3月3日和3月5日数学试题及参考答案
2024届河北省承德市3月高三年级第五次调研考试数学试题
2024届河北省承德市3月高三年级第五次调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 24πα⎛⎫+ ⎪⎝⎭的值为( )A .247-B .1731-C .247 D .17312.在直角ABC ∆中,2C π∠=,4AB =,2AC =,若32AD AB =,则CD CB ⋅=( )A .18-B .-C .18D .3.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫⎪⎝⎭C .932,2ln 2ln 5⎛⎤⎥⎝⎦D .9,2ln 2⎛⎫+∞⎪⎝⎭4.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( )A .1B .1或12C .2D .2±5.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:如图的算法框图中输入的i a 为上表中的学生的数学竞赛成绩,运行相应的程序,输出m ,n 的值,则m n -=( )A .6B .8C .10D .126.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .47.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是( ) A .若//m α,//n α,则//m n B .若//m α,n ⊂α,则//m n C .若m n ⊥,m α⊥,则//n α D .若m α⊥,//n α,则m n ⊥8.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A .B .C .D .9.已知各项都为正的等差数列{}n a 中,23415a a a ++=,若12a +,34a +,616a +成等比数列,则10a =( ) A .19B .20C .21D .2210.已知函数()()sin 06f x A x a a A ωπ⎛⎫=+-<< ⎪⎝⎭在区间70,3ωπ⎡⎤⎢⎥⎣⎦有三个零点1x ,2x ,3x ,且123x x x <<,若123523x x x π++=,则()f x 的最小正周期为( ) A .2πB .23πC .πD .43π 11.在边长为3ABCD 中,60BAD ∠=︒,沿对角线BD 折成二面角A BD C --为120︒的四面体ABCD (如图),则此四面体的外接球表面积为( )A.28πB.7πC.14πD.21π12.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )A.60种B.70种C.75种D.150种二、填空题:本题共4小题,每小题5分,共20分。
广东省佛山市顺德区2022-2023学年重点中学高二(下)月考数学试卷(3月份)及参考答案
2022-2023学年广东省佛山市顺德区重点中学高二(下)月考数学试卷(3月份)及参考答案第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知数列{}n a 中,452+-=n n a n ,则数列{}n a 的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项2.在数列{}n a 中,4211+==+n n a a a ,,若2022=n a ,则=n ()A.508B.507C.506D.5053.等差数列{}n a 的前11项和4411=S ,则=++873a a a ()A.9B.10C.11D.124.在等比数列{}n a 中.已知487531=+=+a a a a ,,则=+++1513119a a a a ()A.11B.6C.3D.185.已知数列{}n a 是递增的等比数列,1+2+3=14,123=64,则公比=()A.12B.1C.2D.46.若数列{}n a 对任意正整数都有1+22+33+…+B =2−1,则22+55=()A.17B.18C.34D.847.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.24C.20D.198.已知等差数列{}n a 的前项和为,若7+8>0,7+9<0,则取最大值时的值为()A.8B.5C.6D.7二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9.正项等比数列{}n a的前项和为,已知3=2+101,4=3.下列说法正确的是()A.1=9B.{}是递增数列C.{+118}为等比数列D.{log3}是等比数列10.记为公差不为0的等差数列{}n a的前项和,则()A.3,6−3,9−6成等差数列B.33,66,99成等差数列C.9=26−3D.9=3(6−3)11.已知数列{}n a中,1=2,+1+1=1,∈+,则()A.2022=1B.1+2+3+…+2002=1011C.123…2022==1011D.12+23+34+…+20222023=−101112.如图所示,图1是边长为1的正方形,以正方形的一边为斜边作等腰直角三角形,再以等腰直角三角形的两个直角边为边分别作正方形得到图2,重复以上作图,得到图3,…….记图1中正方形的个数为1,图2中正方形的个数为2,图3中正方形的个数为3,……,图中正方形的个数为,下列说法正确的有()A.5=63B.图5中最小正方形的边长为14C.1+2+3+……+10=2036D.若=255,则图中所有正方形的面积之和为8第II卷(非选择题)三、填空题(本大题共4小题,共24.0分)13.设数列{}n a满足1=2=2+2K1,则3=.14.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百錢.欲令高爵出少,以次漸多,問各幾何?“意思是:“有大夫、不更、簪裹、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,这5个人各出多少钱?“在这个问题中,若大夫出6钱,则上造出的钱数为.15.数列{}n a中,=−12+1−32(≥2,∈∗),且1=1,则数列的通项公式为=.16.已知数列{}n a满足1=1,且+1=++1,则=,数列{1}的前项和=.四、解答题(本大题共6小题,共70.0分。
2021学年新人教版六年级(下)月考数学试卷(3月份)(6)(有答案)
2021学年新人教版六年级(下)月考数学试卷(3月份)(6)一、填空.(共30分,每小题3分)1. 如果下降7米,记作−7米,那么上升7米记作________米;若+300元表示赚300元,那么−3元表示________.2. 一个圆柱的底面半径是5厘米,高是6厘米,侧面积是________平方厘米,表面积是________平方厘米,体积是________立方厘米。
3. 在下面的数轴上表示出各数,并在横线上按照从小到大的顺序排列。
−4.5、6、−1、3.5、−3、−6.24. 把一根长1.8米的圆柱形钢材截成3个小圆柱形钢材后,表面积比原来增加了24平方米,这根圆柱形钢材原来的体积是________立方米。
5. 一种商品打“五五折”出售,就是把这种商品优惠了________%.6. 七成五表示________,改写成百分数是________.7. 某开发公司向银行贷款70万元,月利率是0.15%,半年后应支付利息________万元。
8. 2014年,小刚家收入150000元,把收入的40%存入银行定期一年,年利率是3.25%,到期后应得利息________元。
9. 如图,直角三角形ABC两条直角边分别是4cm、3cm,以AB为轴旋转一周,得到一个________体,它的高是________cm,体积是________cm3.10. 如图,把一个底面直径是10cm、高是15cm的圆柱切拼成长方体后,表面积增加了________cm2.二、选择题.(将正确答案的字母填在括号里)(共18分,每小题3分)圆柱的体积是78.5立方分米,它的底面直径是4分米,这个圆柱的高是()分米。
A.6.25B.15.625C.25圆柱的高不变,底面半径扩大到原来的2倍,它的侧面积扩大到原来的()A.2倍B.4倍C.8倍D.1倍一个底面积是36平方厘米的圆锥与一个棱长是9厘米的正方体的体积相等,则圆锥的高是()厘米。
A.60.75B.20.25C.9一个圆柱体和一个圆锥体的高相等,它们底面积的比是1:2,体积比是()A.3:2B.1:6C.4:9小明在家门前东西方向的路上,先向东走了5米,记作“+5米”,再从此处出发,又向西走了8米,此时他的位置可记作()A.+3米B.−3米C.−8米D.−13米某地区2013年产小麦15万吨,比去年增产二成,求2012年小麦产量正确的列式是()A.15×(1+20%)B.15÷(1+20%)C.15×(1−20%)D.15÷(1−20%)三、看图按要求完成.(共15分,前两小题每空1分,第三小题4分)下面图形中,________号圆和左边的长方形相配能做成圆柱,圆柱的底面周长是________厘米,高是________厘米,体积是________立方厘米。
北京市首都师范大学附属中学2022下学期九年级下学期3月月考数学试题(含答案与解析)
【答案】D
【解析】
【分析】根据数轴上a,b的位置,可得 ,又 ,可得a,b同号,同为正或者同为负.
【详解】本题考查不等式的性质.借助于数轴可知 ,因此不能判断 , , ,故A,B,C错误;而由 得 ,由于 ,故 ,因此D正确,故选D.
【点睛】本题主要考查借助数轴判断式子是否成立,通过解答本题渗透数形结合的数学思想.
45.5
(1)根据以上信息,可以求出: ______, ______, ______, ______;
(2)请根据数据分析,你认为哪个班的学生数学学科能力整体水平较好,请说明理由;
(3)若规定得分在80分以上为合格,请估计参加数学学科能力测试的学生中合格的学生公共有多少人.
28.小亮在学习中遇到这样一个问题:
【详解】解:∵几何体的主视图和左视图都是高度相等的长方形,
故该几何体是一个柱体,
又∵俯视图是一个圆形,
故该几何体是一个圆柱,
故选A.
【点睛】题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
2.第24届冬季奥林匹克运动会,将于2022年2月4日在北京开幕.此次冬奥会的单板大跳台项目场馆坐落在北京市首钢园区的北京冬季奥林匹克公园,园区总占地面积171.2公顷即1712000平方米.将1712000用科学记数法表示应为( )
(3)已知 , ,若线段 上存在线段 的“小角点”,直接写出 的取值范围.
参考答案
一、选择题(共8小题)
1.如图是某几何体的视图,该几何体是()
A.圆柱B.球C.三棱柱D.长方体
【1题答案】
【答案】A
【解析】
【分析】根据主视图和左视图都是高度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体底面形状,得到答案.
2023-2024学年重庆市高二下学期3月月考数学质量检测试题(含答案)
2023-2024学年重庆市高二下册3月月考数学质量检测试题一、单选题1.已知集合(){}{}21,60A x y ln x B x x x ==+=--≤,则A B = ()A .(]2,3-B .(]1,3-C .(]3,2-D .()1,3-【正确答案】B【分析】首先求出集合A 、B ,再利用集合的交运算即可求解.【详解】(){}{}{}1101A x y ln x x x x x ==+=+>=>-,{}()(){}{}26032023B x x x x x x x x =--≤=-+≤=-≤≤,所以A B ⋂{}(]131,3x x =-<≤=-,故选:B2.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,则拟合效果最好的回归模型对应的相关指数R 2的值是()A .0.97B .0.86C .0.65D .0.55【正确答案】A【分析】在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,即可求解.【详解】由题意,四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,根据在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,可得拟合效果最好的回归模型对应的相关指数R 2的值是0.97.故选:A .本题考查了用相关指数拟合模型效果的应用问题,其中解答中熟记回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好是解答的关键,属于基础题.3.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为()A .8=24(8)4n n n n -+---B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+-D .15=2(1)4(5)4n n n n ++++-+-【正确答案】A【分析】由已知结合归纳推理即可求解【详解】解:从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n ,故8=24(8)4n n n n -+---满足;故选:A4.已知命题p :220x x +->,命题q :()(){|lg 23}x f x x =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B分别化简命题p 和命题q ,利用必要不充分条件的定义进行判断即可.【详解】命题p :220x x +->等价于1x >或<2x -;命题q :()(){}3{|lg 23}|230|2x f x x x x x x ⎧⎫=-=->=>⎨⎬⎩⎭则p 是q 的必要不充分条件故选:B5.函数22o )l g (1f x x x =-+的零点所在区间是()A .1184⎛⎫⎪⎝⎭,B .1142⎛⎫ ⎪⎝⎭,C .112⎛⎫⎪⎝⎭D .()12,【正确答案】C【分析】利用零点存在性定理即可求解.【详解】2111151log 08484f ⎛⎫=-+=-< ⎪⎝⎭211151log 04242f ⎛⎫=-+=-< ⎪⎝⎭21111log 1022f ⎛⎫=-+=-< ⎪⎝⎭()12110f =-=>()1102f f ⎛⎫⋅< ⎪⎝⎭,221log ()f x x x ∴=-+的零点所在区间是112⎛⎫ ⎪⎝⎭,故选:C6.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为x24568y3040605070A .-10B .0C .10D .20【正确答案】C【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论.【详解】由题意,根据表格中的数据,可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+,取5x =,得ˆ652050y=⨯+=,所以随机误差的效应(残差)为605010-=,故选C.本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.7.设曲线f (x )=ax 2在点(2,4a )处的切线与直线4x -y +4=0垂直,则a =()A .2B .-116C .12D .-1【正确答案】B【分析】由已知结合导数的几何意义即可求解.【详解】f (x )=ax 2,则()2f x ax'=因为在点(2,4a )处的切线与直线4x -y +4=0垂直,所以()1244f a =-'=所以116a =-故选:B8.函数3222xxx y -=+在[]6,6-的图像大致为A .B .C .D .【正确答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x xx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.10.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【正确答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是()A .(,-∞B .(C .(,-∞D .(0,【正确答案】A先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120xg x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数;1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 为增函数;()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A.利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.12.若正实数a ,b 满足22ln ln 222+≥+-b a b a ,则()A .124+=+a bB .122-=-a b C .2a b >D .240b a -<【正确答案】B【分析】利用基本不等式可得)222212b a +-≥(当且仅当222b a =时取等号),利用熟知的结论1ln x x -≥(当且仅当1x =时取等号)进行放缩可得到2222ln ln 2b a a b +-≥+,结合已知条件,得到22ln ln 222b a b a +=+-,考虑到各不等式取等号的条件,解得,a b 的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:1ln x x -≥恒成立,且当且仅当1x =时取等号.设()1ln f x x x =--,则()11f x x'=-,在(0,1)上,()0f x '<,()f x 单调递减;在(1,+∞)上,()0f x '>,()f x 单调递增.故()()11100min f x f ==--=,∴()1ln f x x x =-≥恒成立,且当且仅当1x =时取等号.由)22222212lnln ln 2b a a b +-≥=≥+,由已知22ln ln 222b a b a +≤+-,∴22ln ln 222b a b a +=+-,且2221b a ⎧=⎪=,解得12a b ⎧=⎪⎨⎪=⎩,经检验只有B 正确,故选:B.本题关键点在于利用基本不等式和熟知的结论1ln x x -≥恒成立,且当且仅当1x =时取等号进行研究,得到2222ln ln 2b a a b +-≥+,结合已知得到等式,一定要注意基本不等式和1ln x x -≥取等号的条件,才能列出方程组求得,a b 的值.二、填空题13.函数()f x =__________.【正确答案】(0,1)(1,]e ⋃【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ⎧>⎪-≥⎨⎪-≠⎩,解得0x e <≤且1x ≠.故答案为.(0,1)(1,]e ⋃14.i 是复数单位,若()1243i z i +=+,z 的虚部为__________.【正确答案】1【分析】由复数除法求得z 后可得z ,从而得其虚部.【详解】由已知243(43)(12)4836212(12)(12)5i i i i i i z i i i i ++--+-====-++-,2z i =+,虚部为1.故1.15.已知函数()f x 定义域为R ,满足 ()(2)f x f x =-,且对任意121x x ≤<,均有()()12120x x f x f x ->-,则不等式(21)(3)0f x f x ---≥解集为______.【正确答案】4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭【分析】先求出函数()f x 关于直线1x =对称,函数()f x 在[)1,+∞上单调递增.在(],1-∞上单调递减,再解不等式|211||31|x x --≥--即得解.【详解】因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<,均有()()12120x x f x f x ->-成立,所以函数()f x 在[)1,+∞上单调递增.由对称性可知()f x 在(],1-∞上单调递减.因为()()2130f x f x ---≥,即()()213f x f x -≥-,所以|211||31|x x --≥--,即|22||2|x x -≥-,解得0x ≤或43x ≥.故4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭方法点睛:对于函数问题的求解,通常要先研究函数的奇偶性、对称性、周期性和单调性等,再利用这些性质求解函数的问题.16.已知函数()()()202ln f x a x x x a =+>-有两个极值点1x 、()212x x x <,则()()12f x f x +的取值范围为_________.【正确答案】(),16ln 224-∞-【分析】确定函数()y f x =的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求()()12f x f x +的取值范围.【详解】函数()()22ln f x a x x x =-+的定义域为()0,∞+,()21222212x ax a f x a x x x -+⎛⎫'=-+= ⎪⎝⎭,依题意,方程22220x ax a -+=有两个不等的正根1x 、2x (其中12x x <),则241604a a a ∆=->⇒>,由韦达定理得120x x a +=>,120x x a =>,所以()()()()()22121212122ln 2f x f x a x x x x a x x +=++-+()()()2222121212122ln 222ln 222ln 2a x x x x x x a x x a a a a a a a a a ⎡⎤=++--+=+--=--⎣⎦,令()()22ln 24h a a a a a a =-->,则()2ln 2h a a a '=-,()()2122a h a a a-''=-=,当4a >时,()0h a ''<,则函数()y h a '=在()4,+∞上单调递减,则()()44ln 280h a h '<=-<,所以,函数()y h a =在()4,+∞上单调递减,所以,()()416ln 224h a h <=-.因此,()()12f x f x +的取值范围是(),16ln 224-∞-.故答案为.(),16ln 224-∞-本题考查了函数极值点问题,考查了函数的单调性、最值,将()()12f x f x +的取值范围转化为以a 为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题17.已知命题:,p x R ∀∈240++≤mx x m .(1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.【正确答案】(1)14m ≤-;(2)14m ≤-.(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围,因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假,从而得到关于m 的不等式组,解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤-p ∴为真命题时,14m ≤-.(2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p真q假,有1413mm⎧≤-⎪⎪⎨⎪<⎪⎩解得14m≤-【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18.2020年12月29日至30日,全国扶贫开发工作会议在北京召开,会议指出经过各方面的共同努力,中国现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,贫困村全部退出,脱贫攻坚目标任务如期全面完成.2021年是“十四五”规划开局之年,是巩固拓展脱贫攻坚成果、实现同乡村振兴有效衔接的起步之年.要按照中共中央国务院新决策新部署,把巩固拓展脱贫攻坚成果摆在头等重要位置来抓,推动脱贫攻坚政策举措和工作体系逐步向乡村振兴平稳过渡,用乡村振兴巩固拓展脱贫攻坚成果,坚决守住脱贫攻坚胜利果实,确保不出现规模性返贫,确保实现同乡村振兴有效衔接,确保乡村振兴有序推进.北方某刚脱贫的贫困地区积极响应,根据本地区土地贫瘠,沙地较多的特点,准备大面积种植一种叫做欧李的奇特的沙漠果树,进行了广泛的宣传.经过一段时间的宣传以后,为了解本地区广大农民对引进这种沙漠水果的理解程度、种植态度及思想观念的转变情况,某机构进行了调查研究,该机构随机在该地区相关人群中抽取了600人做调查,其中45岁及以下的350人中有200人认为这种水果适合本地区,赞成种植,45岁以上的人中赞成种植的占2 5.(1)完成如下的2×2列联表,并回答能否有99.5%的把握认为“赞成种植与年龄有关”?赞成种植不赞成种植合计45岁及以下45岁以上合计(2)为了解45岁以上的人的想法态度,需要在已抽取45岁以上的人中按种植态度(是否赞成种植)采用分层抽样的方法选取5位45岁以上的人做调查,再从选取的5人中随机抽取2人做深度调查,求2人中恰有1人“不赞成种植”的概率.附表:()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.072 2.706 3.841 5.0246.6357.87910.828参考公式为:()()()()()22n ad bc K a b c d a c b d -=++++【正确答案】(1)填表见解析;有99.5%的把握认为“是否赞成种植与年龄有关”;(2)35.【分析】(1)根据题中数据,直接完善列联表,再由公式计算2K ,结合临界值表,即可得出结论;(2)先由题中条件,确定被抽取的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ;用列举法写出总的基本事件,以及满足“恰有1人不赞成种植”的基本事件,基本事件的个数比即为所求概率.【详解】(1)由题意可得2×2列联表:赞成种植不赞成种植合计45岁及以下20015035045岁以上100150250合计30030060022600(200150150100)300300350250K ⨯⨯-⨯=⨯⨯⨯12017.1437.8797=≈>经查表,得()27.8790.005P K >≈,所以有99.5%的把握认为“是否赞成种植与年龄有关”.(2)在45岁以上的人中,赞成种植和不赞成种植的人数比为2:3,所以被抽取到的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ,从被选取到的5人中再从中抽取2人,共有如下抽取方法:(,)a b ,(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,(,)C D ,(,)C E ,(,)D E ,共有10种不同的结果,两人中恰好有1人为“不赞成种植的”包含了(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,共有6种结果.所以所求概率63105P ==.方法点睛:求古典概型的概率的常用方法:(1)古典概型所包含的基本事件个数较少时,可用列举法列举出总的基本事件个数,以及满足条件的基本事件个数,基本事件个数比即为所求概率;(2)古典概型所包含的基本事件个数较多时,可根据排列组合数的计算,求出总的基本事件个数,以及满足条件的基本事件个数,进而求出所求概率.19.已知三次函数32()41f x x ax x =+++(a 为常数).(1)当1a =时,求函数()f x 在2x =处的切线方程;(2)若a<0,讨论函数()f x 在()0,x ∈+∞的单调性.【正确答案】(1)20190x y --=;(2)答案见解析.【分析】(1)对函数求导,由导数的几何意义可得直线的斜率,再由直线的点斜式方程即可得解;(2)对函数求导,结合二次函数的性质,按照0a -≤<、a <-()0f x '>、()0f x '<的解集即可得解.【详解】(1)当1a =时,函数32()41f x x x x =+++,2()324f x x x '=++Q ,(2)20f '∴=即切线的斜率20k =,(2)21f =Q ,∴切线方程为2120(2)y x -=-即20190x y --=;(2)导函数2()324f x x ax '=++的对称轴为03a x =->,①当24480a ∆=-≤即0a -≤<时,()0f x '≥,()f x 在(0,)+∞上单调递增;②当24480a ∆=->即a <-(0)40f '=>,令2()3240f x x ax '=++=,则13a x -=,23a x -=,因为120x x <<,所以当0x <<或x >时,()0f x '>;x <<时,()0f x '<;所以()f x在0,3a ⎛⎫- ⎪ ⎪⎝⎭,,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增;()f x 在33a a a a ⎛---+ ⎪ ⎪⎝⎭上单调递减.本题考查了导数几何意义的应用及利用导数研究函数的单调性,考查了运算求解能力与逻辑推理能力,属于中档题.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩;(2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【详解】(1)依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.(2)由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()()920092009000W x x x =-++≤-+=,当且仅当10000x x =,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.21.已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【正确答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e x f x x x =+-,()e 21x f x x ='+-,由于()''e 20x f x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)[方法一]【最优解】:分离参数由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----,记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-,令()()21e 102x h x x x x =---≥,则()e 1x h x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102x x x ---恒成立,故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减;因此,()()2max 7e 24g x g -⎡⎤==⎣⎦,综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x x f x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e 74244e -+++⇔xx x x ,令()223e 7424()(0)e -+++=≥x x x x h x x ,则()()222313e 2e 92()e -+--=='x x x x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=x x x x ()2(2)2e 9e ⎡⎤--+-⎣⎦x x x x ,所以当29e 0,2⎡⎤-∈⎢⎣⎦x 时,()0,()h x h x <'单调递减;当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增;当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e 1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2x g x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22x x x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x x g x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21x g x x x -=+≤+恒成立,所以12a ≥时,满足题意.综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【正确答案】(1)2cos ([0,])4πρθθ=∈,32sin ([])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈,(2))6π,)3π,2)3π,5)6π.【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围.(2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3πθ=或23πθ=,此时P 的极坐标为3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π.此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.设函数()|21||4|f x x x =+--.(1)求不等式()2f x >的解集;(2)求函数()f x 的最小值.【正确答案】(1){7x x ∈<-R 或53x ⎫>⎬⎭;(2)92-.【分析】(1)将绝对值函数化为分段函数,用不同的区间对应的解析式大于2,分别解出不等式求其并集即可.(2)由分段函数求其值域即可得到最小值.【详解】1521()33425(4)x x f x x x x x ⎧⎛⎫--<- ⎪⎪⎝⎭⎪⎪⎛⎫=--≤≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩⑴①由5212x x -->⎧⎪⎨<-⎪⎩解得7<-x ;②332142x x ->⎧⎪⎨-≤≤⎪⎩解得543x <≤;③524x x +>⎧⎨>⎩解得>4x ;综上可知不等式的解集为{|7x x ∈<-R 或53x ⎫>⎬⎭.⑵由(1)知,当12x <-时,()195522f x x =-->-=-;当142x -≤≤时,()33f x x =-,()992f x -≤≤;当>4x 时,()59f x x =+>;综上x ∈R 时,()92f x ≥-,所以min 9()2f x =-故函数()f x 的最小值为92-.。
河北省石家庄市部分重点高中2022-2023学年高三下学期3月月考数学试题及答案
胁『NU 倒叫I、哥哥、赴平主员因柑旧部运己狲2022-2023学年2023届高王下学期3月质量检测考试数学注意事项:1.本试卷满分150分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号统写在答题卡土,并将条形码粘贴在�延卡土的指定位置.3.回答选择题时,逃出每小题答案后,用铅笔犯�题卡上对应题目的答案标号涂黑.如需改动,用橡皮综干净后,再选涂其他答案标号。
回答非这捺题时,将答案写在答题卡上.写在本试卷土元效。
4.考试结束后,将本试卷和答题卡一并收回.-、单项选择题:本题共8小题.每小题5分,共40分.在每小题绘出的四个选项中,只有一项是符合题目要求的-1.已知全集U=R,集合A={x I x2 -3x<4} ,B= {xi !xi注2},则<CuB>UA=A. (-2,4)B. (-4,2)C.(-2,2)D.(-4,4)2.已知复数Z1,zz满足I z1 I =3,z2 =2+i,则l z1 • z2 I=A. 3,/3B.2,/6C. 3,,/5D.63.已知抛物线C,x2=2户y(p>们的焦点为F,准线为i,点P(x0,l)(x。
>O)在抛物线C上,过P作t的垂线,垂足为Q,若IPOI=IPQI <O为坐标原点〉,则xo=A.2、/2 c.3./2B. 3 D.44.已知向盘a=(1,./2) ,b= (cos 0,sin 0) (其中8廷(0,2π忡,若a• b= I a I,则tan O=A.,/3./3c.τ D.,/6B.,/25.2023年考研成绩公布不久,对某校“软件工程”专业4盟主l组距参考的200名考生的成绩进行统计,可以得到如i到所|0.021示的频率分布直方图,其中分组的区间为[340,360), 0.0125t[360,380),[380,400),[400,420],同一组中的数据__o:Q!I·-…. . ....... ,c ·------.............•用该组区间的中间值作代表值,则下列说法中不正确的是。
2023年北京市顺义区仁和中学九年级下学期3月月考数学试卷(解析版)
2022-2023学年第二学期初三数学测试题一、选择题(本题共16分,每小题2分)1. 北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为( )A.64510´ B.74.510´ C.84.510´ D.80.4510´【答案】B 【解析】【分析】根据科学记数法的表示方法,进行表示即可.【详解】将数据45000000用科学记数法可表示为:74.510´.故选B .【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:()11100£´<n a a ,是解题的关键.2. 如图是某个几个几何体的三视图,该几何体是( )A. 圆锥B. 圆柱C. 长方体D. 正三棱柱【答案】B 【解析】【分析】由主视图和俯视图确定是柱体,由左视图确定具体形状.【详解】解:从主视图和俯视图可以确定是柱体,然后由左视图可以确定此物体为一个横放着的圆柱.故答案为:B.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3. 正六边形的每个内角度数为( )A. 60° B. 120°C. 135°D. 150°【答案】B【解析】【分析】利用多边形的内角和为(n ﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.【详解】解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.故选:B .【点睛】本题考查了多边形,解决本题的关键是利用多边形的内角和公式即可解决问题.4. 如图,点A 是数轴上一点,点A ,B 表示的数互为相反数,则点B 表示的数可能是( )A. 0B. 1C. 1.5D. 2.5【答案】C 【解析】【分析】点A 所表示的数在-2和-1之间,根据相反数的意义,可求出点B 所表示的数在1和2之间,据此即可判断.【详解】解:∵点A 所表示的数在-2和-1之间,∴点B 所表示的数在1和2之间,0、1、1.5、2.5四个数中,只有1.5符合题意,故选:C .【点睛】本题考查了互为相反数的意义,只有符号不同的两个数互为相反数,在数轴上在原点的两侧,到原点距离相等的两个数互为相反数.5. 如图,直线//AB CD ,AB 平分EAD Ð,1100Ð=°,则2Ð的度数是( )A. 60°B.50°C. 40°D. 30°【答案】C 【解析】【分析】根据邻补角求出=80EAD а,由AB 平分EAD Ð可知=40EAB а,根据//AB CD 得到2=40EAB Ð=а.【详解】解:∵1180EAD Ð+Ð=°,1100Ð=°,∴=80EAD а,∵AB 平分EAD Ð,∴1=402EAB EAD ÐÐ=°,∵//AB CD ,∴2=40EAB Ð=а,故选:C .【点睛】此题考查了邻补角和平行线的性质、角平分线的定义.解题关键是掌握相关定义和性质.6. 如图,将一个正方形纸片沿图中虚线剪开,能拼成下列四个图形,其中是中心对称图形的是( )A. B.C. D.【答案】B 【解析】【分析】根据拼成的四个图形是否存在中心对称点,即可判断图形是否为中心对称图形.【详解】解:依照中心对称图形的特征:若图形存在中心对称点,沿中心对称点旋转180°后可与原图形重合.选项A 图形无中心对称点,故不是中心对称图形,不符合题意;选项B 图形有中心对称点,故是中心对称图形,符合题意;选项C 图形无中心对称点,故不是中心对称图形,不符合题意;选项D 图形无中心对称点,故不是中心对称图形,不符合题意;故选:B .【点睛】本题考查中心对称图形的性质特征,熟练掌握相关知识是解题的关键.7. 某餐厅规定等位时间达到30分钟(包括30分钟)可享受优惠.现统计了某时段顾客的等位时间t (分钟),如图是根据数据绘制的统计图.下列说法正确的是( )A. 此时段有1桌顾客等位时间是40分钟B. 此时段平均等位时间小于20分钟C. 此时段等位时间的中位数可能是27D. 此时段有6桌顾客可享受优惠【答案】D 【解析】【分析】根据直方图,逐一进行判断即可.【详解】解:A 、由直方图可知:有1桌顾客等位时间在35至40分钟,不能说是40分钟,选项错误,不符合题意;B 、平均等位时间为:1101515202025253030353540261295124.235222222++++++æö´+´+´+´+´+´»ç÷èø(分钟),大于20分钟,选项错误,不符合题意;C 、因为样本容量是35,中位数落在2025t £<之间,选项错误,不符合题意;D 、30分钟以上的桌数为516+=,选项正确,符合题意.故选:D .【点睛】本题考查频数分布直方图,求平均数,中位数.解题的关键是从统计图中有效的获取信息.8. 如图,一架梯子AB 靠墙而立,梯子顶端B 到地面的距离BC 为2m ,梯子中点处有一个标记,在梯子顶端B 竖直下滑的过程中,该标记到地面的距离y 与顶端下滑的距离x 满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C . 二次函数关系 D. 反比例函数关系【答案】B 【解析】【分析】过梯子中点O 作OD ^地面于点D .由题意易证A OD A B C ¢¢¢V :V ,即得出A O OD AB BC ¢=¢¢¢.由O 为中点,2B C x ¢-,OD y =,即可推出122y x=-,即112y x =-+.即可选择.【详解】如图,过梯子中点O 作OD ^地面于点D .∴90ODA B CA ¢¢¢Ð=Ð=°,又∵OA D B A C ¢¢¢Ð=Ð,∴A OD A B C ¢¢¢V :V ,∴A O OD A B B C¢=¢¢¢,根据题意O 为中点,2B C x ¢=-,OD y =.∴122y x =-,整理得:112y x =-+.故y 与x 的函数关系为一次函数关系.故选B .【点睛】本题考查三角形相似的判定和性质以及一次函数的实际应用.作出辅助线构成相似三角形是解答本题的关键.二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则x 的取值范围是 _____.【答案】12x ³【解析】【分析】根据二次根式有意义的条件即可求出答案.实数范围内有意义,∴210x -³,解得12x ³,故答案为12x ³.【点睛】本题考查二次根式有意义的条件、解一元一次不等式,解题的关键是熟练运用二次根式有意义的条件.10. 分解因式:2288x x ++=___________.【答案】22()2x +【解析】【分析】直接提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:2288x x ++=2(x 2+4x+4)=22()2x +.故答案为:22()2x +.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.11. 方程1﹣12x +=0的解为 _____.【答案】=1x -【解析】【分析】先把分式方程化为整检验即可得到答案.【详解】解:1102x -=+去分母得210x +-=,解得=1x -,经检验=1x -是原方程的解,∴原方程的解为=1x -.【点睛】本题主要考查了解分式方程,熟知解分式方程的方法是解题的关键.12. 已知点A (1,2),B 在反比例函数()0k y x x =>的图象上,若OA=OB ,则点B 的坐标为_________.【答案】(2,1)【解析】【分析】根据点A ,B 关于y =x (y -x =0)的对称,求解即可【详解】解:∵点A (1,2),B 在反比例函数()0k y x x =>的图象上,OA=OB ,∴点A ,B 关于直线y =x (y -x =0)的对称,设点(1,2)关于直线y =x (y -x =0)的对称点设为(a ,b )由两点中点在直线y =x 上及过两点的直线垂直直线y =x (斜率之积为-1)可以得到:1222(2)(1)1a bb a ++ì=ïíï--=-î,解得:a =2,b =1,∴点B 的坐标为(2,1)故答案为:(2,1)【点睛】本题考查了反比例函数图象上点的坐标特征,利用已知条件得出:点A ,B 关于直线y =x (y -x =0)的对称是解题的关键.13. 某校学生会在同学中招募志愿者作为校庆活动讲解员,并设置了“即兴演讲”“朗诵短文”“电影片段配音”三个测试项目,报名的同学通过抽签的方式从这三个项目中随机抽取一项进行测试.甲、乙两位同学报名参加测试,恰好都抽到“即兴演讲”项目的概率是______.【答案】19【解析】【分析】列表后,再根据概率公式计算概率即可.【详解】解:列表如下:故P(甲、乙都抽到“即兴演讲”项目)=19,故答案为:19【点睛】此题考查了概率的计算,正确列出表格是解答此题的关键.14. 石拱桥是中国传统桥梁四大基本形式之一,如图,已知一石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,求水面宽AB=_____m.【答案】8.【解析】【分析】连结OA,先计算OD的长,由勾股定理解得AD的长,再根据垂径定理可得AB=2AD,据此解题.【详解】连结OA,Q 拱桥半径OC 为5cm ,5OA \=cm ,8CD =Q m ,853OD \=-=cm ,224AD OA OD \=-==m2248AB AD \==´=m,故答案为:8.【点睛】本题考查垂径定理及其推论、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15. 若关于x的方程22x x m ++=有两个不相等的实数根,则m 的取值范围是_____.【答案】1m <【解析】【分析】利用一元二次方程根的判别式的意义可以得到2240m D =->,然后解关于m的不等式即可.【详解】根据题意得2240m D =->,解得1m <.故答案为1m <.【点睛】本题考查一元二次方程根的判别式.一元二次方程()200ax bx c a ++=¹的根与24b acD =-有如下关系:当0D >时,方程有两个不相等的实数根;当0D =时,方程有两个相等的实数根;当D<0时,方程无实数根.16. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,理形成统计表如表:经整②180【答案】①. 160.【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填: 160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x +y =8,x ,y 均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:()113π2cos602-æö---+°+ç÷èø.2+【解析】【分析】直接利用绝对值的性质以及非零数的零次幂、特殊角三角函数值、负整数指数幂的性质分别化简即可得到答案.【详解】解:()113π2cos602-æö--+°+ç÷èø11222-+´+112++2+.【点睛】此题主要考查了实数的运算,正确化简各式是解答此题的关键.18. 解不等式组3(2)22254x x x x -<-ìïí+<ïî.【答案】52<x <4【解析】【分析】先分别求出各不等式的解析,然后各不等式解集的公共部分即为不等式组的解集.【详解】解:3(2)22254x x x x -<-ìïí+<ïî①②由①得x <4由②得x >52所以不等式组的解集为:52<x <4【点睛】本题考查了解一元一次不等式组,根据不等式的解集确定不等式组的解集是解答本题的关键.19. 已知210x x +-=,求代数式()()212x x x +--的值【答案】9【解析】【分析】根据完全平方公式展开所求代数式,把已知式子代入求解即可;【详解】解:2(31)(2)x x x +--,229612x x x x =++-+,2881x x =++,210x x +-=Q ,21x x \+=,\原式()2818119x x =++=´+=.【点睛】本题主要考查了代数式求值,结合完全平方公式化简是解题的关键.20. 证明下面是三角形中位线定理添加辅助线的方法,请你完成证明.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.已知:如图,点D 、E 分别是ABC V 的边AB 、AC 的中点.求证:DE BC ∥ 且 12DE BC =.证明:如图,延长DE 到F ,使EF DE =,连接FC 、DC 、AF .【答案】见解析【解析】【分析】证明AED CEF V V ≌,推出CF AD BD ==,CF AB ∥,得到四边形BDFC 为平行四边形,得到,DF BC DF BC =∥,即可得证.【详解】证明:如图,延长DE 到F ,使EF DE =,连接FC 、DC 、AF ,∵点D 、E 分别是ABC V 的边AB 、AC 的中点,∴,AD BD AE EC ==,又AED CEF Ð=Ð,∴()SAS AEDCEF △≌△,∴,CF AD BD EFC ADE ==Ð=Ð,∴CF AD ∥,∴四边形BDFC 为平行四边形,∴,DF BC DF BC =∥,∵12EF DE DF ==,∴DE BC ∥ 且 12DE BC =.【点睛】本题考查全等三角形的判定和性质,平行四边形的判定和性质.解题的关键是证明四边形BDFC 为平行四边形.21. 如图,在▱ABCD 中,AC ,BD 交于点O ,且AO =BO .(1)求证:四边形ABCD 是矩形;(2)∠ADB 的角平分线DE 交AB 于点E ,当AD =3,tan ∠CAB =34时,求AE 的长.【答案】(1)见解析;(2)32.【解析】【分析】(1)由平行四边形性质和已知条件得出AC =BD ,即可得出结论;(2)过点E 作EG ⊥BD 于点G ,由角平分线的性质得出EG =EA .由三角函数定义得出AB =4,sin ∠CAB =sin ∠ABD =35ADBD=,设AE =EG =x ,则BE =4﹣x ,在Rt △BEG 中,由三角函数定义得出345x x =-,即可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AC =2AO ,BD =2BO .∵AO =BO ,∴AC =BD .∴平行四边形ABCD 为矩形.(2)过点E 作EG ⊥BD 于点G ,如图所示:∵四边形ABCD 是矩形,∴∠DAB =90°,∴EA ⊥AD ,∵DE 为∠ADB 的角平分线,∴EG =EA .∵AO =BO ,∴∠CAB =∠ABD .∵AD =3,tan ∠CAB =34,∴tan ∠CAB =tan ∠ABD =34=AD AB.∴AB =4.∴BD 5=,sin ∠CAB =sin ∠ABD =35AD BD =.设AE =EG =x ,则BE =4﹣x ,在△BEG 中,∠BGE =90°,∴sin ∠ABD =345x x =-.解得:x =32,∴AE =32.故答案为:32.【点睛】本题考查了矩形的判定与性质、角平分线的性质、勾股定理、三角函数定义等知识;熟练掌握矩形的判定与性质和三角函数定义是解题的关键.22. 平面直角坐标系xOy 中,一次函数1y kx =-的图象经过点(2,3).(1)求这个一次函数的解析式;(2)当2x <时,对于x 的每一个值,函数y x a =+的值都大于一次函数1y kx =-的值,直接写出a 的取值范围.【答案】(1)21y x =-;(2)1a ³【解析】【分析】(1)直接利用待定系(2)对于21y x =-,当2x =时,求出其y 的值,再由此坐标可求出a 的值.画出函数图象即可求出a 的取值范围.【详解】(1)解:∵一次函数1y kx =-的图象过点(23),,∴321k =-,解得:2k =.∴这个一次函数的解析式是21y x =-.(2)当2x =时,代入21y x =-,得:3y =,∴当函数y x a =+经过点(2,3)时,1a =.画出两个函数图象如图:由图象可知,当1a ³,在2x <时,函数y x a =+的图象都在一次函数21y x =-的图象上方,即此时y x a =+的值都大于21y x =-的值,故a 的取值范围为1a ³.【点睛】本题考查求一次函数解析式和一次函数与不等式的关系,解题关键是熟练运用待定系数法求解析式,利用数形结合思想确定a 的取值范围.23. 某校在距离冬奥会开幕倒计时300天之际开展了一次冬奥知识答题竞赛,七、八年级各有200名学生参加了本次活动,为了解两个年级的答题情况,从两个年级各随机抽取了20名学生的成绩进行调查分析,过程如下(数据不完整).收集数据七年级 66 70 71 78 71 78 75 78 58 a 63 90 80 85 80 89 85 86 80 87 八年级 61 65 74 70 71 74 74 76 63 b 91 85 80 84 87 83 82 80 86 c 整理、描述数据格)分析数据两组样本数据的平均数、中位数、众数如下表所示:请根据所给信息,解答下列问题:(1)=a ,m = ,n = ;(2)在此次竞赛中,小冬的成绩在七年级能排在前50%,在八年级只能排在后50%,那么估计小冬的成绩可能是 ;(3)估计七年级和八年级此次测试成绩优秀的总人数为 .【答案】(1)80,0.45,80 (2)79.5 (3)210【解析】【分析】(1)利用平均数即可求出a ;找出成绩在8089x ££之间的频数即可求出m ,利用中位数即可求出n ;(2)利用中位数的意义列不等式求解即可;(3)求出抽取的20名七年级学生成绩中的优秀率,再乘以200;求出20名八年级学生成绩中的优秀率,再乘以200;最后两者相加即可解答.【小问1详解】解:∵七年级成绩的平均数为6671868087=77.520+++++L ,∴80a =;∵七年级同学成绩在8089x ££之间的频数为9,∴9=0.4520m =;将八年级同学成绩从小到大排序,处在中间的两个数都是80,∴80n =.故答案为:80,0.45,80.【小问2详解】解:∵七年级成绩的中位数是79,八年级成绩的中位数是80,小冬的成绩在七年级能排在前50%,在八年级只能排在后50%,∴小冬成绩在79和80之间∴小冬的成绩可能是79.5.故答案为79.5.【小问3详解】解:∵七年级的成绩为优秀的人数为0.5200=100´人,八年级的成绩为优秀的人数为0.55200=110´人,∴七年级和八年级此次测试成绩优秀的总人数为210人.【点睛】本题主要考查中位数、众数、平均数、频数分布表等知识点,理解中位数、众数、平均数的意义以及频数,频率和总数之间的关系是解题的关键.24. 如图,⊙O是△ABC的外接圆,圆心O在AC上.过点B作直线交AC的延长线于点D,使得∠CBD=∠CAB.过点A作AE⊥BD于点E,交⊙O于点F.(1)求证:BD是⊙O的切线;(2)若AF=4,2sin3D=,求BE的长.【答案】(1)见解析;(2【解析】【分析】(1)要证明BD是⊙O的切线,需要连接OB,通过角的等量代换,求证90CBD OBC°Ð+Ð=,即可.(2)连接CF交OB于点G,由直径所对的角为直角及平行线的判定及性质得出ACF DÐ=Ð,再根据等角的正弦值相等及勾股定理即可求出CF=,易证四边形BEFG是矩形,最后根据矩形的性质即可得出答案.【详解】(1)证明:如图,连接OB,∵AC是直径,∴ABC°90Ð=,90ABO OBC°\Ð+Ð=,Q,OA OB=\Ð=Ð,CAB ABO90CAB OBC°\Ð+Ð=,Q,CBD CABÐ=ÐCBD OBC°90\Ð+Ð=,\^,OB BD∴BD是☉O的切线.(2)解:如图,连接CF交OB于点G,∵AC 是直径,90AFC °\Ð=,AE BD ^Q ,90AED °\Ð=,AFC AED \Ð=Ð.//FC ED \,ACF D \Ð=Ð,2sin 3D Ð=Q ,2in sin 3s ACF D \Ð=Ð=,在Rt ACF D 中,sin AF ACF ACÐ=,23AF AC \=,4AF =Q ,6AC \=.根据勾股定理,得CF =.//,CF BD OB BD ^Q ,OB CF \^,12FG CF \==,90EFG FEB EBG °Ð=Ð=Ð=Q ,∴四边形BEFG 是矩形,∴BE FG ==.【点睛】本题考查圆的切线证明,三角形的勾股定理应用,锐角三角函数的计算以及矩形的性质等相关知识点,能根据题意进行准确的条件分析是解题关键.25. 某公园在垂直于湖面的立柱上安装了一个多孔喷头,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉,安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d 米的地点,水柱距离湖面的高度为h 米,请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这个喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请通过计算说明公园至少需要准备多少米的护栏(不考虑接头等其他因素).【答案】(1)见解析 (2)5(3)()()2135085h d d =--+££ (4)72米【解析】【分析】(1)在表格中建立坐标系,然后描点、连线即可;(2)观察图象即可;(3)由表中点(1.0,4.2),(5.0,4.2),可确定抛物线的对称轴及顶点坐标,则设抛物线解析式为顶点式即可,再找点(1.0,4.2)代入即可求得解析式;(4)在求得的解析式中令h =0,则可求得d 的值,即可确定所需护栏的长度.【小问1详解】坐标系及图象如图所示.【小问2详解】由图象知,水柱最高点距离湖面的高度为5米.【小问3详解】∵抛物线经过点(1.0,4.2),(5.0,4.2),∴抛物线的对称轴为3d =.∴抛物线的顶点坐标为(3.0,5.0).设抛物线的函数表达式为()235h a d =-+. 把(1.0,4.2)代入,解得15a =-.∴所画图象对应的函数表达式为()()2135085h d d =--+££.【小问4详解】令0h =,解得12d =-(舍),28d =.∴每条水柱在湖面上的落点到立柱的水平距离为8米.∵这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,∴正方形护栏的边长至少为18米.则公园至少需要准备18×4=72(米)的护栏.【点睛】本题是二次函数的实际问题,考查了画二次函数图象,求二次函数解析式,二次函数与一元二次方程的关系等知识,二次函数的相关知识是解题的关键.26. 已知二次函数y =ax 2﹣2ax .(1)二次函数图象的对称轴是直线x = ;(2)当0≤x ≤3时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a <0,对于二次函数图象上的两点P (x 1,y 1),Q (x 2,y 2),当t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,请结合函数图象,直接写出t 的取值范围.【答案】(1)1;(2)y =x 2﹣2x y =﹣x 2+2x ;(3)﹣1≤t ≤2【解析】【分析】(1)由对称轴是直线x =2b a-,可求解;(2)分a >0或a <0两种情况讨论,求出y 的最大值和最小值,即可求解;(3)利用函数图象的性质可求解.【详解】解:(1)由题意可得:对称轴是直线x =22a a--=1,故答案为:1;(2)当a >0时,∵对称轴为x =1,当x =1时,y 有最小值为﹣a ,当x =3时,y 有最大值为3a ,∴3a ﹣(﹣a )=4.∴a =1,∴二次函数的表达式为:y =x 2﹣2x ;当a <0时,同理可得y 有最大值为﹣a ; y 有最小值为3a ,∴﹣a ﹣3a =4,∴a =﹣1,∴二次函数的表达式为:y =﹣x 2+2x ;综上所述,二次函数的表达式为y =x 2﹣2x 或y =﹣x 2+2x ;(3)∵a <0,对称轴为x =1,∴x ≤1时,y 随x 的增大而增大,x >1时,y 随x 的增大而减小,x =﹣1和x =3时的函数值相等,∵t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,∴t ≥﹣1,t +1≤3,∴﹣1≤t ≤2.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识点的综合应用,能利用分类思想解决问题是本题的关键.27. 已知等边ABC V ,D 为边BC 中点,M 为边AC 上一点(不与A ,C 重合),连接DM .(1)如图1,点E 是边AC 的中点,当M 在线段AE 上(不与A ,E 重合)时,将DM 绕点D 逆时针旋转120°得到线段DF ,连接BF .①依题意补全图1;②此时EM 与BF 的数量关系为:DBF Ð= °.(2)如图2,若2DM MC =,在边AB 上有一点N ,使得120NDM Ð=°.直接用等式表示线段BN ,ND ,CD 之间的数量关系,并证明.【答案】(1)①见解析;②EM BF =,120;(2)12CD BN ND =+,证明见解析【解析】【分析】(1)①根据提示画出图形即可;②连接DE ,证明△DME ≌△DFB 即可得到结论;(3)取线段AC 中点E ,连接ED .由三角形中位线定理得12DE BA =,12CE CA =,12BD CD BC ==.根据ABC V 是等边三角形可证明DE BD CD CE ===,60CED EDC B Ð=Ð=Ð=°,再证明EDM BDN @△△得BN EM =,2ND MD MC ==,进一步可得结论.【详解】解:(1)①补全图形如图1.②线段EM 与BF 的数量关系为EM BF =;120DBF Ð=°.连接DE ,∵D 为BC 的中点,E 为AC 的中点,∴DE 为△ABC 的中䏠线,∴DE =12AB ,DE //AB∵ABC V 是等边三角形,∴AB BC AC ==,60Ð=Ð=Ð=°A B C .∵D 为BC 的中点,∴12BD BC DE ==∵//DE AB∴60CDE ABC Ð=Ð=°,60CED A Ð=Ð=°∴120BDE BDM EDM Ð=°=Ð+Ð∵120BDM BDF Ð+Ð=° ,,DM DF =\ BDF EDM Ð=Ð∴△DME ≌△DFB∴EM BF =;DBF DEM Ð=Ð.∵60CED Ð=°∴120DEM Ð=°∴120DBF Ð=°.故答案为:EM BF =;120DBF Ð=°.(2)证明:取线段AC 中点E ,连接ED .如图2 .∵点D 是边BC 的中点,点E 是边AC 的中点,∴12DE BA =,12CE CA =,12BD CD BC ==.∵ABC V 是等边三角形,∴AB BC AC ==,60B C Ð=Ð=°.∴DE BD CD CE ===,60CED EDC B Ð=Ð=Ð=°.∴120Ð=°BDE ,∵120NDM Ð=°,∴EDM BDN Ð=Ð.∴EDM BDN @△△.∴BN EM =,2ND MD MC ==,∵EC EM MC =+,∴12CD BN ND =+.【点睛】此题主要考查了全等三角形的判定与性质,等边三角形的性质以及三角形中位线定理,正确作出辅助线构造全等三角形是解答此题的关键.28. 对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ),特殊地,当图形M 与图形N 有公共点时,规定d (M ,N )=0已知点()(2,00)2(30)0()2A B C D m -,,,,,,.(1)①求d (点O ,线段AB );②若d (线段CD ,直线AB )=1,直接写出m 的值;(2)⊙O 的半径为r ,若d (⊙O ,线段AB )≤1,直接写出r 的取值范围;(3)若直线y b =+上存在点E ,使d (E ,ABC V )=1,直接写出b 的取值范围.【答案】(1)①②2m =-;(2)11r -££;(3)22b --££【解析】【分析】(1)①根据题意作图,由三角形的面积公式及“闭距离”的定义即可求解;②根据题意作图,根据含30°的直角三角形的性质即可求出D 点坐标,故可求解;(2)根据题意作图,由d (⊙O ,线段AB )≤1,分情况讨论即可求解;(3)根据题意作图,找到d (⊙O ,线段AB )=1的点,再根据解直角三角形、一次函数的解析式求解方法求出b 的值,故可求解.【详解】(1)①如图,作OH ⊥AB ,∵()020(A B -,,,∴AO =2,BO =,AB 4=根据三角形的面积公式可得1122AO BO AB OH ×=×∴OH=∴d (点O ,线段AB )②∵AO=2,BO=23,AB4=∴AB=2AO,∴∠ABO=30°如图,作HD⊥AB,∵d(线段CD,直线AB)=1,∴DH=1∴BD=2HD=2∴DO=BO-BD=-2∴D(-,0)2∴m=-;2(2)如图,OH⊥AB,交⊙O于M点,BI=1当d(⊙O,线段AB)≤1当HM≤1时,由(1)可得OH=3∴r³-当BI≤1时,此时IO=BI+OB=∴1故若d(⊙O,线段AB)≤1时, r的取值范围r11(3)∵ d (E ,ABC V )=1,如图,作CM ⊥直线3y x b =+于M 点,此时CM =1设直线y b =+与x 轴交于K 点,则∠CKM =60°∴CK =CM ÷cos60°=3∴K (2+3,0),代入y b =+得20b æ=+ççèø解得b =2-如图,作BG ⊥直线y b =+于G 点,此时BG =1设直线y b =+与y 轴交于N 点,则∠GNB =90°-60°=30°∴BN =2BG =2∴N (0,2+),代入y b =+得20b +=+解得b =2∵存在点E,使d(E,ABCV)=1,∴b的取值范围是--££+.b2322【点睛】此题主要考查圆与几何综合,解题的关键是根据题意作图,由“闭距离”的定义及解直角三角形、圆的性质特点进行求解.。
2022-2023学年四川省泸县高二年级下册学期3月月考数学(理)试题【含答案】
2022-2023学年四川省泸县高二下学期3月月考数学(理)试题一、单选题1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为( )A .①抽签法,②分层随机抽样B .①随机数法,②分层随机抽样C .①随机数法,②抽签法D .①抽签法,②随机数法【答案】A【分析】根据抽签法以及分层抽样的使用条件,可得答案.【详解】对于①,由于抽取的总体个数与样本个数都不大,则应用抽签法;对于②,抽取的总体个数较多,且总体有明确的分层,抽取的样本个数较大,则采用分层随机抽样.故选:A.2.若,则( )()3ln f x x x=+0(12)(1)limx f x f x ∆→+∆-=∆A .1B .2C .4D .8【答案】D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.()14f '=【详解】由题意,所以,21()3f x x x '=+(1)134f '=+=所以.()00(12)(1)(12)(1)lim 2lim 2182x x f x f f x f f x x ∆→∆→+∆-+∆-'===∆∆故选:D.3.甲,乙两人在5天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则下列结论正确的是( )A .在这5天中,甲,乙两人加工零件数的极差相同B .在这5天中,甲,乙两人加工零件数的中位数相同C .在这5天中,甲日均加工零件数大于乙日均加工零件数D .在这5天中,甲加工零件数的方差小于乙加工零件数的方差【答案】C【分析】由茎叶图的数据,分别计算甲、乙加工零角个数的极差,中位数,平均数,方差,进而得解.【详解】甲在5天中每天加工零件的个数为:18,19,23,27,28;乙在5天中每天加工零件的个数为:17,19,21,23,25对于A ,甲加工零件数的极差为,乙加工零件数的极差为,故A 错误;281810-=25178-=对于B ,甲加工零件数的中位数为,乙加工零件数的中位数为,故B 错误;2321对于C ,甲加工零件数的平均数为,乙加工零件数的平均数为1819232728235++++=,故C 正确;1719212325215++++=对于D ,甲加工零件数的方差为,乙加工零件数的方差为222225404516.45++++=,故D 错误;222224202485++++=故选:C4.若函数的图象在处的切线与直线垂直,则的值为2()ln f x x x =+()(),a f a 2650x y +-=a ( )A .1B .2或C .2D .1或1412【答案】D【分析】由两线垂直可知处切线的斜率为3,利用导数的几何意义有,即可求()(),a f a ()3f a '=的值.a 【详解】由题意知:直线的斜率为,则在处切线的斜率为3,2650x y +-=13-()(),a f a 又∵,即,1()2f x x x '=+()123f a a a '=+=∴或,1a=12故选:D .5.函数的图象大致为( )sin x x x xy e e --=+A .B .C .D .【答案】B【分析】判断函数的奇偶性,再判断函数值的正负,从而排除错误选项,得正确选项.【详解】因为()sin x xx xy f x e e --==+所以()()sin sin x x x xx x x xf x e e e e ------+-==++得,()()f x f x =--所以为奇函数,sin x x x xy e e --=+排除C ;在,设,,单调递增,因此,[0,)+∞()sin g x x x =-()1cos 0g x x ='-≥()g x ()(0)0g x g ≥=故在上恒成立,sin 0x x x xy e e --=≥+[0,)+∞排除A 、D ,故选:B.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6.正方形的边长为2,以为起点作射线交边于点,则的概率是( )ABCD A BC E BEAB .C .D.23131【答案】B【解析】求出以为起点作射线交边于点时所有射线形成的角的大小,再考虑对A BC E BE <应的射线所形成的角的大小,从而可求概率.【详解】如图,在边上取一点,使得,则.BC M BM =6BAM π∠=以为起点作射线交边于点时所有射线形成的角为,A BC E 4CAB π∠=以为起点作射线交边于点且时所有的射线形成的角为,A BC EBE <BAM ∠故时对应的概率为.BE <2634ππ=故选:B.7.已知为实数,则“”是“方程表示的曲线为椭圆”的a 1a >22113x y a +=-A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】取曲线不是椭圆,充分性不成立;反之成立.4a =【详解】当时,取 曲线是圆而不是椭圆,故充分性不成立;1a >4a =22133x y +=当方程表示的曲线为椭圆时,成立,所以“”是“方程表示的曲线22113x y a +=-1a >1a >22113x y a +=-为椭圆”的必要不充分条件.故选:B【点睛】方法点晴:曲线表示椭圆的充要条件是:,且.221x y m n +=0m >0n >m n ≠8.某市2016年至2020年新能源汽车年销量y (单位:百台)与年份代号x 的数据如下表,若根据表中的数据用最小二乘法求得y 关于x 的回归直线方程为,则表中的值为( )ˆ 6.59yx =+m 年份20162017201820192020年份代号x 01234年销量y1015m 3035A .22B .20C .30D .32.5【答案】B【分析】先求出、,再利用回归直线过进行求解.x y (,)x y 【详解】由题意,得,0123425x ++++==,101530359055m m y +++++==因为y 关于x 的回归直线方程为,ˆ 6.59yx =+所以,解得.90=6.52+95m +⨯20m =故选:B.9.圆关于直线对称,则的最小值是( )224610x y x y ++-+=()800,0ax by a b -+=>>32a b +A .B .C .D 3154【答案】B【分析】根据圆的标准方程得出圆的圆心,由圆的对称性可得直线过圆心,得到关于、的关系a b 式,运用基本不等式可求得的最小值.32a b +【详解】圆的标准方程为,圆心坐标为,224610x y x y ++-+=()()222312x y ++-=()2,3-而直线经过圆心,所以,得,()800,0ax by a b -+=>>2380a b --+=238a b +=因为,,0a >0b >()3213219431231238828b a a b a b a b a b ⎛⎫⎛⎫+=⨯+⨯+=⨯++≥+⨯= ⎪ ⎪⎝⎭⎝⎭当且仅当时,等号成立,23a b =因此,的最小值为.32a b +3故选:B.【点睛】本题考查圆的对称性,基本不等式的应用,关键在于巧妙地运用“”,构造基本不等式,1属于中档题.10.正方体,棱长为2,M 是CD 的中点,则三棱锥的体积为( )1111ABCD A B C D -11B AMD -A B .2C .D .4【答案】B【分析】取中点,连接,通过计算证明平面,再根据求解1AD 1,MN B N MN ⊥11AB D 1111B AD M M AB D V V --=即可.【详解】解:如图所示:取中点,连接,1AD 1,MN B N由题意可得,1111AB AD B D ===1MA MD ===13MB ==所以,,11B N AD ⊥1MN AD ⊥所以可得MN ==1B N =所以,222119MN B N MB +==所以,,1MN B N ⊥又因为,11B N AD N ⋂=所以,平面,MN ⊥11AB D所以=.1111B AD MM AB D V V --=111112332AB D S MN =⨯⨯= 故选:B.11.已知圆,过直线上一点向圆作切线,切点为,则()221:443C x y ⎛⎫-+-= ⎪⎝⎭:430l x y -=P C Q 的面积最小值为( )PCQ △A .3BC .D【答案】B【分析】结合图形,利用勾股定理可知取得最小值时也最小,从而求得CPPQmin PQ =而可得的面积最小值.PCQ △【详解】由圆,得圆心,半径,()221:443C x y ⎛⎫-+-= ⎪⎝⎭14,3C ⎛⎫⎪⎝⎭2r =所以圆心到直线的距离为,14,3C ⎛⎫ ⎪⎝⎭:430l x y -=3d因为PQ =所以当直线与垂直时,取得最小值,此时也最小,lCP CPdPQ故min PQ ==所以11222CPQ S PQ CQ PQ PQ =⨯⨯=⨯⨯=≥即PCQ △故选:B.12.若实数,满足,则( )x y 24ln 2ln 44x y x y +≥+-A .B .C .D.xy=x y +=1x y +=31x y =【分析】对不等式变形得到,换元后得到,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭()ln 1ln 10a a b b -++-+≥构造,求导研究其单调性,极值最值情况,得到,从而只有()ln 1g x x x =-+()()max 10g x g ==时,即时,满足要求,从而解出,依次判断四个选项.1a b ==()()0g a g b ==12x y ==【详解】因为,24ln 2ln 44x y x y +≥+-所以,即,212ln ln 222x y x y +≥+-()221ln 222x y x y ≥+-所以,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭令,21,22x a y b ==则,即,()ln 2ab a b ≥+-ln ln 2a b a b +≥+-所以,()ln 1ln 10a ab b -++-+≥令,则,()ln 1g x x x =-+()111xg x x x -'=-=当时,,单调递增,()0,1x ∈()0g x '>()g x 当时,,单调递减,()1,x ∈+∞()0g x '<()g x 所以在处取得极大值,也是最大值,()ln 1g x x x =-+1x =,()()max 1ln1110g x g ==-+=要想使得成立,只有时,即时,满足要求,()()0g a g b +=1a b ==()()0g a g b ==所以,211,212x y ==由定义域可知:,0,0x y >>解得:,12x y ==A 选项正确;xy =,BC 错误.12x y +=D 错误;312x y ==【点睛】对不等式或方程变形后,利用同构来构造函数解决问题,常见的同构型:(1);()()e ln ln e ln x x f x x f x x x x=⇒==+(2);()()ln ln e e e ln ln ln x x x xx f x f x x x x -==⇒==(3);()()ln ln e e e x x xf x x x x f x =+=⇒=+(4),()()e ln ln e e xx x f x x x f xx =-=⇒=-本题难点在于变形为,换元后得到24ln 2ln 44x y x y +≥+-2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭,从而构造解决问题.()ln 1ln 10a ab b -++-+≥()ln 1g x x x =-+二、填空题13.某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有户.14028080500++=利用分层抽样的方法, 中等收入家庭应选户28010056500⨯=故答案为:56【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.14.已知实数满足,则的最大值为___________.,x y 10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩2z y x =-【答案】0【分析】作出不等式组表示的平面区域,再利用目标函数的几何意义计算作答.【详解】作出不等式组表示的平面区域,如图中阴影(含边界),其中10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩ABC ,(1,2),(1,0),(2,1)A B C目标函数,即表示斜率为2,纵截距为z 的平行直线系,2z y x =-2y x z =+画出直线,显然直线经过点A ,其纵截距是经过阴影且斜率为2,纵截距为z 的平0:2l y x =0lABC 行直线系中最大的,所以的最大值为0.2z y x =-故答案为:015.若对任意的,均有成立,则称函数为和在上的[,]x a b ∈()()()≤≤g x h x f x ()h x ()g x ()f x [,]a b “中间函数”.已知函数,且是和在区间()(1)1,()3,()(1)ln =--=-=+h x m x g x f x x x ()h x ()g x ()f x 上的“中间函数”,则实数m 的取值范围是__________.[1,2]【答案】[]0,2【分析】根据“中间函数”的定义列出不等式,将问题转化成不等式恒成立问题,利用参变分离以及构造函数的方法来解决函数最值,从而求出的取值范围.m 【详解】依题意得:已知条件等价为:在区间上恒成立3(1)1(1)ln m x x x -≤--≤+[1,2]对于在区间上恒成立,变形为:3(1)1m x -≤--[1,2]21m x ≥-+令,易知单调递增, ()21F x x =-+()F x ()()max 20F x F ∴==()max 0m F x ∴≥=对于在区间上恒成立,变形为:(1)1(1)ln m x x x --≤+[1,2]()1ln 11x x m x++≤+令()()1ln 1ln 11ln 1x x x G x x x x x ++=+=+++则()2ln x xG x x -'=[1,2]x ∈ ()1ln 10x x x '∴-=-≥为增函数,ln x x ∴-ln 1ln10x x ∴-≥->在单调递增,()G x ∴[1,2]x ∈()()min 12G x G ∴==()min 2m G x ∴≤=综上所述: 即02m ≤≤[]0,2m ∈故答案为:.[]0,2【点睛】本题考查了用参变分离的方法解决恒成立的问题,考查了用导数求函数单调性、极值、最值以及恒成立的等价形式,对学生分析问题和解决问题的能力有一定的要求,属于难题.16.已知椭圆的左,右焦点分别为,,过作垂直轴的直线交椭圆2222:1(0)x y E a b a b +=>>1F 2F 1F x 于两点,点在轴上方.若,的内切圆的面积为,则直线的方程是E ,A B A x ||3AB =2ABF △916π2AF _____________________ .【答案】3430x y +-=【分析】利用,的内切圆的面积为求出a 、b 、c ,得到的坐标,即可求出||3AB =2ABF △916π2,A F 直线的方程.2AF 【详解】椭圆中,令,得,2222:1x y E a b +=x c =2422221c b y b a a ⎛⎫=-= ⎪⎝⎭所以.2223b AB y a ===又△ABF 2的内切圆面积为,即所以内切圆半径.916π2916r ππ=34r =由椭圆的定义可得△ABF 2的周长为4a ,而△ABF 2的面积为,即.113234224S c a=⋅⋅=⋅⋅2a c =又,解得:222223,b a b c a ==+2224,3,1a b c ===则,所以直线AF 2的方程是,即为3x +4y -3=0.()231,1,02A F ⎛⎫- ⎪⎝⎭()3014y x -=--故答案为:3x +4y -3=0三、解答题17.已知的极坐标方程为,以极点O 为坐标原点,极轴为x 轴正半轴,建立平面直C 4cos ρθ=角坐标系,(1)求的直角坐标方程,C (2)过作直线l 交圆于P ,Q 两点,且,求直线l 的斜率.()1,1M C 2PM QM=【答案】(1)()2224x y -+=【分析】(1)利用极坐标与直角坐标互化公式即可求解;(2)设直线的倾斜角为,则直线的参数方程为(t 为参数),代入圆方程中化α()()1cos :1sin x tl y t αα⎧=+⎪⎨=+⎪⎩简,利用根与系数的关系,结合已知和参数的几何意义即可求解.【详解】(1)解:因为的极坐标方程为:,且,C 4cos ρθ=cos ,sin x y ρθρθ==所以,,24cos ρρθ=224x y x +=故的直角坐标方程为.C ()2224x y -+=(2)解:设直线的倾斜角为,α则直线的参数方程为(t 为参数),()()1cos :1sin x t l y t αα⎧=+⎪⎨=+⎪⎩与联立,得.()2224x y -+=()22sin cos 20t t αα+--=点P 对应的参数为,点Q 对应的参数为,1t 2t 则,()12122sin cos 2t t t t αα⎧+=--⎨⋅=-⎩因为,所以,122t t =122t t =-联立可得,解得:23sin 8sin cos 3cos 0αααα-+=tan α=18.已知是函数的极值点,则:1x =()()()3221133x a x f a x a x =++-+-(1)求实数的值.a (2)求函数在区间上的最值.()f x []0,3【答案】(1);3a =(2)在上的最小值为,最大值为.()f x []0,3143-18【分析】(1)由求得的值;()10f '=a (2)结合函数的单调性来求得函数在区间上的最值.()f x ()f x []0,3【详解】(1),()()()22213f x x a x a a '=++-+-由题意知,()()()2112130f a a a '=++-+-=或,3a =2a =-时,,3a =()()()28991f x x x x x '=+-=+-当时,,函数在上单调递增,9x <-()0f x ¢>()f x (),9-∞-当时,,函数在上单调递减,91x -<<()0f x '<()f x ()9,1-当时,,函数在上单调递增,1x >()0f x ¢>()f x ()1,+∞所以为函数的极值点,满足要求;1x =时,,2a =-()()22211f x x x x '=-+=-因为,当且仅当时,,()0f x '≥1x =()0f x '=所以函数在上单调递增,()f x (),-∞+∞不是函数的极值点,不符合题意.1x =()f x 则.3a =(2)由(1)知,且在单调递减,在单调递增,()321493x f x x x =+-()f x []0,1[]1,3又,,,()00f =()1413f =-()318f =则,.()min 143f x =-()max 18f x =19.如图,已知多面体ABCDEF 中,平面ABCD ,平面ABCD ,且B ,D ,E ,F 四点共ED ⊥//EF 面,ABCD 是边长为2的菱形,,.60BAD ∠=︒1DE EF ==(1)求证:平面ACF ;EF ⊥(2)求平面AEF 与平面BCF 所成锐二面角的余弦值.【答案】(1)证明见解析;.【分析】(1)连BD 交AC 于点O ,连接OF ,证明四边形EFOD 为矩形,再利用线面垂直的判定推理作答.(2)以O 为原点,建立空间直角坐标系,利用空间向量求解二面角作答.【详解】(1)如图,连接BD 交AC 于点O ,连接OF ,因B ,D ,E ,F 四点共面,平面ABCD ,平面平面,则,//EF BDEF ⋂ABCD BD =//EF BD 而底面ABCD 是边长为2的菱形,,则,因此四边形EFOD 为平行四边形,60BAD ∠=︒1OD EF ==又平面ABCD ,且平面ABCD ,即,则为矩形,即,ED ⊥OD ⊂ED OD ⊥EFOD EF OF ⊥又,,则,而,平面ACF ,//EF BD AC BD ⊥EF AC ⊥OF AC O ⋂=,OF AC ⊂所以平面ACF .EF ⊥(2)由(1)知,,而平面ABCD ,则平面ABCD ,即有OA ,OB ,OF 两两//FO ED ED ⊥FO ⊥垂直,以O 为原点,以向量,,的方向分别为x ,y ,z 轴正方向建立空间直角坐标系,OA OB OFO xyz -如图,则,((0,1,0),(0,1,1),0),(0,0,),1A C F B E -,((0,1,0),(0,1,1),AF EF BF CB ===-=设为平面AEF 的法向量,则,令,得,111(,,)n x y z =11100n AF z n EF y ⎧⋅=+=⎪⎨⋅==⎪⎩11x=n = 设为平面BCF 的法向量,则,令,得,222(,,)m x y z =222200m BF y z m CB y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 21x =-(m =- 于是得,cos ,||n m n m n m ⋅〈〉===∣所以平面AEF 与平面BCF20.某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.(1)若该蛋糕店一天生产30个这种面包,求当天的利润y (单位:元)关于当天需求量n (单位:个,)的函数解析式;n N ∈(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:日需求量n 282930313233频数346674假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差;(3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为“平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.【答案】(1),;(2)平均数为(元),方差为;(3)一定要停止,330,306,30n n y n -<⎧=⎨-≥⎩n N ∈59 3.8理由见解析【分析】(1)当天需求量时,当天的利润,当天需求量时,当天的利润30n <330y n =-30n ≥,由此能求出当天的利润y 关于当天需求量n 的函数解析式.60y =(2)由题意,利用平均数和方差的公式,即可求出这30天的日利润的平均数和方差.(3)根据该统计数据,一定要停止这种面包的生产.推导出连续10天的日需求量都不超过10个,由此说明一定要停止这种面包的生产.【详解】(1)由题意可知,当天需求量时,当天的利润,30n <()853*******y n n n =+--⨯=-当天需求量时,当天的利润.30n ≥83063060y =⨯-⨯=故当天的利润y 关于当天需求量n 的函数解析式为:,.330,3060,30n n y n -<⎧=⎨≥⎩n ∈N (2)由题意可得:日需求量n 282930313233日利润545760606060频数346674所以这30天的日利润的平均数为(元),54357460235930⨯+⨯+⨯=方差为.()()()22254593575946059233.830-⨯+-⨯+-⨯=(3)根据该统计数据,一定要停止这种面包的生产.理由如下:由,()()()()()()22222212101210266621010x x xx x x x xx s -+-++--+-++-=== 可得,()()()222121066620x x x -+-++-= 所以(,,),所以,()2620kx -≤110k ≤≤N k ∈k x N ∈10k x ≤由此可以说明连续10天的日需求量都不超过10个,即说明一定要停止这种面包的生产.【点睛】本题主要考查了函数解析式、平均数、方差的求法,考查函数性质、平均数、方差公式等基础知识综合应用,考查运算求解能力.21.已知,分别是双曲线C :(,)的左、右焦点,,P 是C 上1F 2F 22221x y a b -=0a >0b >126F F =一点,,且112PF F F ⊥12PF PF +=(1)求双曲线C 的标准方程;(2)经过点的直线l 与双曲线C 交于A ,B 两点,过点A 作直线的垂线,垂足为D ,过点O2F 2x =作(O 为坐标原点),垂足为M .则在x 轴上是否存在定点N ,使得为定值?若存在,OM BD ⊥MN求出点N 的坐标;若不存在,请说明理由.【答案】(1)22163x y -=(2)存在,.5,04N ⎛⎫ ⎪⎝⎭【分析】(1)根据双曲线的定义取出a 、b 、c 即可;(2)设BD 交x 轴于E 点,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,NMN为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =【详解】(1)由题意得,212PF PF a-=∵,,112PF F F ⊥1226F F c ==∴,222136PF PF -=又,∴,解得,12PF PF +=236a ⋅=a =∴,,26a =2293b a =-=∴双曲线C 的标准方程为.22163x y -=(2)由(1)得,设,,则,()23,0F ()11,A x y ()22,B x y ()12,D y易知直线l 的斜率不为0,设直线l 的方程为,3x ty =+t ≠联立直线l 与双曲线C 的方程,消去x 得,()222630ty ty -++=∵,∴,.()22410t∆=+>12262ty y t +=--12232y y t =-∵直线BD 的斜率,21212221y y y y k x ty --==-+∴直线BD 的方程为,()211221y y y y x ty --=-+设BD 交x 轴于E 点,如图,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,MNN 为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =在直线BD 的方程中,令,得()211221y y y y x ty --=-+0y =()12112121121222ty y y ty y y x y y y y y ++=-=--+-,1122121233152222263222222t ty y t t t t y y t t ++--=-=-=+=⎛⎫---+ ⎪--⎝⎭∴直线BD 过定点.5,02E ⎛⎫⎪⎝⎭∴,则.5,04N ⎛⎫ ⎪⎝⎭1524MN OE ==综上,在x 轴上存在定点,使得为定值.5,04N ⎛⎫ ⎪⎝⎭MN5422.已知函数,,其中.()11ln f x a x x x ⎛⎫=--⎪⎝⎭()()12e 1x g x x -=--a R ∈(1)当时,判断的单调性;10a -<<()f x (2)当时,是否存在,,且,使得?证明你的结论.18a <<1x 2x 12x x ≠()()()1,2i i f x g x i ==【答案】(1)在单调递增,在单调递减()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)不存在,证明见解析【分析】(1)由,求导得到,再根据()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=,由,求解;10a -<<()0f x ¢>()0f x '<(2)设,求导,分,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+3x ≥,判断函数的单调性求解.03x <<【详解】(1)解:依题意,的定义域为,()f x ()0,∞+由,得,()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=当时,令,得,10a -<<()0f x '=1a x a +=-当时,,所以在单调递增;10,a x a +⎛⎫∈- ⎪⎝⎭()0f x ¢>()f x 10,a a +⎛⎫- ⎪⎝⎭当时,,所以在单调递减;1,a x a +⎛⎫∈-+∞ ⎪⎝⎭()0f x '<()f x 1,a a +⎛⎫-+∞⎪⎝⎭综上,当时,在单调递增,在单调递减.10a -<<()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)法一:设,则,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+①当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞又因为,所以,18a <<()221111113ln 31ln 31033e 33e h a ⎛⎫=---+>-+--> ⎪⎝⎭所以,在不存在零点;()0h x >()h x [)3,+∞②当时,设,则,03x <<()1ex x xϕ-=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以,()()10x ϕϕ≥=1e x x -≥0x >111e x x -≤又因为且,所以,18a <<03x <<133ex x x x ---≥所以,()()2223113x a x a ax a x h x x x x +-++++-'≥+=当时,函数18a <<()()231x x a x a δ=+-++,()()223411050a a a a ∆=--+=-+<所以,所以,所以在单调递增;()0x δ>()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==法二:设,则.()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-=+'-=+'则,又,()21221131113e e x x ax a x x h x a x x x x --++--⎛⎫'=+=+++ ⎪⎝⎭18a <<所以,()221211113123e e x x x x h x a x x x x x ----⎛⎫'=+++>++ ⎪⎝⎭当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞当时,设,则,03x <<()1ex x xϕ-'=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以.()()10x ϕϕ≥=1e x x -≥0x >111ex x -≤所以()222121221113123123220e e x x x x x x x h x a x x x x x x x x x ------+⎛⎫=+++>++≥++=> ⎪⎝⎭'所以,所以在单调递增;()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==。
贵州省贵阳市云岩区第二实验中学2022-2023学年九年级下学期3月月考数学试题
贵州省贵阳市云岩区第二实验中学2022-2023学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A ....3.2022年北京冬奥会的全球转播观众超过2000000000人,成为有史以来数字化参与度最高的冬奥会,2000000000这个数用科学记数法表示为()A .100.210⨯.9210⨯8210⨯82010⨯4.若二次根式有意义,则实数x 的取值范围是()A .1x ≥.1x >0x ≥0x >5.已知22A ∠=︒,则下列四个角中A ∠的余角是()A ...D .A.刻舟求剑B.旭日东升C.夕阳西下D.瓜熟蒂落∠=∠的依据是8.如图是用直尺和圆规作已知角的平分线的示意图,则说明CAD DAB()A.SAS B.ASA C.AAS D.SSS9.如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在一次函数()0=+的y kx b k=+<的图象上.根据图中四点的位置,判断这四个点中不在函数y kx b图象上的点是()A.点P B.点Q C.点M D.点N 10.费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,34 11.如图是长为a,宽为b的小长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为8,宽为6)的盒子底部(如图2),盒子底部未被卡片覆盖的部分用阴影表示,则两块阴影部分的周长之和为()A.16B.24C.20D.28y=x+bx+c与y=x的图象如图所示,有以下结12.函数2<<时,2x+(b-1)x+c<0.其中正确的个论:①2b-4c>0②b+c=-1③3b+c+6=0④当1x3数是()A.1B.2C.3D.4二、填空题三、解答题17.(1)如图,有理数比较大小:b c,a c+0.(1)若要表示手机部A机型这5个月销售量的变化趋势,该采用统计图;(2)该品牌5月份的销售额是万元,手机部5月份的销售额是万元;(3)小明和小红准备在A,B,E三款手机中选择一款手机购买,请问他们选择同一款手机的概率是多少?19.某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批(1)求证:BC EF ∥;(2)求证:EF 是O 的切线;(3)若10BF =,15OB =,求证:AE =24.如图,在平面直角坐标系中,直线物线214y x bx c =-++经过点A 、C .(1)求抛物线解析式及顶点M 坐标;(2)P 为抛物线第一象限内一点,使得点P 的坐标;(3)当1m x m +≤≤时,(1)中二次函数有最大值为25.利用“平行+垂直”作延长线或借助问题的常用方法,(1)发现:如图1,AB CD ∥,CB 平分ACD ∠,求证:ABC 是等腰三角形.交BC 的延长线于点F ,交CD 于点M ,若7AD =,3CF =,tan 3EBF ∠=,求BD 的长.。
2023-2024学年山西省晋中市平遥县高二下册3月月考数学试题(含解析)
2023-2024学年山西省晋中市平遥县高二下册3月月考数学试题一、单选题1.为响应国家“节约粮食”的号召,某同学决定在某食堂提供的2种主食、3种素菜、2种大荤、4种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有()A .48种B .36种C .24种D .12种【正确答案】B利用分步计数原理,分3步即可求出【详解】解:由题意可知,分三步完成:第一步,从2种主食中任选一种有2种选法;第二步,从3种素菜中任选一种有3种选法;第三步,从6种荤菜中任选一种有6种选法,根据分步计数原理,共有23636⨯⨯=不同的选取方法,故选:B2.设等差数列{}n a 的前n 项和为n S ,若532a a =,则95S S =()A .910B .1518C .95D .185【正确答案】D【分析】根据等差数列的前n 项和21(21)n n S n a -=-,将95S S 转化为5a 和3a 的算式即可得到所求.【详解】解:依题意,数列{}n a 为等差数列,所以19951553992552a a S a a a S a +⨯⨯==+⨯⨯,又因为532a a =,所以955399182555S a S a ⨯===⨯,故选D.等差数列的性质,等差数列的前n 项和,考查分析解决问题的能力和运算能力,属于基础题.3.北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断,这是一次中国文化与奥林匹克精神的完美结合,是一次现代设计理念的传承与突破.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物安装在学校的体育广场,若小明和小李必须安装同一个吉祥物,且每个吉祥物都至少由两名志愿者安装,则不同的安装方案种数为()A .8B .10C .12D .14【正确答案】A【分析】分为三人组中包含小明和小李和不包含小明和小李两类,分别计算方案种数即可得结果.【详解】由题意可知应将志愿者分为三人组和两人组,当三人组中包含小明和小李时,安装方案有12326C A =种;当三人组中不包含小明和小李时,安装方案有222A =种,共计有628+=种,故选:A.4.设F 为抛物线C :24y x =的焦点,点M 在C 上,点N 在准线l 上且MN 平行于x 轴,若NF MN =,则MF =()A .3B .1C .3D .4【正确答案】D【分析】由抛物线方程可知焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解.【详解】由题可知,2p =,抛物线焦点F 为()1,0,准线l 为=1x -,设准线l 与x 轴的交点为E ,如图所示,由题知MN l ⊥,由抛物线的定义可知MN MF =,因为NF MN =,所以MNF 是正三角形,则在Rt NEF 中,因为MN EF ∥,所以60EFN MNF ∠=∠=︒,所以224MF NF EF p ====.故选:D5.三棱锥A BCD -中,AC ⊥平面BCD ,BD CD ⊥.若3AB =,1BD =,则该三棱锥体积的最大值为()A .2B .43C .1D .23【正确答案】D【分析】先利用线面垂直的判定定理与性质定理依次证得BD ⊥平面ACD 、BD AD ⊥与AC CD ⊥,从而利用基本不等式求得2ACDS≤,进而得到23A BCDB ACD V V --=≤,由此得解.【详解】因为AC ⊥平面BCD ,BD ⊂平面BCD ,所以AC BD ⊥,又BD CD ⊥,AC CD C = ,,AC CD ⊂平面ACD ,所以BD ⊥平面ACD ,因为AD ⊂平面ACD ,所以BD AD ⊥,在Rt △ABD 中,3AB =,1BD =,则AD ==,因为AC ⊥平面BCD ,CD ⊂平面BCD ,所以AC CD ⊥,在Rt ACD △中,不妨设(),0,0AC a CD b a b ==>>,则由222AC CD AD +=得228a b +=,所以()221111222244ACDSAC CD ab ab a b =⋅==⨯≤+=,当且仅当a b =且228a b +=,即2a b ==时,等号成立,所以11221333A BCDB ACD ACDV V SBD --==⋅≤⨯⨯=,所以该三棱锥体积的最大值为23.故选:D..6.()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -项的系数为160,则=a ()A .2B .4C .2-D .-【正确答案】C先求得()61ay +展开式中3y 的系数,可得()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数,从而得答案.【详解】二项式()61ay +展开式的通项为()6166C 1C rr rr r r r T ay a y -+=⨯=,令3r =可得二项式()61ay +展开式中3y 的系数为336C a ,∴()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数为()3361C 160a -=,可得38a =-,解得2a =-,故选:C .7.甲、乙、丙、丁、戊5名党员参加“党史知识竞赛”,决出第一名到第五名的名次(无并列名次),已知甲排第三,乙不是第一,丙不是第五.据此推测5人的名次排列情况共有()种A .5B .8C .14D .21【正确答案】C【分析】按乙排第五和不是第五分类讨论.【详解】乙排在第五的情况有:33A ,乙不在第五的方法有112222C C A ,共有3112322214A C C A +=,故选:C .关键点点睛:本题考查排列组合的综合应用,解题关键是确定完成事件的方法:是先分类还是先分步:分类后每一类再分步.然后结合计数原理求解.8.设函数()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,则当(),x a b ∈时()A .()()f x g x <B .()()f xg x >C .()()()()f x g a g x f a +<+D .()()()()f xg b g x f b +<+【正确答案】C【分析】对于AB ,利用特殊函数法,举反例即可排除;对于CD ,构造函数()()()h x f x g x =-,利用导数与函数单调性的关系证得()h x 在R 上单调递减,从而得以判断.【详解】对于AB ,不妨设()2f x x =-,()1g x =,则()2f x '=-,()0g x '=,满足题意,若()1,x a b =-∈,则()()21f x g x =>=,故A 错误,若()0,x a b =∈,则()()01f x g x =<=,故B 错误;对于CD ,因为()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,令()()()h x f x g x =-,则()()()0h x f x g x ''-'=<,所以()h x 在R 上单调递减,因为(),x a b ∈,即a x b <<,所以()()()h b h x h a <<,由()()h x h a <得()()()()f x g x f a g a -<-,则()()()()f x g a g x f a +<+,故C 正确;由()()h b h x <得()()()()f b g b f x g x -<-,则()()()()f x g b g x f b +>+,故D 错误.故选:C.二、多选题9.有3位男生和3位女生,要在某风景点前站成一排照合影,则下列说法正确的是()A .共有66A 种不同的排法B .男生不在两端共有2424A A 种排法C .男生甲、乙相邻共有2525A A 种排法D .三位女生不相邻共有3333A A 种排法【正确答案】AC【分析】根据给定条件,利用无限制条件的排列判断A ;利用有位置条件的排列判断B ;利用相邻、不相邻问题的排列判断C ,D 作答.【详解】有3位男生和3位女生,要在某风景点前站成一排照合影,共有66A 种不同的排法,A 正确;男生不在两端,从3位女生中取2人站两端,再排余下4人,共有2434A A 种排法,B 不正确;男生甲、乙相邻,视甲乙为1人与其余4人全排列,再排甲乙,共有2525A A 种排法,C 正确;三位女生不相邻,先排3位男生,再在2个间隙及两端4个位置中插入3位女生,共有3334A A种排法,D 不正确.故选:AC 10.()20232202301220231ax a a x a x a x +=++++ ,若16069a =-,则下列结论正确的有()A .3a =B .202301220232a a a a ++++=- C .202312220231333a a a +++=- D .()20231ax +的展开式中第1012项的系数最大【正确答案】BC【分析】利用二项式展开式的通项公式求解含x 项的系数,从而求解a ,即可判断选项A ,赋值法即可求解系数和问题,从而判断选项B 、C ,利用展开式系数符合规律判断选项D 【详解】对于A ,112023C 20236069a a a =⋅==-,可得3a =-,故A 错误;对于B ,因为()2023201213x a a x a x -=++20232023a x ++ ,令1x =,则()202320230122023132a a a a ++++=-=- ,故B 正确;对于C ,令0x =,则01a =,令13x =,则2023202312002202311313333a a a a a ⎛⎫+++=-⨯-=-=- ⎪⎝⎭ ,故C 正确;对于D ,由展开式知,20n a >,210n a -<,故第1012项的系数10110a <,不会是展开式中系数最大的项,故D 错误.故选:BC11.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【正确答案】BCD【分析】对()f x 求导,得出()0f x ¢>,没有极值点,可判断A ,B ;由导数的几何意义求过点()0,b 的切线方程条数可判断C ;求出三次函数()f x 的对称中心,由于函数的对称中心为1,12⎛⎫⎪⎝⎭,可得()()12f x f x +-=,由倒序相加法求出所给的式子的值,可判断D.【详解】由题意知()21f x x x '=-+,1430∆=-=-<,()0f x ¢>恒成立,所以()f x 在R 上单调递增,没有极值点,A 错误,B 正确;设切点为3211,32m m m m b ⎛⎫-++ ⎪⎝⎭,则()21k f m m m '==-+,切线方程为()()32211132y m m m b m m x m ⎛⎫--++=-+- ⎪⎝⎭,代入点()0,b 得32321132m m m m m m -+-=-+-,即322132m m =,解得0m =或34m =,所以切线方程为y x b =+或1316y x b =+,C 正确;易知()21f x x ''=-,令()0f x ''=,则12x =.当712b =时,102f ⎛⎫= ⎪⎝⎭'',112f ⎛⎫= ⎪⎝⎭,所以点1,12⎛⎫⎪⎝⎭是()f x 的对称中心,所以有11222f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,即()()12f x f x +-=.令123202320232023S f f f f ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20222023⎛⎫ ⎪⎝⎭,又20222021202012023202320232023S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以12022220232023S f f ⎡⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22021202212022240442023202320232023f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++=⨯= ⎪ ⎪⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ,所以2022S =,D 正确.故选:BCD.12.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,上顶点为B ,直线l :()0y kx k =≠与椭圆C 交于M ,N 两点,12F MF ∠的角平分线与x 轴相交于点E ,与y 轴相交于点()0,G m ,则()A .四边形12MF NF 的周长为8B .1114MF NF +的最小值为9C .直线BM ,BN 的斜率之积为34-D .当12m =-时,12:2:1F E F E =【正确答案】AC【分析】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为4a 即可求解;对B 选项,由直线()0y kx k =≠与椭圆相交的对称性知:12NF MF =,11121414MF NF MF MF ∴+=+,借助基本不等式可得1114MF NF +的最小值;对C 选项,设()11,M x y ,则()11,N x y --,由点()11,M x y 在椭圆上,即可化得BM BN k k ⋅的值;对D 选项,设出()()11,0t E t -<<,由条件推出()121MF t =+,()221MF t =-,又在椭圆C 中,由其第二定义1MF e =得()1112212MF x t =+=+,从而得到M ,E ,G 三点坐标,再根据其三点共线,化简求解即可.【详解】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为2248a a a +==,A 正确;对B 选项,1112141414MF NF MF MF +=+=()21121212414191444MF MF MF MF MF MF MF MF ⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,当且仅当1248,33MF MF ==时等号成立,故B 错误;对C 选项,设()11,M x y ,则()11,N x y --,又(B,所以211121113BM BNy y y k k x x x --⋅=⋅=-.因为点()11,M x y 在椭圆上,所以2211143x y +=,即()222111441333y x y ⎛⎫=-=- ⎪⎝⎭,所以2121334BM BNy k k x -⋅==-,C 正确;对D 选项,设()()11,0t E t -<<,则12F E F E 1211MF t t MF +==-,124MF MF +=所以()121MF t =+,()221MF t =-,在椭圆C :22143x y +=中,由其第二定义1MF e d =(d 指的是椭圆上的点到相应的准线的距离)得221111()()22M a a MF de x e x e x c c ==+⋅=+⋅=+,12MF ∴=+()11212x t =+,所以14x t =,故()14,M t y ,(),0E t ,10,2⎛⎫- ⎪⎝⎭G ,因为三点共线,所以1123y t t =,解得132y =,则29164143t +=,解得14t =±,当14t =时,1211541314F E F E +==-,当14t =-时,1211341514F E F E -==+,故D 错误.故选:AC方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习加以强化.三、填空题....道上有编号1,2,.3,....10的十盏路灯,为节省用电又能看清路面,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,满足条件的关灯方法有__________种.【正确答案】20【分析】采用插空法即可求解.【详解】10只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之间的6个空挡中放入3只熄灭的灯,有36C 20=种方法,故答案为.2014.我国古代《九章算术》将底面为矩形的棱台称为刍童.若一刍童为正棱台,其上、下底1,则该刍童的外接球的表面积为______.【正确答案】20π【分析】根据题意,作出图形,设该刍童外接球的球心为O ,半径为R ,分两种情况讨论,分别根据条件列出方程组,即可求出外接球半径,代入球的表面积公式计算即可求解.【详解】设该刍童外接球的球心为O ,半径为R ,上底面中心为1O ,下底面中心为2O ,则由题意,121O O =,22AO =,111A O =,1R OA OA ==.如图,当O 在12O O 的延长线上时,设2OO h =,则在2AOO 中,22R 4h =+①,在11A OO 中,()22R 11h =++②,联立①②得1h =,2R 5=,所以刍童外接球的表面积为20π,同理,当O 在线段12O O 上时,设1OO h =,则有22R 1h =+,()22R 14h =-+,解得2h =,不满足题意,舍去.综上所述,该刍童外接球的表面积为20π.故20π.15.两名学生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170.”若每个参加面试的人被招聘的可能性相同,则根据这位负责人的话,可以推断出参加面试的人数为______.【正确答案】21【分析】利用古典概型的概率公式求解.【详解】设参加面试的人数为n ,依题意有()()()()2122362C C 61C 12170n nn n n n n n --===---,即()()242020210n n n n --=+-=,解得21n =或20n -(舍去).16.南宋数学家杨辉善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为求离散量的垛积问题,在他的专著《详解九章算法·商功》中给出了著名的三角垛公式()()()()()1112123123126n n n n ++++++⋅⋅⋅++++⋅⋅⋅+=++,则数列{}22n n +的前n 项和为____________.【正确答案】()()1121226n n n n ++++-【分析】由三角垛公式可知数列()12n n +⎧⎫⎨⎬⎩⎭的前n 项和为()()1126n n n ++,根据()212222n n n n n n ++=⨯-+,采用分组求和法,结合等差、等比求和公式可求得结果.【详解】()11232n n n ++++⋅⋅⋅+=,∴数列()12n n +⎧⎫⎨⎩⎭的前n 项和为()()1126n n n ++,()212222n n n n n n ++=⨯-+ ,∴数列{}22n n +的前n 项和()()()1211223212222222n n n n S n +⎛⎫⨯⨯=⨯++⋅⋅⋅+-++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭()()()()()()121211211122232126n n n n n n n n n n +-+++=++-+=+--.故答案为.()()1121226n n n n ++++-关键点点睛:本题考查数列中的分组求和法的应用,解题关键是能够将所求数列的通项进行变型,从而与已知的三角垛公式联系起来,利用所给的三角垛公式来进行求和.四、解答题17.现有一些小球和盒子,完成下面的问题.(1)4个不同的小球放入编号为1,2,3,4的4个盒子中(允许有空盒子),一共有多少种不同的放法?(2)4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有1个空盒的放法共有多少种?【正确答案】(1)256;【分析】(1)根据题意分析将4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,由分步计数原理计算即可得出答案;(2)根据题意,分两步进行,①将4个小球分为3组,②在4个盒子中任选3个,放入三组小球,根据分步计数原理计算即可得出答案;【详解】(1)4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,则4个小球有4444256⨯⨯⨯=种不同的放法;(2)①将4个小球分为3组,有24C 6=种分组方法,②在4个盒子中任选3个,放入三组小球,有3343C A 24=种情况,则624144⨯=种不同的放法.18.如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.【正确答案】【分析】(1)利用平面几何的知识推得AC BD ⊥,进而得到BD =与4AC EC =,从而利用柱体与锥体的体积公式求得12,V V 关于,EC PC 的表达式,由此得解;(2)根据题意建立空间直角坐标系,设1CE = ,结合(1)中结论与(2)中所给条件得到所需向量的坐标表示,从而求得平面FCD 与平面PCD 的法向量n 与m ,由此利用空间向量夹角余弦的坐标表示即可得解.【详解】(1)因为ABD ∠与ACD ∠是底面圆弧AD 所对的圆周角,所以ABD ACD ∠=∠,因为AB AD =,所以在等腰ABD △中,ABD ADE ∠=∠,所以ADE ACD ∠=∠,因为AC 是圆柱的底面直径,所以90ADC ∠=︒,则90CAD ACD ∠+∠=︒,所以90CAD ADE ∠+∠=︒,则90AED ∠=︒,即AC BD ⊥,所以在等腰ABD △,BE DE =,AC 平分BAD ∠,则1302CAD BAD ∠=∠=︒,所以60ADE ∠=︒,则30∠=︒CDE ,故在Rt CED 中,2CD EC =,DE ,则2BD DE ==,在Rt ACD △中,24AC CD EC ==,因为PC 是圆柱的母线,所以PC ⊥面ABCD ,所以()22211ππ24π2V AC CP EC PC EC PC ⎛⎫=⋅⋅=⋅⋅=⋅⋅ ⎪⎝⎭,2211143263V AC BD PC EC PC EC PC =⨯⋅⋅=⨯⨯⋅=⋅,所以12V V =.(2)以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C xyz -,不妨设1CE = ,则44AC EC ==,DE =44PC CE ==,则()()()()0,0,0,4,0,0,1,,0,0,4C A D P ,所以()CD = ,()0,0,4CP = ,()4,0,4PA =- ,因为4PA PF =,所以()11,0,14PF PA ==- ,则()()01,0,1(1,0,3,0,4)CF CP PF ==+=-+ ,设平面FCD 的法向量(,,)n x y z = ,则00n CF n CD ⎧⋅=⎪⎨⋅=⎪⎩,即300x z x +=⎧⎪⎨=⎪⎩,令3x =-,则1y z ==,故(n =- ,设平面PCD 的法向量(,,)m p q r = ,则00m CP m CD ⎧⋅=⎪⎨⋅=⎪⎩,即400r p =⎧⎪⎨=⎪⎩,令3p =-,则0q r ==,故(m =- ,设二面角F CD P --的平面角为θ,易知π02θ<<,所以cos cos ,13||||n m n m n m θ⋅====⋅ ,因此二面角F CD P --19.记数列{}n a 的前n 项和为n T ,且111,(2)n n a a T n -==≥.(1)求数列{}n a 的通项公式;(2)设m 为整数,且对任意*n ∈N ,1212nn m a a a ≥+++ ,求m 的最小值.【正确答案】(1)21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)7【分析】(1)由数列n a 与n T 的关系可得()122n n a a n +=≥,再结合等比数列的通项可得解;(2)利用错位相减法求出1212nn a a a +++ ,结合范围即可得解.【详解】(1)因为111,(2)n n a a T n -==≥,所以211a a ==,当2n ≥时,112n n n n n a T T a a +-+===,故()222222n n n a a n --==⋅≥,且11a =不满足上式,故数列{}n a 的通项公式为21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)设1212n nn S a a a =+++ ,则11S =,当2n ≥时,102122322n n S n --=+⋅++⋅+⋅ ,故112112232222n n S n ---=+⋅+⋅+⋅+ ,于是()122115222222n n n S n ----=++++-⋅ ()121121252212n n n -----=+-⋅-.整理可得27(2)2n n S n -=-+,所以7n S <,又54968S =>,所以符合题设条件的m 的最小值为7.20.已知双曲线2222:1(0,0)x y C a b a b-=>>过点A ,且焦距为10.(1)求C 的方程;(2)已知点3),B D -,E 为线段AB 上一点,且直线DE 交C 于G ,H 两点.证明:||||||||GD HD GE HE =.【正确答案】(1)221169x y -=(2)证明见解析【分析】(1)根据题意列方程组求出,a b ,即可得出C 的方程;(2)根据,,,D E H G 四点共线,要证||||||||GD HD GE HE =即证HE GE G H D D ⋅=⋅,设出直线:DE y x =-,()()1122,,,G x y H x y,)E t ,联立直线方程与椭圆方程得出1212,x x x x +,将其代入G G HE E DH D ⋅-⋅ ,计算结果为零,即证出.【详解】(1)由题意可得2232910a b-==,故4,3a b ==,所以C 的方程为221169x y -=.(2)设)E t ,()()1122,,,G x y H x y ,当x =2321169y -=,解得3=±y ,则||3t <, 双曲线的渐近线方程为34y x =±,故当直线DE 与渐近线平行时,此时和双曲线仅有一个交点,此时直线DE方程为(34y x =±-,令x =y =||t ≠则直线:DE y x =-.由221169y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩得()222292161440t x x t -+--=,所以212229x x t +=-,21221614429t x x t +=-.()()()()11221122,,,G HE GE DH x y x t x D y t y x y ⋅-⋅=--⋅----⋅-)()121212122232x x y y x x t y y =+-+-++()2221212243244t x x t x x t ⎛⎛⎫=+-++++ ⎪⎝⎭⎝()()()222222248943244322929t t t t t t t +++=-++--0=.所以HE GE G H D D ⋅=⋅ ,所以cos0cos0HE G G E D DH = 即||||||||GD HD GE HE =.关键点睛:本题第二问不能直接计算长度,否则计算量过大,而是转化为证明向量数量积之间的关系,采取设)E t ,从而得到直线DE 方程,再使用经典的联立法,得到韦达定理式,然后证明0HE GE G D D H ⋅-⋅= 即可.21.设()()21031x Q x x ax b -=-++,其中()Q x 是关于x 的多项式,a ,b ∈R .(1)求a ,b 的值;(2)若28ax b +=,求103x -除以81的余数.【正确答案】(1)10a =,12b =-;(2)28.【分析】(1)利用二项式定理及已知即求;(2)由题可知x 的值,然后利用二项式定理可求.【详解】(1)由已知等式,得()()()1021131x Q x x ax b -+-=-++⎡⎤⎣⎦,∴()()()()10920189101010101010C 1C 1C 1C 1C 3x x x x -+-+⋅⋅⋅+-+-+-()()21Q x x ax b =-++,∴()()()()()8722018101010C 1C 1C 110121x x x x Q x x ax b ⎡⎤-+-+⋅⋅⋅+-+-=-++⎣⎦,∴1012x ax b -=+,∴10a =,12b =-.(2)∵28ax b +=,即101228x -=,∴4x =,∴103x -1043=-()10313=+-0101991010101010C 3C 3C 3C 3=⨯+⨯+⋅⋅⋅+⨯+-()406156441010103C 3C 3C 4035328=⨯⨯+⨯+⋅⋅⋅++⨯+⨯+()0615610101081C 3C 3C 4528=⨯⨯+⨯+⋅⋅⋅+++,∴所求的余数为28.22.已知函数()()1e 6x f x k x ⎡⎤=--⎣⎦(其中e 为自然对数的底数).(1)若1k =,求函数()f x 的单调区间;(2)若12k ≤≤,求证:[]0,x k ∀∈,()2f x x <.【正确答案】(1)单调递增区间为[)0,∞+,单调递减区间为(),0∞-;(2)见解析.【分析】(1)求导,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,即可解决;(2)由()211e 60x x x k ⎡⎤---<⎣⎦令新函数()21()1e 6x g x x x k=---,求导,由()()1e 6k g k k k =---,再令新函数()()()1e 6k h k g k k k ==---,证明()0h k <在12k ≤≤上恒成立,即可得证.【详解】(1)由题知()()1e 6x f x k x ⎡⎤=--⎣⎦,所以()()e 1e e x x x f x k x kx '⎡⎤=+-=⎣⎦,当1k =时,()e x f x x '=,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,所以()f x 的单调递增区间为[)0,∞+,单调递减区间为(),0∞-,(2)由题知12k ≤≤,[]0,x k ∀∈,()2f x x <,所以()21e 60x k x x ⎡⎤---<⎣⎦,因为12k ≤≤,所以()211e 60x x x k ⎡⎤---<⎣⎦令()21()1e 6x g x x x k=---即证()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,因为22()e (e )x x g x x x x k k'=-=-当()0g x '=时,2ln x k=,当()0g x '≥时,2lnx k ≥,即()g x 在2ln ,k k ⎡⎤⎢⎥⎣⎦上单调递增,当()0g x '≤时,2ln x k ≤,即()g x 在20,ln k ⎡⎤⎢⎥⎣⎦上单调递减,因为(0)70g =-<,()()1e 6k g k k k =---,令()()()1e 6k h k g k k k ==---,所以()e 1k h k k '=-,因为12k ≤≤,所以()e 10k h k k '=->,所以()h k 在[]1,2上单调递增,所以2max ()(2)e 80h k h ==-<,所以()0g k <恒成立,因为(0)0,()0g g k <<,所以()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,即得证.。
浙江省杭州第二中学2023届高三下学期3月月考数学试题含答案
杭州二中2022学年第二学期高三年级3月考试数学试卷第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}214,ln 4A x x B x y x =-≤≤==-,则A B ⋃=()A.(,1][2,)-∞-+∞B.[1,2)- C.[1,4]- D.(2,4]-2.已知复数()2iR 1ib z b +=∈-的实部为1-,则b 的值为()A.2B.4C.2-D.4-3.已知圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,则该圆锥的表面积为()A.4πB.8πC.12πD.20π4.2022年10月22日,中国共产党第二十次全国代表大会胜利闭幕.某班举行了以“礼赞二十大、奋进新征程”为主题的联欢晚会,原定的5个学生节目已排成节目单,开演前又临时增加了两个教师节目,如果将这两个教师节目插入到原节目单中,则这两个教师节目相邻的概率为()A.16 B.17C.13D.275.已知OAB ,1OA =,2OB =,1OA OB ⋅=-,过点O 作OD 垂直AB 于点D ,点E满足12OE ED = ,则EO EA ⋅的值为()A.328-B.121-C.29-D.221-6.已知1132,5,(2)e a b c e ===+,则,,a b c 的大小关系为()A .b<c<aB.c b a <<C.b a c<< D.c<a<b7.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π4F PF ∠=,则椭圆和双曲线的离心率乘积的最小值为()A.B.22C. D.28.已知在矩形ABCD 中,2AB =,4=AD ,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示,沿EF 将四边形AEFB 翻折成A EFB '',设二面角B EF D '--的大小为α,在翻折过程中,当二面角B CD E '--取得最大角,此时sin α的值为()A.35B.45C.223D.13二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,个体m 被抽到的概率是0.2B.已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的50%分位数是17D.若样本数据1x ,2x ,…,10x 的标准差为8,则数据121x -,221x -,…,1021x -的标准差为1610.已知函数()()()sin cos cos sin f x x x =+,下列关于该函数结论正确的是()A.()f x 的图象关于直线π2x =对称 B.()f x 的一个周期是2πC.()f x 的最大值为sin11+ D.()f x 是区间3ππ,2⎛⎫⎪⎝⎭上的减函数11.已知正四棱锥P ABCD -的所有棱长均为E ,F 分别是PC ,AB 的中点,M 为棱PB 上异于P ,B 的一动点,则以下结论正确的是()A.异面直线EF 、PD 所成角的大小为3π B.直线EF 与平面ABCD 所成角的正弦值为66C.EMF +D.存在点M 使得PB ⊥平面MEF12.已知定义域为R 的函数()f x 在(]1,0-上单调递增,()()11f x f x +=-,且图像关于()2,0对称,则()f x ()A.()()02f f =-B.周期2T =C.在()2,3单调递减D.满足()()()202120222023f f f >>第II 卷(非选择题)三、填空题:本题共4小题,每题5分,共20分.13.已知抛物线E :()220x py p =>的焦点为F ,过点F 的直线l 与抛物线交于,A B 两点,与准线交于C 点,F 为AC 的中点,且3AF =,则p =__________.14.在6()x a +的展开式中的3x 系数为160,则=a _______.15.已知正实数,a b 满足()3386311a a b b +≤+++,则23a b +的最小值是___________.16.函数2()2e x f x a bx =++,其中,a b 为实数,且(0,1)a ∈.已知对任意23e b >,函数()f x 有两个不同零点,a 的取值范围为____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知,,a b c 分别为ABC 内角,,A B C 的对边,若ABC 同时满足下列四个条件中的三个:①a =2b =;③sin sin sin ++=-B C a c A b c ;④21cos sin sin 24-⎛⎫-= ⎪⎝⎭B C B C .(1)满足有解三角形的序号组合有哪些?(2)请在(1)所有组合中任选一组,求对应ABC 的面积.18.已知数列{}n a 满足22113,2221++==+-++n n n a a a n n .(1)求证:22⎧⎫-⎨⎩⎭n na n 是等差数列;(2)令2⎡⎤=⎢⎥⎣⎦nn n a b ([]x 表示不超过x 的最大整数.提示:当a ∈Z 时,[][]a x a x +=+),求使得12100n b b b ++≤+L 成立的最大正整数n 的值.19.如图,四棱锥P -ABCD 的底面为梯形,PD⊥底面ABCD ,90BAD CDA ∠=∠=︒,1AD AB ==,2CD =,E 为PA 的中点.(1)证明:平面PBD ⊥平面BCE ;(2)若二面角P -BC -E 的余弦值为265,求三棱锥P -BCE 的体积.20.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.(1)已知如下结论:若()2,X Nμσ ,从X 的取值中随机抽取()*,2k k N k ∈≥个数据,记这k 个数据的平均值为Y ,则随机变量2,Y N k σμ⎛⎫~ ⎪⎝⎭.利用该结论解决下面问题.(i )假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为Y ,求()980P Y ≤;(ii )庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在()950,1050上,并经计算25个面包质量的平均值为978.72g .庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举报该面包师的理由;(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包有2个;第二箱中共装有8个面包,其中黑色面包有3个.现随机挑选一箱,然后从该箱中随机取出2个面包.求取出黑色面包个数的分布列及数学期望.附:①随机变量η服从正态分布()2,N μσ,则()0.6827P μσημσ-≤≤+=,()()220.9545,330.9973P P μσημσμσημσ-≤≤+=-≤≤+=;②通常把发生概率小于0.05的事件称为小概率事件,小概率事件基本不会发生.21.已知抛物线21:C y x =,开口向上的抛物线2C 与1C 有一个公共点(2,4)T ,且在该点处有相同的切线,(1)求所有抛物线2C 的方程;(2)设点P 是抛物线2C 上的动点,且与点T 不重合,过点P 且斜率为k 的直线l 交抛物线1C 于,A B 两点,其中PA PB ≥,问是否存在实常数k ,使得PA PB为定值?若存在,求出实常数k ;若不存在,说明理由.22.已知221ln ,0(),0x x x x f x e x --⎧->=⎨≤⎩.(1)当(0,)x ∈+∞时,求()f x 的最大值;(2)若存在[0,)a ∈+∞使,得关于x 的方程2()0f x ax bx ++=有三个不相同的实数根,求实数b 的取值范围.杭州二中2022学年第二学期高三年级3月考试数学试卷第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}214,ln 4A x x B x y x =-≤≤==-,则A B ⋃=()A.(,1][2,)-∞-+∞B.[1,2)- C.[1,4]- D.(2,4]-【答案】D 【解析】【分析】根据对数函数的定义域,先求出集合B ,然后利用并集的运算即可求解.【详解】因为集合22{|ln(4)}{|40}{|22}B x y x x x x x ==-=->=-<<,又因为集合{|14}A x x =-≤≤,由并集的概念可知,{|24}(2,4]A B x x =-<≤=- ,故选:D .2.已知复数()2iR 1ib z b +=∈-的实部为1-,则b 的值为()A.2B.4C.2- D.4-【答案】B 【解析】【分析】先利用复数的四则运算得出(2)(2)i2b b z -++=,然后根据题意即可求解.【详解】复数2i (2i)(1i)(2)(2)i1i (1i)(1i)2b b b b z +++-++===--+,因为复数()2iR 1ib z b +=∈-的实部为1-,所以22b -=-,则4b =,故选:B .3.已知圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,则该圆锥的表面积为()A.4πB.8πC.12πD.20π【答案】C 【解析】【分析】圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,可知底面圆的半径,再求的底面圆的面积和圆锥的侧面积,即可求得该圆锥的表面积.【详解】由于圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,则圆锥底面圆的半径为4π22πr ==,底面圆的面积为22ππ24πr =⨯=,圆锥的表面积为14π44π12π2⨯⨯+=.故选:C.4.2022年10月22日,中国共产党第二十次全国代表大会胜利闭幕.某班举行了以“礼赞二十大、奋进新征程”为主题的联欢晚会,原定的5个学生节目已排成节目单,开演前又临时增加了两个教师节目,如果将这两个教师节目插入到原节目单中,则这两个教师节目相邻的概率为()A.16 B.17C.13D.27【答案】D【解析】【分析】先插入第一个节目,再插入第二个节目,再按照分步乘法计数原理分别计算插入的情况数量及这两个教师节目恰好相邻的情况数量,再应用古典概率公式求概率即可.【详解】由题意可知,先将第一个教师节目插入到原节目单中,有6种插入法,再将第二个教师节目插入到这6个节目中,有7种插入法,故将这两个教师节目插入到原节目单中,共有6742⨯=(种)情况,其中这两个教师节目恰好相邻的情况有2612⨯=(种),所以所求概率为122427=.故选:D.5.已知OAB ,1OA =,2OB =,1OA OB ⋅=-,过点O 作OD 垂直AB 于点D ,点E满足12OE ED = ,则EO EA ⋅的值为()A.328-B.121-C.29-D.221-【答案】D 【解析】【分析】作出图形,由平面向量数量积的定义及余弦定理可得OD =,再由平面向量数量积的运算律即可得解.【详解】由题意,作出图形,如图,1OA = ,2OB =,1OA OB ⋅=-12cos 2cos 1OA OB AOB AOB ∴⋅=⨯∠=∠=- ,1cos 2AOB ∴∠=-,由()0,AOB π∠∈可得23AOB π∠=,AB ∴==又113sin 222AOB S OA OB AOB OD AB =⋅⋅⋅∠=⋅⋅=△,则OD =()222232299721EO EA OE ED DA OE OD ∴⋅=-⋅+=-=-⋅=-⨯=- .故选:D .6.已知1132,5,(2)e a b c e ===+,则,,a b c 的大小关系为()A.b<c<aB.c b a <<C .b a c<< D.c<a<b【答案】A 【解析】【分析】化简由题意,可得11132(22),(23),(2)ea b c e =+=+=+,构造()()1ln 2f x x x=⋅+,得到则()()2ln 22xx x f x x-+'+=,再令()()ln 22x g x x x =-++,求得函数的单调性,结合单调性,即可求解.【详解】由题意,可得11132(22),(23),(2)ea b c e =+=+=+,所以令()()1ln 2,(0)f x x x x=⋅+>,则()()2ln 22xx x f x x -+'+=,令()()ln 2,(0)2xg x x x x =-+>+,则()20(2)x g x x +'-=<,所以()g x 在()0,∞+上单调递减,()()00g x g <=,所以()0f x '<恒成立,所以()f x 在()0,∞+上单调递减,因为23e <<,所以()()()23f f e f >>,即()()()111ln 22ln 2ln 2323e e +>+>+,所以11132ln(22)ln(2)ln(23)ee +>+>+,所以111324(2)5ee >+>,即b<c<a .故选:A.7.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π4F PF ∠=,则椭圆和双曲线的离心率乘积的最小值为()A.B.22C. D.2【答案】B 【解析】【分析】根据双曲线以及椭圆的定义可得112||PF a a =+,212||PF a a =-,进而在焦点三角形中运用余弦定理即可得2212224e e +=,结合均值不等式即可求解.【详解】如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,则根据椭圆及双曲线的定义:121||||2PF PF a +=,122||||2PF PF a -=,112||PF a a ∴=+,212||PF a a =-,设12||2F F c =,12π4F PF ∠=,则:在△12PF F 中由余弦定理得,22212121212π4()()2()()cos4c a a a a a a a a =++--+-,化简得:22212(2(24a a c ++=,即2212224e e +=,又221212222212·e e e e ++≥,∴121e e ≤12·2e e ≥,即椭圆和双曲线的离心率乘积的最小值为22.故选:B8.已知在矩形ABCD 中,2AB =,4=AD ,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示,沿EF 将四边形AEFB 翻折成A EFB '',设二面角B EF D '--的大小为α,在翻折过程中,当二面角B CD E '--取得最大角,此时sin α的值为()A.35B.45C.23D.13【答案】B 【解析】【分析】过B 作EF 的垂线交EF 与O ,交AD 于M ,CD 于G ,然后利用定义法可得B KH '∠为二面角B CD E '--的平面角,设B OH α'∠=,可得2B H α'=,53cos 22HK α=-,从而sin tan 3253cos B H B KH HK αα''∠==-,然后求函数最大值时的sin α值即可.【详解】过B 作EF 的垂线交EF 与O ,交AD 于M ,CD 于G ,设B '在平面AC 内的投影为H ,则H 在直线BM 上,过H 作CD 的垂线,垂足为K ,则B KH '∠为二面角B CD E '--的平面角,设B OH α'∠=,由题意2B O BO '==sin 2B H B O αα''==,则cos cos )2BH BO B O αα'=++,由45GBC ∠=︒,42BG =,得42cos )2HG BG BH α=-=+,所以3534(1cos )cos 2222HK αα==-+=-,所以sin tan 3253cos B H B KH HK αα''∠==-,令sin 53cos t αα=-,可得2sin 3cos 519t t t αα+=≤+,则14t ≤,所以,当14t =即sin 153cos 4αα=-,也即4sin 5α=时,tan B KH ∠'取到最大值324,此时B KH '∠最大,即二面角B CD E '--取得最大角.故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,个体m 被抽到的概率是0.2B.已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的50%分位数是17D.若样本数据1x ,2x ,…,10x 的标准差为8,则数据121x -,221x -,…,1021x -的标准差为16【答案】AD 【解析】【分析】利用概率对于即可判断A ;根据平均数求得m 的值,然后利用方差公式求解即可判断B ;根据百分位数的求法即可判断C ;利用方差公式求解即可判断D.【详解】对于A ,一个总体含有50个个体,某个个体被抽到的概率为150,以简单随机抽样方式从该总体中抽取一个容量为10的样本,则指定的某个个体被抽到的概率为11100.2055⨯==,故A 正确;对于B , 数据1,2,m ,6,7的平均数是4,4512674m =⨯----=,这组数据的方差是()()()()()222222114244464745s ⎡⎤=-+-+-+-+-⎣⎦=265,故B 错误;对于C ,8个数据50百分为850%4⨯=,第50百分位数为1719=182+,故C 错误;对于D ,依题意,()28D x =,则()()2221216D x D x -=⨯=,所以数据121021,21,,21x x x --⋯-的标准差为16,D 正确;10.已知函数()()()sin cos cos sin f x x x =+,下列关于该函数结论正确的是()A.()f x 的图象关于直线π2x =对称 B.()f x 的一个周期是2πC.()f x 的最大值为sin11+ D.()f x 是区间3ππ,2⎛⎫⎪⎝⎭上的减函数【答案】BC 【解析】【分析】利用诱导公式判断()f x 与()πf x -是否相等判断A ,判断()f x 与()2πf x +是否相等判断B ,利用三角函数及复合函数的单调性判断CD.【详解】由()()()sin cos cos sin f x x x =+,对于A ,()()()()()()()()πsin cos πcos sin πsin cos cos sin f x x x x x f x -=-+-=-+≠,故A不正确;对于B ,()()()()()()()()2πsin cos 2πcos sin 2πsin cos cos sin f x x x x x f x +=+++=+=,故B 正确;对于C ,因为1cos 1x -≤≤,所以()sin cos y x =的最大值为sin1,当cos 1x =时,()cos sin cos 01y x ===,取得最大值,所以()f x 的最大值为sin11+,故C 正确;对于D ,()3ππ3ππsin1cos111110244f f ⎛⎫-=+-=+->-=⎪⎝⎭(),又函数连续,故D 错误;故选:BC11.已知正四棱锥P ABCD -的所有棱长均为E ,F 分别是PC ,AB 的中点,M 为棱PB 上异于P ,B 的一动点,则以下结论正确的是()A.异面直线EF 、PD 所成角的大小为3πB.直线EF 与平面ABCD 所成角的正弦值为66C.EMF +D.存在点M 使得PB ⊥平面MEF【解析】【分析】根据空间中异面直线所成角,直线与平面所成角的定义,空间中折叠问题以及垂直关系的判定与性质,逐个选项运算求解即可.【详解】如图1,取PD 的中点Q ,连接EQ ,AQ ,因为E ,F 分别是PC ,AB 的中点,所以EQ DC AF ,且EQ AF =,所以四边形AFEQ 为平行四边形,则EF AQ ,又正四棱锥P ABCD -的所有棱长均为,则AQ PD ⊥,所以异面直线EF ,PD 所成角为π2,故A 错误;设正方形ABCD 的中心为O ,连接OC ,PO ,则PO ⊥平面ABCD ,2OC OP ==,设OC 的中点为H ,连接EH ,FH ,则EH OP ,且EH ⊥平面ABCD ,所以EFH ∠为直线EF 与平面ABCD 所成角,所以112EH PO ==,OFH 中,1OH =,OF =,135FOC ︒∠=,所以由余弦定理可得FH =EF ==,所以6sin6EH EFH EF ∠==,故B 正确;将正PAB 和PBC 沿PB 翻折到一个平面内,如图2,当E ,M ,F 三点共线时,ME MF +取得最小值,此时,点M 为PB 的中点,ME MF BC +==,所以EMF V +C 正确;若PB ⊥平面MEF ,则PB ME ⊥,此时点M 为PB 上靠近点P 的四等分点,而此时,PB 与FM 显然不垂直,故D 错误;12.已知定义域为R 的函数()f x 在(]1,0-上单调递增,()()11f x f x +=-,且图像关于()2,0对称,则()f x ()A.()()02f f =-B.周期2T =C.在()2,3单调递减D.满足()()()202120222023f f f >>【答案】AC 【解析】【分析】根据题意化简得到()()4f x f x =+,得到()f x 的周期为4T =,结合()()22f f -=,求得()()02f f =-,得到A 正确,B 错误;再由()f x 的对称性和单调性,得出()f x 在()2,3单调递减,可判定C 正确;根据()f x 的周期求得()()20211f f =,()()20222f f =,()()20233f f =,结合特殊函数()f x 的图象,可判定D 不正确.【详解】由()()11f x f x +=-,可得()f x 的对称轴为1x =,所以()()02,f f =又由()()11f x f x +=-知:()()2f x f x +=-,因为函数()f x 图像关于()2,0对称,即()()22f x f x +=--,故()()4f x f x +=--,所以()()24f x f x -+=+,即()()2f x f x -=+,所以()()4f x f x =+,所以()f x 的周期为4,所以()()22f f -=,所以()()02f f =-,故A 正确,B 错误;因为()f x 在(]1,0-上单调递增,且4T =,所以()f x 在(]3,4上单调递增,又图像关于()2,0对称,所以()f x 在(]0,1上单调递增,因为关于1x =对称,所以()f x 在(]1,2上单调递减,又因为关于()2,0对称,可得函数()f x 在()2,3单调递减,故C 正确;根据()f x 的周期为4T =,可得()()()()()()20211,20222,20233f f f f f f ===,因为关于1x =对称,所以()()20f f =且()()31f f =-,即()()()()()()20211,20220,20231f f f f f f ===-,由函数()f x 在(]1,2上单调递减,且关于1x =对称,可得()f x 在(]0,1上单调递增,如图所示的函数()f x 中,此时()()()()10,01f f f f -<>,所以()()()202120222023f f f >>不正确.故选:AC.【点睛】规律探求:对于函数的基本性质综合应用问题解答时,涉及到函数的周期性有时需要通过函数的对称性得到,函数的对称性体现的是一种对称关系,而函数的单调性体现的时函数值随自变量变化而变化的规律,因此在解题时,往往西药借助函数的对称性、奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.第II 卷(非选择题)三、填空题:本题共4小题,每题5分,共20分.13.已知抛物线E :()220x py p =>的焦点为F ,过点F 的直线l 与抛物线交于,A B 两点,与准线交于C 点,F 为AC 的中点,且3AF =,则p =__________.【答案】32##1.5【解析】【分析】利用抛物线的定义结合三角形中位线定理求解即可.【详解】设y 轴交准线于N ,过A 作准线的垂线,垂足为Q ,因为F 为AC 的中点,且3AF =,则由抛物线的定义可得3AQ =,在Rt ACQ 中,1322FN AQ ==,所以32p =,故答案为:3214.在6()x a +的展开式中的3x 系数为160,则=a _______.【答案】2【解析】【分析】首先求出6()x a +的展开项中3x 的系数,然后根据3x 系数为160即可求出a 的取值.【详解】由题知616r rr r T C xa -+=,当3r =时有333333466160160T C x a x C a ==⇒=,解得2a =.故答案为:2.【点睛】本题主要考查了二项式展开项的系数,属于简单题.15.已知正实数,a b 满足()3386311a a b b +≤+++,则23a b +的最小值是___________.【答案】3-【解析】【分析】根据不等式特征可通过构造函数()33,0f x x x x =+>,利用函数单调性解不等式可得21a b ≥+,再根据基本不等式即可求得23a b +的最小值是3-.【详解】由题意可得将不等式变形成33223311a a b b ⎛⎫⎛⎫+⨯≤+ ⎪ ⎪++⎝⎭⎝⎭;又因为,a b 都是正数,所以20,01a b +>>;可构造函数()33,0f x x x x =+>,易知函数为增函数,由()3386311a a b b +≤+++可得33223311a ab b ⎛⎫⎛⎫+⨯≤+ ⎪ ⎪++⎝⎭⎝⎭,即()21f f a b ⎛⎫≤⎪+⎝⎭,根据函数单调性可得21a b ≥+,则()233313443311b b a b b b ++=++-≥=++-≥,当且仅当()3124,11a b b b +=++=,即2313a b ==-取等号,因此23a b +的最小值是3-.故答案为:316.函数2()2e x f x a bx =++,其中,a b 为实数,且(0,1)a ∈.已知对任意23e b >,函数()f x有两个不同零点,a 的取值范围为____________.【答案】)6,1-⎡⎣e 【解析】【分析】由题意可得2ln 22e e 2e 0x x a a bx bx ++=++=有两个不相等的实根,利用换元法,分离参数,令ln t x a =,则22ln t b a t +-=e e ,再利用导函数求2e e t t+的最小值即可.【详解】因为()f x 有两个不同零点()0f x ⇔=有两个不相等的实根,即2ln 22e e 2e 0x x a a bx bx ++=++=有两个不相等的实根,令ln t x a =,则220ln tbt a ++=e e ,t 显然不为零,所以22ln t b a t+-=e e ,因为()0,1a ∈,23e b >,所以20ln ba->,所以0t >,令()()2e e 0t g t t t +=>,则()()22t t t g t t-+'=e e e ,令()()()2e e e0tth t t t =-+>,则()0tttth t t t '=+-=>e e e e ,所以()h t 在()0,∞+上单调递增,又()20h =,所以当()0,2t ∈时,()0h t <;当()2,t ∈+∞时,()0h t >,所以当()0,2t ∈时,()0g t '<;当()2,t ∈+∞时,()0g t '>,故()g t 在()0,2上单调递减,在()2,+∞上单调递增,所以()()2min 2g t g ==e ,所以22ln ba-≥e ,又23e b >,所以23b >e ,所以ln 32a -≤即ln 6a ≥-,6a -≥e ,又()0,1a ∈,所以)6,1a -⎡∈⎣e ,故答案为:)6,1-⎡⎣e 【点睛】利用换元法,令ln t x a =,根据t 不为零,分离参数得22ln t b a t+-=e e ,构造函数,通过求解函数的最值,即可得出a 的取值范围.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知,,a b c 分别为ABC 内角,,A B C 的对边,若ABC 同时满足下列四个条件中的三个:①a =2b =;③sin sin sin ++=-B C a c A b c ;④21cos sin sin 24-⎛⎫-= ⎪⎝⎭B C B C .(1)满足有解三角形的序号组合有哪些?(2)请在(1)所有组合中任选一组,求对应ABC 的面积.【答案】(1)序号组合为①②③,①②④(2)答案不唯一,具体见解析【解析】【分析】(1)判断出③,④不能同时存在,由此确定正确答案.(2)选①②③,则利用余弦定理求得c ,进而求得三角形ABC 的面积;选①②④,则利用余弦定理求得c ,进而求得三角形ABC 的面积.【小问1详解】对于③,()22212π,0,223b c a c a c b B B a b c ac π+++-=⇒=-∈∴=-;对于④,()()1cos 11sin sin cos 2sin sin 242B C B C B C B C +--=⇒--=-,即()1cos 2B C +=-,且π,0,,πA B C A B C ++=<<,则π3A =,故③,④不能同时存在,则满足有解三角形的序号组合为①②③,①②④.【小问2详解】选①②③:2π2,3a b B ===时,由余弦定理:22221cos 22a c b B ac +-=⇒-=整理得:210c -=且0c >,则2c =,ABC ∴的面积为31sin 28ABCSac B == .选①②④:π2,3a b A ===时,由余弦定理:2222143cos 224b c a c A bc c+-+-=⇒=,整理得:2210c c -+=,则1c =,ABC ∴ 的面积13sin 22ABC S bc A ==.18.已知数列{}n a 满足22113,2221++==+-++n n n a a a n n .(1)求证:22⎧⎫-⎨⎩⎭n na n 是等差数列;(2)令2⎡⎤=⎢⎥⎣⎦nn n a b ([]x 表示不超过x 的最大整数.提示:当a ∈Z 时,[][]a x a x +=+),求使得12100n b b b ++≤+L 成立的最大正整数n 的值.【答案】(1)证明见解析(2)9【解析】【分析】(1)根据递推关系,结合等差数列定义证明即可;(2)结合(1)得()2221nn a n n =-+,故2212n n n b n ⎡⎤=-+⎢⎥⎣⎦,再根据函数()ln xf x x =的单调性得当5x ≥时,22x x <,进而解5n时,2123100n b b b n +++=+≤ 即可得答案.【小问1详解】证明:因为2212221n n n a a n n ++=+-++,所以222222111(1)2221(1)2222n n n n n n n n na n a n a n n n a n ++++-+-+-++-+--=-()2221222222n n n n a n a n +++---==,所以数列22⎧⎫-⎨⎬⎩⎭n na n 是以1112a -=为首项,2d =为公差的等差数列.【小问2详解】解:由(1)知,2212n na n n -=-,即()2221n n a n n =-+,所以()()22222121212222n n n n nn n n n a n n b n n ⎡⎤-+⎡⎤⎡⎤⎡⎤===-+=-+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.令函数()ln x f x x =,所以()21ln xf x x -'=,当()0,e x ∈时,()()0,f x f x '>单调递增;当()e,x ∈+∞时,()()0,f x f x '<单调递减.注意到:2552<,两边同时取对数25ln5ln2<,即ln5ln252<,所以当5x ≥时,ln ln5ln252x x ≤<,即22x x <,特别地,1n =时,21022n n ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;当2n =时,24124n n ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;当3n =时,29128n n ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;当4n =时,2161216n n ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;当5n ≥时,22nn <,则202n n ⎡⎤=⎢⎥⎣⎦.显然使得12100n b b b ++≤+L 成立的最大正整数n 的值大于5,则5n时,()2121352133100n b b b n n +++=++++-+=+ ,所以满足条件的n 的最大值为9.19.如图,四棱锥P -ABCD 的底面为梯形,PD⊥底面ABCD ,90BAD CDA ∠=∠=︒,1AD AB ==,2CD =,E 为PA 的中点.(1)证明:平面PBD ⊥平面BCE ;(2)若二面角P -BC -E 的余弦值为265,求三棱锥P -BCE 的体积.【答案】(1)证明见解析;(2)312.【解析】【分析】(1)线面垂直的性质可得PD BC ⊥,若F 为CD 中点,连接BF ,由正方形的性质及勾股定理可得BD BC ⊥,再由线面垂直的性质有BC ⊥面PBD ,最后根据面面垂直的判定证结论.(2)构建空间直角坐标系,设PD m =求相关点坐标,再求面PBC 、面EBC 的法向量,应用空间向量夹角的坐标表示,结合二面角的余弦值求参数m ,最后求PBC S 、向量法求E 到面PBC 的距离,再由体积公式求棱锥的体积.【小问1详解】因为PD⊥底面ABCD ,BC ⊂面ABCD ,则PD BC ⊥,由90BAD ∠=︒,1AD AB ==,则BD =,又90CDA ∠=︒,则//AB DC,若F 为CD 中点,连接BF ,易知:ABFD 为正方形,则1BF =,又2CD =,即1FC =,所以BC =综上,222BC BD CD +=,即BD BC ⊥,又BD PD D = ,则BC ⊥面PBD ,又BC ⊂面BCE ,所以平面PBD ⊥平面BCE .【小问2详解】由题设,可构建如下图示的空间直角坐标系,若PD m =,则(0,0,0)D ,(1,1,0)B ,(0,2,0)C ,1(,0,)22mE ,(0,0,)P m,所以(1,1,)PB m =- ,1(,1,)22mEB =- ,(1,1,0)BC =- ,若(,,)x y z α= 为面PBC 的一个法向量,则0BC x y PB x y zm αα⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1x =,则2(1,1,)mα= ,若(,,)a b c β= 为面EBC 的一个法向量,则0022BC a b a cmEB b ββ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1a =,则3(1,1,mβ=,所以262|cos ,|||5||||m αβαβαβ+⋅<>==,整理得429610m m-+=,所以m =,即PD =,易得:2,PA PC ==由PD⊥底面ABCD ,AB ⊂面ABCD ,则PD ⊥AB ,又90BAD ∠=︒,即AD ⊥AB ,由=PD AD D ⋂,则AB ⊥面PAD ,PA ⊂面PAD ,即AB ⊥PA ,所以在直角△PAB中,PB ,在△PBC中,PB =PC =、BC =222PB BC PC +=,则PB BC ⊥,所以11022PBC S ==.由上有:1(,1,)22EB =- 且面PBC的一个法向量α= ,则1152|cos ,||20EB α<>==,故E 到面PBC的距离|||cos ,|2020d EB EB α=<>==,所以11301033320212P BCE PBC V d S -=⋅⋅=⨯⋅=.20.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.(1)已知如下结论:若()2,X Nμσ ,从X 的取值中随机抽取()*,2k k Nk ∈≥个数据,记这k 个数据的平均值为Y ,则随机变量2,Y N k σμ⎛⎫~ ⎪⎝⎭.利用该结论解决下面问题.(i )假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为Y ,求()980P Y ≤;(ii )庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在()950,1050上,并经计算25个面包质量的平均值为978.72g .庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举报该面包师的理由;(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包有2个;第二箱中共装有8个面包,其中黑色面包有3个.现随机挑选一箱,然后从该箱中随机取出2个面包.求取出黑色面包个数的分布列及数学期望.附:①随机变量η服从正态分布()2,N μσ,则()0.6827P μσημσ-≤≤+=,()()220.9545,330.9973P P μσημσμσημσ-≤≤+=-≤≤+=;②通常把发生概率小于0.05的事件称为小概率事件,小概率事件基本不会发生.【答案】(1)(i )0.02275;(ii )理由见解析.(2)ξ012p5314044984073840()1724E ξ=【解析】【分析】(1)(i )由正太分布的对称性及3σ原则进行求解;(ii )结合第一问求解的概率及小概率事件进行说明;(2)设取出黑色面包个数为随机变量ξ,则ξ的可能取值为0,1,2,求出相应的概率,进而求出分布列及数学期望.【小问1详解】(i )因为25010025=,所以()21000,10Y N ,因为()220.9545P μσημσ-≤≤+=,所以()10.954520.022752P ημσ-≤-==,因为9801000210=-⨯,所以()()98020.02275P Y P Y μσ≤=≤-=;(ii )由第一问知()()98020.02275P Y P Y μσ≤=≤-=,庞加莱计算25个面包质量的平均值为978.72g ,978.72980<,而0.022750.05<,为小概率事件,小概率事件基本不会发生,这就是庞加莱举报该面包师的理由;【小问2详解】设取出黑色面包个数为随机变量ξ,则ξ的可能取值为0,1,2,则()143154530265287140p ξ==⨯⨯+⨯⨯=;()124135449122265287840p ξ==⨯⨯⨯+⨯=,()121132732265287840p ξ==⨯⨯+⨯=,故分布列为:ξ012p5314044984073840其中数学期望()53449731701214084084024E ξ=⨯+⨯+⨯=21.已知抛物线21:C y x =,开口向上的抛物线2C 与1C 有一个公共点(2,4)T ,且在该点处有相同的切线,(1)求所有抛物线2C 的方程;(2)设点P 是抛物线2C 上的动点,且与点T 不重合,过点P 且斜率为k 的直线l 交抛物线1C 于,A B 两点,其中PA PB ≥,问是否存在实常数k ,使得PAPB为定值?若存在,求出实常数k ;若不存在,说明理由.【答案】(1)2(2)4(1)y a x x =-+-(0a >且1)a ≠(2)存在,4k =.【解析】【分析】(1)设22:C y ax bx c =++,根据题意结合导数的几何意义,得到44a b +=,再由2C 过点T ,求得44c a =-,即可求得抛物线2C 的方程;(2)根据题意得到l 即为公共点T 处的切线,得出4k =,设2(,(2)4(1))P t a t t -+-,求得切线方程为()()()24241y x t a t t =-+-+-,联立方程组,得到12PA x t PBx t-=-,令m x t =-,得到12PA mPB m =,并代入整理得222(24)(2)4(1)0m t m t a t t +-+----=,根据根与系数的关系,化简求得22212212(22)(88)882(1)(1)(44)441m m a t a t a a m m a t a t a a++-++++==----+-为定值,分1a >和01a <<,两种情况讨论,结合21y y <,得到,A B 在点P 的两侧和同侧,进而得到答案.【小问1详解】解:设22:,(0)C y ax bx c a =++>,可得2y ax b '=+,抛物线21:C y x =,可得2y x '=,因为抛物线2C 与1C 有一个公共点(2,4)T ,且在该点处有相同的切线,可得44a b +=,即44b a =-,所以22:(44)C y ax a x c =+-+,因为抛物线2C 过点(2,4)T ,代入可得44c a =-,即满足条件的22:(44)(44)C y ax a x a =+-+-即抛物线2C 的方程为2(2)4(1),(0y a x x a =-+->且1)a ≠.【小问2详解】解:当0PB →时,若PA PB为常数,则0PA →,此时l 即为公共点T 处的切线,故若存在,则4k =.下面证明:4k =时,PAPB为常数,设2(,(2)4(1))P t a t t -+-,则切线方程为()()()24241y x t a t t =-+-+-,联立方程组()()()224241y xy x t a t t ⎧=⎪⎨=-+-+-⎪⎩,整理得224()(2)4(1)0x x t a t t ------=,设1122(,),(,)A x y B x y ,则12PA x t PBx t -=-,令m x t =-,可得x m t =+,所以12PA m PBm =,代入上式得22()4(2)4(1)0m t m a t t +-----=,即222(24)(2)4(1)0m t m t a t t +-+----=,可得()()12221242241m m t m m t a t t +=-⎧⎪⎨=----⎪⎩,所以222121224(2)m m m m t ++=-,则2222222124(2)22(2)8(1)22(2)8(1)m m t t a t t t a t t +=--+-+-=+---,所以22212212(22)(88)882(1)(1)(44)441m m a t a t a a m m a t a t a a++-++++==----+-为定值,且2221(1)4(1)4(1)(1)(2)y y a x a x a a x -=-+-+-=--,①当1a >时,由21y y >,可得,A B 在点P 的两侧,所以11221PA x t mPB x t m -==->-,令12m t m =,可得12(1)1a t t a ++=-,即2(1)2(1)10a t a t a --++-=,解得121a t a+±=-,因为1t <-,所以121a t a+-=-为定值;②当01a <<时,由21y y <,可得,A B 在点P 的同侧,所以11221PA x t mPB x t m -==>-,因为1t >,所以11a t a++=-为定值,综上可得,存在4k =时,使得PAPB为定值.【点睛】方法技巧:解答圆锥曲线的定点、定值问题的常见策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.22.已知221ln ,0(),0x x x x f x e x --⎧->=⎨≤⎩.(1)当(0,)x ∈+∞时,求()f x 的最大值;(2)若存在[0,)a ∈+∞使,得关于x 的方程2()0f x ax bx ++=有三个不相同的实数根,求实数b 的取值范围.【答案】(1)112e +;(2)1(,,e ⎡⎫-∞-⋃+∞⎪⎢⎣⎭.【解析】【分析】(1)利用导数判断出函数的单调性,再根据函数的单调性即可求出最值.(2)验证0x =不是方程的根,将原方程的根等价于()f x ax b x=--的根,记0A a =-≤,B b =-,令() t x Ax B =+,令2()g()(0)x f x e x x x x--==<,讨论B 的取值,利用导数求出函数()g x 的最值,通过比较即可确定答案.【详解】(1)当(0,)x ∈+∞时,2()1ln f x x x =-,即()2ln (2ln 1)f x x x x x x '=--=-+当x <时,()0f x ¢>,()f x 单调递增;当x >时,()0f x '<,()f x 单调递减,所以max 1()12f x f e==+(2)()20f x ax bx ++=,经验证0x =不是方程的根,所以原方程的根等价于()f x ax b x=--的根,记0A a =-≤,B b =-,令() t x Ax B =+,0A ≤,单调递减,令2()g()(0)x f x e x x x x --==<,即22(1)()x x e g x x---+'=,令()01g x x '=⇒=-为极大值点,其在(),1-∞-上单调递增,在()1,0-上单调递减,当B >,1()(1)()(0)t x B g g x x e>>-=-≥<,所以()()g x t x =在0x <无实数根当0x >时,21()()()ln B g x t x h x x A x x=⇔=--=……①2323212()B x Bx h x x x x x -+'=--+=-()h x 有两个极值点12,x x,且121220x x B x x ⎧+=>⎪⎨⋅=>⎪⎩即120x x <<,22B x =故222213()ln ln422B Bx h x x x B Bx++=--=--3ln0422<-⨯-=-<,所以()20h x<,存在A使①有三个实根所以B>.当B ()h x'的分子中2=80B∆-≤,()0h x'≤,显然()0,0x h x+→>,所以①仅有一个正根,要使2xe Ax Bx--=+有两个负根,则max1()(0)B g x xe≤=-<﹐综上所()1,Be⎛⎤∈-∞-⋃+∞⎥⎝⎦﹐即1(,,be⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭.【点睛】本题考查了利用导数研究方程的根、利用导数求函数的最值,考查了分类讨论的思想,属于难题.。
数学年月日的试题及答案
数学年月日的试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正确的日期表示方法?A. 2024年02月31日B. 2024年2月29日C. 2024年2月30日D. 2024年2月28日答案:B2. 2024年是闰年还是平年?A. 闰年B. 平年答案:A3. 2024年2月有多少天?A. 28B. 29C. 30D. 31答案:B4. 下列哪个日期是不存在的?A. 2024年1月1日B. 2024年2月29日C. 2024年4月31日D. 2024年12月31日答案:C二、填空题(每题5分,共20分)1. 2024年的第一天是星期_____。
答案:四2. 2024年的最后一天是星期_____。
答案:二3. 2024年5月1日是星期_____。
答案:三4. 2024年1月1日到2024年12月31日共有_____天。
答案:366三、计算题(每题10分,共30分)1. 计算2024年1月1日到2024年12月31日之间有多少个完整的星期?答案:522. 如果2024年1月1日是星期四,那么2024年12月31日是星期几?答案:二3. 2024年2月29日出生的人,下一次生日是什么时候?答案:2028年2月29日四、解答题(每题15分,共30分)1. 请列出2024年每个月的天数,并计算2024年全年的总天数。
答案:- 1月:31天- 2月:29天- 3月:31天- 4月:30天- 5月:31天- 6月:30天- 7月:31天- 8月:31天- 9月:30天- 10月:31天- 11月:30天- 12月:31天- 总天数:366天2. 假设2024年1月1日是星期四,计算2024年每个月的第一天是星期几,并说明2024年每个月的最后一天是星期几。
答案:- 1月:星期四- 2月:星期三- 3月:星期四- 4月:星期日- 5月:星期二- 6月:星期四- 7月:星期日- 8月:星期二- 9月:星期四- 10月:星期日- 11月:星期二- 12月:星期四- 最后一天:星期二注意事项:- 请确保所有答案的准确性。
五年级下册数学试题下册月考数学试卷3(3月)北师大版 (有答案)
北师大版小学五年级下册月考数学试卷(3月)一.填空题(共13小题,满分23分)1.×表示求的是.2.++++=×=.3.王叔叔养了12只兔子,其中是白兔,剩下的是黑兔.白兔有只,黑兔有只.4.一袋大米重25千克,已经吃了它的,吃了千克,还剩千克.5.“苹果的价格比雪梨贵”是把的价格看作单位“1”,苹果的价格相当于雪梨的,也就是苹果的价格与雪梨的价格的比是,雪梨的价格比苹果便宜%.6.时=分日=时m=cm.7.用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝厘米.8.一个正方体粉笔盒有个面,条棱,个顶点.9.一个正方体的棱长是8分米,它的棱长总和是,表面积是.10.一个长方体按以下三种方式切割成两个长方体,表面积分别增加了16cm2、24cm2、12cm2,原来长方体的表面积是cm2.11.一个长方形的无盖水族箱,长是6米,宽是60cm,高是1.5m,这个水族箱占地面积有.12.一个立体图形,从正面看到形状是,从右面看到的形状是,搭这样的立体图形,最少需要个小正方体.13.4个棱长为20厘米的正方体纸盒放在墙角处(如图),有个面露在外面,露在外面的面积是.二.判断题(共10小题,满分10分,每小题1分)14.一堆沙重7吨,运走了,还剩下吨.(判断对错)15.3kg铁的比1kg棉花的重.(判断对错)16.×4表示4个相乘..(判断对错)17.两个分数相乘,积一定小于第一个因数..(判断对错)18.正方体的6个面是完全一样的正方形.(判断对错)19.长方体的6个面都是长方形.(判断对错)20.体积相等的两个长方体,表面积不一定相等..(判断对错)21.把体积1立方分米的长方体放在桌子上,它所占面积是1平方分米..(判断对错)22.2个棱长1cm的正方体拼成一个长方体,长方体的表面积是12cm2..(判断对错)23.小红录入一份770字的稿件,录入了,还剩240字没有录入.(判断对错)三.选择题(共6小题,满分6分,每小题1分)24.两根2米长的电线,第一根用去全长的,第二根用去米,剩下的电线()A.第一根长B.第二根长C.一样长D.无法比较25.计算﹣用()作公分母最简便.A.108B.216C.36D.1826.用一根长()厘米的铁丝,正好围成一个长7厘米、宽5厘米、高2厘米的长方体框架.A.28B.48.8C.56D.7027.把一个正方体分割成两个小长方体后,表面积()A.不变B.比原来大了C.比原来小了28.一个大正方体如果拿出一个小方块后,它的表面积与原来的表面积比较()A.一样大B.减少了C.增大了D.无法比较29.如图是一个正方体的展开图,在原正方体中,两个相对的面上两数之和最大是()A.45B.48C.50D.58四.计算题(共2小题,满分8分)30.直接写出得数.========31.解方程.x﹣(﹣)=+x=2x+=五.计算题(共1小题)32.计算下面图形的表面积.六.解答题(共6小题,满分36分,每小题6分)33.一个正方体盒子,棱长为0.3cm,这个正方体的表面积是多少?34.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?35.学校饲养组养了20只兔子,其中是黑兔,黑兔有多少只?36.一袋饼干2千克,吃了这袋饼干的,还剩下这袋饼干的,若吃了千克,还剩下千克.37.对比练习,只列式不计算.(1)一堆煤计划每天用吨,5天用去多少吨?(2)一堆煤计划每天用,3天用去几分之几?(3)一堆煤重5吨,用吨,还剩多少吨?38.五(4)班学生去参观科技园,一共用了8时,其中路上用去的时间占,午饭和休息时间共占,剩下的时间安排参观活动,参观的时间占几分之几?参观用了多长时间?参考答案与试题解析一.填空题(共13小题,满分23分)1.解:×表示求的是多少.故答案为:,,多少.2.解:++++=×5=故答案为:,5,.3.解:12×=8(只)12﹣8=4(只)答:白兔8只,黑兔4只.故答案为:8,4.4.解:25×=10(千克);25﹣10=15(千克);答:吃了10千克,还剩15千克.故答案为:10、15.5.解:1+=:1=5:4(5﹣4)÷5=1÷5=0.2=20%答:“苹果的价格比雪梨贵”是把雪梨的价格看作单位“1”,苹果的价格相当于雪梨的,也就是苹果的价格与雪梨的价格的比是5:4,雪梨的价格比苹果便宜20%.故答案为:雪梨,,5:4,20.6.解:时=50分日=4.8时m=18 cm故答案为:50,4.8,18.7.解:(12+10+5)×4,=27×4,=108(厘米);答:至少需要铁丝108厘米.故答案为:108.8.解:一个正方体粉笔盒有6个面,12条棱,8个顶点.故答案为:6,12,8.9.解:棱长总和是:8×12=96(分米);表面积是:8×8×6=384(平方分米);答:它的棱长总和是96分米,表面积是384平方分米.故答案为:96分米,384平方分米.10.解:16+24+12=40+12=52(平方厘米)答:原来这个长方形的表面积是52平方厘米.故答案为:52.11.解:60厘米=0.6米6×0.6=3.6(平方米)答:这个水族箱占地面积是3.6平方米.故答案为:3.6平方米.12.解:4+1=5(个)答:至少要用5个小正方体.故答案为;5.13.解:露在外部的面有:3+3+3=9(个),20×20×9=400×9=3600(平方厘米);答:有9个面露在外部,露在外部的面积是3600平方厘米.故答案为:9;3600平方厘米.二.判断题(共10小题,满分10分,每小题1分)14.解:7×(1﹣)=7×=4(吨)所以还剩下4吨,所以题中说法不正确.故答案为:×.15.解:3×=(千克)1×=(千克)千克=千克3kg铁的与1kg棉花的同样重,原题说法错误.故答案为:×.16.解:×4表示4个相加,所以原题说法错误.故答案为:×.17.解:假设第一个分数是,第二个分数是,则:×=,>,所以本题说法错误;故答案为:×.18.解:根据正方体的特征可知:正方体的6个面是完全一样的正方形.故答案为:√.19.解:长方体的6个面都是长方形,这种说法是错误的.故答案为:×.20.解:假设长方体的体积为24立方厘米,则长方体的长、宽、高可以为4厘米、2厘米和3厘米,也可以为2厘米、2厘米、6厘米,所以其表面积分别为:(4×2+2×3+3×4)×2=(8+6+12)×2=26×2=52(平方厘米);(2×2+2×6+6×2)×2=(4+12+12)×2=28×2=56(平方厘米);因此它们的表面积不相等;故答案为:√.21.解:如果是正方体,体积是1立方分米的正方体的棱长是1分米,它的底面积是:1×1=1(平方分米),那么体积是1立方分米的物体放在桌面上,所占的桌面面积一定是1平方分米;如果是长方体或其它形状,所占的桌面面积就不一定是1平方分米.因此,把体积1立方分米的长方体放在桌子上,它所占面积是1平方分米.这种说法是错误的.故答案为:×.22.解:(6×2﹣2)×1×1,=10×1,=10(平方厘米);答长方体的表面积是10平方厘米,所以原题说法错误.故答案为:错误.23.解:770×(1﹣)=770×=220(字)220≠240所以原题说法错误;故答案为:×三.选择题(共6小题,满分6分,每小题1分)24.解:第一根:2×(1﹣),=2×,=1(米);第二根:2﹣=1(米);1;第二根剩下的长.故选:B.25.解:12和18的最小公倍数是36,所以用36作公分母最简便.故选:C.26.解:(7+5+2)×4=14×4=56(厘米),答:需要一根长56厘米的铁丝.故选:C.27.解:根据题干分析可得,把一个正方体分割成两个长方体后,表面积是比原来大了.故选:B.28.解:因为拿走在顶点的一个小方块,减少了三个面的同时又增加了三个面,所以大正方体的表面积不变.故选:A.29.解:由题意得:18和23相对,和是:18+23=41;20和30相对,和是:20+30=50;17和28相对,和是:17+28=45;所以:两个相对的面上两数之和最大是50.故选:C.四.计算题(共2小题,满分8分)30.解:==0=1=1====1031.解:(1)x﹣(﹣)=x﹣=x﹣+=+x=1(2)+x=+x﹣=﹣x=(3)2x+=2x+﹣=﹣2x=2x÷2=÷2x=五.计算题(共1小题)32.解:(5×4+5×10+4×10)×2=(20+50+40)×2=110×2=220(平方厘米);答:这个长方体的表面积是220平方厘米.6×6×6=216(平方厘米);答:这个正方体的表面积是216平方厘米.六.解答题(共6小题,满分36分,每小题6分)33.解:0.3×0.3×6=0.09×6=0.54(平方米),答:这个正方体的表面积是0.54平方米.34.解:(20×30+15×30)×2北师大版小学数学五年级下=(600+450)×2=1050×2=2100(平方厘米),答:这张商标纸的面积是2100平方厘米.35.解:20×=8(只)答:黑兔有8只.36.解:(1)1﹣=.答:还剩下这袋饼干的.(2)2﹣=1(千克).答:还剩下1千克.故答案为:;1.37.解:(1)×5=(吨)答:5天用去吨.(2)×3=答:3天用去了.(3)5﹣=4(吨)答:还剩下4吨.38.解:(1)1﹣﹣=﹣=;(2)8×=(小时)答:参观的时间占,参观用了小时.11。
江苏省连云港市新海初级中学2022-2023学年九年级下学期3月月考数学试题(含答案解析)
江苏省连云港市新海初级中学2022-2023学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.3的平方根是()A .9BC .D .2.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.“世界金融风暴”影响着我国的经济,为预防经济进一步下滑,中国政府出台了多项政策,其中有一项是4万亿元经济刺激方案.将4万亿元用科学记数法可表示为()A .8410⨯元B .10410⨯元C .12410⨯元D .14410⨯元4.下列计算正确的是()A .2242x x x +=B .236x x x ⋅=C .()2224x x -=D .32x x x -=5.在2009年的三八妇女节,第一学习小组为了解本地区大约有多少中学生知道自己母亲的生日,随机调查了100个中学生,结果其中只有30个学生知道自己母亲的生日,对于这个关于数据收集与处理的问题,下列说法正确的是()A .调查的方式是普查B .本地区约有30%的中学生知道自己母亲的生日C .样本是30个中学生D .本地区约有70个中学生不知道自己母亲的生日6.如图,∠AOB =90°,∠B =30°,△A ′O B ′可以看作是由△AOB 绕点O 顺时针旋转α角度得到的.若点A ′在AB 上,则旋转角α的度数是()A .30°B .45°C .60°D .90°7.如图,正方形ABCD 的边长为2,O 为对角线的交点,点E 、F 分别为BC 、AD 的中点.以C 为圆心,2为半径作圆弧»BD,再分别以E 、F 为圆心,1为半径作圆弧 BO 、»OD,则图中阴影部分的面积为()A .π﹣1B .π﹣2C .π﹣3D .4﹣π8.如图,ABC 中,35A ∠=︒,50B ∠=︒,G 是ABC 的重心,AB 的中点为D ,以G 为圆心,GD 长为半径画⊙G ,过C 点作⊙G 的两切线段CE CF 、,其中E 、F 为切点,则BCE ∠与ACF ∠的度数和为()A .30︒B .35︒C .40︒D .45︒二、填空题9.化简(2-的结果是______.10.函数yx 的取值范围是_____.11.分解因式:22a a +=_____.12.如图,AB 是O 的弦,AC 是O 的切线,A 为切点,BC 经过圆心,若40C ∠=︒,则B ∠的度数为____.13.已知1x ,2x 是一元二次方程2620x x -+=的两根,则12x x +=_______.14.如图.在每个小正方形的边长均为1的方格图中.点A ,C ,M ,N 均在格点(网格线的交点)上,AN 与CM 相交于点P ,则tan CPN ∠的值为______.15.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为________.16.如图,正方形ABCD 的边长为4,B 的半径为2,P 为B 上的动点,PD -的最大值是______.三、解答题17.计算(0213cos 60--++︒.18.解不等式组:121322x x x ->⎧⎪⎨-≤+⎪⎩①②19.化简2111x x x x⎛⎫-÷ ⎪--⎝⎭.20.某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,相应数据的统计图表如下:各类学生成绩人数比例统计表等第人数类别ABC D农村20024080县镇290132130城市24013248(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格)(1)请将上面表格中缺少的三个数据补充完完整;(2)若该市九年级共有60000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.21.小莉的爸爸有一张电影票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用树状图或列表的方法求小莉去看电影的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.22.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师有1000元,他计划为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?23.如图,直线3y kx =+与x 轴、y 轴分别交于点C ,B ,与反比例函数m y x =交于点A ,D ,过D 作DE x ⊥轴于E ,连接OA 、OD ,若()2,A n -,:1:2OAB ODE S S =△△.(1)求反比例函数的表达式;(2)求点C 的坐标;(3)直接写出关于x 不等式:3mkx x>+的解集为______.24.一酒精消毒瓶如图1,AB 为喷嘴,BCD ∆为按压柄,CE 为伸缩连杆,BE 和EF 为导管,其示意图如图2,108DBE BEF ∠=∠=︒,6cm BD =,4cm BE =.当按压柄BCD ∆按压到底时,BD 转动到'BD ,此时'//BD EF (如图3).(1)求点D 转动到点'D 的路径长;(2)求点D 到直线EF 的距离(结果精确到0.1cm ).(参考数据:sin 360.59︒≈,cos 360.81︒≈,tan 360.73︒≈,sin 720.95︒≈,cos720.31︒≈,tan 72 3.08︒≈)25.如图,O 是ABC 的外接圆,AD 是O 的直径,F 是AD 延长线上一点,连接CD CF ,,且DCF CAD ∠=∠.(1)求证:CF 是O 的切线;(2)若直径310,cos 5AD B ==,求FD 的长.26.如图,抛物线2y x bx c =++经过()3,0A ,()2,5D -两点,与x 轴另一交点为B ,点H 是线段AB 上一动点,过点H 的直线PQ x ⊥轴,分别交直线AD 、抛物线于点Q ,P .(1)求抛物线的解析式;(2)是否存在点P ,使90APB ∠=︒,若存在,求出点P 的横坐标,若不存在,说明理由;(3)连接BQ ,一动点M 从点B 出发,沿线段BQ 以每秒1个单位的速度运动到Q ,再沿线段QD 个单位的速度运动到D 后停止,当点Q 的坐标是多少时,点M 在整个运动过程中用时t 最少?27.已知:如图,在Rt ABC △中,906cm 8cm ACB AC BC ∠=︒==,,.点D 是BC 中点,点P 从点C 出发,沿CA 向点A 匀速运动,速度为2cm/s ;同时点Q 从点A 出发,沿AB 向点B 匀速运动,速度为3cm/s ;连接PD QD PQ ,,,将PQD △绕点D 旋转180︒得RTD △.设运动时间为t (s )()03t <<,解答下列问题:(1)当t 为何值时,RT BC ∥?(2)当t 为何值时,四边形PQRT 是菱形?(3)设四边形PQRT 的面积为y ()2cm,求y 与t 的函数关系式;(4)是否存在某一时刻t ,使得点T 在ABC 的外接圆上?若存在,求出t 的值;若不存在,请说明理由.参考答案:1.D【分析】直接根据平方根的概念即可求解.【详解】∵(23=∴3的平方根是故选:D .【点睛】本题主要考查了平方根的概念,解决本题的关键是熟记平方根的定义.2.D【分析】根据轴对称与中心对称的定义分别判断即可,轴对称图形是:一定要沿某直线折叠后直线两旁的部分互相重合;中心对称图形是:图形绕某一点旋转180°后与原来的图形重合.【详解】解:A 、不是轴对称图形,也不是中心对称图形,故本选项错误;B 、不是轴对称图形,也不是中心对称图形,故本选项错误;C 、是轴对称图形,不是中心对称图形,故本选项错误;D 、是轴对称图形,也是中心对称图形,故本选项正确.故选:D .【点睛】本题考查的知识点主要是区分轴对称图形与中心对称图形,熟记轴对称图形与中心对称图形的定义是解题的关键.3.C【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可.【详解】解: 4万亿元4000000000000=元,根据科学记数法要求4000000000000的4后面有12个0,从而用科学记数法表示为12410⨯,故选:C .【点睛】本题考查科学记数法,按照定义,确定a 与n 的值是解决问题的关键.4.C【分析】根据合并同类项、同底数幂相乘、积的乘方、合并同类项对各项依次判断即可.【详解】解:A .2222x x x +=,故选项错误,不符合题意;B .235x x x ×=,故选项错误,不符合题意;C .()2224x x -=,故选项正确,符合题意;D .3x 与x 不是同类项,不能合并,故选项错误,不符合题意.故选:C .【点睛】此题考查了合并同类项、同底数幂相乘、积的乘方等知识,熟练掌握运算法则是解题的关键.5.B【分析】根据题意,由调查方式、样本估计总体、样本定义,结合四个选项逐项验证即可得到答案.【详解】解:A 、根据题中描述,调查方式是抽样调查,该说法错误,不符合题意;B 、由样本估计整体,随机调查了100个中学生,结果其中只有30个学生知道自己母亲的生日,得到样本中约30%的中学生知道自己母亲的生日,从而可以估算出本地区约有30%的中学生知道自己母亲的生日,该说法正确,符合题意;C 、根据题中描述,样本是100个中学生,该说法错误,不符合题意;D 、由样本估计整体,随机调查了100个中学生,结果其中只有30个学生知道自己母亲的生日,得到样本中约70的中学生知道自己母亲的生日,不是本地区情况,该说法错误,不符合题意;故选:B .【点睛】本题考查统计综合,涉及调查方式、样本估计总体、样本等知识,熟练掌握统计概念是解决问题的关键.6.C【分析】根据旋转的性质得出AO =A ′O ,得出等边三角形AOA ′,根据等边三角形的性质推出即可.【详解】解:∵∠AOB =90°,∠B =30°,∴∠A =60°,∵△A ′OB ′可以看作是△AOB 绕点O 顺时针旋转α角度得到的,点A ′在AB 上,∴AO =A ′O ,∴△AOA ′是等边三角形,∴∠AOA ′=60°,即旋转角α的度数是60°,故选:C【点睛】本题考查了等边三角形的性质和判定,旋转的性质等知识点,关键是得出△AOA ′是等边三角形,题目比较典型,难度不大.7.B【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆(扇形)的面积减去以1为半径的半圆(扇形)的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆(扇形)的面积,本题得以解决.【详解】解:由题意可得,阴影部分的面积是:14•π×22﹣2112π⋅⨯﹣2(1×1﹣14•π×12)=π﹣2,故选:B .【点睛】本题主要考查运用正方形的性质,圆的面积公式(或扇形的面积公式),正方形的面积公式计算不规则几何图形的面积,解题的关键是理解题意,观察图形,合理分割,转化为规则图形的面积和差进行计算.8.B【分析】连接CD ,GE ,GF ,根据重心的性质得出12DG CG =,进而得出30FCG ∠=︒,根据切线长定理得出60ECF ∠=︒,根据三角形内角定理即可求解.【详解】解:如图所示,连接CD ,GE ,GF ,∵G 是ABC 的重心,AB 的中点为D ,∴G 在CD 上,∴12DG CG =,∵CE 、CF 是G 的切线,∴90CFG CEG ∠=∠=︒,GE GF GD ==,FCG ECG ∠=∠∴1sin 2FG DG FCG CG CG ∠===,∴30FCG ∠=︒,∴60ECF ∠=︒,∴BCE ∠+ACF ∠18018035506035A B ECF =︒-∠-∠-∠=︒-︒-︒-︒=︒,故选:B .【点睛】本题考查了切线长定理,根据特殊角的三角函数值求角度,三角形重心的性质,三角形内角和定理,掌握三角形重心的性质是解题的关键.9.12【分析】根据积的乘方的运算法则计算即可.【详解】解:(()22224312-=-⨯=⨯=,故答案为:12【点睛】此题考查了二次根式运算,熟练掌握二次根式的运算法则是解题的关键.10.x≥2.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x ﹣4≥0,可求x 的范围.【详解】解:2x ﹣4≥0解得x≥2.故答案为:x≥2.【点睛】本题考查自变量有意义的条件,因函数表达式是二次根式,实质也是考查二次根式有意义的条件.11.22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】22(2)a a a a +=+,故答案为:a (a +2).【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.12.25︒##25度【分析】首先连接OA ,然后根据切线的性质和三角形的外角性质得出答案.【详解】解:连接OA ,∵AC 为切线,∴90OAC ∠=︒,∵40C ∠=︒,∴50AOC ∠=︒,∵OA OB =,∴50225B ∠=︒÷=︒.故答案为:25︒【点睛】本题主要考查圆的切线的性质以及三角形外角的性质,属于基础题型.解答问题的关键是添加辅助线,构造直角三角形.13.6【分析】直接利用根与系数的关系即可得到答案.【详解】解:∵1x ,2x 是一元二次方程2620x x -+=的两根,∴12661x x -+=-=.故答案为:6.【点睛】本题考查一元二次方程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根时,12b x x a+=-,12c x x a =.掌握一元二次方程根与系数的关键是解题的关键.14.1【分析】利用等角转化得到45CPN BAN ∠=∠=︒,即可求解.【详解】解:如图,平移MC 至AB ,则CPN BAN ∠=∠,连接BN ,∵90BD NC AD BC ADB BCN ==∠=∠=︒,,,∴()ABD BNC SAS ≌,∴DAB CBN ∠=∠,AB BN =,∴90DBA CBN DBA DAB ∠+∠=∠+∠=︒,∴90ABN ∠=︒,∴45BAN BNA ∠=∠=︒,∴45CPN BAN ∠=∠=︒,∴tan 1CPN ∠=,故答案为:1.【点睛】本题考查了锐角三角函数的求值问题,涉及到了平移、全等三角形的判定与性质、等腰三角形的性质等知识,解题关键是利用平移进行等角转化,得到等腰直角三角形,求出角.15.0<a <6【分析】根据题意可以列出相应的不等式,从而可以解答本题.【详解】试题解析:设未来30天每天获得的利润为y ,y =(110-40-t )(20+4t )-(20+4t )a 化简,得y =-4t 2+(260-4a )t +1400-20a每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,∴−()260429.524a -⨯-解得,a <6,又∵a >0,即a 的取值范围是:0<a <6.【点睛】本题考查二次函数的应用,解题的关键是明确题意,注意t 为正整数所包含的意义,找出所求问题需要的条件.16.2【分析】如图:连接BD 、BP 、PC ,在BD 上做点M ,使4BM BP =,连接MP ,证明BMP BPD △,在BC 上做点N ,使1=2BN BP ,连接NP ,证明BNP △ BPC △,接着推导出2=22PC PD MN -,最后证明BMN BCD △,即可求解.【详解】如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,B 的半径为2∴=2BP ,2222==44=42BD BC CD ++ 2442BP BD 在BD 上做点M ,使24BM BP =,则2=2BM ,连接MP 在BMP 与BPD △中=MBP PBD ∠∠,=BP BM BD BP∴BMP BPD△∴2=4PM PD ,则2PD PM 21==42BP BC 在BC 上做点N ,使1=2BN BP ,则=1BN ,连接NP 在BNP △与BPC △中=NBP PBC ∠∠,=BN BP BP PC∴BNP △ BPC△∴1=2PN PC ,则=2PC PN ∴如图所示连接NM ,延长NM 与B 的交点P '∴P '2PC PD -最大值是P 点的位置)22222=22=22PD PN PM PN PM MN---在BMN 与BCD △中=NBM DBC ∠∠,2=48BM BC,8BN BD ∴=BM BN BC BD∴BMN BCD△∴=8MN CD =4CD∴=2MN∴故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉该知识点运用是解题关键.17.52【分析】根据绝对值、零指数幂、特殊角的三角函数值进行运算即可.【详解】解:(0213cos 60--++︒12132=-+⨯52=【点睛】此题考查了绝对值、零指数幂、特殊角的三角函数值的混合运算,熟练掌握运算法则和特殊角的三角函数值是解题的关键.18.310x <≤【分析】求出每个不等式的解集,写出不等式解集的公共部分即可.【详解】解:121322x x x ->⎧⎪⎨-≤+⎪⎩①②解不等式①得,3x >,解不等式②得,10x ≤,∴不等式组的解集是310x <≤.【点睛】此题考查了解一元一次不等式组,熟练掌握一元一次不等式组解集的确定方法是解题的关键.19.x-【分析】先计算括号内的减法运算,再计算分式的除法运算,即可得到答案.【详解】解:2111x x x x⎛⎫-÷ ⎪--⎝⎭()11111x x x x x x -⎛⎫=-÷ ---⎝⎭()1111x x x =-÷--()111x x x =-⨯--x=-【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.20.(1)280,48,180.(2)估计该市成绩合格以上的人数约为54720人.【分析】(1)根据扇形图可分别求出农村人口、县镇人口、城市人口,进而求出缺少的数据即可;(2)利用样本来估计总体即可.【详解】(1)解:∵农村人口为200040%800⨯=,∴农村A 等第的人数为80020024080280---=;∵县镇人口为200030%600⨯=,∴县镇D 等第的人数为60029013213048---=;∵城市人口为200030%600⨯=,∴城市B 等第的人数60024013248180---=,故答案为:280,48,180.(2)抽取的学生中,成绩不合格的人数共有804848176++=(人),所以成绩合格以上的人数为20001761824-=(人),估计该市成绩合格以上的人数为182460000547202000⨯=(人).答:估计该市成绩合格以上的人数约为54720人.【点睛】本题是一道利用统计知识解答实际问题的重点考题.主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.21.(1)38(2)不公平,游戏见详解.【分析】(1)利用树状图法列举出所有情况,即可得到答案;(2)根据(1)中概率比较即可得到答案.【详解】(1)解:由题意可得,根据上图可得,总共有:5、7、8、9、6、8、9、10、7、9、10、11、9、11、12、13,共有16种情况,其中偶数有6种,奇数10种,∴()63=168P =小莉,∴小莉去看电影的概率为38;(2)解:由(1)可得,∴()53=1088P =>哥哥,∴该游戏规则不公平,游戏设置:拿了八张扑克牌,将数字为1,2,3,4的四张牌给小莉,将数字为5,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去;根据上图可得,总共有:6、7、8、9、7、8、9、10、8、9、10、11、9、10、11、12,共有16种情况,其中偶数有8种,奇数8种,()12P P ==哥哥(小莉).【点睛】本已考查用树状图法求解概率及用概率判断游戏是否公平,解题的关键是正确列举出所有情况.22.(1)每个书包和每本词典的价格分别是28元和20元;(2)共有以下三种购买书包和词典的方案,分别是购买书包10个,词典30本,购买书包11个,词典29本,购买书包12个,词典28本.【详解】(1)设每个书包的价格为x 元,则每本词典的价格为(x -8)元.根据题意,得3x +2(x -8)=124.解得x =28.∴x -8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)设购买书包y 个,则购买词典(40-y )本.根据题意,得1000[2820(40)]100,{1000[2820(40)]120,y y y y -+-≥-+-≤解得10≤y≤12.5.因为y 取整数,所以y 的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.23.(1)12y x=-(2)()2,0C(3)20x -<<或>4x 【分析】(1)由题意,得到3OB =,再由()2,A n -,:1:2OAB ODE S S =△△得到13212122B OAB ODE OB x S S m OE DE ⋅⨯===-⋅△△,解得12=-m 即可得到答案;(2)根据题意,先求出()2,6A -,利用待定系数法确定直线关系式,再由直线332y x =-+与x 轴交于点C ,代值求解即可得到()2,0C ;(3)解不等式12332x x ->-+,用函数图像表示就是反比例函数图像在直线上方部分对应的x 的取值范围,数形结合即可得到答案.【详解】(1)解: 直线3y kx =+与y 轴交于点B ,∴当0x =时,3y =,即()0,3B ,3OB ∴=,直线3y kx =+与反比例函数m y x=交于点A ,D ,过D 作DE x ⊥轴于E ,连接OA 、OD ,若()2,A n -,:1:2OAB ODE S S =△△,∴13212122B OAB ODE OB x S S m OE DE ⋅⨯===-⋅△△,解得12=-m ,∴反比例函数的表达式为12y x=-;(2)解: 直线3y kx =+与反比例函数12y x =-交于点()2,A n -,∴1262n =-=-,即()2,6A -,623k ∴=-+,解得32k =-,∴直线的表达式为332y x =-+, 直线332y x =-+与x 轴交于点C ,∴当0y =时,3032x =-+,解得2x =,即()2,0C ;(3)解:求关于x 不等式3m kx x >+的解集,由(1)(2)可知反比例函数的表达式为12y x=-,直线的表达式为332y x =-+,∴解不等式12332x x ->-+用函数图像表示就是反比例函数图像在直线上方部分对应的x 的取值范围,∴联立12332y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得43x y =⎧⎨=-⎩或26x y =-⎧⎨=⎩,即()2,6A -、()4,3D -,∴数形结合,得到12332x x ->-+的解集为20x -<<或>4x ,故答案为:20x -<<或>4x .【点睛】本题考查一次函数与反比例函数综合,涉及待定系数法确定函数关系式、一次函数图像与性质、反比例函数图像与性质、利用函数图像解不等式等知识,熟练掌握一次函数图像与性质、反比例函数图像与性质是解决问题的关键.24.(1)65π;(2)点D 到直线EF 的距离约为7.3cm .【分析】(1)根据题目中的条件,首先由108DBE BEF ∠=∠=︒,'//BD EF ,求出'D BE ∠,再继续求出'DBD ∠,点D 转动到点'D 的路径长,是以BD 为半径,B 为圆心的圆的周长的一部分,根据'DBD ∠占360︒的比例来求出路径;(2)求点D 到直线EF 的距离,实际上是过点D 作EF 的垂线交EF 于某点,连接两点所确定的距离即为所求,但这样做不好求解.于是把距离拆成两个部分,放在两个直角三角形中,分别利用直角三角形中锐角三角函数知识求出每段的距离,再求和即为所求.【详解】解:(1)如图,∵'//BD EF ,108BEF ∠=︒,∴'18072D BE BEF ∠=︒-∠=︒.∵108DBE ∠=︒,∴''1087236DBD DBE D BE ∠=∠-∠=︒-︒=︒.又∵6BD =,∴点D 转动到点'D 的路径长()3666cm 1805ππ⨯⨯==.(2)如图,过点D 作'DG BD ⊥于点G ,过点E 作'EH BD ⊥于点H .在Rt DGC △中,sin DGDBD BD'∠=∴sin 36 3.54DG BD =⋅︒≈.在Rt BHE V 中,sin EHEBH BE∠=∴sin 72 3.80EH BE =⋅︒≈.∴ 3.54 3.807.347.3DG EH +=+=≈.又∵'//BD EF ,∴点D 到直线EF 的距离约为7.3cm .【点睛】本题考查了两点间转动的路径问题、点到直线的距离问题,锐角三角函数知识,解题的关键是:确定路径是在圆上,占圆周长的多少,就转化成角度间的比值问题了;距离问题,当直接求解比较困难的时候,看是否能把所求拆分成几个部分,再逐一突破.25.(1)详见解析(2)907【分析】(1)根据直径所对的圆周角是直角,余角的性质即可求得结论;(2)根据已知条件可知FCD FAC ∽,再根据正切的定义和相似三角形的性质得到线段的关系即可求得线段FD 的长度.【详解】(1)证明:连接OC ,∵AD 是O 的直径,∴90ACD ∠=︒,∴90ADC CAD ∠+∠=︒,又∵OC OD =,∴ADC OCD ∠=∠,又∵DCF CAD ∠=∠,∴90DCF OCD ∠+∠=︒,即OC FC ⊥,∴FC 是O 的切线;(2)解:∵3,cos 5B ADC B ∠=∠=,∴3cos 5ADC ∠=,∵在Rt ACD 中,3cos ,10,5CD ADC AD AD ∠===∴3cos 106,5CD AD ADC =⋅∠=⨯=∴8AC ==,∴34CD AC =,∵FCD FAC F F ∠=∠∠=∠,,∴FCD FAC ∽,∴34CD FC FD AC FA FC ===,设3FD x =,则4310FC x AF x ==+,,又∵2FC FD FA =⋅,即2(4)3(310)x x x =+,解得307x =(取正值),∴9037FD x ==,【点睛】本题考查了圆周角的性质,切线的判定定理,正切的定义,相似三角形的性质和判定,找出正切的定义与相似三角形相似比的关联是解题的关键.26.(1)2=23y x x --;(2)点P 的横坐标为:11(3)()1,4Q -【分析】(1)把()3,0A ,()2,5D -代入2y x bx c =++,得出关于b 、c 的二元一次方程组,即可求出抛物线的解析式;(2)根据抛物线解析式求出OA ,设2(,23)P m m m --,则13m -≤≤,2(23)PH m m =---,1BH m =+,3AH m =-,证明AHP PHB ∽,得出2·PH BH AH =,由此得出方程22[(23)](1)(3)m m m m ---=+-,解方程即可;(3)由题意,动点M 运动的路径为折线BQ QD +,运动时间:t BQ =,如备用图,作辅助线,将BQ 转化为BQ QG +;再由垂线段最短,得到垂线段BE 与直线AD 的交点即为所求的Q 点.【详解】(1)把()3,0A ,()2,5D -代入2y x bx c =++,得930425b c b c ++=⎧⎨-+=⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为:2=23y x x --;(2)存在点P ,使90APB ∠=︒.当0y =时,即2230x x --=,解得:11x =-,23x =,1OB =∴,3OA =.设2(,23)P m m m --,则13m -≤≤,2(23)PH m m =---,1BH m =+,3AH m =-, PH AB ⊥,90PAH BPH APH ∴∠=∠=︒-∠,AHP PHB ∠=∠,ΔΔAHP PHB ∴∽,∴PH AH BH PH=,2·PH BH AH ∴=,22[(23)](1)(3)m m m m ∴---=+-,解得11m =21m =,∴点P 的横坐标为:11(3)如图,过点D 作DN x ⊥轴于点N ,则5DN =,2ON =,325AN =+=,5tan 15DN DAB AN ∴∠===,45DAB ∴∠=︒.过点D 作//DK x 轴,交PQ 于点G ,则45KDQ DAB ∠=∠=︒,DQ =.2QG ∴=,由题意,动点M 运动的路径为折线BQ QD +,运动时间2t BQ BQ DQ =+=+,t BQ QG ∴=+,即运动的时间值等于折线BQ QG +的长度值.由垂线段最短可知,折线BQ QG +的长度的最小值为DK 与x 轴之间的垂线段.过点B 作BE DK ⊥于点E ,则t BE =最小,BE 与直线AD 的交点,即为所求之Q 点.(3,0)A ,(2,5)D -,∴直线AD 的解析式为:3y x =-+,B 点横坐标为1-,134y ∴=+=,(1,4)Q ∴-.【点睛】此题是二次函数综合题,主要考查了待定系数法求抛物线与直线的解析式,相似三角形的判定与性质,垂线段最短的性质,函数图象上点的坐标特征等知识.利用数形结合与方程思想是解题的关键.27.(1)3019t =;(2)13t +=;(3)()248152480355t t t y -+<<=;(4)存在,125t =【分析】(1)首先根据勾股定理得到AB 的长,根据旋转性质和平行四边形判定,可以证出四边形PQRT 为平行四边形,利用//RT BC 得线段成比例,从而得解;(2)过Q 作QN BC ⊥于N ,用含t 的代数式表示出CP AP AQ QB 、、、的长,由(1)已经证明四边形PQRT 为平行四边形,它的对角线互相垂直时为萎形,再证明PCD DNQ ∽ ,BNQ BCA △△∽,再根据相似三角形对应边的比相等即可得解;(3)过P 作PM AQ ⊥于M ,过点Q 作QN BD ⊥于N ,根据24PQRT PQR PDQ S S S == ,PDQ ABC PCD APQ BDQ S S S S S =--- 即可得解;(4)过C 作CH AB ⊥于H ,所以2ABC CH AB AC BC S ⨯=⨯= ,再证明(SAS)CDT BDQ ≌ ,对应角相等,即为内错角相等,所以CT BA ∥,从而证出当Q 在AB 上运动时,T 也在过C 点与AB 平行的直线上运动,取AB 中点O 连OC 作OM CT ⊥于M ,则四边形OHCM 为矩形,OM CH =,若T 在ABC 的外接圆上,则15cm 2OT OC AB ===,即可得解.【详解】(1)解:连接PQ QR PT 、、,由旋转知:DP DR =,DQ DT =,∴四边形PQRT 为平行四边形,当TR BC ∥时,则PQ BC ∥,∴AP AQ AC AB =,∵90ACB ∠=︒,6AC cm =,8cm BC =,∴10cm AB ==,依题意得:3cm AQ t =,2cm CP t =,∴()62cm AP t =-,()103cm BQ t =-,∴623610t t -=,∴602018t t -=,∴3860t =,∴3019t =,当3019t =时,RT BC ∥;(2)解:由(1)知,四边形PQRT 为平行四边形,根据对角线互相垂直的平行四边形为萎形知,当DP DQ ⊥,即90PDQ ∠=︒时,平行四边形PQRT 为菱形,过Q 作QN BC ⊥于N ,∴90QND ∠=︒,∴90QDN DQN ∠+∠=︒,∵90PDQ ∠=︒,∴90PDC QDN ∠+∠=︒,∴PDC DQN ∠=∠,∵90PCD DNQ ∠=∠=︒,∴PCD DNQ ∽,∴PC DN CD QN=①,∵90BNQ C ∠=∠=︒,B B ∠=∠,∴BNQ BCA ∽,∴BN NQ BQ BC AC AB ==,即1038610BN NQ t -==,∴()3103cm 5QN t =-,()4103cm 5QN t =-,∴()1288cm 5CN BC BN t =-=-+,∴()124cm 5DN CN CD t =-=-,由①等式知:124259465t t t -=-,∴29246855t t t -=-,∴23092440t t t -=-,∴296400t t --=,∴61183t ±±==,舍去负根,∴13t +=,检验13t +=是原方程的根,∴13t +=;(3)解:∵四边形PQRT 为平行四边形,∴24PQRT PQR PDQ S S S == ,过P 作PM AQ ⊥于M ,过点Q 作QN BD ⊥于N ,由(2)知96cm 5QN ⎛⎫=- ⎪⎝⎭,在Rt APM △中,()62cm AP t =-,∴()4248•62cm 555PM AP sinA t t ⎛⎫==-⨯=- ⎪⎝⎭,∴PDQ ABC PCD APQ BDQS S S S S =---1112481968243462225525t t t t ⎛⎫⎛⎫=⨯⨯-⨯-⨯⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭236121824412555t t t t =--+-+212381255t t =-+,∴()2484152480355PDQ t y S t t -+=<=< ;(4)解:过C 作CH AB ⊥于H ,∴2ABC CH AB AC BC S ⨯=⨯= ,∴6824cm 105CH ⨯==,连接CT ,∵QD DT =,CD DB =,CDT BDQ ∠=∠,∴(SAS)CDT BDQ ≌ ,∴B DCT ∠∠=,∴CT BA ∥,∴当Q 在AB 上运动时,T 也在过C 点与AB 平行的直线上运动,取AB 中点O 连OC 作OM CT ⊥于M ,则四边形OHCM 为矩形,OM CH =,若T 在ABC 的外接圆上,则15cm 2OT OC AB ===,∵OM CT ⊥,∴CM MT =,又∵75CM ===,∴1425CT MC ==,∵BQD CTD ≌,∴14cm5CT BQ==,即14 1035t-=,∴125t=,即当125t=时,T在ABC的外接圆上.【点睛】本题考查平行四边形的判定和性质、菱形的判定和性质、相似三角形的判定和性质、三角形的外接圆的性质,解题关键是恰当作出辅助线,熟练掌握以上性质和判定.。
2024届天域全国名校协作体高三年级下学期3月联考数学学科试题(含答案解析)
绝密★考试结束前2023-2024学年第二学期天域全国名校协作体联考高三年级数学学科试题考生须知:1.本卷共5页满分150分,考试时间120分钟。
2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。
3.所有答案必须写在答题纸上,写在试卷上无效。
4.考试结束后,只需上交答题纸。
选择题部分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,A B 是全集U 的非空子集,且U A B ⊆ð,则()A .B A⊆B .U B A⊆ðC .U U A B⊆ððD .A B⊆2.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图象特征.则函数22()1xf x x =-+的图象大致为()A .B .C .D .3.已知复数(,)z a bi a b R =+∈且2(42)40x i x ai -+++=有实数根b ,则2||z =()A. B.12C. D.204.已知等边△ABC 的边长为2,点D ,E 分别为AB ,BC 的中点,若2DE EF =,则EF AF⋅=()A .1B .45C .65D .545.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,若双曲线上存在点P 满足2212PF PF a ⋅=-,则双曲线离心率的最小值为()AB .C .2D6.在数列{}n a 中,n S 为其前n 项和,首项11a =,且函数()()31sin 211n n f x x a x a x +=-+++的导函数有唯一零点,则5S =()A .26B .63C .57D .257.已知函数()f x 的定义域为R ,且(2)2f x +-为奇函数,(31)f x +为偶函数,(1)0f =,则20241()k f k ==∑()A .4036B .4040C .4044D .40488.已知直线)0(0:22≠+=++B A C By Ax l 与曲线3:W y x x =-有三个交点D 、E 、F ,且2DE EF ==,则以下能作为直线l 的方向向量的坐标是().A.()10, B.()11-, C.)(11, D.()01,二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知由样本数据()i i x y ,(12310i = ,,,,)组成的一个样本,得到回归直线方程为ˆ3y x =-+,且4x =.剔除一个偏离直线较大的异常点(51)--,后,得到新的回归直线经过点(64)-,.则下列说法正确的是A .相关变量x y ,具有正相关关系B .剔除该异常点后,样本相关系数的绝对值变大C .剔除该异常点后的回归直线方程经过点(51)-,D .剔除该异常点后,随x 值增加相关变量y 值减小速度变小10.在平面直角坐标系xOy 中,角θ以坐标原点O 为顶点,以x 轴的非负半轴为始边,其终边经过点(,)M a b ,()0OM m m =≠,定义()b a f m θ+=,()b ag mθ-=,则()A .ππ166f g ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭B .()()2f f θθ+≥C .若()()f g θθ=2,则3sin 25θ=D .()()f g θθ是周期函数11.如图,多面体PS ABCD -由正四棱锥P ABCD -和正四面体S PBC -组合而成,其中PS =1,则下列关于该几何体叙述正确的是A.该几何体的体积为24B.该几何体为七面体C.二面角A-PB-C 的余弦值为13-D.该几何体为三棱柱非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12.从某工厂生产的零件中随机抽取11个,其尺寸值为43,45,45,45,49,50,50,51,51,53,57(单位:mm),现从这11个零件中任取3个,则3个零件的尺寸刚好为这11个零件尺寸的平均数、第六十百分位数、众数的概率为_________.13.已知偶函数()()ϕω+=x x f sin ()0>ω的图像关于点⎪⎭⎫ ⎝⎛03,π中心对称,且在区间⎥⎦⎤⎢⎣⎡40π,上单调,则ω=.14.若实数y x ,满足2522=+y x ,则y x y x 68506850-++++的最大值为_________16.(15分)据新华社北京2月26日报道,中国航天全年预计实施100次左右发射任务,有望创造新的纪录,我国首个商业航天发射场将迎来首次发射任务,多个卫星星座将加速组网建设;中国航天科技集团有限公司计划安排近70次宇航发射任务,发射290余个航天器,实施一系列重大工程任务。
山东省泰安市泰安第四中学2024年高三3月阶段测试试题数学试题
山东省泰安市泰安第四中学2024年高三3月阶段测试试题数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2|320M x x x =-+≤,{}|N x y x a ==-若M N M ⋂=,则实数a 的取值范围为( )A .(,1]-∞B .(,1)-∞C .(1,)+∞D .[1,)+∞2.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( ) A .2B .3C .4D .53.设函数1()ln1xf x x x+=-,则函数的图像可能为( ) A . B . C . D .4.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于A ,B 两点,交y 轴于点M ,若1F 、M 是线段AB 的三等分点,则椭圆的离心率为( ) A .12B .32C .255D .555.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( ) A .B .C .D .6.,,a b αβαβ//////,则a 与b 位置关系是 ( ) A .平行 B .异面C .相交D .平行或异面或相交7.已知全集为R ,集合122(1),{|20}A x y x B x x x -⎧⎫⎪⎪==-=-<⎨⎬⎪⎪⎩⎭,则()A B =R ( )A .(0,2)B .(1,2]C .[0,1]D .(0,1]8.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为( )A .13B .12C .23D .349.公差不为零的等差数列{a n }中,a 1+a 2+a 5=13,且a 1、a 2、a 5成等比数列,则数列{a n }的公差等于( ) A .1B .2C .3D .410.设α,β是方程210x x --=的两个不等实数根,记n nn a αβ=+(n *∈N ).下列两个命题( )①数列{}n a 的任意一项都是正整数; ②数列{}n a 存在某一项是5的倍数. A .①正确,②错误 B .①错误,②正确 C .①②都正确D .①②都错误11.已知{}n a 为等差数列,若2321a a =+,4327a a =+,则5a =( ) A .1B .2C .3D .612.已知函数()cos()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<),将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则1()3f x =是32123x g π⎛⎫+= ⎪⎝⎭的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
2024学年新疆克拉玛依市北师大克拉玛依附属中学高三3月教学质量检测试题数学试题
2024学年新疆克拉玛依市北师大克拉玛依附属中学高三3月教学质量检测试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 的直线与双曲线的两支分别交于,A B 两点(A 在右支,B 在左支)若2ABF ∆为等边三角形,则双曲线的离心率为( ) A .3B .5C .6D .72.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a ,2a ,3a ,,50a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n =3.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .4.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( ) A .6里B .12里C .24里D .48里5.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ).A .12B .5C .52D .56.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )A .多1斤B .少1斤C .多13斤 D .少13斤 7.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n+的最小值为( )A .97B .53C .43D .13108.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3-B .{}1,0-C .{}0,3D .{}1,0,3-9.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<10.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为2,则输出的v 值为( )A .10922⨯-B .10922⨯+C .11922⨯+D .11922⨯-11.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132B .299C .68D .9912.复数2(1)i i +的模为( ). A .12B .1C .2D .22二、填空题:本题共4小题,每小题5分,共20分。
三年级下册数学试题-同步培优:计算器的使用测试题 沪教版【精品】
八、用计算器计算 4%
爱心超市一周营业款统计表(单位:元)
日期
星期一
星期二
星期三
星期四
星期五
星期六
Байду номын сангаас合计
营业款
1202
887
1025
798
996
1978
九、用计算器计算,并完成填空 12%
小亚和小巧到书城去调查,得到下面一组数据:
3月1日
3月2日
3月3日
3月4日
3月5日
3月6日
3月7日
数学小博士
4元/本
30
34
28
30
29
27
32
趣味数学
3元/本
22
20
19
21
18
17
23
数学练习
2元/本
12
15
10
11
11
12
13
1、从3月1日~3月7日这7天,最受欢迎的书是,卖得最少的书是
2、平均每天售出《数学小博士》本
平均每天售出《趣味数学》本
平均每天售出《数学练习》本
3、按这样计算3月可能售出:
二、用竖式计算,并用计算器验算 16%
25×94=3572÷34=
728×45= 2440-625=
三、递等式计算,并用计算器验算24%
384÷24×105(18539-829)÷35
2960-1086+379 728×54÷504
2395+30150÷457416÷(1728÷48)
四、下面算盘上的数是多少 8%
课题
计算器的使用【精品】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市巴蜀中学校2018-2019学年高二上学期期末数学试题备注:3月3日完成1-16题,3月5日完成17-22题 一、单选题1.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( ) A .14B .12C .13D .232.命题“42x x R ∃∈>,”的否定为( ) A .42x x R ∃∈≤, B .42x x R ∃∈<, C .42x x R ∀∈≤,D .42x x R ∀∈<,3.已知双曲线C :2213x y -=,则双曲线的一条渐近线方程为( )A .y x =B .3y x =C .33y x =D .3y x =4.函数()()2ln f x x a x a R =-∈在1x =处的切线与直线610y x =-+平行,则a 的值为( ) A .-4B .-5C .7D .85.空间中有三条直线a b c ,,,已知a c ⊥,那么“b c ⊥”是“//a b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.某几何体的三视图(侧视图和俯视图均为直角三角形)如图所示,该几何体的体积是403,则x 的值为( )A .3B .4C .92D .57.已知m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中正确的是( )A .若αγαβ⊥⊥,,则//γβB .若//m n m n αβ⊂⊂,,则//αβC .若//m ααβ⊥,,则m β⊥D .若m n m n αβ⊥⊥⊥,,,则αβ⊥8.椭圆2212516x y +=上一点P 到左焦点F 的距离为6,若点M 满足()12OM OP OF =+u u u u r u u u r u u u r,则OM =u u u u r ( )A .6B .4C .2D .529.某圆锥的侧面展开图为半圆,则该圆锥的母线与底面半径之比为( )A .2B .2π C .πD .1310.如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 上一点,且13AE ED =,F 为PC 上一点,当//PA 平面EBF 时,PFFC=( )A .23B .14C .13D .1211.已知F 为双曲线()222210,0x y a b a b-=>>的左焦点,双曲线的半焦距为c ,定点()0,B c ,若双曲线上存在点P ,满足PF PB =,则双曲线的离心率的取值范围是( )A .)2,+∞B .(2C .)3,+∞D .(312.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .23二、填空题13.如图,质点M 从正方体1111ABCD A B C D -的顶点A 出发,沿正方体的棱运动,每经过一条棱称之为一次运动,第一次运动经过AB ,第二次运动经过BC ,第三次运动经过1CC ,且对于任意的正整数n ,第2n +次运动所经过的棱与第n 次运动所经过的棱所在的直线是异面直线,则经过2019次运动后,点M 到达的顶点为________点14.在正四棱柱1111ABCD A B C D -中,112AB AA ==,,E F ,分别为棱11AA BB ,的中点,则异面直线1ED 与DF 所成角的大小为_______________.15.已知抛物线24y x =的焦点为F ,斜率为22的直线过F 且与抛物线交于A ,B两点,若A 在第一象限,那么AFBF=______. 16.在三棱锥S ABC -中,若SA ⊥平面ABC ,5SA =,3BC =,4AC =,AC BC ⊥,那么三棱锥S ABC -的外接球的体积为______.三、解答题17.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若7c =,33ABC S ∆=,求ABC ∆的周长. 18.在四棱锥A BCDE -中,AB ⊥平面BCDE ,底面BCDE 是正方形,M ,N 分别为AC ,ED 的中点.(1)求证://MN 平面ABE ; (2)求证:BC MN ⊥.19.已知抛物线C :()220x py p =>,过焦点的直线l 与x 轴平行,且与抛物线交于A ,B 两点,若AB 4=.(1)求抛物线C 的方程;(2)直线1l 与抛物线C 相交于异于坐标原点的两点E 、F ,若以EF 为直径的圆过坐标原点,求证:直线1l 恒过定点并求出该定点.20.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60ADC ∠=︒,侧面PAB ⊥底面ABCD ,H 为棱AB 的中点,2PA AD ==,5PH =.(1)求证:平面PBD ⊥平面PAC ; (2)求点H 到平面PBD 的距离.21.平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>3且点(2,3在椭圆C 上.P 为椭圆C 上任意一点,线段OP 的中点为E ,过点E 的直线:AB y kx m =+与椭圆C 相交于A B ,两点.(1)求椭圆C 的方程; (2)①求E 点的轨迹方程; ②求四边形APBO 面积的最大值.22.已知圆1C :22(3)4x y -+=,圆2C :223924x y ⎛⎫-+= ⎪⎝⎭.(Ⅰ)设直线2y x =被圆1C 所截得的弦的中点为P ,判断点P 与圆2C 的位置关系;(Ⅱ)设圆2C 被圆1C 截得的一段圆弧(在圆1C 内部,含端点)为Ω,若直线l :(4)y k x =-与圆弧Ω只有一个公共点,求实数k 的取值范围.参考答案1.【答案】B 【解析】因为4个小球随机选3个共有344C =种不同选法,其中能构成等比数列的三个数分别为2,3,4;2,4,6,有两种不同的选法,所以根据古典概型概率公式得:2142P ==,故选B .2.C 根据特称命题的否定得命题“42x x R ∃∈>,”的否定为“42x x R ∀∈≤,”.故选:C 3.C 【详解】解:Q 双曲线的方程为2213xy -=,∴该双曲线的渐近线方程为2203x y -=,整理,得:3y x =±. 故选:C . 4.D解:()()2ln f x x a x a R =-∈Q()2af x x x'∴=-,则()12f a '=-因为在1x =处的切线与直线610y x =-+平行()126f a '∴=-=-解得8a =故选:D 5.B 【详解】a c ⊥,bc ⊥时,不一定有//a b ,因为在空间,a 和b 还可能相交和异面,所以充分性不成立;a c ⊥, //ab 时,bc ⊥一定成立,所以必要性成立.所以“b c ⊥”是“//a b ”的必要非充分条件. 故选:B 6.B由题得几何体原图为如图所示的三棱锥O-ABC,所以1140(54),4323x x ⨯⨯⨯⨯=∴=. 故选:B 7.D 【详解】A. 若αγαβ⊥⊥,,则//γβ,是错误的,因为βγ,还有可能相交;B. 若//m n m n αβ⊂⊂,,则//αβ,是错误的,因为,αβ还有可能相交;C. 若//m ααβ⊥,,则m β⊥,是错误的,因为m 还有可能在平面β内或相交或平行;D. 若m n m n αβ⊥⊥⊥,,,则αβ⊥,是正确的. 故选:D 8.C 【详解】解:由椭圆2212516x y +=得5a =,4b =, 左焦点(3,0)F -,设00(,)P x y ,则()2200336x y ++=又220012516x y +=解得053x =或0553x =-(舍去);又P 在椭圆上,则将053x =代入到椭圆方程中求出0823y =±所以点5(3P ,82)±;由点M 满足1()2OM OP OF =+u u u u r u u u r u u u r,则得M 为PF 中点,根据中点坐标公式求得242,3M ⎛⎫-± ⎪ ⎪⎝⎭, 所以22242||()()233OM =-+±=u u u u r故选:C 9.A 【详解】解:设底面半径为r ,母线为l ,依题意可得1222r l ππ=⨯ 则2l r =即2lr= 故选:A 10.B 【详解】连接AC 交BE 于点M ,连接FM .//PA Q 平面EBF ,PA ⊂平面PAC ,平面PAC I 平面EBF FM =, //PA FM ∴,∴14PF AM AE FC MC BC ===, 故选:B .11.A 【详解】解:由题意可得(,0)F c -,FB 的中点为(2c -,)2c,直线FB的斜率为1cc-=+,可得FB的垂直平分线的斜率为1-,即有线段FB的垂直平分线方程为11()22y c x c-=-+,即为y x=-.由双曲线C上存在点P满足||||PF PB=,可得FB的垂直平分线与双曲线有交点,由双曲线的渐近线方程为by xa=±,即有1ba->-,即a b<,可得2222a b c a<=-,可得2cea=>,故选:A.12.【答案】C【详解】如图,设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,则0≤x≤15,0≤y≤15,两人到达汽车站的时刻(x,y)所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则两人要想乘同一班车,必须满足{(x,y)|0505xy≤≤⎧⎨≤≤⎩,或515515xy≤⎧⎨≤⎩<<},即(x,y)必须落在图形中的2个带阴影的小正方形内,则阴影部分的面积S=5×5+10×10=125,则小赵和小王恰好能搭乘同一班公交车去上学的概率P=1251515⨯=59,故选:C13.【答案】1C由题,不妨设第n次运动前质点在点A处.则第n次运动经过的AB或AD,当第n次运动经过AB 时,第1n +次运动经过1BB 或BC .又第2n +次运动所经过的棱与第n 次运动所经过的棱所在的直线是异面直线,故第2n +次运动只能经过11B C 或1CC .即第2n +次运动后只可能在1C 处.同理当第n 次运动经过AD 时也有第2n +次运动后只可能在1C 处. 故从A 开始第3次运动后必定在1C .第6次运动后必定回到A ,即6次运动为一个周期. 又20196336...3÷=,故经过2019次运动后与经过3次后的位置相同,即1C 处. 故答案为:1C 14.2π 【详解】如图所示,连接11,C F DC .因为11//ED C F ,所以1DFC ∠就是异面直线1ED 与DF 所成角或补角, 因为112AB AA ==,,所以113,2,5DF C F DC ===因为22211DF C F DC += 所以12DFC π∠=.所以异面直线1ED 与DF 所成角为2π.故答案为:2π 15.2 【详解】解:由24y x =,得(1,0)F ,设AB 所在直线方程为()221y x =-,联立24y x =,得2240y y --=.设()11,A x y ,()22,B x y , 解得22y =-,122y =作1AA x ⊥轴,交于点1A ,作1BB x ⊥轴,交于点1B , 则11AA F BB F ∆∆∽112222AA AF BF BB ∴===故答案为:2 16.12523【详解】解:依题意,可得如下直观图,因为SA ⊥平面ABC ,且AC BC ⊥,则可将三棱锥补形为如下长方体,且长方体的体对角线SB 即为外接球的直径,长方体的外接球即为三棱锥S ABC -的外接球,5SA =Q ,3BC =,4AC = 22254352SB ∴=++=则52R =33445212523323V R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭故答案为:12523π.17.【答案】(1)3C π=(2)57【详解】试题分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23C A B C C C π∴+=⇒=⇒= (2)1313sin 36222ABC S ab C ab ab ∆=⇒=⇒= 又2222cos a b ab C c +-=Q2213a b ∴+=,2()255a b a b ∴+=⇒+=ABC ∆∴的周长为57+18. 【详解】解:(1)取AB 中点K ,连接MK ,EK ,∵M ,K 分别为AC ,AB 中点, ∴//MK BC ,12MK BC =, ∵//NE BC ,12NE BC =, ∴四边形MNKE 为平行四边形,∴//EK MN ,∵MN ⊄平面ABE ,EK ⊂平面ABE ,∴//MN 平面ABE .(2)∵AB ⊥平面BCDE ,BC ⊂平面BCDE , ∴AB BC ⊥,∵BE BC ⊥,AB BE E =I ,AB Ì平面ABE ,BE ⊂平面ABE ∴BC ⊥平面ABE ,EK ⊂Q 平面ABE∴BC EK ⊥, ∵//EK MN , ∴BC MN ⊥.19.【详解】解:(1)由题意24AB p ==,∴2p =,24x y =;(2)1l 斜率一定存在,设1l :()0y kx m m =+≠,()33,E x y ,()44,F x y ,则0OE OF ⋅=u u u r u u u r,34340x x y y +=,24x yy kx m⎧=⎨=+⎩,消元得2440x kx m --=, ()224161616k m k m ∴∆=-+=+,344x x k +=,344x x m =-,∴()()34343434x x y y x x kx m kx m +=+++()()22343410k x x km x x m =++++=,∴240m m -=,∵0m ≠,∴4m =,∴1l :4y kx =+,恒过点()0,4.20.(1)见解析;(2)d =【详解】解:(1)∵1AH =,2PA =,PH =222PH PA AH =+,∴PA AB ⊥, ∴侧面PAB ⊥底面ABCD ,侧面PAB ⋂底面ABCD AB =,PA ⊂面PAB ∴PA ⊥平面ABCD ,BD ⊂Q 平面ABCD ,∴PA BD ⊥,∵AC BD ⊥,PA AC A =I ,AC ⊂平面PAC ,PA ⊂平面PAC ∴BD ⊥平面PAC ,BD ⊂平面PBD , ∴平面PBD ⊥平面PAC .(2)2PA AD ==Q ,60ADC ∠=︒PD PB ∴===BD =∵H PBD P HBD V V --=,∴ 1133PBD HBD d S PA S ∆∆⋅=⋅,∴11111232322d ⋅⋅=⋅⋅⋅,∴d =21.(1)22:1164x y C += (2)①2214x y += ②【详解】(1)22222244312c aa b a b a b c ⎧=⎪⎪=⎧⎪+=⇒⎨⎨=⎩⎪=+⎪⎪⎩,∴22:1164x y C +=;(2)①设()()11E x y P x y ,,,,1122x x y y =⎧⎨=⎩,22111164x y +=,∴2214x y +=,所以点E 的轨迹方程为2214x y +=.②设()()1122A x y B x y ,,,,联立()2222214844014y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, ()()22222216416114041k m m k m k ∆=--+≥⇒≤+,()2222214841601164y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 所以122814km x x k -+=+,212241614m x x k-=+, ()()()2222222641641416164k m m k k m ∆=--+=-+,12AB x =-=由题得原点到直线的距离d =,2AOBAPBO S S AB d ==⋅==V 四边形令(]220114APBO m t t S k=∈∴==≤+,,, 当且仅当1t =,2214m k =+时取最大值22.【答案】(Ⅰ)点P 在圆2C 上.(Ⅱ)2525k -<<或34k =±. 【详解】 解:(1)将22y x =代入圆1C 的方程可得2312100x x -+=. 设此方程的两实根分别为1x ,2x ,则124x x +=. 所以点P 的横坐标为2,从而可得()2,2P .因为()22392224⎛⎫-+=⎪⎝⎭,所以点P 在圆2C 上. (Ⅱ)如图,因为直线l :(4)y k x =-,400x y -=⎧⎨=⎩解得4x y =⎧⎨=⎩,即直线恒过的定点为(4,0).设1C 和2C 的交点为A ,B ,直线l 恒过的定点为(4,0)Q .由2222(3)4,39,24x y x y ⎧-+=⎪⎨⎛⎫-+=⎪ ⎪⎝⎭⎩解得53x =,25y =±. 所以525,3A ⎛⎫⎪ ⎪⎝⎭,525,3B ⎛⎫-⎪ ⎪⎝⎭. (ⅰ)当直线l 与圆2C 相切时.由22(4),39,24y k x x y =-⎧⎪⎨⎛⎫-+= ⎪⎪⎝⎭⎩可得()()2222138160k x k x k +-++=. 令()()2222386410k k k ∆=+-+=,则34k =±. 此时解得12553x =>,切点在圆弧Ω上,符合题意.(ⅱ)当直线l 与圆弧Ω相交时,由图可知,要使交点只有一个,则l 在QA 和QB 之间.因为3543QAk ==-3543QB k ==-所以k <<综上所述,k的取值范围是k <<或34k =±.。