
——球面反射的成像 公式
适用条件: ① 近轴光线 ② 凹、凸球面均可,式中各量满足符号法则
P129 例3.3
第三章 几何光学的基本原理 §3.3 光在球面上的反射和折射
3.2.4 棱镜 1.棱镜的主截面: 与棱镜 的棱边垂直的平面。
2.偏向角: 出射光线的方 向和入射光线的方向之间
的夹角9。
因为
当i1 = i1 时,偏向角达到最小值90 , 90 称为最小
偏 向角。 因此,最小偏向角为:
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
又当i1 = i1 时,折射角为i2 = i2=A/2 ,由折射定律:
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
2.光导纤维 利用全反射原理制成的光能量的传输线
光导纤维:内层折射率 大,表层折射率小的透 明细玻璃丝。
光进入光导纤维后, 在内壁上发生全反射, 光从纤维的一端传向另 一端。
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
物方焦点, 用F 表示
f 与f 之比为:
第三章--几何光学2.
A
2、物像公式
当s有s' r 2
焦点:沿主轴方向的平行光束经球面反射后将会聚于
主轴上一点,该点称为反射球面的焦点(F’)。
F` f '
C
P` -s` O
-r
-s
焦距:焦点到球面顶点的距离(f ' r )。它同样遵守符号法则。
2
1 s'
1 s
1 f'
球面反射物像公式
说明:1、它是球面反射成像的基本公式,只在近轴条件下成立;
• 改变光路:如右图示
450 450
§3.5 光在球面介面上的反射和折射
一、球面的几个概念 符号法则
1、基本概念:
r
球面顶点:O
球面曲率中心:C
C
球面曲率半径:r 球面主轴:连接O、C而得的直线。
O
主轴
主截面:通过主轴的平面。
2、符号法则:
① 线段长度均从顶点算起:
新笛卡尔法则
沿轴线段
② A、凡光线与主轴交点在顶点右方者线段长度数值为正;
球面顶点
2.角度: 一律以锐角度量,顺时针转为正,逆时针转为
负。角度也要规定起始轴: U、U'—由光轴起转到光线; I、I'—由光线起转到法线; ψ—由光轴起转到法线,
光轴
光线
法线
应用时,先确定参数的正负号,代入公式计算。 算出的结果亦应按照数值的正负来确定光线的相 对位置。
推导公式时,也要使用符号规则。
② 光线条件下光束单心性得到保持。
② 当介质和球面一定时(n,n’,r 一定),n' n const r
计算时r 取米 为单位
n' n 光焦 :表 度 征球面 ,单 光 :位 屈 学 光 (D 性 )度 质 r
第三章 几何光学
第三章 几何光学(一)§1 基本概念及定律1、光线与波面2、基本定律(实验规律)(1)光在均匀介质中沿直线传播 例:不均匀介质中,光线弯曲(太阳落山)(2)光的反射和折射定律A 、反、折线同在入射面内,并与入射线分居两侧B 、11i i ='C 、211221sin sin n n n i i ==(第二媒质相对第一媒质的相对折射率)例:如反射面凹凸不平,且线度远大于波长,形成漫反射。
(3)光的独立性,光路可逆原理1)sin sin (,sin sin 21122121===i i n n i i3、统一性(折、反、直)折射坐标反演反直传 )射( ,)( ,sin sin 211212122211n n l i n n i i i n i n ≠-=-===§2 费马原理概括了光线传播所遵循的规律光沿光程值为极小、极大或恒定(极值)的路径传播。
⎰=AB 极值ndsδ⎰=BA 0nds大多数情况下是极小:例:用费马原理导出折射定律(光程极小)光:B A →21 n n过A 、B 两点作垂直于界面的平面,交线O O '证明:(1)据费马原理,折射点必在O O '上(即入射面内)反证,如在C ',作垂线O O C C '⊥'''上(即入射面内)使光程不为极小C )()( '''>'''>'''>'B C A B C A B C B C C A C A 因而,折射点C 必在O O '上,入、折两面在同一平面内(2)确定C 点的位置(在O O '上)),( ),,( ),,(2211o x C y x B y x A必有21x x x <<CB n AC n ACB 21)(+=2222221211)()(y x x n y x x n +-++-= 0sin sin )()()()()(221121222222222212111=-='-'=+-+--+--=+i n i n CBB C n AC C A n y x x y x x n y x x x x n dx B A d同理可导出反射定律 费马原理不涉及光沿哪个方向传播,只涉及路径,光从B A →,与A B →,光程为极值的条件相同。
光学 第三章 几何光学3
第三章 几何光学基本原理
光学
2014年11月
光学
第三章 几何光学基本原理
第三节 光在单球面上的折射与反射
4、近轴物点成像
近轴光线成像
n n n n s s r
f n r f n r
n n
n n
n n'
高斯公式
P0
F
C
F’
f f 1 s s
P0'
-s
s'
光学
第三章 几何光学基本原理
n n' P
y
P0'
P0
F
C
F’ y'
P'
光学
第三章 几何光学基本原理
第三节 光在单球面上的折射与反射 5、作图成像
(4)物方平行入射光线经折射后汇聚像方焦平面上
n n'
F’
F
C
光学
第三章 几何光学基本原理
第三节 光在单球面上的折射与反射 5、作图成像
(5)物方焦平面上点发出的所有光线在像方为平行光
s1
s2
s2 s1
设两个薄透镜的焦距分别为 f1’和 f2’, 将它们密接组成一个复合透镜,复合透镜
的成像可以看作是两次薄透镜成像:
11 1 s1 s1 f1
11 1 s2 s2 f2
因为是密接,所以 s2 = s1’ 可以 得到密接透镜的成像规律:
11 1 1 s2 s1 f1 f2
光学
第三章 几何光学基本原理
n n'
F’
F
C
光学
第三章 几何光学基本原理
第四节 共轴球面组傍轴成像
1、共轴球面成像过程
第三章 几何光学的基本原理
β的讨论:
{ β <0, 倒立象
1. 焦点性质
β >0, 正立象
{ |β| <1,
· F ·
F'
|β| >1,
放大
缩小
三、薄透镜的作图法成象
2. 光心性质
O
3. 物(象)方焦平面性质
F 注: (1)光线方向,箭头不可少; (2) 辅助线用虚线。 举例:
F'
P •
•
F' P • F
• P'
利用 物方焦点 象方焦点
二、几何光学的基本定律
1. 直线传播定律 均匀介质中光沿直线传播。 非均匀介质中,光以曲线传播,向折射率增大方向弯曲
夏日柏油路上的倒影 mirage
2. 反射和折射定律 ▲反射光和折射光在入射面内; n1 sin i1 n2 sin i2 ▲ ' i1 i1 3. 光的独立传播定律和光路可逆原理 光按照一定的规律传播,若传播方向逆转,光路不变
本章小结
3.1 光线的概念
一、光线与波面
1、光源:发光物体统称光源 点光源 面光源 以外形抽象 扩展光源 分类 线光源 2、光线:表示光波能流传播方向 3、波面:是电磁波位相相同点的集合 在各向同性媒质中,能量传播方向垂直于波面, 即光线是波面的法线方向。
平面波 平行光
球面波 发散光
球面波 会聚光
光线PAP'的光程为: △ =nl+n'l' =n [r2+(-s +r)2-2r(-s +r)cosφ]1/2 +n'[r2+(s' -r)2+2r(s' -r)cosφ]1/2 根据费马原理:
第三章几何光学
如图,光线好像是从虚像 P'
点P 发出的,人眼无法直
接辨别光束的顶点是否有
实际光线通过。
P
22
把发出发散光束的像点看作物,对于下一个球面的折射来 说,可以认为与真正的发光物点没有区别,而且不必考虑 这个像是实还是虚。
物与像的区别:由于球折射面的大小有一定的范围,故对 折射光束的张角是有一定的限制。因此,像点发散光束的 张角是有限的,小于。而实物可以向各个方向发光,其 张角可以是大于,而等于2。
因为折射率和长度L1 和L2 均为正值,所以只有y
=0 (1)式才成立。就是说,折射点P在交线OO’
上, P点位于过A、B两点且垂直于折射界面的平 面内(x0y平面内),即证明了入射光线、法线和 折射光线三者在同一平面内。
16
如图
sini1
x
x1 L1
sini2
x2 L2
x
因此(2)式可写成:
7
n1
n2
S1
Av1
S2
v2
n3
S3
n iS i
v3
vi
Sk vk
nk
B
光从A点经过几种不同的均匀介质到达B
点,所需时间为:
ts1 s2
sk
ik
si
1 2
k i1 i
因为介质的折射率 ni ci ,
所以上式可写为
t
1 c
ik i1
ni si .
8
也可以说,光沿着所需时间为极值的路径传播。 费马原理是几何光学的基本原理。
14
令AP=L1,PB=L2 ,则由A点
到B点的光程为:
z•A
Ln1L1n2L2
n1
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 几何光学1.证明反射定律符合费马原理证明:设界面两边分布着两种均匀介质,折射率为1n 和2n (如图所示)。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
(1)反正法:如果反射点为'C ,位于ox 轴与A 和B 点所著称的平面之外,那么在ox 轴线上找到它的垂足点"C 点,.由于'''''',AC AC BC BC >>,故光线'AC B 所对应的光程总是大于光线''AC B 所对应的光程而非极小值,这就违背了费马原理。
故入射面和反射面在同一平面内。
(2)在图中建立坐xoy 标系,则指定点A,B 的坐标分别为11(,)x y 和22(,)x y ,反射点C 的坐标为(,0)x 所以ACB 光线所对应的光程为:1n ∆=根据费马原理,它应取极小值,所以有112(sin sin )0d n i i dx ∆==-=即: 12i i =2.根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。
证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点'S 。
设光线SC 为电光源S 发出的任意一条光线,其中球面AC 是由点光源S 所发出光波的一个波面,而球面DB 是会聚于象点'S 的球面波的一个波面,所以有关系式SC SA =,''S D S B =.因为光程''''SCEFDS SABS SC CE nEF FD DSSA nAB BS⎧∆=++++⎪⎨∆=++⎪⎩ 根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程相等。
3.睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板,平板的厚度d 为30cm 。
求物体PQ 的像''P Q 与物体PQ 之间的距离2d 为多少?解:根据例题3.1的结果'1(1)PP h n=-'130(1)101.5PP cm =⨯-=题2图' 1.5n =4.玻璃棱镜的折射棱角A 为060,对某一波长的光其折射率n 为1.6。
计算:(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角。
解:(1)等腰棱镜的折射率可以表示为0sin 2sin2An A θ+=其中0θ为最小偏向角,可以由上式解出最小偏向角01100000602sin [sin ]2sin [1.6sin ]60253.136046.2622A n A θ--=-=⨯-=⨯-=(2)偏向角为最小时,入射角可以表示为0'00'0146166053.0822Ai θ++===从棱镜向外透射的最大入射角为 '21s i ni n =, '1021sin 38.681.6i -== '000'226038.682119i A i =-=-=又根据折射定律12sin 1sin i i n= 10'0'1sin (sin 2119)3534i -==所以5.一种恒偏向棱镜,它相当于两个000306090--棱镜与一个000454590--棱镜按图示方式组合在一起,白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r 。
求证:如果1sin 2πθ=,则21θθ=,且光束i 与r 相互垂直。
(这就是恒偏向棱镜名字的由来)证:(1)根据光的折射定律 12sin sin θθ= 其中2i 为光通过第一个界面的折射角'22i i =根据折射定律 22sin sin n i θ=所以 21θθ=, 由于光线入射的两界面相互垂直和21θθ=,所以光束i 与r 相互垂直。
6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm,求像的位置及高度,并做光路图。
解:若光线从左向右传播,如图所示'12,10s cm f =-=-根据凹透镜的成像公式''111s s f+=得: 60cm s -='由ss y y ''-=得:25cm y -=' 7.一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚象。
求(1)此透镜的曲率半径;(2)此镜是凸面镜还是凹面镜?解:根据面镜公式 ''0y y s s+=得:'51010s+=-, '2s cm = 根据面镜的成像公式'112s s r +=, 112102r+=-⇒ 5r c m = 所以此镜是凸面镜8.某观察者通过一块薄玻璃板去看在凸面镜中他自己的像。
他移动着玻璃板,使得在玻璃板中与凸面镜中所看到的他眼睛的像重合在一起。
若凸面镜的焦距为10cm ,眼睛距凸面镜的顶点的距离为40cm'40,10s cm f cm =-=根据面镜成像公式''111s s f+= 由上式可得 '8s cm ='()8402422s s L cm +-+===9.物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为1d ,折射率为n ,试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动(1)d n n-的一段距离的效果相同。
证明:物体经过玻璃板成的像位置在过去物体的前边,两者的距离等于'1(1)(1)d n pp d n n-=-=物体经过玻璃板所成的像对于凹透镜来说是虚物,那么放入该玻璃板后使像移动的距离与把凹面镜向物体移动(1)d n n-的一段距离的效果相同。
10.欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率为多少?解:光线从向右传播, s =-∞ '2s r = 根据近轴光线条件下球面折射的物像公式'''n n n n s s r --=⇒''2n n nr r-=⇒ '22n n == 11.有一折射率为1.5、半径为4cm 的玻璃球,物体在距离表面6cm 处,求:(1)从物所成的像到球心之间的距离;(2)求像的横向放大率。
解:(1)玻璃球可以看做是一个透镜,它的等效焦距为' 1.5462(1)2(1.51)nR f cm n ⨯===--玻璃球体透射的成像公式为''111s s f -= 可得: '15s cm =(2)横向放大率 '151.564s s β===+ 12.一个折射率为1.53、直径为20cm 的玻璃球内有两个气泡。
看上去一个恰好在球心,另一个从最近的方向看去,好象在表面与球心连线的中点。
求两气泡的实际位置。
解:若光线向人眼的方向传播10r cm =- '110s cm =- '25s cm =- '1n = 1.53n =根据物像公式'11''n n n ns s r--=得: 110s cm =-同样有'22''n n n ns s r--=,1 6.047s cm =- B13.直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可以忽略不计,求缸外观察者看到的小鱼的表观位置和横向放大率。
解:(1)若光线向人眼的方向传播,根据物像公式''''0.5n n n ns s r r ss r m--====-又因为可得(2)近轴物的横向放大率 ''151.331.33151s n s n β=⋅=⨯= B14.玻璃棒一端成半球形,其曲率半径为2cm 。
将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图。
解:(1)设光线从左向右传播50.1=n 33.1'=n cm s 8-= cm r 2=根据近轴光线条件下球面折射的物像公式r n n s n sn -=-''' 得: cm s 46.18'=(2)根据横向放大率的公式 25.133.185.18'''≈⨯--=⋅==n n s s y y β(3)光路图入下15.有两块玻璃透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm 。
一物点在主轴上距镜20cm 处,若物和镜均浸在水中,分别用作图法和计算法求像的位置。
设玻璃的折射率为1.5,水的折射率为1.33。
解:(1)设光线从左向右传播,其中33.112==n n 5.1=n cm s 20-= 凸透镜的物方焦距为cm r nn r n n n f 12.39)33.15.1(21033.1)(22111-≈-⨯⨯-=----=凸透镜的像方焦距为cm r nn r n n n f 12.39)33.15.1(21033.1)(22112'≈-⨯⨯=---=根据高斯公式 1''=+s fsf 得:cm sff s 92.402012.39112.391''-=---=-=(2)凸透镜的物方焦距为cm r nn r n n n f 12.39)33.15.1(2)10(33.1)(22111≈-⨯-⨯-=----=凸透镜的像方焦距为cm r nn r n n n f 12.39)33.15.1(2)10(33.1)(22112'-≈-⨯-⨯=---=根据高斯公式 1''=+s fsf 得:cm sf f s23.132012.39112.391''-=---=-=(3)用作图法确定像的位置A16.一凸透镜在空气中的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于2CS 中(2CS 的折射率为1.62),其焦距又是多少?解:根据透镜的焦距公式 '21212n f n n n nr r =--+当透镜在空气中时,121n n =='112111(1)()n f r r =-- 当透镜在水中时,12 1.33n n =='2121 1.3311()1.33n f r r -=- 由上两式可解得541n .=,'12111111(1)40(1.541)21.6r r f n -===-⨯- 当透镜置于2CS 中时'3121 1.6211 1.54 1.6210.08()1.62 1.6221.634.992n f r r --=-=⨯=- 可解得 '3437.4f cm =-17.两片极薄的表玻璃,曲率半径分别为20cm 和25cm 。