Isolation and characterization of a potential biocontrol Brevibacillus laterosporus
朱慧贤,男,1966年1月出生,云南易门县人,教授,理学学
先后担任原化学与环境科学系班主任、生物教研室主任、实验室副主任、副系主任
先后获得云南省级优秀教学成果奖、玉溪市科技进步奖、学校优秀教学成果奖、学校课程方案设计一等奖、教学竞赛二等奖、优秀教育工作者、师德标兵、优秀教师、优秀共产党员、优秀班主任等奖励
1.Wu,Xian-Hua;Zhu,Hui-Xian;Zhang,Xin;Hu,Qiu-Fen;Yang,Guang-Yu.Determination of the resveratrol in wine by rapid column high performance liquid chromatography. Guangpu Shiyanshi(2005), 22(3), 593-594.
薛智勇
浙江省农业科学院环境资源与土壤肥料所研究员
浙江省"151"人才工程第二层次
长期一直从事生物肥料和农业废弃物处理利用技术开发研究工作
曾主持参加"浙江省主要农产品产地环境质量评价与控制关键技术研究"、"设施栽培植株残体处理研究及基质新材料开发"、"环太湖养殖排泄物环境污染风险评价及综合利用关键技术研究"、 农业部公益性行业科研专项"有机(类)肥料产业发展的技术研究"和948项目"固体有机废弃物高附加值资源化技术引进、创新研究与产业化开发"、"新型多功能生物肥料创制关键技术研究与产品开发"、"次生盐渍化土壤生物活性调理剂的研制与开发"、"新型饲用微生态制剂的研制与产业化"、"环保型工厂化养猪业关键技术研究与示范"、"畜禽规模养殖及专业小区环境工程技术开发与示范"等10多项与本项目相关国家省部级课题
当今干细胞研究方面地10位顶尖科学家
排名第一:Shinya Yamanaka和JamesA.Thomson博士是建立了可诱导的万能干细胞,在干细胞再生和分化重排机理上做出了最具突破性的进展性工作;这毫无疑问是诺贝尔奖级的工作,其他几位平时工作很杰出,可是没有这种级别的工作,只好屈居次位;排名第二:Rudolf Jaenisch博士长期从事于干细胞核的替代重组和干细胞的表观遗传修饰工作,卓有成绩,这也是培养诱导干细胞的核心工作,重要性无人能代替;排名第三: Rebort lanza博士领导和指挥着全球最领先的干细胞生物技术公司,独创和建立了分离和培养单个胚胎干细胞的方法和技术。
主编了所有重要的干细胞参考书籍。
每一相重大干细胞技术的出现,美欧主流媒体都要听他的意见,可谓干细胞领域的大腕人物;排名第四:Alan Trounson博士是国际免疫学和干细胞研究的先驱者,领导和指挥原澳大利亚Monash大学免疫学和干细胞研究实验室,使Monash大学成为世界上最成功的大学之一。
手下的弟子Martin Perl博士出任南加州大学第一界干细胞和系统生物学所所长。
2007年成为美国眼下资金最多,实力最强的加州再生医学研究研究所所长,成为美国干细胞研究中最大的老板;排名第五:哈佛大学干细胞研究所所长Douglas A. Melton博士和斯坦福大学干细胞和再生医学研究所所长Irving L. Weissman博士两人都是干细胞研究领域的顶尖高手,又各了带领着东西两岸这两所美国奈至全世界的顶尖学府的干细胞研究的竟赛。
排名第六:哈佛大学干细胞研究所共同所长David T. Scadden, 博士和密西根大学干细胞中心主Sean Morrison博士两人是干细胞研究的中青年骨干,专长于干细胞分化再生的微环境调控机理的研究,. Scadden, 博士是麻省总医院再生医学研究所所长,侧重于干细胞的临床应用。
Morrison博士则是休斯医学研究所研究员,是美国中西部大学中干细胞研究的顶级人物。
一株螺旋状铁氧化细菌的分离及特性研究
收稿日期:2003-10-17基金项目:国家自然科学基金资助项目(50170034)(30170026)作者简介:刘 缨(1976-),女,助理工程师,主要从事自养微生物的分子生物学研究.文章编号:1671-9352(2004)02-0116-04一株螺旋状铁氧化细菌的分离及特性研究刘 缨,刘相梅,郑力真,林建群,颜望明(山东大学 微生物技术国家重点实验室,山东 济南 250100)摘要:利用双层平板培养技术,从云南腾冲地区高温温泉边酸性水中分离出1株螺旋状铁氧化细菌ML -04,对该菌的理化特性研究结果显示,该菌专性化能自养,可利用亚铁和黄铁矿为能源,不能氧化硫磺、四硫酸盐、硫代硫酸盐,最适生长温度40e ,最适生长p H2.5.对砷黄铁矿的浸矿实验表明,ML -04菌株可以有效浸出矿粉中的铁和硫元素.关键词:螺旋状;铁氧化细菌;分离;理化特性中图分类号:Q93 文献标识码:AIsolation and characterization of a vibrioid -shaped iron -oxidizing bacteriumLIU Ying,LIU Xiang -mei,Z HENG L-i zheng,LIN Jian -qun &YAN Wang -ming(State Key Laboratory of Microbial Technol ogy,Shandong Univ.,Ji nan 250100,Shandong,China)Abstract :A vibrioid -shaped i ron -oxidizing bacteriu m,named strain ML -04,was isolated from Tenchong area,Yunnan province in China with the double layer culture technique.And the characterization resul ts showed that ML -04s train is obli gately autotrophic and could use ferrous iron and p yrite as sole energy sources,but not element sulfur,thiosulfate and tetrathionate.The opti mal tem -perature of ML -04strai n is 40e and the opti mal p H is 2.5for growth.The result of leaching test showed that iron and sulfur ele -ment could be effectively extracted from arsenopyrite by bio -oxidation process of the ML -04strain.Key words :Vibrioid -shaped;Iron -oxidizing bacterium;Isolati on;Physi ological characters生物浸矿技术具有悠久的历史,古代人们就用微生物浸出铜.和化学方法相比,生物浸矿具有多方面的优点,不仅耗能低,对环境污染小,还可以处理常规化学方法难处理的低品位矿石,因而在环境问题日益严重,金属富矿匮乏的今天,越来越受到人们的关注[1].生物浸矿技术在一些国家已成功应用于工业生产,如南非、巴西、澳大利亚、美国、加纳、秘鲁、乌兹别克斯坦、希腊等国都实现了生物浸矿的工业化应用.我国在这方面的工作也开始起步,2000年,山东莱州天承生物金业股份有限公司引进澳大利亚生物提金技术处理含砷难冶金精矿,日处理矿石能力可达120吨[2].浸矿微生物主要是一些在酸性环境中生长的铁或硫氧化细菌.多为化能自养,可利用低价态铁或还原态无机硫化物作为电子供体,具有嗜酸性,生长pH 在1.5~2.0左右[3].目前国外已广泛开展对浸矿细菌的研究,以更好的应用于生产实践.但研究过程中存在很多技术难点,尤其是浸矿细菌绝大多数都是专性化能自养,有机质的存在对其生长有抑制作用,因而在琼脂糖或琼脂固体培养基上难以生长,也就难以对其进行分离纯化.目前分离纯化这类细菌多采用双层平板培养技术,该技术是在底层培养基中加入1种嗜酸性异养细菌,通过底层异养细菌的生长,消耗了琼脂第39卷 第2期Vol.39 No.2山 东 大 学 学 报 (理 学 版)JOURNAL OF SHANDONG UNI VERSITY2004年4月 Apr.2004糖固体平板中的微量有机成分,如寡糖类物质,从而有利于上层平板中化能自养细菌的生长[4,5].本研究利用双层平板培养基技术,从采集自云南腾冲地区高温温泉边的酸性水样中分离纯化出1株螺旋状铁氧化细菌ML-04,对该菌的理化特性和浸矿能力进行了研究.1材料1.1样品采自云南腾冲地区高温温泉边酸性水样.1.2培养基ML-04菌株的分离用FeTSB双层平板培养基[5]、生长曲线的测定用9K矿粉培养基[6],即9K培养基中加入砷黄铁矿(该矿粉含S20.45%,Fe 24.9%,As5.16%),用1mol P L的硫酸调pH至2.5.ML-04菌株能源利用特性的测定用基础培养基[7].该培养基用1mol P L的硫酸调pH至2.5.2方法2.1ML-04菌株的分离将采集的样本在9K培养基中,37e富集培养10d左右,待培养基颜色变成红棕色,采用梯度稀释法,涂布Fe TSB双层平板培养基,37e培养7d左右,长出单菌落,挑取单菌落在Fe TSB双层平板培养基上连续分离纯化,镜检观察,直至菌体形态一致.记作ML-04.收集ML-04菌体,经革兰氏染色后在光学显微镜下观察并摄影.收集ML-04菌体,涂布在小块盖玻片上,自然晾干后,用导电胶贴于圆形贴片上,喷金后在扫描电镜下观察及摄影.2.2ML-04菌株最适生长温度的测定以相同接种量接种ML-04菌悬液到含8%砷黄铁矿的9K培养基中,分别置于25e、35e、40e、45e、55e五个温度梯度,摇床培养6d,用血球计数板计菌数,以温度为横坐标,以菌数的对数值为纵坐标,绘制ML-04的生长温度)))菌数曲线图.2.3初始pH对ML-04菌株生长的影响以相同接种量接种ML-04菌悬液到含8%砷黄铁矿的9K培养基中,培养基pH值分别用奥力龙828型pH计标定至0.5,1.5,2.5,3.5,4.5,40e摇床培养6d,用血球计数板计菌数,以初始pH为横坐标,以菌数的对数值为纵坐标,绘制ML-04的pH)))菌数曲线图.2.4ML-04菌株生长曲线的绘制接种ML-04菌悬液到含8%砷黄铁矿的9K培养基中,pH2.5,40e条件下摇床培养,转速120r P min,每隔2d用血球计数板计菌数,以培养天数为横坐标,以菌数的对数值为纵坐标,绘制ML-04的生长曲线图.2.5ML-04菌株能源利用特性的研究向基础培养基中分别加入蛋白胨(0.1%)、酵母粉(0.1%)、葡萄糖(0.1%)、硫磺(5%)、硫代硫酸钠(1%)、四硫酸钾(0.3%)、硫酸亚铁(0.1mol P L)和黄铁矿(5%).其中硫代硫酸钠、四硫酸钾、硫酸亚铁过滤除菌后加入培养基,硫磺隔水蒸煮1h灭菌,再加入培养基.以ML-04菌悬液接种,40e摇床培养6d,连续3代移种,在显微镜下涂片观察菌的生长情况,生长者为阳性.2.6ML-04氧化砷黄铁矿的研究接种ML-04菌悬液到含8%砷黄铁矿的9K培养基中,每隔2d测1次培养基中可溶性总铁的量及硫酸根离子的量.总铁的测定用邻二氮菲分光光度法,硫酸根离子的测定用比浊法[8].以溶液中可溶性总铁的量与培养基中矿粉总铁含量的比例为纵坐标,以培养天数为横坐标,绘制铁的氧化率曲线.以溶液中硫酸根离子含量与培养基中矿粉含硫总量的比例为纵坐标,以培养天数为横坐标,绘制硫的氧化率曲线.3结果3.1菌株的分离及形态学观察菌株ML-04的菌落形态为琥珀色同心圆状,直径1~3mm,表面湿润,凸起,光滑(见图1).菌体形态为螺旋状,大小(0.25~0.3)@(1~3L m),革兰氏染色阴性(见图2和图3).3.2ML-04菌株最适生长温度的测定由图4可以看出,ML-04最适生长温度在40e 左右.当培养温度达到55e时,ML-04的菌数迅速下降.3.3初始pH对ML-04菌株生长的影响从图5可见,ML-04菌株生长的最适初始pH为2.5左右.在此pH条件下生长最好.第2期刘缨,等:一株螺旋状铁氧化细菌的分离及特性研究117图1 ML -04菌株的菌落形态照片Fig.1 The Colony of ML -04图2 ML -04菌株的光学显微镜照片(@1000)Fig.2 M icrograph of ML -04图3 ML -04菌株的扫描电镜照片(@15000)Fig.3 Scanning electron micrograp h of ML -04图4 培养温度对ML -04生长的影响Fig.4 Effect of temperature on the growth of ML -04strain图5 初始pH 对ML -04生长的影响Fig.5 Effect of culture media p H on the growth of ML -04strain3.4 ML -04菌株的生长曲线从图6可见,ML -04经过4d 左右的生长延滞期,4~6d 为对数生长期,从第8天以后,菌数增长非常缓慢.图6 ML -04菌株的生长曲线Fig.6 The growth curve of ML -04strain3.5 ML -04能源利用特性的研究由表1可见,ML -04菌株可以利用硫酸亚铁和黄铁矿为能源生长,不能利用硫磺、硫代硫酸盐和四硫酸盐,也不能利用葡萄糖、蛋白胨等有机物.表1 ML -04能源利用特性的研究T ab.1 Energy sources utilization characters of ML -04strai n能源生长情况蛋白胨-酵母粉-葡萄糖-硫磺-硫代硫酸钠-四硫酸钾-硫酸亚铁+黄铁矿+3.6 ML -04菌株对砷黄铁矿中铁和硫的氧化浸出结果ML -04菌株对铁的氧化浸出率见图7.ML -04菌株可以有效浸出砷黄铁矿中的铁,随着培养天数的增加,溶液中总铁的含量不断提高,第18天时,铁的浸出率在90%以上.图7 ML -04菌株对砷黄铁矿中铁的氧化浸出曲线Fig.7 The curve of iron concentration in the extraction ofarsenopyrite by ML -04strain118山 东 大 学 学 报 (理 学 版)第39卷ML -04菌株对砷黄铁矿中硫的氧化浸出率见图8.随着培养天数的增加,溶液中硫酸根的含量不断提高,第18天时,硫的浸出率达80%以上.图8 ML -04菌株对砷黄铁矿中硫的氧化浸出曲线Fig.8 The curve of sul fur concentration in the extraction ofarsenopyrite by ML -04s train4 讨论长期以来,人们一直认为氧化亚铁硫杆菌(Thiabacillus ferrooxidans )在浸矿过程中起主要作用,近些年的研究却发现,钩端螺旋菌属(Leptos pirillum )在浸矿过程中往往起关键作用.和T .ferroo xidans 相比,Leptospirillum 属菌株如氧化亚铁钩端螺旋菌(L .ferroo xidans )的氧化还原电势更高,对铁离子的耐受能力更强,生长不受高浓度三价铁离子的抑制.因而,在工业生产中,尤其是在连续反应浸矿系统中,Leptos pirillum 属菌株占微生物种群的主要组分,在浸矿过程中起主导作用[9,10].因此,有关钩端螺旋菌属资源的发掘及其浸矿特性的研究,对微生物浸矿技术的发展和应用具有十分重要的意义.本实验的研究结果表明,ML -04菌株是螺旋状铁氧化细菌.它的最适生长温度40e ,最适生长pH2.5,和Leptos pirillum 属的L .ferrooxidans 一样,既能氧化硫酸亚铁,又能氧化硫化矿物,不能氧化硫磺、硫代硫酸盐及四硫酸盐.不能利用有机物为能源进行生长,属于化能自养型微生物[3,11].ML -04菌株与T .ferroo xidans 和L .ferroo xidans 的比较见表2.铁氧化细菌中的氧化亚铁钩端螺旋菌(L .fer -roo xidans )虽然不能直接利用无机硫化物作为能源,但它们在矿物的生物氧化过程中,通过浸出矿物中的铁元素,产生的硫酸铁中间代谢物是一种有效的金属矿物氧化剂,可作用于矿物中的无机硫,将硫元素也浸提出来[12].对ML -04的浸矿实验研究表明,ML -04菌株可有效浸出砷黄铁矿中的铁和硫.因而,该菌株在实际生产中具有潜在的应用价值,有关该菌株更为广泛的浸矿特性研究,本室正在进一步进行中.表2 ML -04菌株与T .f e rrooxidans 和L .f e rrooxidans的比较T ab.2 Characteristics of Strain ML -04,T .ferrooxidans andL .ferrooxidans生理生化特性ML -04L .ferrooxidan T .ferrooxidan s 革兰氏染色G -G -G -菌体形态螺旋状螺旋状杆状菌体大小(L m)0.25~0.3@1~30.2~0.4@1~30.5~1@1~2最适生长温度(e )4037~4030最适生长pH 2.5 1.5~1.8 2.5~3.0生长类型化能自养化能自养化能自养能量来源Fe 2+Fe 2+Fe 2+,S 0参考文献:[1]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997.[2]杨显万,郭玉霞.生物湿法冶金的回顾与展望[J].云南冶金,2002,31(3):85~88.[3]Rawlings D E.Heavy metal mining using microbes[J].AnnuRev Microbi ol,2002,56:65~91.[4]Johnson D B,Macvicar J H M,Rolfe S.A new solid mediumfor the i solatation and enumeration of Thiabacillus ferrooxidan s and acidophilic heterotrophic bacteria [J].J Microbial M eth -ods,1987,7:9~18.[5]Johnson D B,M cGinness S.A highly efficient and universalsolid medium for growing mesophilic and moderately thermo -philic,iron -oxidizi ng ,acidophilic bacteria [J ].J M icrobial Methods,1991,13:113~122.[6]Silverman M P,Lundgren D G.Studies on the chemoautotro -phic iron rium Ferr obacterium f e rrooxidans I:An improved me -dium and harvesting procedure for securing high cell yields[J].J Bacterial,1959,77:642~647.[7]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].北京:科学出版社,2001.[8]南京大学5无机及分析化学实验6编写组.无机及分析化学实验(第三版)[M ].北京:高等教育出版社,1998.[9]Rawlings D E,Tributsch H,Hansford G S.Reasons why-Le ptospirillum .-like species rather than Thiobacillus f err ooxi -dans are the dominant iron -oxidizing bacteria in many commer -cial processes for the biooxidati on of pyri te and related ores[J].Microbi ology,1999,145:5~13.(下转第124页)第2期刘 缨,等:一株螺旋状铁氧化细菌的分离及特性研究119点:1、ZAP Express载体具有包括EcoRÑ、NotÑ在内的12个单一酶切位点,可插入0-12kb的DNA片段;2、在克隆位点两侧,含有T3、T7、Lac、C MV等双向启动子满足在原核和真核中表达的条件;3、具有T3、T7等多条测序引物;4、含有Ne o r-Kan r抗性标记便于重组子的筛选;5、构建于该载体上的克隆可用DNA探针或抗体探针筛选;7、由于ZAP E xpress中引入了f1噬菌体的复制其始和终止信号,在得到阳性克隆噬菌斑后,利用辅助噬菌体E xAssist进行超感染,使插入片段连同pB K-C MV从噬菌体DNA上剪切下来,形成噬菌粒,省掉了插入片段从噬菌体DNA到质粒载体上的酶切、连接和转化这一过程,极大方便了在体外对插入DNA片段的亚克隆操作.关于ZAP E xpress更为详尽的讨论见文献[5].利用分离纯化的火菇素的免疫血清对金针菇表达型cDNA文库进行免疫筛选,再对阳性克隆用PC R、限制性内切酶进行酶切、大肠杆菌初步诱导分析,获得了目的基因相关的cDNA片段,进一步的序列分析、鉴定和克隆火菇素基因的工作正在进行之中.参考文献:[1]Komatsu N,T erakawa H,Nakanishi K.Flammulin,a basicprotein of Flammulina velutipes wi th ant-i tumor activities[J].Antibiotics,Ser A,1963,16(3):139~143.[2]Watanabe Y,Nakanishi K,Komaisu N.Flammulin,an ant-itumor substance[J].Bull Chem Soc,Japan,1964,37(5): 747~750.[3]周凯松,彭俊峰,张长铠,等.火菇素提取新工艺及其生物活性研究[J].中国生物化学与分子生物学报, 2003,(2),In press.[4]张龙翔.生化实验方法和技术[M].北京:高等教育出版社,1997.[5]Joseph Sambrook,David W.Russel.分子克隆(第三版)[M].黄培堂,等译.北京:科学出版社,2002.[6]Laemmli UK.Cleavage of structural proteins during the assem-bly of the head of bacteriophage T4[J].Nature,1970,227: 680~685.(编辑:于善清)(上接第119页)[10]Sand W,Rohde K,Sobotke B,et al.Evaluation of Leptospi-rillu m f err ooxidans for leaching[J].Appl Environ Microbiol, 1992,58:85~92.[11]Arthur P,Harrison J.Genomic and physiological diversi tyamongst s trains of Thiobacillus ferrooxidand,and genomic comparison wi th Thiobacillus thioox idans[J].Arch Microbial,1982,131:68~79.[12]Battaglia-Brunet F,d,Hugues P,Cabral T,et al.T he mutu-al effect of mixed Thiobacilli and Leptospirilli populations on pyrite bioleachina[J].Minerals Engineering,1998,11(2): 195~205.(编辑:于善清)124山东大学学报(理学版)第39卷。
《土壤中的解磷微生物研究文献综述4200字》
土壤中的解磷微生物研究文献综述目录土壤中的解磷微生物研究文献综述 (1)1.1 前言 (1)1.2 土壤中的磷 (2)1.2.1 土壤中的磷的存在形式及动态变化 (2)1.2.2 我国磷肥的应用现状 (2)1.3 解磷微生物的研究概况 (2)1.3.1 微生物在磷素循环中的作用 (2)1.3.2 解磷微生物的的种类 (3)1.3.3 解磷微生物的解磷机制 (3)1.3.4 解磷菌肥研究现状 (4)1.3.5 矿区土壤中解磷细菌研究现状 (4)参考文献 (4)1.1 前言磷是生物生长发育的必需元素之一,动物和微生物可通过捕食或分解代谢来补充,而植物体内的磷元素主要来自植物根部对土壤中可溶性磷元素的吸收。
其含量的多少直接影响植物的生根、幵花、固氮以及光合作用等生命活动[1]。
土壤中的磷素有95%以上以难溶性盐的形式存在。
由于具有溶解度极低、不易被吸收的特性,导致我国一半以上的耕地存在着土壤或植物的缺磷现象。
磷素的缺乏常会导致作物的生长发育受限,目前国家主要采取增施化学磷肥[2]等措施。
磷肥的不合理施用造成了磷矿资源过量开采[3,4]、环境污染[5,6]以及当季磷肥利用率较低等一些列的问题。
至今磷仍然是我国农业生产中重要的限制因素之一,因此研究更加高效无害的新型磷肥,提高磷肥使用效率,是提高我国乃至全球农业发展虐待解决的问题之一。
目前为止,多种解磷微生物已经在农业生产中得到了应用,但仍旧存在着菌株定殖能力较弱,溶磷效果不佳等问题。
由于土壤中磷素成分多样复杂,因此筛选具有多重解磷能力且对恶劣生态环境适应性较强的微生物,仍是解磷菌肥开发的一项重要的基础性工作[7]。
本研究以辽宁省大连市某水镁矿尾矿表层土壤中筛选出的兼具溶磷效果和环境适应能力强的细菌菌株为研究对象,探讨了其对钙磷、铝磷、铁磷以及有机磷等四种不同类型难溶性磷的降解性能,为今后开发和利用解磷菌肥提供参考依据,对节约磷矿资源,缓解相关的面源污染等问题具有重要的现实意义。
顾小红1、研究团队简介_顾小红
1、研究团队简介海洋生物活性物质开发研究是海洋生物学重点学科主要研究方向之一,研究团队以海洋动植物为研究对象,通过现代生物技术和生物化学手段,研究海洋动物和植物的活性物质,阐明活性物资结构和功能,开发活性物质的应用。
研究团队主要研究海洋动植物生理活性成分如抗菌肽、凝集素、抗生素、多糖等的提取、分离技术、活性鉴定,结构和功能;重要工业用多糖如普鲁兰多糖的发酵,甲壳素作为生物材料的开发应用以及拟糖蛋白及糖生物学等。
研究团队有教授1人、副教授5人、讲师1人,其中博士5人,已形成了学历和职称结构较为合理的教学科研队伍。
2、主要研究方向(1)抗菌活性物质的分离制备研究海洋水产生物中抗菌、抗病毒和抗肿瘤活性的寡肽,探索抗菌肽的分离纯化和制备的方法,探讨抗菌肽的抗菌机理,开发抗菌肽在海洋生物开发和水产养殖等方面的应用。
(2)海洋生物材料以及组织工程研究甲壳素及其衍生物的生物功能活性及其应用,开发甲壳素作为缓(控)释制剂和作为生物支架材料等在组织工程学中的应用。
(3)海洋生物凝集素的研究从海洋动物植物分离纯化凝集素(lectin),进行凝集素的活性及其在动植物体内的特殊生物学功能研究,探讨凝集素在生物养殖、生物工程、生理活动调控、疾病防治等方面的应用价值。
(4)海洋生物活性糖类的研究本方向涉及普鲁兰多糖的发酵与应用研究,海洋生物糖复合物的分离纯化及功能活性研究,拟糖蛋白研究等。
3. 团队成员安贤惠,教授,博士。
1965年2月出生,女,汉族,甘肃镇原人,无党派代表人士。
1986年毕业于甘肃农业大学农学专业,获农学学士学位;1999年毕业于华中农业大学作物遗传育种专业,获农学硕士学位;2013年上海交通大学微生物学专业,博士毕业。
2004-2005年,江苏省第一批“333”访问教授,于南京农业大学进修学习;1986年7月-2000年10月在甘肃省农科院工作,2000年10月调入淮海工学院。
先后主持和参加完成国家“七五”、“八五”攻关项目和国家自然基金等科研项目10余项,获省部级科技进步一等奖1项、二等奖3项,三等奖1项;获国家发明专利3项;发表论文30余篇;主讲遗传学、生物化学和分子生物学等课程。
表皮葡萄球菌革兰染色结果
表皮葡萄球菌革兰染色结果表皮葡萄球菌(Staphylococcus epidermidis)是一种革兰氏阳性球菌,常存在于人体的皮肤和黏膜上,是人体正常的共生菌群之一。
在微生物学实验室中,通过革兰染色可以初步鉴定菌落的细菌种类,以下为表皮葡萄球菌的革兰染色结果及其相关参考内容。
革兰染色是一种常用的细菌形态鉴定方法,它可以根据细菌细胞壁的结构特征将细菌划分为革兰氏阳性和革兰氏阴性。
在革兰氏染色过程中,细菌首先被用革兰碘溶液固定,然后用洗涤剂去除多余的碘,接着用洗涤液洗去洗涤剂,最后用碱性蓝靛溶液染色。
根据革兰效应的原理,革兰氏阳性菌会呈现紫色或深紫色,而革兰氏阴性菌则呈现红色或粉色。
表皮葡萄球菌的革兰氏染色结果为紫色或深紫色,表明其为革兰氏阳性球菌。
根据细胞壁的结构特点,可进一步鉴定其为表皮葡萄球菌。
表皮葡萄球菌的细胞壁主要由多聚葡聚糖(polysaccharide intercellular adhesin)和蛋白质构成。
它们的细胞壁具有高度交联的肽聚糖层,并且还有肽聚糖先导蛋白,这些蛋白质在交联的细胞壁形成中发挥重要作用。
细胞壁的结构特点决定了表皮葡萄球菌的染色结果为革兰氏阳性。
参考文献:1. Kloos, W. E., & Schleifer, K. H. (1975). Isolation andcharacterization of staphylococci from human skin. International journal of systematic and evolutionary microbiology, 25(1), 50-61.2. Foster, T. J., & Geoghegan, J. A. (2016). Staphylococcus aureus–Surface Proteins on the Interface of Host and Pathogen. Science, 325(5944), 933-939.3. Mack, D., & Rohde, H. (2004). Staphylococcus epidermidis in the human skin microbiome: a potential role for interleukin 10 in the persistence of colonization and infection. FEMS microbiology reviews, 29(1), 21-41.4. Becker, K., Heilmann, C., & Peters, G. (2015). Coagulase-negative staphylococci. Clinical microbiology reviews, 27(4), 870-926.5. Otto, M. (2009). Staphylococcus epidermidis—the ‘accidental’ pathogen. Nature Reviews Microbiology, 7(8), 555-567.。
海藻糖的生物合成在植物中的作用1
海藻糖的生物合成在植物中的作用海藻糖在植物中的作用是非同寻常的。
起初海藻糖被认为充当渗透保护剂的作用,但它在植物中极低的含量使这种作用不可能。
这个月的《高冲击》中有一篇题目为《拟南芥海藻糖-6-磷酸合成酶活性暨AtTPS1基因是一种血糖调节物、脱落酸、和压力信号物》的文章出现在2004年11月的这期,从而增加了越来越多的证据证明在植物中不是海藻糖本身,而更有可能是一种合成途径媒介或者是合成途径中的一种酶在植物中起关键作用。
背景海藻糖(a-D-吡喃葡萄糖基-1,1-a-D-葡萄吡喃糖烯丙基苷)是一种通过一个1-1α-邦德连接两个葡萄糖苷结构单元形成的非还原二糖。
各种各样的生物体包括植物、真菌、细菌、无脊椎动物合成这种化合物。
海藻糖是昆虫中主要的血糖并且是一种主要的飞行能量储存分子。
,一般认为在这些植物中积累的海藻糖帮助植物在长期干旱时存活。
然而,很少例外,这不可能是一个源于海藻素本身的直接作用,因为只有微量的海藻素出现在被子植物中。
最近的研究为海藻糖前体物定义了一个作用,海藻糖-6-磷酸尤其是在植物糖涌入和新陈代谢过程中,充当调控分子的作用(审查,参阅Eastmong和Graham,2003)。
在AtTPS1基因上有插入物的拟南芥(Arabidopsis thaliana)植物不能发育为成熟胚芽,最近研究海藻糖生物合成途径在胚芽成熟和发育中的重要性时发现,T6P可以引起催化淀粉合成第一个关键步骤酵素二磷酸腺苷-葡萄糖磷酸化酶的氧化还原激活(Kolbe 等,2005)。
同时,T6P已经确认是一种可以增强光合作用能力的关键分子因而为农学家提供了一个长期寻求的梦想:农作物生物量的提高(Pellny等,2004)。
多样的海藻糖生物合成途径已经在细菌和古细菌中被发现,但是迄今为止在真核生物中只检测发现到一个途径(Avonce等,2006)。
真核生物的途径与植物的复合成途径有很多相似之处(审查,参阅Goddijn和van Dunn,1999)。
ISOLATION AND CHARACTERIZATION OF A NOVEL PYTHIUM
专利名称:ISOLATION AND CHARACTERIZATION OF A NOVEL PYTHIUM OMEGA 3 DESATURASEWITH SPECIFICITY TO ALL OMEGA 6 FATTYACIDS LONGER THAN 18 CARBON CHAINS 发明人:Jörg Bauer,Guohai Wu,Xiao Qiu申请号:US14684682申请日:20150413公开号:US20150211032A1公开日:20150730专利内容由知识产权出版社提供摘要:The present invention relates to a polynucleotide encoding an omega 3 (ω-3) desaturase from Pythium irregulare with specificity to long chain polyunsaturated omega 6 (ω-6) fatty acids as well as a vector containing the polynucleotide, and a host cell containing the vector or the polynucleotide. Moreover, the present invention pertains to a polypeptide encoded by the polynucleotide, antibodies against the polypeptide as well as a method for the manufacture of the polypeptide. Further, encompassed by the present invention are transgenic non-human organisms. Finally, the present invention relates to methods for the manufacture of compounds and oil- fatty acid-, or lipid-containing compositions.申请人:BASF Plant Science GmbH,Bioriginal Food & Science Corp.地址:Ludwigshafen DE,Saskatoon CA国籍:DE,CA更多信息请下载全文后查看。
降钙素原作业指导书
检验科免疫室
分析项目作业指导书降钙素原(PCT)第页,共页
版本:A/0
生效日期:2008-02-01 46
<2 ng/mL 88 18 106
≥2 ng/mL 7 99 106
共计95 117 212
根据以上数据,临床敏感性为85%,临床特异性为93%,阳性预期值为93%,阴性预期值为82%。
临床分类
Elecsy
BRAHMS PCT
SIRS 脓毒血症共计
<2 ng/mL 88 55 143
≥2 ng/mL 7 16 23
共计95 71 166
根据以上数据,临床敏感性为23%,临床特异性为93%,阳性预期值为70%,阴性预期值为62%。
9.分析性能
检测范围:0.02-100 ng/mL
精密度
根据NCCLS(全国临床实验室规范化操作委员会)制订的改良试验计划(EP5-A),应用Elecsys试剂盒、人血液标本和质控液验证ElecsysTOTAL P1NP试剂盒检测重复性。
每日测6 次共10 日(n=60);在E170 分析仪上的组间精密度(n=21),得结果如下:
10.干扰因素
检测结果不受黄疸(胆红素<428μmol/L或<25 mg/dl), 溶血(血红蛋白<0.559mmol/L或< .900g/dl), 脂血(脂肪乳剂< 1500mg/dl)和生物素<123nmol/L或<30ng/ml的影响。
回收率标准:回收率在初始值的±15%之内。
对于接受高剂量生物素治疗的患者(> 5mg/天),必须在末次生物素治疗8小时后采集样本。
浓度达150IU/ml的类风湿。
美洲商陆快速繁殖实验体系的建立
3中国科学院创新工程重大资助项目(KZCXY 2Y 2CA )收稿日期:2003212202美洲商陆快速繁殖实验体系的建立3崔丽华1) 张海燕2) 张铁汉2) 陈正华2)(1)北京师范大学生命科学学院,100875,北京;2)中国科学院遗传与发育研究所,100101,北京∥第一作者39岁,女,副教授)摘要 以美洲商陆(Phytolacca americana L.pokeweed )的茎尖为外植体,建立了美洲商陆的快速繁殖实验体系.茎尖增殖最佳培养基为MS +0.05mg ・L -162苄基腺嘌呤(62BA )+0.1mg ・L -1赤霉素(G A 3)+300mg ・L -1水解乳蛋白(L H )+20g ・L -1蔗糖+7.0g ・L -1琼脂,p H5.8.诱导根的最佳培养基为1/2MS +0.4mg ・L -1吲哚丁酸(IBA )+0.1mg ・L -1G A 3+300mg ・L -1L H +15g ・L -1蔗糖+7.0g ・L -1琼脂,p H5.8.关键词 美洲商陆;快速繁殖;诱导;愈伤组织分类号 Q 945.5;Q 943.1美洲商陆(Phytolacca americana L .,pokeweed ),在工业、农业和医药上具有重要价值[125].本实验以美洲商陆为实验材料,从种子萌发起始,建立起茎尖增殖、根的诱导、试管苗移植等一整套离体快速繁殖体系,这对于工业化生产多种重要次生代谢产物具有重要意义.为从中克隆药物基因提供植物材料.1 材料和方法1.1 材料 美洲商陆种子由中国科学院植物研究所提供.1.2 种子的萌发 美洲商陆种子在无菌条件下用浓硫酸浸泡10min ,然后,用无菌水冲洗5次以上,接种在MS 0基本培养基(MS +20g ・L -1蔗糖+7.0g ・L -1琼脂,p H5.8)上.1.3 茎尖的增殖 待种子发芽并长出真叶后,切取茎尖分别接种于下列p H5.8的茎尖增殖培养基上.MS 1:MS 0+0.1mg ・L -162苄基腺嘌呤(62BA )+0.1mg ・L -1赤霉素(G A 3);MS 2:MS 0+0.05mg ・L -162BA +0.1mg ・L -1G A 3+300mg ・L -1水解乳蛋白(L H ).在进一步继代培养时,茎尖或带腋芽茎段仍接种于同样的培养基上,培养温度2426℃,光照度8001000lx ,每天光照12h ,1个月后统计茎尖增殖情况.1.4 根的诱导 切取长约23cm 的茎尖,分别接种于下列p H5.8的生根培养基上.R 1:MS 0+0.1mg ・L -1吲哚丁酸(IBA );R 2:MS 0+0.2mg ・L -1IBA ;R 3:MS 0+0.4mg ・L -1IBA ;R 4:MS 0+1.0mg ・L -1IBA ;R 5:1/2MS +0.4mg ・L -1IBA +0.1mg ・L -1G A 3+300mg ・L -1L H +15g ・L -1蔗糖+7.0g ・L -1琼脂.培养温度2426℃,光照度8001000lx ,每天光照12h ,40d 后统计生根效果.1.5 试管苗的移植 当根系发生并形成完整植株后,将试管苗移栽至土壤中,于室温下培养.2004年 6月第40卷 第3期北京师范大学学报(自然科学版)Journal of Beijing Normal University (Natural Science )J un.2004Vol.40 No.32 结果与分析2.1 种胚快速萌发技术的建立 在自然条件下,商陆种子的萌发需要1至数月的时间,繁殖起来比较困难.为了加速种子的萌发,我们用浓硫酸浸泡种子,发现美洲商陆种子浸泡10min 后,种皮即变疏松,由于浓硫酸具有杀菌作用,再用无菌水冲洗后可直接作为外植体接种.接种于MS 0培养基上,经1周左右即开始萌动,2周后两子叶完全展开,3周后长出2或3片真叶,成苗率达95%以上.这一结果为美洲商陆种子的快速萌发提供了一个简便、快捷的方法.2.2 茎尖增殖需要偏低的细胞分裂素水平 将茎尖接种到MS 1增殖培养基上.结果发现茎基部与叶腋均有芽的增殖,接种茎尖数为50个,总增殖芽数217个,茎尖增殖系数可达413,但是,所有的芽均表现出节间缩短、叶片皱缩不展,而且基部发生大量愈伤组织.推测这些现象是由于62BA (0.1mg ・L -1)的质量浓度ρ过高所致.于是将62BA 的ρ减半至0.05mg ・L -1,同时添加有利于芽生长的L H (300mg ・L -1,MS 2培养基),接种茎尖数为50个,总增殖芽数为202个,则茎尖增殖系数4.0,虽略有降低,但芽生长正常,基部只产生少量愈伤组织,消除了高质量浓度62BA 的不利影响(图1,见封3上左).2.3 正常根系的诱导 生长素类植物激素可有效地促进组培苗的生根.美洲商陆在R 1(0.1mg ・L -1 IBA )培养基上,基部虽无过量的愈伤组织的产生,但根过于细长,于是将IBA 的ρ分别提高到0.2(R 2),0.4(R 3)和1.0mg ・L -1(R 4),结果表明,随IBA 的ρ的提高,根的发生频率及发根条数略有提高,根的直径由细变粗,根基部愈伤组织发生量由少增多;其中0.2mg ・L -1 IBA 诱导的根仍然太细,1.0mg ・L -1 IBA 诱导的根太粗且短,基部产生大量愈伤组织,而0.4mg ・L -1 IBA 诱导的生根效果最佳,根的粗度及长度适中,主根上发生较多须状侧根,而产生的愈伤组织很少.进一步将R 3培养基中MS 基本成分减半,同时将蔗糖用量由原来的20g ・L -1降至15g ・L -1,并附加0.1mg ・L -1 G A 3(R 5),也获得了与R 3培养基同样的生根效果(图2,见封3上中).美洲商陆小芽在上述各种生根培养基上的生根情况见表1.表1 不同培养基对美洲商陆小芽生根的影响培养基代号接种芽数生根芽数生根率/%总生根数单芽生根数R 120189095 5.3R 220199599 5.2R 3201995127 6.7R 4201995121 6.4R 5201995122 6.4 这一结果表明:美洲商陆组培苗根的诱导对各种营养成分的需求水平比芽的增殖与生长要低,这与其他多种植物的组织培养是一致的;G A 3对美州商陆根的生长可能有促进作用.2.4 试管苗的移栽 当根系发达成为完整植株后,便可移栽至花盆.移栽前先逐步揭开封口膜,使试管苗在培养瓶内锻炼1周.注意保持试管苗较高的空气湿度,同时,在取苗时,要减少对根系的损伤.移栽后的头几天,将试管苗培养在一个湿度60%80%的小温室中.这样大多数的美洲商陆小植株都能移栽成活(图3,见封3上右),试管苗的移栽成活率可达90%以上.3 讨论3.1 关于诱导完整植株适宜的激素水平 激素水平在诱导愈伤组织分化及芽再生的过程中 第3期崔丽华等:美洲商陆快速繁殖实验体系的建立391 起着重要作用.在以生产甜菜苷为目的的商陆细胞培养中,采用了很高的激素水平:0.1mg ・L -12,42二氯苯氧乙酸(2,42D ),1.0mg ・L -1萘乙酸(NAA ),0.1mg ・L -162BA ,外植体只能产生愈伤组织[6].本实验在美洲商陆的组织培养中,进一步调整激素水平,将茎尖增殖培养基中的62BA 的ρ降至0.05mg ・L -1,同时还加入利于芽的增殖与生长的0.1mg ・L -1G A 3及300mg ・L -1L H ,诱导出的芽数量多且发育正常;在去除62BA 而将IBA 提高至014mg ・L -1,并加入011mg ・L -1G A 3后,有效地促进了再生苗的根的发育,从而形成完整小植株.3.2 关于商陆种胚的快速萌发 商陆的种子萌发期长是栽培中的一个难题.有学者在中国商陆种子萌发实验中采用浓硫酸处理以降低种皮的致密度.我们以美洲商陆为材料,采用浓硫酸浸泡处理10min ,使种子在1周左右即可萌发,大大缩短了育苗期.这在商陆的栽培中具有一定应用价值.也纠正了有人认为商陆难以发芽是由于种子有较长的休眠期的错误看法.4 参考文献[1] 中国医学科学院药物所.常用中草药图谱[M ].北京:人民卫生出版社,1970[2] Irvin J D ,K elly T ,Robertus J D.Purification and properties of a second antiviral protein from Phytolaccaamerica which inactivates eukaryotic ribosomes [J ].Arch Biochem Biophys ,1980,200:418[3] Irvin J D.Pokeweed antiviral protein [J ].Pharm Ther ,1983,21:371[4] Park S W ,Lawrence C B ,Linden J C ,et al.Isolation and characterization of a novel ribosome 2inactivatingprotein from root cultures of pokeweed and its mechanism of secretion from roots[J ].Plant Physiol ,2002,130:164[5] Zarling J M ,Moran P A ,Haffar O ,et al.Inhibition of HIV replication by pokeweed antiviral proteintargeted to CD4cells by monoclonal antibodies [J ].Nature ,1990,347:92[6] 张泓,河津一仪.商陆细胞培养生产甜菜苷的研究[J ].植物学通报,1992,9(增刊):91ESTAB L ISHMENT OF RAPID FROL IFERATIONSYSTEM FOR P H YTOL ACCA AM ERICANACui Lihua 1) Zhang Haiyan 2) Zhang Tiehan 2) Chen Zhenghua 2)(1)College of Life Sciences ,Beiijing Normal University ,100875,Beijing ,China ;2)Institute of G enetics and Developmental Biology ,Chinese Academy of Sciences ,100101,Beijing ,China )Abstract The shoot apices of Phytolacca americana are used as explants and cultured on different media supplemented with various portion of hormones.The shoot multiplication medium of Phytolacca americana is MS basic medium supplemented with 62BA (0.05mg ・L -1),G A 3(0.1mg ・L -1),L H (300mg ・L -1).The suitable medium for the induction of roots of Phytolacca americana is 1/2MS medium supplemented with IBA (0.4mg ・L -1),G A 3(0.1mg ・L -1).K ey w ords Phytolacca americana ;rapid proliferation ;induction ;callus 392 北京师范大学学报(自然科学版)第40卷 。
《药学文献检索与利用》考试试题及答案
《药学文献检索与利用》一、简答或简述题(20分,每小题5分)1、列举常用的医药中外文数据库(5个以上)和医药专利数据库及网址(4个以上);常用的医药中外文数据库:万方数据库http://210.32.205.72/wfrs_mirror/default.htm维普数据库/中国期刊网http://210.32.205.36/kns50/index.aspxElsevier/SCIRUS /ACS /Web of Science /医药专利数据库及网址:中国国家知识产权局专利检索/sipo2008/欧洲及欧洲各国专利/美国专利书目数据库/日本专利http://www.jpo.go.jp/德国专利http://depatisnet.dpma.de2、什么是核心期刊?列举与所学专业最相关的核心期刊以及ISSN号(5个以上)。
简单地说,核心期刊是学术界通过一整套科学的方法,对于期刊质量进行跟踪评价,并以情报学理论为基础,将期刊进行分类定级,把最为重要的一级称之为核心期刊。
核心期刊是期刊中学术水平较高的刊物,是我国学术评价体系的一个重要组成部分。
它主要体现在对科研工作者学术水平的衡量方面,如在相当一批教学科研单位申请高级职称、取得博士论文答辩资格、申报科研项目、科研机构或高等院校学术水平评估等,都需要在在核心期刊上发表一篇或若干篇论文。
与药物分析专业最相关的核心期刊以及ISSN号:药学学报ISSN0513-4870中国医院药学杂志ISSN1001-5213.中国药学杂志ISSN1001-2494药物分析杂志ISSN0254-1793中国医药工业杂志ISSN1001-8255.中国药科大学学报ISSN 1000-50483、我国专利法对哪几类专利加以保护,申请专利的基本条件是什么?我国专利法对发明专利,实用新型专利,外观设计专利加以保护。
专利申请需要满足新颖性、创造性、实用性、公开充分、单一性等条件。
4、结合手工CA检索与SCI Finder的体会,用自己的语言浅述手工检索与计算机检索的优缺点。
2007_Isolation and characterization of antibacterial substances
1Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
Table 1. Location of sampling stations in Otsuchi Bay
6
Station Latitude (N) Longitude (E) Depth (m)
1
39 22.0780
142 00.6640
100.0
5
2
39 21.9000
141 59.6260
INTRODUCTION
Natural organic compounds produced by microorganisms are an important screening target for a variety of bioactive substances. Compounds of actinomycetal origin, in particular, have been valuable in the field of bioactives. However, the rate of discovery of novel substances from microorganisms, especially from actinomycetes of terrestrial origin, has decreased recently. Most actinomycetes were believed to terrestrial; however, some strains have also been found in marine environments, though no marine actinomycetes with special characteristics have been isolated. In 2002, Mincer et al.1) isolated actinomycetes from a marine environment, requiring seawater for growth, and these strains were designated marine actinomycetes.
亚硝化菌的种类,生长特性,亚硝化过程与机理
亚硝化菌的种类,生长特性,亚硝化过程与机理摘要:从亚硝化细菌的生长特性出发,主要介绍了亚硝化细菌的种类,包括亚硝化单胞菌属、亚硝化球菌属、亚硝化螺菌属、亚硝化叶菌属、亚硝化弧菌属,并探讨了亚硝化过程中的氧化和生化机理。
关键词:亚硝化菌,亚硝化作用,机理1 亚硝化细菌生长特性亚硝化细菌又叫氨氧化细菌,有自养型与异氧型之分,一般认为自养型氨氧化细菌是硝化作用的主要菌群。
所有自养型氨氧化细菌,都是革兰氏阴性细菌,自养生长时,以氨为唯一能源,以CO2为唯一碳源;混合营养生长时,可同化有机物质。
亚硝酸细菌的生长极为缓慢。
在适宜的条件下需 24h 才能完成一次分裂周期。
在进行固体培养的过程中一般需数月才能见到菌落生长[1]。
亚硝酸细菌喜欢微偏碱性的环境,适合大多数氨氧化细菌生长的条件为:温度25-30℃,pH 7.5-8.0,氨浓度2-10mmol/L。
倍增时间8小时至数天。
在纯培养中,培养基中若加入有机物质如酵母提取物等将会抑制亚硝酸细菌的生长,因此在进行亚硝酸细菌的分离培养时所培养分离的细菌的纯度可利用在培养基中加入(酵母粉、牛肉膏、蛋白胨等)有机物的方法进行检测[2]。
但是自然环境中有机物质对亚硝酸细菌的影响不如在纯培养中的大大亚硝酸细菌对污水组成、pH和温度等的改变都敏感[3]。
2亚硝酸细菌的分类亚硝酸细菌的分类主要根据细菌形态的表型特征、细胞内细胞质膜的分布及它们16SRNA 序列的同源性。
1984-1989 年的《伯杰氏细菌系统分类学》把硝化细菌分为九个属:硝化杆菌属、硝化刺菌属、硝化球菌属、硝化螺菌属、亚硝化单胞菌属、亚硝化螺菌属、亚硝化球菌属、亚硝化叶菌属和亚硝化弧菌属等。
而目前则倾向于把亚硝酸细菌分为两个单一细胞起源的群体,它们分别属于变形菌纲的β亚纲和γ亚纲。
在对这两个亚纲的亚硝酸细菌作进一步的分类时,不同的学者还有些细微的差别。
Votek 等认为除了海洋亚硝酸球菌属于变形菌γ亚纲外,其它的亚硝酸细菌即亚硝酸单孢菌和亚硝酸螺旋菌两个种群属于变形菌β亚纲。
当今干细胞研究方面的10位顶尖科学家
排名第一:ShinyaYamanaka和JamesA.Thomson博士是建立了可诱导的万能干细胞,在干细胞再生和分化重排机理上做出了最具突破性的进展性工作;这毫无疑问是诺贝尔奖级的工作,其他几位平时工作很杰出,可是没有这种级别的工作,只好屈居次位;排名第二:RudolfJaenisch博士长期从事于干细胞核的替代重组和干细胞的表观遗传修饰工作,卓有成绩,这也是培养诱导干细胞的核心工作,重要性无人能代替;排名第三:Rebortlanza博士领导和指挥着全球最领先的干细胞生物技术公司,独创和建立了分离和培养单个胚胎干细胞的方法和技术。
主编了所有重要的干细胞参考书籍。
每一相重大干细胞技术的出现,美欧主流媒体都要听他的意见,可谓干细胞领域的大腕人物;排名第四:AlanTrounson博士是国际免疫学和干细胞研究的先驱者,领导和指挥原澳大利亚Monash 大学免疫学和干细胞研究实验室,使Monash大学成为世界上最成功的大学之一。
手下的弟子MartinPerl博士出任南加州大学第一界干细胞和系统生物学所所长。
2007年成为美国眼下资金最多,实力最强的加州再生医学研究研究所所长,成为美国干细胞研究中最大的老板;排名第五:哈佛大学干细胞研究所所长DouglasA.Melton博士和斯坦福大学干细胞和再生医学研究所所长IrvingL.Weissman博士两人都是干细胞研究领域的顶尖高手,又各了带领着东西两岸这两所美国奈至全世界的顶尖学府的干细胞研究的竟赛。
排名第六:哈佛大学干细胞研究所共同所长DavidT.Scadden,博士和密西根大学干细胞中心主SeanMorrison博士两人是干细胞研究的中青年骨干,专长于干细胞分化再生的微环境调控机理的研究,.Scadden,博士是麻省总医院再生医学研究所所长,侧重于干细胞的临床应用。
Morrison博士则是休斯医学研究所研究员,是美国中西部大学中干细胞研究的顶级人物。
致肉牛运输热溶血曼氏杆菌的分离鉴定及部分生物学特性研究
中国畜牧兽医2019,4&(2) $48-556China Anim al Husbandry &Veterinary Medicine热溶血曼氏杆菌的分离鉴定及部分生物学韩小丽,任静静,杨铭伟,朱玲,张锐,剡根强"(石河子大学动物科技学院,石河子832000)摘要:为探明一起肉牛运输热的病原及生物学特性,本研究无菌采集病死牛心血、肺脏、肝脏和脾脏,对其进行细菌分离、生化试验和P C R鉴定,并对分离株进行毒力基因检测、致病性研究。
结果显示,7株分离菌均为革兰氐阴性短杆菌,具有微弱的-溶血,瑞氐染色可见两极浓染及明显的荚膜。
生化试验结果显示,分离菌能发酵葡萄糖、麦芽糖、阿拉伯糖、甘、甘露糖、木糖等碳水化合物,不发酵脲酶、M R-V P和吲哚,产生少量酸而不产气,结果符合溶血曼氐杆菌生化特性。
P C R鉴定均为荚膜血清A2型,分离菌均含有四型菌毛相关基因3/A、参与复制相关基因dnaiV、白细胞介素相关基因L3C 3种毒力基因。
分离菌对小鼠的L D5〇值在107_83*108_50C F U/m L之间,不同菌株间小鼠L D5〇值存在一定差异,但差异不明显。
结果表明,引起该批肉牛运输热的病原为携带毒力基因的荚膜血清A2型溶血曼氐杆菌,本研究结果为进一步研究溶血曼氐杆菌的致病机制提供参考。
关键词:肉牛;溶血性曼氐杆菌;鉴定;生物学特性中图分类号:S852. 61+2文献标识码:AD o i:10. 16431/j. cnki. 1671-7236. 2019. 02. 026 开放科学(资源服务)标识码(O S I+):Isolation,Identification and Partial Biological Characteristics ofM a n n h e im ia h a e m o ly t ic a in Shipping Fever of Beef CattleH A N Xiaoli,RENJingjing,Y A N G Mingwei,Z H U Ling,Z H A N G Rui,Y A N Genqiang"(.College〇/Anim al Science and Technology,S hihizi U niversity,Shihezi 832000,China)Abstract: In order to identify the pathogens and biological characteristics of shipping fever of beefcattle.The bacteria of blood (heart),lung,liver and spleen were collected and isolated,biochemical tested,and P C R identified,the virulence gene detection and pathogenicity o studied.The results showed that 7 isolates were Gram-negative brevibacterium with weak p-he-molysis ,Wright?s staining result showed that there was two-pole dense staining and obvious capsule. The biochemical test r esults showed that the isolated bacteria could ferment carbohydratessuch as glucose,maltose,arabinose,mannitol,mannose,xylose etc. and do not ferment urease,M R-V P and indole. I t could utilize carbohydrates such as glucose to produce a small amount ofacid without gas production ,and the results were consistent with the biochemical characteristicsof Mannheimia haemolytica.The isolates were capsular serum A2 type by P C R,which containedthree virulence genes of the type — fimbriae-related gene pt/A.,t he copy-related gene d n a N,andthe interleukin related g ene L ktC. The LD50 values of the bacteria in mice ranged from 107 83 to108 50C F U/mL,therewere some difference of L D50 values in different strains.The results showedthat the pathogen which caused the shipping fever in the batch of b收稿日期:2018-06-12基金项目:国家科技支撑计划项目"012B A D43B02)作者筒介:韩小丽(1994-),女,新疆乌苏人,硕士,研究方向:动物传染病预防与防治,E-mail: 964242597@qq. com"通信作者:剡根强a958-),男,甘肃西和人,教授,博士生导师,研究方向:预防兽医学,E-mail:ygq58®2期 韩小丽等:致肉牛运输热溶血曼氏杆菌的分离鉴定及部分生物学特性研究haemolytica with c apsular serum A2 type,which provided a reference for further study of the pathogenic mechanism of Mannheimia haemolytica%Key words:beef;Mannheimia haemolytica identification;biological characteristics溶血曼氏杆菌(M a n n h#miahaemoZ;y#ca ,M. haemolytica)原名溶血性巴氏杆菌(PasewreZZa haemoZyica),栖息在鼻咽部与宿主保持一种共生的关系[12],是引起运输热(shipping fever)即牛呼吸 道疾病综合征(bovine respiratory disease complex, B R D C)的病原之一,具有全球分布性)]。
骨髓间充质干细胞的主要表面标志
骨髓间充质干细胞的主要表面标志1 骨髓间充质干细胞的发现和来源骨髓组织中有多种细胞成分,除基质细胞等已经分化的细胞外,还含有两类多潜能干细胞:造血干细胞和间充质干细胞。
1987 年Friedenstein 等发现在塑料培养皿中培养的贴壁的骨髓单个细胞在一定条件下可分化为多种类型的细胞,而且经过20-30个培养周期仍能保持其多向分化潜能。
由于骨髓中的这种多能细胞能够分化为多种中胚层来源的间质细胞, 故称之为间充质干细胞(Mesenchymal stem cells,MSCs),或间质祖细胞(MPCs),是成人多能干细胞的一类。
早期分离培养时,发现其形状呈成纤维细胞样而称其为成纤维细胞集落形成单位(Colony-forming unit-fibroblast,CFU-F),或骨髓基质成纤维细胞(Marrow stromal fibroblast,MSF)。
Friedenstein AJ , Chailakhyan RK, Gerasimov UV. Bone marrow o steogenic stem cells: in vit ro cult ivat ion and t ransp lantat ion in diffusion chambers. Cell T issue Kinet, 1987, 20 (3) : 263-267]2 鉴于其强大的增殖能力及多向分化潜能,可在体外长期培养和遗传背景较稳定,而且用自体干细胞诱导构建的组织不涉及伦理问题,也不存在MHC限制,所以骨髓间充质干细胞日益受到重视。
但是与造血干细胞等其他细胞相比,骨髓中MSCs的数量非常少,约占整个骨髓有核细胞的十万分之一,并随年龄的增加,细胞数量逐渐减少。
因此,如何简便有效地从骨髓中获取高纯度的MSCs显得尤为重要,寻找高度特异性的MSCs的表面抗原也就成为MSCs研究中的一项重要任务和目标。
不仅如此,一种同样来源于骨髓、贴壁生长、被认为更原始(可以分化为MSCs)也具有更强增殖能力的干细胞也被鉴定,它就是多能成体祖细胞(multipotent adult progenitor cell (MAPC) or mesodermal progenitor cell(MPC))[Reyes, M., Lund, T., Leuvik, T., Aguiar, D., Koodie, L., Verfaillie,C.M. (2001) Purification and in vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98, 2615-2625],因能和MSCs一起被纯化而统称BM stromal stem cell。
Isolation and Structural Characterization of a Novel Polysaccharide
J OURNAL OF B I O SCI E NCE AND B I O ENGI N E E RING © 2007, The Society for Biotechnology, Japan V ol. 104, No. 2, 111–116. 2007DOI: 10.1263/jbb.104.111Isolation and Structural Characterization of a Novel PolysaccharidePrepared from Arca subcrenata LischkeYunmian He,1 Chunhui Liu, 2 Yuxing Chen, 3 Ancheng Ji,3Zilong Shen,1 Tao Xi,1 and Quansheng Yao3*School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China, 1 Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University,Jinan 250012, P.R. China,2 and the Drug Safety Evaluation Center of Jiangsu Province,Nanjing 210009, P.R. China 3Received 7 March 2007/Accepted 12 May 2007A water-soluble polysaccharide was isolated from Arca subcrenata Lischke (named ASLP) byhot-water extraction, anion-exchange, and gel-permeation chromatography. The average molecu-lar weight of ASLP was estimated to be 3500 Da. The structural characterization of ASLP wasperformed by sugar composition analysis, methylation analysis, and partial acidic hydrolysis.Further analysis of ASLP was carried out by UV, FT-IR and NMR spectroscopies (1D, COSY, andHSQC, respectively). Our data suggests that ASLP is an α-(1→4)-D-glucan, with an α-(1 →6)-D-glucan at the C-6 position every fourth residue along the main chain. The branch chain has threeglucose residues. The possible structure, determined on the basis of structural analyses results,was also determined. Preliminary in vitro tests revealed that ASLP can stimulate mouse spleenlymphocyte proliferation and its branches are extremely important for its immunological activity.[Key words: Arca subcrenata Lischke, polysaccharide, gas liquid chromatograph/mass spectrometry, nuclearmagnetic resonance, structural characterization, spleen lymphocyte proliferation]In recent years, various polysaccharides and polysaccha-ride complexes have been isolated from marine life organ-isms and characterized. Some polysaccharides, such as those from marine green and brown algae were evaluated for in potential anticoagulant activities (1, 2). Some sulfated poly-saccharides extracted from marine sponges may function in species-specific aggregation of sponge cells or in structural integrity (3). Various of polysaccharides from edible sea-weeds were identified as important bioactive natural prod-ucts, possessing many important properties of pharmaco-logical relevance (4). Moreover, many polysaccharides from marine microorganisms have been reported, such as the marine thermotolerant Bacillus licheniformis, marine fila-mentous fungus Keissleriella sp., and marine bacteria Pseu-doalteromonas carrageenovora and Shewanella (5–8). Arca subcrenata Lischke, an Arcidae, is a marine inverte-brate. It is a popular seafood in China. A Chinese traditional medicine, wa leng zi (Concha Arcae), is extracted from A. subcrenata Lischke. In this paper, we report the character-ization of A. subcrenata Lischke polysaccharide (ASLP) by a series of chemical and instrumental analyses. In vitro ASLP showed significant immunological activity in spleen lymphocyte proliferation assay.MATERIALS AND METHODSSample collection and general methods A. subcrenata Lischke was collected from Huanghai Sea, China and transported to our laboratory packed in ice. A specimen of this marine animal is deposited in the Drug Safety Evaluation Center of Jiangsu Province, P.R. China.The specific rotation was determined at 20 ±1°C using an auto-matic polarimeter (model WZZ-2B; Shanghai Shengguang Instru-ment, P.R. China). UV-Vis absorption spectra were recorded using a Perkin-Elmer Lambda 2 spectrometer. The FT-IR spectra (KBr pellets) were recorded on a Nicolet 360 FTIR spectrophotometer. Elemental analysis (C, H and N) was conducted on an Elementar Vario EL III instrument. Total carbohydrate content was deter-mined by the phenol-sulfuric acid method as D-glucose equivalents (9). Uronic acid content was determined by an m-hydroxydiphenyl colorimetric method in which neutral sugars do not interfere (10).Extraction and fractionation of ASLP A. subcrenata Lischke (30 kg) was shelled, homogenized, and treated with acetone to re-move fats and pigments (1:1, 10 l ×6). After centrifugation (6000 rpm, 20 min) and overnight drying, the resulting pellets were kept in distilled water at 80°C for 8 h with constant stirring. The process was repeated three times. The supernatant was concentrated and precipitated in 4 volumes of ethanol. The precipitate collected by centrifugation was suspended in distilled water and protein was re-moved by the Sevag method (11). Then the crude polysaccharide fraction was obtained by precipitation in 4 volumes of ethanol and washed with acetone and ethyl ether several times. Ion exchange chromatography was performed on a column (3.5 ×30 cm) of DEAE52 (Whatman, Brentford, Middlesex, UK). Crude polysac-charide (200mg) was loaded onto the column each time. Then the column was eluted with distilled water, followed by 0 to 2mol/l* Corresponding author. e-mail: yaoqs2007@phone/fax: +86-25-83285226111HE ET AL. J. B I OS C I. B IOENG., 112linear gradient of sodium chloride at a flow rate of 1 ml/min. The yielded fractions were combined according to the total carbohy-drate content quantified by the phenol-sulfuric acid method at 490 nm (9). The fraction corresponding to major sugar peak was fur-ther chromatographed on a column (1.6 ×80 cm) of Sephadex-G50 (Pharmacia, Peapack, NJ, USA) with water at a flow rate of 0.2 ml/min. The main fraction was collected, dialyzed, and lyophilized for further investigation.Homogeneity and molecular weight Homogeneity and aver-age molecular weight were measured by high-performance gel-permeation chromatography (HPGPC) on a Waters instrument, us-ing a Waters 2414 refractive index detector (RID). The standard dextrans (the molecular weights were 270,000 Da; 133,800 Da; 84,000 Da; 50,000 Da; 21,400 Da; 4600 Da; and 2500 Da) were passed through a TSK-GEL G4000PWXL column (7.8 ×300 mm; Tosoh, Tokyo), and then the retention times were plotted against the logarithms of their corresponding average molecular weights.A sample solution (20 µl, 5 mg/ml) was injected in each run and eluted with 0.1% NaN3 water solution at a flow rate of 0.5 ml/min. The retention time of ASLP was then plotted in the same graph, and the average molecular weight of ASLP was determined.Composition analysis ASLP (10 mg) was dissolved in 2 ml of 2 M trifluoroacetic acid (TFA) and hydrolyzed at 120 °C for 2 h. After reduction with 20 mg of sodium borohydride, monosaccha-ride alditol acetate was prepared using a method described previ-ously (12). The prepared alditol acetates were analyzed by gas-liquid chromatography using a Hewlett-Packard model 6890 in-strument equipped with an HP-5 5% phenylmethyl siloxane column (30 m ×0.25 mm) and a flame-ionization detector. The temperature program was set to increase from 150 °C to 220°C at 2°C/min and from 220 °C to 280°C at 30°C/min with nitrogen as carrier gas. Peaks were identified and estimated using myo-inositol as the in-ternal standard. The quantity of fractions was determined from the peak area, using response factors.Methylation analysis ASLP (10 mg) in 10 ml of dimethyl sulfoxide was methylated using sodium hydroxide and iodo-methane three times in accordance with the method of Needs and Selvendran (13). The methylated polysaccharide was examined by IR spectroscopy. The absence of the absorption peak correspond-ing to hydroxyl indicated the complete methylation. The fully me-thylated product was depolymerized with 90% methanoic acid at 100°C for 6 h and converted into partially methylated alditol ace-tates by hydrolysis with TFA, reduction with sodium borohydride, and acetylation with acetic anhydride. The resulting product was subjected to linkage analysis by GLC-MS. Agilent 5975 inert-GLC/MSD was used for mass-spectral identification of GLC com-ponents. GLC-MS was performed using a DB-5 capillary column (30 m ×0.32 mm i.d.) with a film thickness of 0.25 µm. The GLC temperature program was isothermal at 140 °C for 2 min, followed by a 4 °C/min gradient up to 250 °C. The components were identi-fied by a combination of the main fragments in MS and relative re-tention times in GLC, and the molar ratios were estimated from peak areas and response factors (14, 15).Partial acidic hydrolysis ASLP (40.0 mg) was dissolved in 3 ml of 0.3 M TFA for 18 h at 100 °C. The solution was neutralized with sodium hydroxide and applied to a Sephadex-G10 desalting column (1 ×25 cm). The main chain was obtained (named H-ASLP) and a freeze-dried sample analyzed by 1D NMR (16).Nuclear magnetic resonance spectroscopy ASLP (30 mg) was kept over dry phosphorus oxide in vacuum for 2 d and then dissolved in 0.5 ml of 99% D2O. Spectra were recorded at 300 K on a Bruker AV-500 spectrometer operating at 500 MHz for 1H and 125 MHz for 13C. Chemical shift references are given in ppm, with DSS as an internal chemical shift reference. In addition to 1D spectra, H-H COSY and HSQC spectra were obtained. A H-H COSY experiment was performed using the Bruker standard pro-gram with 2 s acquisition time and 2 K data points in the F2dimen-sion. The data matrix was zero-filled in the F1 dimension to obtain a matrix of 1 K ×1 K points and resolution was enhanced in both dimensions by a shifted sine-bell function before Fourier transfor-mation. A nuclear Overhauser experiment was performed using the Bruker standard program, with a mixing time of 1 s. A hetero-nuclear experiment was performed using the pulse field gradient program HSQC.Spleen lymphocyte proliferation assay in vitro Male K un-ming mice (8 weeks old) were purchased from the Experimental Animal Center of China Pharmaceutical University. All mice were kept at the animal facilities under pathogen-free conditions until use. Sterile food and water were supplied.The mouse spleen cells were obtained by gently teasing the organ in RPMI-1640 medium supplemented with penicillin (100 IU/ml), streptomycin (50 µg/ml), and 10% newborn-bovine serum. Cells (6 ×106 cells/ml) were seeded on a 96-well plate (100 µl/well). ASLP (100 µl) in RPMI-1640 medium (100 µg/ml, 200 µg/ml, and 400 µg/ml) and 100 µl of H-ASLP (100 µg/ml, 200 µg/ml, and 400µg/ml) were added to the test groups. Concanavalin A (ConA, 100µl, 5 µg/ml) was added to the positive control group and 100 µl of RPMI-1640 medium was added to the negative control.The cells were cultured at 37 °C, in 5% CO2for 44 h, and further incubated for 4 h with 20 µl of 3-(4,5-dimethylthiazolyl-2)-2,5-di-phenyl tetrazolium bromide per well (MTT: 5 mg/ml, Sigma). Acidified isopropylalcohol (100 µl) was added to the culture and homogenized for at least 10 min to fully dissolve the stained mate-rial. The absorbance at 570 nm was measured using an ELISA reader (Thermo Multiskan Spectrum) (17).Statistical analysis GraphPad Instat ver. 3.05 (GraphPad Software, San Diego, CA, USA) was used to analyze the results. Data are presented as mean ±SD. Data were subjected to one-way analysis of variance (ANOV A), followed by a Bonferroni t test. A value of P<0.05 was considered to indicate a statistically signifi-cant difference.RESULTS AND DISCUSSION Preparation and physicochemical characteristics of the polysaccharide The water extract of A. subcrenata Lischke was precipitated in 80% ethanol, deproteinized by the Sevag method, washed with ethyl ether and acetone several times, and then dried in vacuum to obtain 9.32 g of crude polysaccharide. The obtained polysaccharide was suc-cessively loaded on the DEAE52 column (ion exchange chromatography). The major sugar fraction (P-1), corre-sponding to the main peak, eluted by water was collected and concentrated (Fig. 1). It was further chromato graphed on the Sephadex-G50 column (gel-permeation chro matog-raphy). Two completely separate fractions were obtained (Fig. 2). The main fraction was collected, dialyzed and lyo-philized to obtain 837 mg of white Arca subcrenata Lischke polysaccharide (name ASLP), which resulted in the com-plete isolation of the polysaccharide ASLP with a recovery of 9.0% relative to the crude A. subcrenata Lischke poly-saccharide (Fig. 3). The minor fractions (ASLP-1) obtained were not investigated further.The HPGPC profiles (Fig. 4) showed a single and sym-metrical peak, indicating that ASLP was a homogeneous polysaccharide with an average molecular weight of 3500 Da. After freeze-drying, ASLP appeared as a white powder and its total sugar content was found to be 99.6% as deter-mined by the phenol-sulfuric acid method. It had a negativePOLYSACCHARIDE PREPARED FROM A. SUBCRENATA LISCHKE V OL . 104, 2007 113response in the Bradford test and showed no absorption at 280 nm or 260 nm in the UV spectrum, indicating the ab-sence of protein and nucleic acid. Elemental analysis re-vealed the following: C, 41.21; H, 6.53; and N, 0.00; indi-cating it was a neutral polysaccharide. The relatively high positive value of optical rotation, +250° (c 0.2, H 2O),suggests the predominance of α-form glycosidic linkages and the D-configuration of the glucosyl residues in ASLP (18). A negative result of m -hydroxydiphenyl colorimetric determination suggests that no uronic acid was present in ASLP, which was in agreement with the conclusion that ASLP was not adsorbed onto DEAE52 column and could be eluted by water. The quantitative determination of the neu-tral monosaccharide component pattern by GC indicated that ASLP only comprises glucoses, suggesting that ASLP is a glucan. The physicochemical characteristics of ASLP are shown in Table 1.Structural features of the polysaccharide In the FT-IR spectrum of ASLP (Fig. 5), the band in the region of3413.74 cm –1corresponds to the hydroxyl stretching vibra-tion of the polysaccharide and that at 2931.41 cm –1 cor-responds to a weak C-H stretching vibration. The band inthe region of 1636.04 cm –1corresponds to associated water.A characteristic absorption at 843.24 cm –1 and 922.52 cm –1was also observed, indicating the α-configuration of thesugar units. There was no absorption at 890 cm –1for theβ-configuration. The absorption at 1022.87 cm –1, 1078.10cm –1 and 1152.22cm –1indicated α-pyranose of the glucose FIG. 1. DEAE52 elution profile of polysaccharides from Arca subcrenata Lischke . The column was eluted with distilled water, fol-lowed by 0 to 2 mol/l linear gradient of sodium chloride at a flow rate of 1 ml/min.FIG. 2. Carbohydrate profile on Sephadex-G50. The column waseluted with distilled water at a flow rate of 0.2ml/min.α[]D20FIG. 3. Summarized extraction scheme of ASLP from Arca sub-crenata Lischke .FIG. 4. Purity identification of ASLP by H PGPC with a TSK-GEL G4000PWXL column.TABLE 1. Physicochemical characteristics of ASLP ItemTotal sugar (wt%) 99.6Glc (mol%) 100Uronic acid a(wt%)0+250Carbon (wt%) 41.21Hydrogen (wt%) 6.53Nitrogen (wt%) 0Protein b(wt%) 0Mr c(Da)3500aDetermined by m -hydroxydiphenyl colorimetric method.bIndicated by the absence of absorbance at 280nm.cMolecular weight determined by HPGPC.α[]D20HE ET AL. J. B I OS C I . B IOENG .,114residue (18–20).Methylation analysis of ASLP by GLC-MS revealed four types of glucose derivative at a relative molar ratio of 1.0:2.8:2.1:1.1 corresponding to the peak areas (Table 2).The identification of 2,3-di-O -methylglucitol acetate indi-cated that ASLP is a branched glucan. The 2,3,4,6-tetra-O -methylglucitol acetate has terminal nonreducing glucose,whereas 2,3,4-tri-O -methylglucitol acetate has (1 →6)-glu-cosyl residues and 2,3,6-tri-O -methylglucitol acetate has (1→4)-glucosyl residues. The 13C NMR spectrum (Fig. 6A )of H-ASLP showed signals at δ78.7 ppm and δ63.5 ppm assigned to the substitution of C-4; therefore the backbone chain of ASLP is the 1→4 linkage. On the basis of these results, a 1→4 glucan with branches at the C-6 position is indicated.The structure of ASLP was analyzed by 1D NMR spec-troscopy, then further analyzed by NMR spectroscopy using two-dimensional spectra (H-H COSY and HSQC).In the 500-MHz 1H NMR spectrum of ASLP (Fig. 6B ),the signals appeared in the anomeric region at δ5.39 ppm (residue A) and δ4.95 ppm (residue B); accordingly in the anomeric region of the 13C NM R spectrum (Fig. 6C ), the carbon resonances appeared at δ102.7 ppm and δ100.7 ppm.Both results confirmed the presence of two types of gluco-pyranse residue. It also confirmed that the sugar residues are linked α-glycosidically, which is consistent with presenceof an IR band at 843.24 cm –1(21). In the 13C NM R spec-trum, the signal at δ63.2 ppm was reasonably assigned to the unsubstituted C-6 of residue A. The C-4 signal of resi-due A appeared at δ80.3 ppm. The downfield carbon chemi-cal shift at δ68.6 ppm, caused by the glycosylation effect,was assigned to substitute C-6 of residue B (22).In the 1H-13C HSQC spectrum, the signals at δ3.64/80.3ppm, δ3.84/63.2 ppm, δ3.77/63.2 ppm, δ3.96/68.6 ppm, and δ3.74/68.6 ppm were assigned to AH4/C4, H6a/C6, H6b/C6and residue B H6a/C6 (H6b/C6), respectively. These spe-cific signals confirmed the presence of O-4 and O-6 substi-FIG. 5.FT-IR spectrum of ASLP.FIG. 6. (A) 13C NMR spectrum of the partial-acidic-hydrolysis product. Signals at δ78.7 ppm and δ63.5 ppm assigned to the substitu-tion of C-4. (B) 1H NMR spectrum of ASLP. (C) 13C NMR spectrum of ASLP. The signals at δ5.39ppm and δ4.95ppm in panel B and the sig-nals at δ102.7ppm and δ100.7ppm in panel C suggest the presence of two types of glucopyrance residue. Spectra were recorded at 300K on a Bruker A V-500 spectrometer operating at 500MH z for 1H and 125MHz for 13C.TABLE 2.GLC-MS of alditol acetate derivatives from the methylated product of ASLPMethylated sugar (as alditol acetate)aType of linkage Retentiontime bMolar%Mass fragment (m /z )2,3,4,6-Me 4-GlcTerminal Glc p 1.00 1.043, 45, 71, 87, 101, 117, 129, 145, 161, 2052,3,4-Me 3-Glc1,6-linked Glc p 1.29 2.143, 45, 71, 87, 101, 117, 129, 161, 173, 189, 2332,3,6-Me 3-Glc1,4-linked Glc p 1.25 2.843, 45, 71, 87, 99, 101, 117, 129, 161, 173, 2332,3-Me 2-Glc1,4,6-linked Glc p 1.51 1.143, 85, 99, 101, 117, 127, 142, 159, 201, 261a2,3,4,6-Me 4-Glc =1,5-di-O -acetyl-2,3,4,6-tetra-O -methyl-glucose.bRelative retention times of corresponding alditol derivatives relative to 2,3,4,6-tetra-O -methyl-D -glucose.POLYSACCHARIDE PREPARED FROM A. SUBCRENATA LISCHKE V OL . 104, 2007 115tutions. The chemical shifts from 3.5 to 4.0 ppm were as-signed to protons of carbons C-2 to C-6 of a glycocidic ring.The 1H and 13C NMR spectra of ASLP were assigned on thebasis of the results of 2D 1H-1H COSY and 1H- 13C HSQC experiments (Table 3). The NMR spectral analysis confirmed that, as supported by the conclusions drawn from methyla-tion data and the 13C NMR spectrum of H-ASLP, ASLP has a backbone chain of (1→4)-glucosyl residues, with three (1→6)-glucosyl residues out of four (1→4)-glucosyl resi-dues being substituted at the C-6 position.Taken all together, it can be concluded the ASLP is com-posed of repeating units having a possible structure shown in Fig. 7.Splenocyte proliferation To clarify the immunomod-ulatory activity of ASLP, we investigated the effects of ASLP on the proliferation of mouse splenocytes in vitro .As observed in Fig. 8, ASLP significantly increased spleen lymphocyte proliferation in a dose-dependent manner (P <0.01); however, after the partial acid hydrolysis of ASLP (H-ASLP), it did not elicit such an immune response.This observation suggests that the branches are extremelyimportant for the biological activities of ASLP.A. subcrenata Lischke is a popular seafood in China. In this paper, we report on a novel glucan isolated and purified from the water extract of A. subcrenata Lischke . It is an α-(1→4)-D -glucan with α-(1→6)-D -glucan at the C-6 posi-tion. Preliminary immunopharmacological tests suggest that ASLP enhances spleen lymphocyte proliferation in vitro and the branches of ASLP are extremely important for its biological activities. Further investigations on the detailed pharmacological effects of ASLP are currently underway in our laboratory.ACKNOWLEDGMENTSThe financial support from the Drug Safety Evaluation Center of Jiangsu Province is gratefully acknowledged. The authors also wish to thank Mr. Dongjun Chen for help in NMR spectroscopy,the Center for Instrumental Analysis of China Pharmaceutical Uni-versity, Mr. Fengguo Zhang and Dr. Jianmin Liao, School of Life Science and Technology of China Pharmaceutical University. Mrs.Shuijuan Wang, Nanjing University, is acknowledged for conduct-ing GLC.REFERENCES1. Athukorala, Y., Lee, K. W., Kim, S. K., and Jeon, Y. J.:Anticoagulant activity of marine green and brown algae col-lected from Jeju Island in K orea. Bioresour. Technol., 98,1711–1716 (2006).2. Matsubara, K., Matsuura, Y., Bacic, A., Liao, M. L., Hori,K., and Miyazawa, K.: Anticoagulant properties of a sul-fated galactan preparation from a marine green alga, Codium cylindricum . Int. J. Biol. Macromol., 28, 395–399 (2001).3. Zierer, M. S. and Mourão, P. A. S.: A wide diversity of sul-fated polysaccharides are synthesized by different species ofmarine sponges. Carbohydr. Res., 328, 209–216 (2000).4. Shanmugam, M. and Mody, K. H.: Heparinoid-active sul-phated polysaccharides from marine algae as potential bloodanticoagulant agents. Curr. Sci., 79, 1672–1682 (2000).5. Arena, A., Maugeri, T. L., Pavone, B., Iannello, B.,Gugliandolo, C., and Bisignano, G.: Antiviral and immuno-regulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis . Int. Immunopharmacol.,6, 8–13 (2006).6. Han, F., Yao, W. B., Yang, X. B., Lin, X. N., and Gao,X. D.: Experimental study on anticoagulant and antiplatelet aggregation activity of a chemically sulfated marine polysac-charide YCP. Int. J. Biol. Macromol., 36, 201–207 (2005).7. Silipo, A., Molinaro, A., Nazarenko, E. L., Gorshkova,R. P., Ivanova, E. P., Lanzetta, R., and Parrilli, M.: The O-chain structure from the LPS of marine halophilic bac-terium Pseudoalteromonas carrageenovora -type strain IAM 12662T . Carbohydr. Res., 340, 2693–2697 (2005).8. Nazarenko, E. L., Komandrova, N. A., Gorshkova, R. P.,Tomshich, S. V ., Zubkov, V . A., Kilcoyne, M., and Savage,TABLE 3.1H and 13C NMR chemical shifts of polysaccharide ASLP in D 2OResidue13C/1H (ppm )123456a 6b A (1→4)- α-D -Glc p102.7 73.8 75.7 80.3 75.9 63.2 –5.39 3.85 3.73 3.64 3.98 3.84 3.77B (1→6)- α-D -Glc p100.7 73.9 75.7 73.9 75.9 68.6 –4.95 3.91 3.73 3.60 3.98 3.96 3.74FIG. 7. Possible structure of polysaccharide ASLP isolated fromArca subcrenata Lischke.FIG. 8. Effects of ASLP and H-ASLP on spleen lymphocyte prolif-eration in vitro . Proliferation activity was expressed as the absorption at 570 nm. The activity response of ASLP was dose-dependent. ConA (5µg/ml) was used as the positive control. Values are means ±SD of 10 wells; ** P <0.01 vs. negative control; ## P <0.01 vs. positive con-trol.HE ET AL.J. B IOSCI. B IOENG., 116A.V.: Structures of polysaccharides and oligosaccharides ofsome gramnegative marine Proteobacteria. Carbohydr. Res., 338, 2449–2457 (2003).9.Dubois, M., Gilles, K.A., Hamilton, J.K., R ebers, P.A.,and Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356 (1956).10.Filisetti-Cozzi, T.M.C.C. and Carpita, N.C.: Measurementof uronic acids without interference from neutral sugars.Anal. Biochem., 197, 157–162 (1991).11.Staub, A.M.: Removeal of protein-Sevag method. MethodsCarbohydr. Chem., 5, 5–6 (1965).12.Blakeney, A.B., Harris, P.J., Henry, R.J., and Stone, B.A.:A simple and rapid preparation of alditol acetates for mono-saccharides analysis. Carbohydr. Res., 113, 291–299 (1983).13.Needs, P.W. and Selvendran, R.R.: Avoiding oxidativedegradation during sodium hydroxide/methyl iodine-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydr.Res., 245, 1–10 (1993).14.Sweet, D.P., Shapiro, R.H., and Albersherm, P.: Structuraland immunological studies of a major polysaccharide form spores of Ganoderma luci dum (Fr.) K arst. Carbohydr. Res., 40, 217–225 (1975).15.Tsumuraya, Y., Misaki, A., Takaya, S., and Torii, M.: A newfungal α-glucan, elaborated by Elsinoe leucospila. Carbohydr.Res., 66, 53–65 (1978).16.Omarsdottir, S., Petersen, B.O., Paulsen, B.S., Togola, A.,Duus, J.Ø., and Olafsdottir, E.S.: Structural characterisation of novel lichen heteroglycans by NMR spectroscopy and me-thylation analysis. Carbohydr. Res., 341, 2449–2455 (2006).17.Mossmann, T.: Rapid colorimetric assay for cellular growthand survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55–63 (1983).18.Liu, Ch.H., Lin, Q.X., Gao, Y., Ye, L., Xing, Y.Y., and Xi,T.: Characterization and antitumor activity of a polysaccha-ride from strongylocentrotus nudus eggs. Carbohydr. Polym., 67, 313–318 (2007).19.Zhao, G.H., Kan, J.Q., Li, Zh.X., and Chen, Z.D.:Characterization and immunostimulatory activity of an (1→6)-α-D-glucan from the root of Ipomoea batatas. Int. Immuno-pharmacol., 5, 1436–1445 (2005).20.Zhang, W.J.: Biochemical study technology in polysaccha-ride compounds [M]. Zhejiang University Press, Hangzhou, P.R. China (1999).21.Wu, Y.L., Sun, C.R., and Pan, Y.J.: Studies on isolationand structure features of a polysaccharide from the mycelium of an Chinese edible fungus (Cordyceps sinensis). Carbohydr.Polym., 63, 251–256 (2006).22.Zhao, Ch., Li, M., Luo, Y.F., and Wu, W.K.: Isolation andstructural characterization of an immunostimulating polysac-charide from fuzi, Aconi tum carmi chaeli. Carbohydr. Res., 341, 485–491 (2006).。
龙须菜,Gracilarialemaneiformis,音标,读音,翻译,英文例句,英语词典
龙须菜,Gracilarialemaneiformis,音标,读音,翻译,英文例句,英语词典龙须菜清汤豌豆龙须菜龙须扒菜心鲜蘑龙须菜蟹肉龙须菜扒龙须菜心说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页->词典->龙须菜1)Gracilaria lemaneiformis龙须菜1.Isolation,Purification and Characterization of Agar Polysaccharide from Gracilaria Lemaneiformis;龙须菜琼胶多糖的提取、纯化与性能表征2.Response of Gracilaria lemaneiformis to Dimethyl Phthalate;龙须菜对邻苯二甲酸二甲酯(DMP)毒性的响应3.Determination of Seven Trace Elements in Gracilaria Lemaneiformis by Atomic Absorption Spectrometry;原子吸收光谱法测定龙须菜中7种微量元素含量更多例句>>2)Gracilaria lamaneiformis龙须菜1.The impact of yield of polysaccharides and antioxygenic property extracted with technical conditions from Gracilaria lamaneiformis;提取工艺对龙须菜多糖得率及其抗氧化性能的影响2.Study on the technical conditions of polysaccharide from Gracilaria lamaneiformis by enzymatic extraction;酶法提取龙须菜多糖工艺条件的研究3.Optimization of extraction technology of polysaccharide from Gracilaria lamaneiformis;龙须菜多糖提取工艺优化更多例句>>3)G.lemaneiformis龙须菜1.Se ven strains of algae were analyzed,including four strains of G.所用的7种实验材料包括4株龙须菜(其中3株分别来自中国青岛、委内瑞拉和南非,及1株青岛产龙须菜的高温选育种)和细基江蓠繁枝变型、真江蓠、芋根江蓠。
巨大口蘑不同年限和部位的红外光谱鉴定
巨大口蘑不同年限和部位的红外光谱鉴定申云霞;李涛;赵艳丽;刘鸿高;王元忠【摘要】The discrimination model to identify stipe and fruiting body of M.gigantea with different collecting years was established by collecting Fourier spectrum of 88 M.gigantea samples and the effect of different pretreatment methods (MSC,SNV,FD and SD)on the model was compared to identify different parts of M.gigantea with different collecting years rapidly and accurately.The results showed that 1 655 cm-1 ,1 554 cm-1 and 243 cm-1 are characteristic peaks of protein in M.gigantea fruiting body,1 410 cm-1 ,1 376 cm-1 ,1 243 cm-1 ,1 160 cm-1 and 952 cm-1 are the characteristic peaks of lipid in M. gigantea fruiting body and 1 154 cm-1 ,901 cm-1 ,880 cm-1 and 814 cm-1 are the characteristic peaks of carbohydrate in M.gigantea fruiting body.The accuracy rate for different parts of M.gigantea,the accuracy rates of calibration set and prediction set for stipe of M.gigantea with different collecting years and the accuracy rates of calibration set and validation set for fruiting body of M.gigantea with different collecting years are 100%,100% and 92.3%,and 100% and 100% by using original spectrum and standard normal variate calibration at 1800~600 cm-1 respectively.%为快速准确地鉴别不同部位和不同采集年限的巨大口蘑,采集88份巨大口蘑样品的傅里叶红外光谱进行分析,建立判别模型,鉴别不同部位、不同采集年限的巨大口蘑。
亚硝化菌的种类,生长特性,亚硝化过程与机理
亚硝化菌的种类,生长特性,亚硝化过程与机理摘要:从亚硝化细菌的生长特性出发,主要介绍了亚硝化细菌的种类,包括亚硝化单胞菌属、亚硝化球菌属、亚硝化螺菌属、亚硝化叶菌属、亚硝化弧菌属,并探讨了亚硝化过程中的氧化和生化机理。
关键词:亚硝化菌,亚硝化作用,机理1 亚硝化细菌生长特性亚硝化细菌又叫氨氧化细菌,有自养型与异氧型之分,一般认为自养型氨氧化细菌是硝化作用的主要菌群。
所有自养型氨氧化细菌,都是革兰氏阴性细菌,自养生长时,以氨为唯一能源,以CO2为唯一碳源;混合营养生长时,可同化有机物质。
亚硝酸细菌的生长极为缓慢。
在适宜的条件下需 24h 才能完成一次分裂周期。
在进行固体培养的过程中一般需数月才能见到菌落生长[1]。
亚硝酸细菌喜欢微偏碱性的环境,适合大多数氨氧化细菌生长的条件为:温度25-30℃,pH 7.5-8.0,氨浓度2-10mmol/L。
倍增时间8小时至数天。
在纯培养中,培养基中若加入有机物质如酵母提取物等将会抑制亚硝酸细菌的生长,因此在进行亚硝酸细菌的分离培养时所培养分离的细菌的纯度可利用在培养基中加入(酵母粉、牛肉膏、蛋白胨等)有机物的方法进行检测[2]。
但是自然环境中有机物质对亚硝酸细菌的影响不如在纯培养中的大大亚硝酸细菌对污水组成、pH和温度等的改变都敏感[3]。
2亚硝酸细菌的分类亚硝酸细菌的分类主要根据细菌形态的表型特征、细胞内细胞质膜的分布及它们16SRNA 序列的同源性。
1984-1989 年的《伯杰氏细菌系统分类学》把硝化细菌分为九个属:硝化杆菌属、硝化刺菌属、硝化球菌属、硝化螺菌属、亚硝化单胞菌属、亚硝化螺菌属、亚硝化球菌属、亚硝化叶菌属和亚硝化弧菌属等。
而目前则倾向于把亚硝酸细菌分为两个单一细胞起源的群体,它们分别属于变形菌纲的β亚纲和γ亚纲。
在对这两个亚纲的亚硝酸细菌作进一步的分类时,不同的学者还有些细微的差别。
Votek 等认为除了海洋亚硝酸球菌属于变形菌γ亚纲外,其它的亚硝酸细菌即亚硝酸单孢菌和亚硝酸螺旋菌两个种群属于变形菌β亚纲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
African Journal of Microbiology Research Vol. 5(18), pp. 2675-2681, 16 September, 2011Available online /AJMRISSN 1996-0808 ©2011 Academic JournalsFull Length Research PaperIsolation and characterization of a potential biocontrolBrevibacillus laterosporusZhen Song1, Kaiqi Liu2, Changxu Lu3, Jian Yu3, Ruicheng Ju1 and Xunli Liu3*1College of Life Science, Shandong Agricultural University, Taian, China.2Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou, China.3College of Forestry, Shandong Agricultural University, Taian, China.Accepted 24 August, 2011An antagonist bacterium ZQ2 was isolated from an apple rhizosphere at Mount Tai in China. The bacterium strongly inhibited the growth of numerous apple phytopathogens in vitro, such as Rhizoctonia solani, Fusarium oxysporum,Fusarium solani,and Physalospora piricola. The inhibition rates against the different fungi ranged from 55.26 to 88.17. The strain ZQ2 was identified as Brevibacillus laterosporus based on morphology, biochemical tests, and 16S rDNA sequence analysis.The antifungal metabolites produced by ZQ2 were thermally stable even after being maintained at 121°C for 30 min. Meanwhile, the activity against the growth of R. solani was almost unchanged when the culture filtrate was irradiated under ultraviolet (UV) or at pH ranging from 1 to 11, and was only reduced under pH conditions from 12 to 14. When observed under a light microscope, the mycelia of R. solani inhibited by the antifungal metabolites appeared abnormal in growth. The strong antifungal activity and relatively stable active substances of B. laterosporus ZQ2 showed great potential for controlling fungal diseases in apples.Key words: Brevibacillus laterosporus, characterization, antifungal activity.INTRODUCTIONRhizoctonia solani, Fusarium oxysporum, Fusarium solani, and Physalospora piricola, common and damaging phytopathogenic fungi of apple trees, have a wide range of hosts and are major constraints to apple production. At present, chemical control remains the primary means of preventing the diseases caused by these fungi. Numerous synthetic chemicals comprise the major market share of fungicides (Imre et al., 2009; Jonssson et al., 2010). However, due to the increasing resistant mutants and environmental pollution, there is an increasing demand for more effective and safer fungicides with novel modes of action (Zhenzhen et al., 2010). Consequently, the selection of antagonistic microorganisms for biological control is considered as an alternative method (Li et al., 2009).*Corresponding author. E-mail: xunliliu@. Tel: +86 538 8249131. Fax: +86 538 8249164.In the last few years, various antifungal bacteria were investigated as potential biocontrol agents. Scientists have focused on the use of antagonistic bacteria and their active substances. Members of Brevibacillus clade, established as an independent genus from the reclassi-fication of Bacillus brevis in 1996 (Shida et al., 1996), are well-known biocontrol microorganisms that produce structurally diverse secondary metabolites with broad antibiotic spectra. Some of these metabolites, such as chitinase and gramicidin oviet, have been extensively studied (Tatsushi and Kiyoshi, 2009). Numerous Brevibacillus species have potential as biocontrol agents in agricultural production, and some of these strains have become research hotspots.In the present study, an antagonist B. laterosporus strain, ZQ2, was isolated from an apple rhizosphere via an in vitro screening technique and identified through morphologic observation, biochemical tests, and 16S rDNA sequence analysis. This strain produces stable metabolites tha t strongly inhibit numerous phytopathogenic2676 Afr. J. Microbiol. Res.fungi of apple trees, including R. solani, F. oxysporum, P. piricola, and so on. The present research aims to screen novel and effective antagonistic bacterium and hopes to provide an alternative resource for the biocontrol of fungal diseases in apples.MATERIALS AND METHODSIsolation and cultivation of the rhizosphere bacteriaSoil samples were collected from an apple rhizosphere at Mount Tai in Shandong Province, China and stored at low temperature at the College of Forestry in Shandong Agricultural University. One gram of soil was suspended aseptically with 100 ml of physiologic saline, agitated in a rotary shaker at 200 rpm for 30 min, and centrifuged. Afterward, serial dilutions of the sample supernate were prepared up to 10-6with sterile water. Then, 0.1 ml of each gradient was spread on potato dextrose agar plates (PDA: 200 g potato, 20 g glucose, 5 g beef extract, 5 g sodium chloride, and 20 g agar in 1 L distilled water) and incubated for approximately 36 h at 28°C. The visible single colony was purified from the proper gradient by streak-plate method. The isolates were cultured on PDA plates and stored at 4°C.Determination of antifungal activitiesThe antifungal activities of all bacterial isolates were determined in Petri dishes containing PDA medium using R. solani as the indicating fungus. The isolated bacteria were inoculated into Luria–Bertani medium (10 g peptone, 5 g yeast extract, and 10 g NaCl in 1 L distilled water) and incubated for 12 h at 30°C. After centrifugation, the filtrate was diluted with potato dextrose broth medium (PDB: 200 g potato, 20 g glucose, 5 g beef extract, and 5 g sodium chloride in 1 L distilled water) at 1:25 (v/v) and poured into Petri dishes. Six-millimeter disks of the tested fungi were placed at the center of the mixed PDA plate. Inhibition of fungal growth was evaluated as the percentage reduction of mycelial growth contrasted with that of the control plates without bacterial cell-free filtrate in the medium. The antifungal activities were calculated using the following equation: Growth inhibition (%) = [(mycelia length in the control plate – mycelia length in the treated plate)/ mycelia length in the control plate × 100] (Dake et al., 2007). Identification of strain ZQ2The bacterial isolate ZQ2, which exhibits high antifungal activity against R. solani, was screened for strain identification. Cell morphology was observed via a light microscope (Nikon Eclipse E200, Japan), including Gram-staining and microexamination (shape and size of the cell, spore formation, and so on). Physiological and biochemical tests were performed according to literature (Xiuzhu and Miaoying, 2001), such as growth in pH 5.5 and 9.0, at temperature 15 and 50°C, and in NaCl concentration at 2 and 5%. Molecular technology was employed for exact iden-tification of the strain. The bacterial genomic DNA was extracted and was purified using TaKaRa MiniBEST Bacterial Genomic DNA Extraction Kit (Takara, Japan). The 16S rDNA of the bacterium was amplified via polymerase chain reaction (PCR) and sequenced. The primers used for the amplification were 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′). The PCR mixtures contained 5 µL 10 × buffer (100 mM Tris–HCl, 15 mM MgCl2, 500 mM KCl; pH 8.3), 4 µl of 2.5 mmol/L deoxynucleoside triphosphates, 1 µl of each 10 µmol/L primer, 2 µl 2 U/µl TaKaRa Ex Taq, and 20 ng template DNA. The thermal cycling conditions were as follows: 2 min denaturation at 94°C, then 25 cycles of denaturation for 0.5 min at 94°C, annealing for 1 min at 50°C, extension for 1 min at 72°C, followed by a final 10 min extension at 72°C. The products were examined and recovered by electrophoresis in a 1% (w/v) agarose gel and then sequenced.Correlation between culture time and antifungal activityA loop of single ZQ2 colony was inoculated from the PDA plate into a 250 ml Erlenmeyer flask with 50 ml of potato dextrose broth medium (PDB: 200 g potato, 20 g glucose, 5 g beef extract, and 5 g sodium chloride in 1 L distilled water) and incubated for 18 h at 28°C in a rotary shaker at 200 rpm to prepare the liquid seed. One milliliter of the seed culture was then transferred aseptically into a 250 ml flask containing 50 ml and fermented 200 rpm for 72 h at 30°C. Samples were taken every 6 h to test the antifungal activity against R. solani with the aforementioned technique.Stability of the antifungal metabolites produced by strain ZQ2 The pH of the culture filtrate of strain ZQ2 was adjusted from 1.0 to 14.0 using 1 M HCl or 1 M NaOH, respectively. After maintaining at 4°C for 12 h, the pH levels of the samples were adjusted to 7.0 and antifungal bioassays were conducted to detect the strain activities. The effect of temperature was also assessed by maintaining the culture filtrate at 60, 80, 100, and 120°C for 30 min. The remaining activities against R. solani were tested after cooling to room temperature. A sample at room temperature and pH 7.0 was assayed as the control.In the UV test, 10 ml of culture filtrate was poured into a 7.5 cm wide Petri dish, which was placed 30 cm under a 30 W UV lamp. Then, 1 ml sample was taken every hour for 6 h. The variations in the remaining activities were studied. All experiments were performed in triplicate, and the mean value was analyzed with SAS 9.0 software.In vitro antifungal activities of the antifungal metabolitesEight pathogenic fungi, namely, F. oxysporum, F. solani, P. piricola, Aspergillus fumigatus, Alternaria alternata, Valsa sordida, Colletotrichum gloeosporioides, and Botrytis cinerea, were kindly provided by the Plant Protection College of the Shandong Agriculture University (Taian, China) and maintained on PDA plates at 4°C prior to use. The inhibitory abilities of the antifungal substances produced by strain ZQ2 against the pathogens were determined as the percentage reduction in mycelial growth. As a control, the target fungi were grown on PDA plates without culture filtrate. The results were recorded after 72 h of incubation at 30°C. The morphology of the inhibited R. solani mycelia, along the edges, was then examined under a light microscope (Nikon Eclipse E200, Japan).RESULTSIsolation of antifungal strainsA total of 127 bacterial strains were obtained from the soil sample and bioassayed. Among the 12 strains that showed antifungal activity (data not shown), strain ZQ2 most strongly inhibited R. solani. It exhibited high activity in the in vitro test, with an inhibition rate of up to 80.17%.Song et al. 2677Table 1. Physiological and biochemical characterization of B. laterosporus ZQ2 and standard B. laterosporusCharacteristic ZQ2 Standard B. laterosporusShape Rod RodSize 0.83 × 3.6 µm 0.7–0.9 µm × 3–5 µmEndospore forming - -Gram stain - -Motility - -Oxidase - -Voges-Praskauer (V-P) test - -Starch hydrolysis - -Glucose fermentation - -Growth in pH 5.5 - -Growth in pH 9.0 - -Growth at 15°C - -Growth at 50°C - -Growth in 2% NaCl - -Growth in 5% NaCl - -Anaerobic growth - -Identification of strain ZQ2Strain identification results suggest that ZQ2 should belong to the Brevibacillus genus. The strain is Gram-positive, rod-like (0.8 to 1.5 µm × 1.2 to 2.0 µm), motile, facultative anaerobic bacterium with endospores formed in the cell. The strain can hydrolyze starch and gelatin, and produces catalase and oxidase. However, it did not grow at temperatures higher than 55°C or lower than 15°C. Detailed morphologic and biochemical characteristics are summarized and compared with the standard B. laterosporus (Xiuzhu and Miaoying, 2001) in Table 1. The 16S rDNA of this strain was then amplified and sequenced, consisting of 1444 nucleotides. The phylogenetic tree, established via the SAS 9.0 software using the data obtained from NCBI Genbank (Figure 1), also demonstrated that the strain is most likely to be B. laterosporus. Therefore, ZQ2 was designated as B. laterosporus strain ZQ2, based on characterization and clustering similarity, and its 16S rDNA sequence was submitted to NCBI Genbank (Accession no. EU471747). Correlation between culture time and antifungal metabolite productionThe antifungal activity of strain ZQ2 was not detected until 12 h after inoculation (Figure 2), and then the active metabolites were continuously secreted along with the cell growth. The strongest activity against R. solani was observed at 60 h, after which the activity continuously declined until 72 h. This behavior demonstrates that the optimal time to harvest the antifungal metabolites produced by strain ZQ2 is 60 h after inoculation. Stability of the antifungal metabolitesFigure 3a illustrates the thermal stability of the antifungal substances. The activity remained at more than 88% even when the culture filtrate was maintained at 120°C for 30 min. The same result was observed in the UV radiation test. The antifungal activity against R. solani was almost unchanged during the sampling period (Figure 3b), suggesting that the antifungal metabolites produced by ZQ2 are stable in open environments.The antifungal activity was significantly reduced when the compounds were exposed to basic conditions from pH 12 to 14 (Figure 3c), but the active substances remained stable even after exposure to pH ranging from 1 to 11 (>80%).In vitro antifungal testThe antifungal substances produced by ZQ2 displayed strong in vitro inhibition against F.oxysporum,F.solani, P.piricola, A.fumigatus, A. alternata, V.sordida, C. gloeosporioides, and B. cinerea after 3 days of incubation (Table 2). The maximum inhibition rate was observed against V.sordida(88.17%), followed by A. alternata (79.02%), and A.fumigatus(77.13%). When observed under a light microscope, the mycelia of R. solani along the edges of interaction zone appeared thick and opaque, their cytoplasmic contents became cumulate, and parts of the mycelia ruptured. There were no spores in the field of vision (Figure 4a). However, the fungal mycelia on the control plate showed normal thin and clear radial growth with visible spores (Figure 4b).2678 Afr. J. Microbiol. Res.Figure 1. Phylogenetic tree of B. laterosporus ZQ2 based on 16S rDNA sequence analysis using the neighbor-joining method.Figure 2. Correlation between culture time and antifungal activity.DISCUSSIONCombined technologies were used in the present study to identify the bacterium strain ZQ2. According to its morphology, the bacterium is rod-shaped, Gram-positive, motile, and spore-forming (0.8 to 1.5 µm × 1.2 to 2.0 µm).Song et al. 2679Figure 3. Effect of temperature (a), UV radiation (b), and pH conditions (c) on thestability of the antifungal substances from B. laterosporus ZQ2.Table 2. Inhibition of phytopathogens using B. laterosporus strain ZQ2 antifungal metabolites.Pathogenic fungiF.oxysporumF.solaniP.piricolaA.fumigatusA.alternataV.sordidaC.gloeosporioidesB.cinereaInhibition rates (%) 64.70 66.41 55.26 77.13 79.02 88.17 66.83 61.952680 Afr. J. Microbiol. Res.Figure 4. Effects of B. laterosporus ZQ2 active metabolites on the growth of R. solani: (a) mycelia inhibited bythe antifungal substances and (b) healthy mycelia on the control plate.Biochemical indices showed positive oxidase production and glucose fermentation but negative in starch hydrolysis and V-P tests. Strain ZQ2 showed almost identical properties to the members of B. laterosporus (Saikia, et al., 2010), based on 16S rDNA sequence analysis. Homology also revealed the same result.B. laterosporus bacteria are potent biocontrol agents against numerous insects belonging to orders lepidoptera and coleoptera (Oliveira et al., 2004) and can be used for nematode control due to their production of extracellular neutral protease (Baoyu et al., 2006). However, there are few reports on the use of B. laterosporus as a biocontrol agent for pathogenic fungi. To the best of our knowledge, this is the first report of the isolation of B. laterosporus with broad-spectrum antifungal activity from an apple rhizosphere.Brevibacillus spp. can produce a wide variety of metabolites with antifungal activity, which can control plant diseases as biocontrol agents (Sunita et al., 2010).A number of the active metabolites are fungicidal or fungistatic peptides that are non-ribosomally synthesized by multi-enzyme–catalyzed systems. Most of these peptides are very stable because of their low molecular weight and specific structure. Some non-ribosomal peptides have already been purified from B. laterosporus. Kelsey et al. (2007) isolated and elucidated the structure of the lipopeptide tauramamide from B. laterosporus Ren et al. (2007) purified an antimicrobial peptide, R-1, with a small molecular weight and composed of 9 kinds of amino acids from marine B. laterosporus. In the present study, the active substances produced by B. laterosporus ZQ2 were relatively stable under different conditions and have broad and strong antifungal activity. These features show great potential in the application of strain ZQ2 and its metabolites in controlling pathogenic apple fungi.The mechanisms of action of many antifungal peptides are still undetermined although investigations were conducted during the last few decades. Daniel et al. (2010) found that many short cationic peptides accumulate on the cell membrane of fungal hyphae and disturb sterol-rich membrane domains. Thicker hyphae and depolarized cells were observed in micrographs, and most spores did not germinate after antifungal peptide treatment. The phenomenon is very similar to the results in the present study, signifying that B. laterosporus strain ZQ2 likely secretes peptides with the same inhibitory mechanism on fungi.The antifungal substances produced by ZQ2 are being purified from the PDB medium of ZQ2, and elucidation of their structures is in progress. In further research, the bioactive products will be characterized and the medium for production will be optimized. We hope to provide an alternative resource for controlling fungal diseases in apples using B. laterosporus ZQ2 as a novel biocontrol agent.REFERENCESBaoyu T, Ning L, Lihui L, Junwei L, Jinkui Y, Keqin Z (2006). Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch.Microbiol., 186: 297-305.Dake X, Xiuying X, Na X, Lijia A (2007). Isolation and identification of a novel endophytic bacterial strain with antifungal activity from the wild blueberry Vaccinium uliginosum. Ann Microbiol., 57: 673-676.Daniel M, Kai H, Serge R, Reinhard F, Norio T (2010). Screening for antifungal peptides and their modes of action in Aspergillus nidulans Appl. Environ. Microbiol., 21: 7102-7108.Imre JH (2009). Fungal Disease Management in Environmentally Friendly Apple Production – A Review. Sustain Agr. Rev., 2: 219-292.DOI: 10.1007/978-90-481-2716-0_10.Jonssson A, Nybom H, Rumpunen K (2010). Fungal Disease and Fruit Quality in an Apple Orchard Converted from Integrated Production to Organic Production. J. Sustain. Agr., 34: 15-37.Kelsey D, Alban P, Helen W, Teatulohi M, Michael K, Raymond JA(2007). Tauramamide, a lipopeptide antibiotic produced in culture by B revibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J. Nat. Prod., 70: 1850-1853.Li H, Guoying Z, Lili L, Junang L (2009). Isolation and identification of endophytic bacteria antagonistic to Camellia oleifera anthracnose.Afr. J. Micobiol. Res., 3: 315-318.Oliveira EJ, Rabinovitch L, Monnerat RG, Liana KP, Viviane Z. (2004).Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl. Environ. Microbiol., 70: 6657-6664.Ren ZZ, Zheng Y, Sun M, Liu JZ, Wang YJ (2007). Purification and properties of an an timicrobial substance from marine Brevibaciilus iaterosporus Lh-1. Acta Microbiol. Sinica, 47: 997-1001.Saikia R, Gogoi DK, Mazumder S, Yadav A, Sarma RK, Bora TC, Gogoi BK (2010). Brevibacillus laterosporus strain BPM3, a potential biocontrolagent isolated from a natural hot water spring of Assam, India. Microbiol., Res., doi:10.1016/j.micres. 2010.03.002.Shida O, Takagi H, Kadowaki K, Komagata K (1996). Proposal for two newgenera Brevibacillus gen. nov. and Aneurini-bacillus gen. nov. Int.J. Syst. Bacteriol., 46: 939-946.Song et al. 2681 Sunita C, Eunice J A, Steve W (2010). Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J.Phytopathol., 158: 470-478.Tatsushi M, Kiyoshi K (2009). Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol. Life Sci., 66: 3821-3826. Xiuzhu D, Miaoying C (2001). Identification manual of common bacterial system. Beijing: Science Press.Zhenzhen Z, Qiushuo W, Kaimei W, Kemp B, Changhong L, Yucheng G (2010). Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresource Technol., 101: 292-297.。