Superfluidity and vortices A Ginzburg-Landau model
ACD LABS Fate and Purge Impurity Tracking and Carr
ACD/LABS [ADVANCED CHEMISTRY DEVELOPMENT, INC.]Tracking Fate and Purge ofImpurities and CalculatingCarryoverJoe DiMartinoJesse HarrisSanjivanjit K. BahlIntroduction to Fate and Purge and CarryoverThe purpose of process development in pharmaceutical research is to select and optimize a synthetic route to produce the active pharmaceutical ingredient (API) by the safest, cheapest, fastest, and cleanest pathway. This method should also follow both Good Laboratory Practice (GLP) and Quality by Design (QbD) principles. As with any synthetic process, impurities are generated. Regulatory authorities such as the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) require that impurities are tracked and identified above a certain threshold. Genotoxic and mutagenic impurities must be reported at any level (as stated in the ICH Q7 guideline1).Route scouting data in process development is typically stored in electronic notebooks. Associated analytical information may be accessible as PDF images stored within an experiment record. Unfortunately, analytical data is not dynamically linked with the process route's individual stage(s). It is unsearchable and inaccessible.Effective API development data management and impurity tracking are necessary to develop an optimal control strategy. To successfully track the fate and purge of impurities, many scientists gather LC/MS and LC area percent values for impurity entities using Excel® spreadsheets. While spreadsheets are adequate for handlingand managing numerical data, they are a weak tool for relating chemical structures with the analytical spectra and chromatograms used to identify and characterize them. For example, Excel cannot map chemical routes, search for compounds based on molecular structure, or process analytical data.2Here, we discuss Luminata®—software designed to help project teams map synthetic routes, track impurities, and access analytical data for process development in a systematized and searchable manner. Luminata enables effective inter- and intra-departmental collaboration and automatically calculates carryover values directly from LC/MS and LC data. In this document, we describe two workflows that are often tedious and time-consuming without Luminata—process optimization and carryover calculations.Convenient Management of Process RoutesLuminata facilitates the import of the whole process route associated with a given dataset, including each synthetic stage. The resulting process map enables clear visualization of the impurities at each route phase and a straightforward comparison of molecular composition across reaction steps.Beyond incorporating good manufacturing practice (GMP) into drug substance production, Luminata also allows users to evaluate in-process samples, filtrates, or other entities to assist with synthesis optimization. Figure 1 illustrates an example route optimization of sulfabenzamide, where in-process samples from the reaction, filtrate liquors from product isolation, and the final isolated product are documented.Figure 1. Optimized synthesis of Sulfabenzamide (green, Stage 2) mapped in Luminata. All steps in the reaction are tracked with starting materials (blue), intermediates and products (green), and stage-specific impurities indicated (orange).Sulfabenzamide is an antibacterial substance that is synthesized through a two-step reaction. Within Luminata, this two-step reaction can be documented with all the stages involved. In Stage 1, the process chemist activates the carboxylic acid with carbonyldiimidazole (CDI) to form the imidazolide.3 The chemist then checks how far the activation has progressed toward completion from Stage 1 via a quench conversion to the methyl ester (Figure 1, Stage 1b—Activation). The next substrate is added (Figure 1, Stage 1c), and reaction completion is tested (Figure 1, Stage Reaction Complete). At this point, all known or unknown impurities within the reaction can be separated. Finally, the analyst proceeds through process work-up (Figure 1, Stage 2—Filtrate) and then purification of the compound (Figure 1, Stage 2—Isolated).For all these individual stages, corresponding HPLC data can be associated with each step. Thus, the process map is a powerful tool for comparing stages, denoting the proportion of each impurity rejected at each stage. The software helps conveniently record and share information about the removal and carryover of impuritiesthroughout the process.Each set of reactions also forms an interactive record. Within a record, analysts can examine the impacts of different conditions, such as temperature or solvents, on process optimization. For example, the analyst can assess whether altering a given reaction will generate more impurities at any/each stage. Most process chemists currently use an electronic notebook (ELN) to store this chemical and analytical information, where a massive amount of valuable data is hidden in largely unsearchable PDF documents.Calculating CarryoverIn addition to storing development information in one place, Luminata can link chemical information about impurity fate with all the relevant analytical data. This enables dynamic calculation of carryover. Once the connection of impurities between each stage has been defined by the user (by creating arrows to indicate a conversion or carryover), the corresponding carryover value is automatically calculated from the associated LC/MS data, as illustrated in Figure 2.Figure 2. Creating an arrow indicating conversion of an impurity in the Luminata process map leads to automatic population of the corresponding detection limit (DL) and quantitation limit (QL) in the impurity carryover table.In addition to calculating the carryover at each stage, Luminata also automatically calculates the cumulative carryover value for the entire reaction (Figure 3).Figure 3. As the reaction pathway is defined in the Process Map in Luminata, the Carryover of Impurities Table populates dynamically where ‘DL’ and ‘QL’ represent detection limit and quantitation limit respectively.Carryover is calculated using ‘Area %’ values for two consecutive stages:Carryover=(Area%stage(x)Area%stage(x−1)) x 100%Cumulative carryover is calculated using the carryover calculated for each individual step in the route, for example:Cumulative Carryover=(Carryover stage1→2100)(Carryover stage2→3100)(Carryover stage3→4100) x 100Detection and quantitation limits (DL and QL, respectively) can be edited at each stage. The software relies on user-defined DL and QL values to calculate carryover. Values falling below these limits are denoted with a ‘<’ to indicate the imprecise nature of the calculated result—a practice widely used in industry.4In addition to calculating cumulative carryover amounts for the fates of each impurity, the software enables the comparison of different batches within a complete record set. One use for this functionality is “spike and purge” experiments, where an impurity is spiked into test batches in varying amounts (i.e., 1%, 2%, 3%, 4%, or 5%) to determine if it is purged at the same final stage. Luminata allows users to compare all these different spiked records and create one cumulative carryover table (Figure 4).Figure 4. Cumulative carryover table of two records with differing spiked impurityamounts in Luminata.Carryover calculations for other impurities within the same record can also be determined by selecting the impurity of interest (Figure 5).Figure 5. Selection of an impurity in Luminata allows the carryover value to be calculated automatically from the associated LC/MS data in the Carryover of Impurities table.ConclusionLuminata supports effective workflow optimization for process chemists. This enables informed decision-making by automatically calculating quantitative carryover values for process-related impurities using associated analytical data.References1.ICH, Q7 Good Manufacturing Practice Guide for Active PharmaceuticalIngredients (2016). Link2.Moser, A., Waked, A.E., DiMartino, J. (2021). Consolidating and ManagingData for Drug Development within a Pharmaceutical Laboratory: Comparingthe Mapping and Reporting Tools from Software Applications. OPRD, 25(10),2177-2187. Link3.Montalbetti, C.A.G.N.; Falque, V. (2005). Amide bond formation andpeptide coupling.Tetrahedron, 61, 10827- 10852. Link4.Armbruster, D.A.; Pry, T. (2008). Limit of Blank, Limit of Detection andLimit of Quantitation.Clin. Biochem. Rev., 29(Suppl 1), S49–S52. Link。
胎压监测器产品说明书
W hen I need to work withbrake fluid, I’m remindedof a scene in the movieAlien. Wounded during aseries of life-or-death skir-mishes with the inhabitants of the star-freighter Nostromo, the alien creature begins to bleed. Its blood (or whatever it is that courses through its veins) is so caustic that it eats right through the ves-sel’s structural elements.Brake fluid is a lot like that. Absolutely essential to the safe operation of the vehi-cle, it’s also capable of doing great harm. If even a small amount of it comes in contact with your skin, you’ll immediate-ly feel the moisture being drawn through your pores. Repeated or sustained con-tact is definitely not advisable. And if you have the misfortune of spilling some of it onto the painted surfaces of a vehicle, it will almost immediately damage the fin-ish, unless it’s quickly flushed away with a neutral liquid like water.Even if brake fluid is kept safely con-tained in a bottle or in the brake system, it can still do serious damage. But this damage is usually caused by neglect,rather than direct contact with the out-side world. Polyglycol fluids (like conven-tional brake fluid) are hygroscopic, whichmeans they readily absorb water vaporfrom the air (or your skin). On average,water accumulates in the brake fluid of abrake system at a rate of 1% per year.That doesn’t seem like much, butthink about it. A vehicle with 10-year-oldbrake fluid now has brake fluid that con-tains about 10% water. This gradualtransformation may go unnoticed. Thelevel in the master cylinder should nor-mally drop over time, as the brake padswear. But as the fluid accumulates water,the level may appear to stay pretty muchunchanged. A casual glance at the mas-ter cylinder level might lead a technicianto assume that all is well, as the levelwould appear within the “normal”range. But the fluid in the reservoir (andthe rest of the system) would no longerbe pure, unadulterated brake fluid.Over time, even this relatively slowwater accumulation is enough to lowerthe fluid’s boiling point, which can causebrake fade and diminished brake systemperformance. Under pressure when thebrakes are applied, the accumulated wa-ter boils and turns to steam inside thebrake system. Unlike liquid brake fluid,steam (like air) is compressible. Thebrakes fade because the steam momen-tarily lowers the pressure in the system.Accumulated water in the brake fluid alsocauses rust and corrosion, which damagethe internal parts of the brake system.Brake systems also accumulate sludgeand metal particles over time. Discbrake hoses usually enter the calipernear the top of the caliper body. Similar-ly, the bleeder valve is located at the topof the caliper bore. If sludge accumu-lates in the caliper bore, it usually sinksto the bottom. During a brake pad ser-vice, pushing the caliper pistons back in-to the caliper bores without opening thebleeder valves may dislodge some of thesludge and distribute it throughout thesystem, possibly causing further damage.Similarly, stirring up sludge that has ac-cumulated in the master cylinder reser-voir by adding fresh fluid may cause it toget into the rest of the system, includingABS valves and pumps.Most would agree that it’s best to getBRAKE SYSTEM FLUSHINGThis Mityvac vacuum pump is simplicity itself. A hand-operated pump applies vacuum at the bleeder screw, drawing the old brake fluid out of the system. A small reservoir captures the fluid and a set of adapters allow the pump to be used on just about any vehicle with bleeder screws. The pump can also be used to apply vacuum to test other vacuum-operated components.The MaxPro-HD Reverse Brake Bleeder takes a different ap-proach to the hand-operated pump. The pump pushes fresh fluid into the system under pressure in the reverse direction, starting at the bleeder screws. The pump can also be reversed to function as a vacuum pump to draw the old fluid out of the system, also via the bleeder screws.PhotocourtesyLincolnIndustrialPhotocourtesyPhoenixSystems29October 2014the old brake fluid out of the system long before it’s had a chance to do any damage.But how often should it be re-placed?Some vehicle manufacturers specify replacement of the brake fluid as a preventive maintenance item.If a re-placement schedule is specified,it should be followed.If no specific rec-ommendation is made,common sense should be an adequate guide.All will agree that water,sludge and metal parti-cles in brake fluid are not good things.It comes down to a question of how much can be considered safe and tolerable.If it’s time to replace the brake fluid, we should clarify our terminology.When a brake system is opened to the atmos-phere,usually during a component re-placement,it’s subsequently necessary to bleed the brakes to remove the air that’s been allowed to enter the system.In this case,our primary concern is removing the compressible air from the system so the brakes will function to their full po-tential.As a side benefit,bleeding the system also forces fresh brake fluid through the system,so most of the old fluid(and possibly a large percentage ofthe metal particles and sludge)will endup getting replaced.When we need to replace brake fluidthat’s old and has accumulated waterand sludge,this is referred to as flushingthe brake system.Unless the system hasbeen opened for other service work,wecan assume that there isn’t much if anyair in the system.Our primary purposefor flushing the system isn’t to removeair,but to remove the water and sludgealong with the old fluid,and replace asmuch of the fluid as possible with clean,dry,new brake fluid.There are at least five ways the jobcan be accomplished,but some arequicker and some are more effectivethan others.In all cases,fresh brake flu-id must be used.Brake fluid accumu-lates water vapor just as readily outsidethe brake system as it does inside it,soclean fluid should always be dispensedfrom a freshly opened container.Newfluid that’s been sitting on the shelf formonths in an opened container maylook clean,but rest assured that it’s al-ready accumulated an unacceptableamount of water vapor and should bediscarded in a responsible manner.The first way to flush is the gravitymethod.After filling the master cylin-der with new fluid,the bleeder screwsat each wheel are opened in sequence.Gravity forces the old fluid out of thebleeder screws and it’s gradually re-placed by fresh fluid.While this methodmay be capable of replacing much ofthe old fluid,the low-pressure,drip-drip-drip sequence doesn’t do a verygood job of dislodging any sludge orother material that may have accumu-lated in the system.On vehiclesequipped with ABS,the gravity methodalso may not be capable of flushing theold fluid out of the ABS components.The pump-and-hold method buildsupon the gravity method.One technicianpumps the brake pedal several times,then holds the pedal down to maintainpressure in the system.After placing ahose over the bleeder screw and direct-ing it into a container,a second technicianopens a bleeder screw.The pressure inthe system forces the old fluid out andthe fluid continues to flow until the brakepedal hits the floor.This sequence is re-peated several times at each wheel untilfresh fluid appears at the bleeder screw.A one-man variation on this methodemploys a one-way valve at the bleederhose(and possibly Teflon tape on thebleeder screw threads).With the bleed-er screw open,one tech can pump thepedal several times,stopping only to re-plenish the master cylinder reservoir30October2014This Mityvac pump and reservoir(ModelNo.MV6830)uses shop air to create vac-uum for brake system flushing.Thestrength of the vacuum is regulated atthe pump handle.A set of adapters sup-ply fresh brake fluid to the master cylin-der reservoir,to avoid introducing air in-to the system while flushing.Circle#19PhotocourtesyLincolnIndustrialand move to the next bleeder screw. Like the gravity method,both versions of the pump-and-hold method do not address any fluid trapped inside ABS components.The vacuum method uses a dedicated vacuum pump to draw the old fluid out of the system,via the bleeder screws. The vacuum pump may be hand-oper-ated,shop air-powered or electric.Some specialized vacuum bleeding equipment uses a pulsed application of the vacuum, presumably to shake loose any debris, sludge or metal particles and encourage it to exit via the bleeder screws.It’s im-portant to keep an eye on the master cylinder reservoir while using this method,as the vacuum pump can very quickly suck the system dry,introducing unwanted air into the system.The pressure method applies pres-sure at the master cylinder reservoir, forcing fresh brake fluid into the master cylinder,then through the brake lines to the calipers and wheel cylinders.The steady pressure that’s applied encour-ages the old fluid,sludge and other de-bris to exit when the bleeder screws are opened.Pressure and vacuum can also be combined.Low pressure applied at the master cylinder reservoir keeps it filled with fresh fluid,while vacuum ap-plied at the bleeder screws encourages the old fluid to leave.Pressure can also be applied in the reverse direction.In this method,a pressure pump is attached to individual bleeder screws.Applying pressure forces the old fluid and debris backward through the system,into the master cylinder,then into the master cylinder reservoir where it’s siphoned away.The advantage of this method is that if there’s any air trapped in the brake flu-id,it will naturally want to float upward in the brake fluid.Forcing the fluid backward(and upward)makes it that much easier to evacuate the air.On the negative side,reverse flushing means that all of the old fluid and gunk must pass through the ABS components and master cylinder on its way to the reser-voir.Exposure to this stuff,however brief,may not be a good thing.Both the vacuum and pressure meth-ods can be combined with an ABS-capable scan tool to conduct a more thorough flushing binedwith vacuum or pressure,the pulsingeffect created by cycling the variousABS pump valves open and closed withthe scan tool will allow you to removemore of the old brake fluid and sedi-ment than would otherwise be possible.This will greatly reduce the chance thatABS components will be damaged byremaining moisture or sediment that’sallowed to linger behind.Your customers probably will not beable to immediately discern the benefitsof a completed brake system flush.Theirvehicles probably won’t stop50feet soon-er or require appreciably less effort at thepedal.But if you’ve done a proper job ofexplaining the benefits of this service,they’ll at least have the confidence thatyou’ve maintained the continued safetyof their vehicles,and more than likelysaved them from the avoidable expenseof ABS or other brake system compo-nent replacement.—Karl Seyfert For shops doing higher volumes of brakesystem flushes,this Motorvac BrakeVac IImay make sense.The unit is powered bythe vehicle battery and offers both pres-sure and vacuum assist,with an adjust-able pressure regulator to control operat-ing pressure.A1-gallon tank holds freshbrake fluid and a removable waste fluidtank allows for multiple services.31October2014Circle#20This article can be found online at.PhotocourtesyMotorvac。
The Physics and Applications of Superfluids
The Physics and Applications ofSuperfluids超流体的物理学和应用超流体是一种非常特殊的物质,具有极为奇特的物理性质。
超流体是指液态物质在极低的温度下几乎没有粘性,可以无阻力地流动,这种性质被称为超流性。
这种性质被发现于液体氦(He)的同位素He-4和He-3中。
在正常的温度和压力下,氦气是一种常见的气体,但是在极低的温度下,氦气可以被液化,形成液态氦。
第一次发现超流性是在1938年,由欧内斯特·拉塞福爵士(英国)和泷口一郎(日本)独立发现。
拉塞福和泷口的实验是基于在液体氦中注入磁性样品,并在几乎零度的低温环境下放置样品。
当样品达到超流状态时,它们将移动到容器的下部,形成所谓的“第二声”(He II)区域,这是一种超流态,其中氦原子没有任何粘性。
拉塞福和泷口的发现具有重要意义,已经发现了许多超流体的应用。
超流性不仅在基础研究中具有极高的价值,在应用领域中也具有广泛的应用。
物理方面超流体涉及许多基础物理学领域的理论和实验研究。
超流体的超流性可以追溯到原子尺度的行为,即通常称为微观量子力学的物理学领域。
超流状态是一种宏观量子现象,其中相干的氦原子组成了波函数。
波函数是描述量子机械系统状态的一种数学函数。
在概率空间中,波函数的平方值给出了找到氦原子的概率。
在超流体中,所涉及的波函数是包含大量量子机械物理学现象的极其复杂的波函数,这种波函数的详细信息仍处于进行活跃研究的过程之中。
在研究超流体的物理方面,微重力实验(实验在空间站中进行,利用地球的吸引力几乎为零的状态来解决重力对实验的影响)的应用程度也得到了前所未有的提高。
在微重力条件下,可以设计和测试对超流体的更详细的物理学理论和模型。
应用方面超流体已经被证明有许多的应用,主要在四个方面:冷却超流气体和液体可用于制冷。
尤其是液态氦和超流氦,被广泛用作低温测量和低温冷却技术的物质。
在某些仪器的工作中,需要采用极低的温度来避免任何干扰信号。
流体力学常用名词中英文对照..
流体力学常用名词流体动力学fluid dynamics连续介质力学mechanics of continuous介质medium流体质点fluid particle无粘性流体nonviscous fluid,inviscid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥—萨伐尔定律Biot—Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔—茹可夫斯基条件Kutta—Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动]flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate,flow discharge涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation偶极子doublet, dipole驻点stagnation point总压[力]total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single—component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi—steady flow非定常流unsteady flow,non—steady flow 暂态流transient flow周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow浮体floating body定倾中心metacenter阻力drag,resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance,inlet出口exit,outlet扰动disturbance,perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass收缩contraction镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity运动相似kinematic similarity动力相似[性]dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low—speed aerodynamics 高速空气动力学high—speed aerodynamics 气动热力学aerothermodynamics亚声速流[动]subsonic flow跨声速流[动]transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动]non—equilibrium flow 细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number 前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state 喷管Nozzle普朗特—迈耶流Prandtl—Meyer flow 瑞利流Rayleigh flow可压缩流[动]compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金—于戈尼奥条件Rankine—Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强]over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed,wave velocity波高wave height波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise 水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross—section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current,gravity flow堰流weir flow掺气流aerated flow含沙流sediment—laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation,deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔—索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动]viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure猝发过程bursting process表观粘度apparent viscosity运动粘性kinematic viscosity动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation湍流分离turbulent separation分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction,frictional drag壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维—斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度displacement thickness动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si]metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method 说明氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem,Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot— static tube激光多普勒测速计laser Doppler anemometer,laser Doppler velocimeter热线流速计hot-wire anemometer热膜流速计hot— film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection,free convec—tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equationKDU方程KDV equation修正微分方程modified differential equation拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs— Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯。
一种重质二氧化锰的制备方法
一种重质二氧化锰的制备方法甘永兰,李玉婷,莫燕娇,张帆,杨雄强(广西锰华新能源科技发展有限公司,广西钦州535000)摘要:以硫酸锰和碳酸氢铵为原材料,通过控制锰浓度、加料速度和反应温度,制得高密度碳酸锰。
高密度碳酸锰经焙烧后得到粗品二氧化锰,粗品二氧化锰通过控制高锰酸钾的浓度、反应时间、固液比得到重质二氧化锰。
结果表明:在锰浓度为80 g/L,加料速度为66mL/min,反应温度为40丈的最优条件下,制得的高密度碳酸锰振实密度为2. 15 kg/L。
粗品二氧化锰在高锰酸钾浓度为60 g/L,反应时间为4 h,固液比为1 : 4的最优工艺条件下,制得的重质二氧化锰振实密度为2. 32 k//L。
关键词:碳酸锰;振实密度;高锰酸钾;重质二氧化锰中图分类号:TQ110.6,TQ137. 12 文献标识码:A 文章编号:1003 -3467(2021 )01 -0017 -04A Preparation Method of Heavy Manganese DioxideG A N Yonglan ,LI Yuting ,M O Yanjiao ,Z H A N G F a n,Y A N G Xiongqiang(Guangxi Menghua New Energy Technology Development Co.Ltd,Qinzhou5350 Abstract:High density manganese carbonate i s prepared f rom manganese sulfate a bonate by controlling manganese concentration,feeding rate and reaction temperature.The coarse manganese dioxide i s obtained by calcining high density manganese carbonate.The heavy manganese dioxide i s obtained by controlling the concentration of potassium permanganate,reaction time a ratio.The results show^that under the optimal conditions of manganese concentration of80 gL,feedingrate of66 m L m i n and reaction temperature of40 °C,the tap density of high- density manganese carbonate i s2. 15 k g L.Under t he optimal conditions of potassium permanganate concentration of60 g/L,reaction time of4 h and solid- liquid r a t i o of1 • 4,the tap density of heavy manganese dioxide i s2. 32 kg/L.Key words:manganese carbonate ;tap density ;potassium permanganate ;heavy manganese dioxide二氧化锰是一种性能优良、绿色环保的无机化 工材料,广泛应用于各个领域。
超分子溶剂萃取
第42 卷第 5 期2023 年5 月Vol.42 No.5559~567分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)超分子溶剂萃取/超高效液相色谱-串联质谱法测定血浆中他克莫司含量谢以清1,2,吕悦广2,孟宪双2,雷海民1*,马强2*(1.北京中医药大学中药学院,北京102488;2.中国检验检疫科学研究院,北京100176)摘要:该文建立了血浆中免疫抑制剂他克莫司(TAC)的超分子溶剂(SUPRAS)萃取/超高效液相色谱-串联质谱分析方法。
通过单因素实验结合响应面设计对超分子溶剂组成、用量及涡旋萃取时间等关键因素进行优化后,血浆样本以正戊醇、四氢呋喃和水形成的超分子溶剂进行高效萃取。
萃取液经Waters ACQUITY UPLC BEH C18(50 mm × 2.1 mm,1.7 μm)色谱柱分离后,在电喷雾质谱正离子模式下,以多反应监测(MRM)模式对他克莫司进行测定,内标法定量。
结果表明,他克莫司在0.5 ~ 30 ng/mL质量浓度范围内的线性关系良好,相关系数(r)为0.998 6;方法检出限和定量下限分别为0.1、0.5 ng/mL;在低、中、高3个加标水平下,平均回收率(n = 3)为91.9% ~ 99.9%,相对标准偏差(RSD)为1.7% ~ 5.7%。
所建立的方法快速、灵敏、稳定,适用于血浆中他克莫司的准确测定。
关键词:他克莫司;免疫抑制剂;超分子溶剂;血浆;超高效液相色谱-串联质谱中图分类号:O657.7;R917文献标识码:A 文章编号:1004-4957(2023)05-0559-09Determination of Tacrolimus in Plasma by Supramolecular Solvent Extraction/Ultra-high Performance Liquid Chromatography-Tandem Mass SpectrometryXIE Yi-qing1,2,LÜ Yue-guang2,MENG Xian-shuang2,LEI Hai-min1*,MA Qiang2*(1.School of Chinese Materia Medica,Beijing University of Chinese Medicine,Beijing 102488,China;2.Chinese Academy of Inspection and Quarantine,Beijing 100176,China)Abstract:An analytical method for the determination of tacrolimus(TAC) in blood plasma was estab⁃lished by supramolecular solvent(SUPRAS)extraction combined with ultra-high performance liquid chromatography-tandem mass spectrometry.After optimizing the key factors such as the composition and amount of SUPRAS,and vortex extraction time through single factor experiment and response sur⁃face design,blood plasma samples were extracted efficiently with SUPRAS formed by pentanol,tetra⁃hydrofuran and water.The extract was separated on a Waters ACQUITY UPLC BEH C18column (50 mm × 2.1 mm,1.7 μm),analyzed by electrospray ionization mass spectrometry in positive ion mode under multiple reaction monitoring(MRM) mode,and quantified by internal standard method.Experimental results demonstrated that there was a good linear relationship for TAC in the concentration range of 0.5-30 ng/mL,with a correlation coefficient(r) of 0.998 6.The limit of detection(LOD)and quantitation(LOQ) were 0.1 ng/mL and 0.5 ng/mL,respectively.The average recoveries(n = 3)at low,medium and high spiked concentration levels ranged from 91.9% to 99.9%,with relative stan⁃dard deviations(RSDs) of 1.7%-5.7%.The proposed method is rapid,sensitive and stable,and it was suitable for the accurate determination of TAC in blood plasma.Key words:tacrolimus;immunosuppresive agent;supramolecular solvent;plasma;ultra-high performance liquid chromatography-tandem mass spectrometry免疫抑制剂是用于抑制机体免疫力的药物,多用于抑制肝肾移植术后的免疫反应,以及治疗变态反应性和自身免疫性疾病,如类风湿关节炎、红斑狼疮等[1-3]。
选修2 词汇默写
选修BOOK 2 Unit 11.cholera n.2. a. 极为恶劣的;十分严重的;严厉的3.diarrhea n.4.dehydration n.5. a. 懊恼的;沮丧的;失意的6.最终地;彻底地7. a. 相互矛盾的;对立的;不一致的8.n. 感染;传染9.vt. 使感染;传染10.germ n.11.v. 认购(股份);定期订购;定期交纳(会费)12.同意;赞同13.n. 证据;证明;检验14. a. 数量多的;多种多样的15.n. 泵;抽水机;打气筒16.水泵17.n. 家人;家庭;同住一所(套)房子的人18.vt.&vi.怀疑;疑有;不信任n.犯罪嫌疑人;可疑对象19.v. 把…归咎于;责怪;指责n.责备;指责20.n. 把手;拉手;柄vt.处理;搬动;操纵(车辆、动物、工具等)21.n. 介入;出面;干涉22.n. 联系;纽带vt.把……连接起来;相关联23. a. 未煮的;生的;未经处理的;原始的24. a. 干净的;纯的;纯粹的25. a. 大量的;价值巨大的;重大的26.n. 减少;降低;减少量vt.&vi.(使大小、数量等)减少;减小;降低27.幸亏;由于28.n. [pl.]统计数字;统计资料;统计学29.vt. 使改观;使改变形态vi改变;转变30.epidemiology n.31.n. 显微镜32.n. 思想;思维;见解33.n. 蛋白质34.n. 细胞;小房间;单间牢房35.n. 病毒36.n. 发现;调查结果;(法律)判決37. a. 最初的;开始的;第一的38.vaccine n.39.n. 框架;结构40.理论框架42.vt. (cast cast)投射;投以(视线笑容等);投掷43.n. 阴影;影子;背光处44.n. 彩虹45.vt. 倒出;倾泻;斟(饮料)46.n. 混凝士a.混凝土制的;确实的;具体的47.plasma n.48.aerospace n49.patriotic a.50.mechanical a.51.n. 机械师;机械修理工52.(战争、打斗等不愉快的事情)突然开始;爆发53.aviation n .54.v. 保卫;防守;辩解55.jet n.56.n. 助理;助手57.主管;掌管58.n. 导弹59.n. 领导;领导地位;领导才能60.vt. 追溯;追踪;查出n.痕迹;遗迹;踪迹61. a. 优秀的;杰出的;明显的62. a. 有天赋的;有天才的;天资聪慧的63.患(病);染上(小病)64. a. 抽象的;理性的n.(文献等的)摘要65. a. 稳定的;平稳的;稳步的66.n. 概念;观念67.n. 天文学家68.astronomy n.69.n. 望远镜70.prep. 除……之外(还) ad.而且;此外71. a. 聪颖的;绝妙的;明亮的72.furthermore ad.73.最重要的是;尤其是74.n. 弱点;过错75.n. 改变;转换;轮班vi.&vt.转移;挪动;转向76. a. 生动的;鲜明的;丰富的77.Queen Victoria 维多利亚女王(英国女王)78.Cambridge 剑桥(英国城市)79.non-Newtonian fluid 非牛顿流体80.the Jet Propulsion Laboratory喷气推进实验室(美国)81.Stephen Hawking 史蒂芬・霍金(英国物理学家)82.the big bang theory 大爆炸宇宙论83.Fred Hoyle 弗雷德・霍伊尔(英国天文学1. a. 复杂的;难懂的;(语法)复合的2.vt.&vi.记起;回想起3.n. (通过考试或学习课程取得的)资格;学历4.vt.&vi. (使)具备资格;(使)合格5.n. 追求的目标;夙愿;野心;抱负6. a. 有野心的;有雄心的7.n. 适应;改编本8.n. 安慰;令人感到安慰的人或事物;舒服;安逸vt.安慰;抚慰9.n. (英国大学中的)助教;导师;家庭教师10.vt. 引用;引述11.n. 参加;参与12.vi. 参加;参与13.参加;参与14.n. 报告;陈述;出示;拿出15.大声点说;明确表态16.舒服自在;不拘束17.vi. 参加;参与(活动)vt.吸引(注意力、兴趣18.(使)从事;参与19.v. 包含;需要;涉及;影响;(使)参加20.参与;卷入;与…有关联21.N 送信人;信使22.n. (报纸、杂志)一份;(广播、电视节目)期、一辑:版次23.文化冲击24.n. (有别于周围的)地区;地带;区域25.舒适区;舒适范围26. a. 无法抗拒的;巨大的;压倒性的27.n. 思乡病;乡愁28. a. 积极的;主动的29.n. 动力;积极性;动30.vt. 成为…的动机;激发;激励31.n. 顾问32. a. 有道理的;合情理的33.n. 期望;预期;期待34.n. 申请人35.n. 公司;商行;事务所a.结实的;牢固的;坚定的36.n. 接触;体验;暴露;揭露37.vt. 使接触;使体验;显露;使暴露于(险境) 38.n. 洞察力;眼光39.n. 离开;启程;出发40.n. 环境;背景;(小说等的〕情节背景41.vt .理解;领会;抓紧42. a. 巨大的;突然的;急剧的;喜剧(般)的43.n. 费用;花费;开销44.(使)花一大笔钱45.tremendous a.46.vt. 表现vi.&vt.表现得体;有礼貌47.n.[p.]环境;周围的事物48. a. 周围的;附近的49. a. 成熟的50. a. 沮丧的:;意志消沉的51.vt. 使沮丧;使忧愁52.vi&n.迅速发展;繁荣53.vi. &vt.加强;增强;巩固54.vt. 否认;否定;拒绝55. a. 乐观的56.vt. 获得;赢得;取得;增加n.好处;增加57.perspective n.58.n. 能力;胜任;本领59. a. 有能力的;称职的60.n. 使者;使节;代表61.vi 合作;协作;配合62.n. 角;角度;立场63.n. 前景;可能性;观点64.n. 腰带;地带65.n. 倡议;新方案66.Ad 真诚地;诚实地67.n. 预算68.支持;站在……的一边69. a. 合乎逻辑的;合情合理的70.据我所知71.就我而言;依我看来72.总的来说;总之73.一般来说74.n. 结果;效果75.Rome 罗马(意大利首都);(史)罗马城;罗马帝国76.Aisha 艾莎77.the Belt and Road Initiative “一带一路”倡议1.n. 菜肴;风味;烹饪2. a. 先前的;优先的3.在…之前的4.Vi 由…组成5.由…组成(或构成)6.n. 甜椒;灯笼椒;胡椒粉7.n. 烹饪法;食谱8. a. 大胆自信的;敢于冒险的9.n. 厨师;主厨10.n. 胡椒粒11.n. 醋12.vt. 填满;把…塞进n.东西;物品13.n. (切下的食物)薄片vt.把…切成薄片14.切下15.n. 洋葱;葱头16.n. 羊羔肉;羔羊17.烤羊肉串18. a. 精美的;讲究的;文雅的19.n. 点心(中国食品)20. a. 特别的;罕见的21.n. 最小值;最少量a.最低(限度)的;最小的22.vt. 吃;喝;饮;消耗23.n. 脾气;火气24.n. 素食者25.n. 无用的东西26.垃圾食品27.n. 蒜28.n. 熏猪肉;咸肉29.n. 火腿30.n. 香肠;腊肠31.n. 甘蓝;卷心菜;洋白菜32.(=tofu)豆腐33.n. 品牌34.olive n.35.fig n. 36.ingredient n.37.n. (饭后)甜点38.dough n.39. a. 稳定的;稳重的40.Haggis n.41.n. 食堂;餐厅42.n. 自助餐厅;自助食堂43.bun n.44.chilli (pl.-es) n.45.n. 猪肉46.红烧肉47.pearl n.48.ad.有点;稍微49.n. 夫人;女士50.n. 卡路里(热量单位)51.n. 协会;关联52.ad. 不顾;不加理会53.不管;不顾54.n. 类别;种类55.vitamin n.56.n. 纤维;纤维制品57.n. 数量;数额58.dairy a.59.moderation n60. a. 完美的;理想的;想象的理想;完美的人(或事物)61. a. 根本的;基础的;基本的n.基本规律;根本法则62.vi.&vt.咀嚼;嚼碎n.咀嚼63. a. 一致的;连续的64. a. 些许的;谦虚的;朴素的65.n. 诀窍;计谋;把戏66.ad. 总体上;大致上a.全面的;综合的67.Jean Anthelme Brillat-savarin 让・安泰尔姆・布里亚一萨瓦兰(法国美食家68.Kaza a. 哈萨克族的n.哈萨克族人69.St Andrews 圣安德鲁斯(英国城市选修BOOK 2 Unit 41.n. 航空公司2.N 海或湖的)湾3.craft n.4.n. 古物;古董a.古老的;古董的5. a. 令人愉快的;友好的6.vi. ( arose,arisen)起身;出现;由…起7. A 巨大的;非常严重的8.ad. 字面上;真正地9.n. 呼吸的空气10.令人惊叹11. a. 准备前往(某地);一定会12.n. 风景;景色13. a. 令人惊叹的;可怕的;很好的14.spectacular a.15.n. 顶峰;山峰;尖形16.n. 最好或最精彩的部分vt.突出;强调;使醒目17.n. 山羊18.n. 灰熊19.vi.&vt.钻(孔);打(眼)n.钻(头);训练;演习20. a. 极冷的;冰冻的21.极冷的;冻僵的22.vi.&vt.( froze,frozen)结冰;(使)冻住23.mall n.24.prairie n .25.vt. 预料;预见;期望26.n. 束;串;捆27.一束;一串;一群;大量28.vi. 打雷;轰隆隆地响;轰隆隆地快速移动n.雷声;轰隆声29.n. 霜;严寒天气;霜冻vt.使蒙上霜.结霜30.n. 窗帘31.n. 国界;边界(地区)32.n. 持续时间;期33.n. (海)港;港口34.enroll vi.&vt.35.quarry n.36.n. 习语;成语37. a. 相反的;相对立的n.相反的事实(或事情)38.相反的;相对立的39.ad. (结東交谈或转换话题时)不过;反正40.prep .在…旁边;与…一起ad在旁边41.vi. 行进;继续做42.进而做(参加)43.n. 岸;滨44.vt. 使十分惊讶;使吃惊45.misty a.46.n. 薄雾;水汽47.n. 钢;钢铁工业48.n. 黄昏;傍晚49.n. 广告;启事50.n. 口音51.n. 摄影师;拍照者52.vt. 欠(账、债、情等)53.欠(某人情);把…归功于某人54.n. 烤面包片;吐司;干杯vt.为…干杯vi烤(尤指面包)55.cobblestone a.56.coherent a.57.Halifax 哈利法克斯(加拿大城市)58.Vancouver 温哥华(加拿大城市) ake Louise/luiz/路易斯湖59.Jasper 贾斯珀(加拿大城市60.Toronto 多伦多(加拿大城市)61.Edmonton 埃德蒙顿(加拿大城市62.Winnipeg 温尼伯(加拿大城市)63.Ontario 安大略省(加拿大64.Butchar Gardens布查特花园ke Huron 休伦湖66.Quebec City魍北克市(加拿大城市)67.Montreal 蒙特利尔(加拿大城市)68.Niagara Falls尼亚加拉瀑布69.St Lawrence River圣劳伦斯河70.Jean- Philippe 让-菲利普71.Nova Scotia 新斯科舍省(加拿大)选修BOOK 2 Unit 51.n. 技能;技术;技艺2.leaflet n.3.n. (人或动植物的)器官4.toxin n .5.n 光线;光束;(热、电等)射线6.触觉7.n. 辐射;放射线8.n. 酸a.酸的;酸性的9.n. 毫米;千分之一米10. a. 较小的;次要的;轻微的11.n. 层;表层;层次12. a. 电的;用电的;电动的13.触电;电击14.n. 受害者;患者15. a. (身体部位)肿起的;肿胀的16.vi.( swelled,swollen)膨胀;肿胀17.blister n.18.underneath prep.&ad.19.nerve n.20.n. 织物;布料;(社会、机构等的)结构21. a. 松的;未系紧的;宽松的22. A 紧急的;急迫的;急切的23.vi.&vt.(使)宽慰;减轻;缓解n.容易;舒适;自在24.paramedic n.25.vt.&vi.吞下;咽下26.vt. 包、裹;(用手臂等)围住27.bathtub n.28.n. 洗澡;浴缸;浴盆vt.给…洗澡29.vi. 滑倒;滑落;走n.滑倒;小错误;纸条30.n. 蚊子31. a. 年纪较大的;上了年纪的(婉辞)32.n. 地毯33.n. 电话接线员;操作员34.n. 救护车35.vi&vt推迟;延期(做某事).眈误;耽搁n.延误;耽搁(的时间);推迟36.n. 针;缝衣针;注射针;指针37.静脉注射针38.生命体征39.n. 病房40.vi.&vt.(使)淹死;溺死;浸泡;淹没41.vi . 扭伤(关节) n.扭伤42.n. 踝;踝关节43.n. 流血;失血44.vi.(bled,bled)流血;失血45.vi.&vt.(使)惊慌n.惊恐;恐慌46.vi&vt.打断;打扰.使暂停;使中断47.vi.&vt.(因愤怒或恐惧)高声喊;大声叫n.尖叫;尖锐刺耳的声音48. a. 同类的;同事的;同伴的;同情况的n.男人;家伙;同事;同辈;同类49.n. (尤指餐馆的)就餐者50.vi.&vt.(使)室息;(使)哽咽51.n. 牛排;肉排52.n. 咽喉;喉咙53. a. 绝望的;孤注一掷的;非常需要的54.vt. (用手掌)打拍n.(用手掌)打、拍;拍击声55.帮助某人站起身来56. a. 切实可行的;实际的;实践的57.obstruction n58.n. 拳;拳头59.vt. 抓住;攫取n.抓取;抢夺60.ad. 紧紧地;牢固地;紧密地61. a. 牢固的;紧身的;绷紧的;严密的adv.紧紧地;牢固地62.n. 运动;移动63.面朝上(朝下)64.vt. 证明……有道理;为……辩护;是…的正当理由65.n. 幸福;福祉;安康;福利66.vi. (突然)倒塌;(因病等)昏倒67.manual n.68.迟起;睡过头;睡懒觉69.健康状况不好70. a. 有雾的71.n. 郊区;城外72.n. 会员身份;全体会员;会员人数73.Taylor 泰勒74.CPR abbr. cardiopulmonary resuscitation心肺复苏(包括人工呼吸和体外心脏按压)75.mouth-to-mouth rescue breathing 口对口人工呼吸76.Heimlich manoeuvre 海姆利克式操作法答案2019新人教高中英语选修二各单元单词表Unit 11.cholera n. 霍乱2.severe a. 极为恶劣的;十分严重的;严厉的3.diarrhea n. 腹泻4.dehydration n. 脱水5.frustrated a. 懊恼的;沮丧的;失意的6.once and for all 最终地;彻底地7.contradictory a. 相互矛盾的;对立的;不一致的8.infection n. 感染;传染9.infect vt. 使感染;传染10.germ n. 微生物;细菌;病菌11.subscribe v. 认购(股份);定期订购;定期交纳(会费)12.subscribe to 同意;赞同13.proof n. 证据;证明;检验14.multiple a. 数量多的;多种多样的15.pump n. 泵;抽水机;打气筒16.water pump 水泵17.household 家人;家庭;同住一所(套)房子的人18.suspect vt.&vi.怀疑;疑有;不信任n.犯罪嫌疑人;可疑对象19.blame v. 把…归咎于;责怪;指责n.责备;指责20.handle n. 把手;拉手;柄vt.处理;搬动;操纵(车辆、动物、工具等)21.intervention n. 介入;出面;干涉22.link n. 联系;纽带vt.把……连接起来;相关联23.raw a 未煮的;生的;未经处理的;原始的24.pure a 干净的;纯的;纯粹的25.substantial a. 大量的;价值巨大的;重大的26.decrease n. 减少;降低;减少量vt.&vi.(使大小、数量等)减少;减小;降低27.thanks to 幸亏;由于28.statistic n.[pl.]统计数字;统计资料;统计学29.transform vt. 使改观;使改变形态vi改变;转变30.epidemiology n. 流行病学31.microscope n. 显微镜32.thinking n. 思想;思维;见解33.protein n. 蛋白质34.cell n. 细胞;小房间;单间牢房35.virus n. 病毒36.finding n. 发现;调查结果;(法律)判決37.initial a. 最初的;开始的;第一的38.vaccine n. 疫苗39.framework n. 框架;结构40.theoretical framework理论框架41.solid a. 可靠的;固体的;坚实的n.固体42.cast vt.( cast cast)投射;投以(视线、笑容等);投掷43.shadow n. 阴影;影子;背光处44.rainbow n. 彩虹45.pour vt. 倒出;倾泻;斟(饮料)46.concrete n. 混凝士a.混凝土制的;确实的;具体的47.plasma n. 血浆48.aerospace n 航空航天工业49.patriotic a. 爱国的50.mechanical a. 机械的;发动机的;机器的51.mechanic n. 机械师;机械修理工52.break out (战争、打斗等不愉快的事情)突然开始;爆发53.aviation n. 航空制造业;航空;飞行54.defend vt. 保卫;防守;辩解55.jet n. 喷气式飞机56.assistant n. 助理;助手57.in charge of 主管;掌管58.missile n. 导弹59.leadership n. 领导;领导地位;领导才能60.trace vt. 追溯;追踪;查出n.痕迹;遗迹;踪迹61.outstanding a. 优秀的;杰出的;明显的62.gifted a. 有天赋的;有天才的;天资聪慧的e down 患(病);染上(小病)64.abstract a. 抽象的;理性的n.(文献等的)摘要65.steady a. 稳定的;平稳的;稳步的66.concept n. 概念;观念67.astronomer n. 天文学家68.astronomy n. 天文学69.telescope n. 望远镜70.besides prep.除……之外(还) ad.而且;此外71.brilliant a. 聪颖的;绝妙的;明亮的72.furthermore ad. 此外;再者73.above all 最重要的是;尤其是74.fault n. 弱点;过错75.shift n. 改变;转换;轮班vi.&vt.转移;挪动;转向76.vivid a. 生动的;鲜明的;丰富的77.Queen Victoria 维多利亚女王(英国女王)78.Cambridge 剑桥(英国城市)79.non-Newtonian fluid 非牛顿流体80.the Jet Propulsion Laboratory 喷气推进实验室(美国)81.Stephen Hawking 史蒂芬・霍金(英国物理学家)82.the big bang theory 大爆炸宇宙论83.Fred Hoyle 弗雷德・霍伊尔(英国天文学家Unit 2plex a. 复杂的;难懂的;(语法)复合的2.recall vt.&vi.记起;回想起3.qualification n. (通过考试或学习课程取得的)资格;学历4.qualify vt.&vi. (使)具备资格;(使)合格5.ambition n. 追求的目标;夙愿;野心;抱负6.ambitious a. 有野心的;有雄心的7.adaptation n. 适应;改编本fort n. 安慰;令人感到安慰的人或事物;舒服;安逸vt.安慰;抚慰9.tutor n. (英国大学中的)助教;导师;家庭教师10.cite vt. 引用;引述11.participation n. 参加;参与12.participate vi. 参加;参与13.participate in 参加;参与14.presentation n. 报告;陈述;出示;拿出15.speak up 大声点说;明确表态16.feel at home 舒服自在;不拘束17.engage vi. 参加;参与(活动)vt.吸引(注意力、兴趣18.engage in (使)从事;参与19.involve v. 包含;需要;涉及;影响;(使)参加20.get involved in 参与;卷入;与…有关联21.messenger n. 送信人;信使22.edition n. (报纸、杂志)一份;(广播、电视节目)期、一辑:版次23.culture shock 文化冲击24.zone n. (有别于周围的)地区;地带;区域fort zone 舒适区;舒适范围26.overwhelming a. 无法抗拒的;巨大的;压倒性的27.homesickness n. 思乡病;乡愁28.motivated a. 积极的;主动的29.motivation n. 动力;积极性;动30.motivate vt. 成为…的动机;激发;激励31.advisor n. 顾问32.reasonable a. 有道理的;合情理的33.expectation n. 期望;预期;期待34.applicant n. 申请人35.firm n. 公司;商行;事务所a.结实的;牢固的;坚定的36.exposure n. 接触;体验;暴露;揭露37.expose vt. 使接触;使体验;显露;使暴露于(险境)38.insight n. 洞察力;眼光39.departure n. 离开;启程;出发40.setting n. 环境;背景;(小说等的〕情节背景41.grasp vt. 理解;领会;抓紧42.dramatic a. 巨大的;突然的;急剧的;喜剧(般)的43.expense n. 费用;花费;开销44.cost an arm and a leg (使)花一大笔钱45.tremendous a. 巨大的;极大的46.behave vt. 表现vi.&vt.表现得体;有礼貌47.surroundings n.[pl.]环境;周围的事物48.surrounding a. 周围的;附近的49.mature a. 成熟的50.depressed a 沮丧的:;意志消沉的51.depress vt. 使沮丧;使忧愁52.boom vi&n.迅速发展;繁荣53.strengthen vi.&vt.加强;增强;巩固54.deny vt. 否认;否定;拒绝55.optimistic a. 乐观的56.gain vt. 获得;赢得;取得;增加n.好处;增加57.perspective n. (思考问题的)角度;观点petence n. 能力;胜任;本领petent a. 有能力的;称职的60.envoy n. 使者;使节;代表61.cooperate vi 合作;协作;配合62.angle n. 角;角度;立场63.outlook n. 前景;可能性;观点64.belt n. 腰带;地带65.initiative n. 倡议;新方案66.sincerely ad 真诚地;诚实地67.budget n. 预算68.side with 支持;站在……的一边69.logical a. 合乎逻辑的;合情合理的70.as far as know 据我所知71.as far as I am concerned就我而言;依我看来72.in summary 总的来说;总之73.generally speaking 一般来说74.outcome n. 结果;效果75.Rome 罗马(意大利首都);(史)罗马城;罗马帝国76.Aisha 艾莎77.the Belt and Road Initiative“一带一路”倡议Unit 31.cuisine n. 菜肴;风味;烹饪2.prior a. 先前的;优先的3.prior to 在…之前的4.consist vi 由…组成5.consist of 由…组成(或构成)6.pepper n. 甜椒;灯笼椒;胡椒粉7.recipe n. 烹饪法;食谱8.bold a. 大胆自信的;敢于冒险的9.chef n. 厨师;主厨10.peppercorn n. 胡椒粒11.vinegar n. 醋12.stuff vt. 填满;把…塞进n.东西;物品13.slice n .(切下的食物)薄片vt.把…切成薄片14.slice...off 切下15.onion n. 洋葱;葱头mb n. 羊羔肉;羔羊mb kebab 烤羊肉串18.elegant a. 精美的;讲究的;文雅的19.dim sum n. 点心(中国食品)20.exceptional a. 特别的;罕见的21.minimum n. 最小值;最少量a.最低(限度)的;最小的22.consume vt. 吃;喝;饮;消耗23.temper n. 脾气;火气24.vegetarian n. 素食者25.junk n. 无用的东西26.junk food (=junk) 垃圾食品27.garlic n. 蒜28.bacon n. 熏猪肉;咸肉29.ham n. 火腿30.sausage n. 香肠;腊肠31.cabbage n. 甘蓝;卷心菜;洋白菜32.bean curd (=tofu) 豆腐33.brand n. 品牌34.olive n. 油橄榄;橄榄树35.fig n. 无花果36.ingredient n. (尤指烹饪)材料;成分37.dessert n. (饭后)甜点38.dough n. 生面团39.stable a. 稳定的;稳重的40.haggis n. (苏格兰)羊杂碎肚41.canteen n. 食堂;餐厅42.cafeteria n. 自助餐厅;自助食堂43.bun n. 圆面包;小圆甜饼44.chilli (pl.-es) n. 辣椒45.pork n. 猪肉46.red braised pork 红烧肉47.pearl n. 珍珠48.somewhat ad. 有点;稍微49.madam n. 夫人;女士50.calorie n. 卡路里(热量单位)51.association n. 协会;关联52.regardless ad. 不顾;不加理会53.regardless of 不管;不顾54.category n. 类别;种类55.vitamin n. 维生素56.fibre n. 纤维;纤维制品57.quantity n. 数量;数额58.dairy a. 奶制的;乳品(业)的n.乳制品;乳品店;牛奶厂59.moderation n 适度;合理60.ideal a. 完美的;理想的;想象的理想;完美的人(或事物)61.fundamental a. 根本的;基础的;基本的n.基本规律;根本法则62.chew vi.&vt.咀嚼;嚼碎n.咀嚼63.consistent a. 一致的;连续的64.modest a. 些许的;谦虚的;朴素的65.trick n. 诀窍;计谋;把戏66.overall ad. 总体上;大致上a.全面的;综合的67.Jean Anthelme Brillat-savarin 让・安泰尔姆・布里亚一萨瓦兰(法国美食家68.Kaza a. 哈萨克族的n.哈萨克族人84.St Andrews 圣安德鲁斯(英国城市Unit 41.airline n. 航空公司2.bay n. 海或湖的)湾3.craft n. 手艺;工艺;技艺4.antique n. 古物;古董a.古老的;古董的5.pleasant a. 令人愉快的;友好的6.arise vi.( arose,arisen)起身;出现;由…起7.massive a 巨大的;非常严重的8.literally ad. 字面上;真正地9.breath n. 呼吸的空气10.take sb’s breath away 令人惊叹11.bound a. 准备前往(某地);一定会12.scenery n 风景;景色13.awesome a. 令人惊叹的;可怕的;很好的14.spectacular a. 壮观的;壮丽的;惊人的n.壮丽的场面;精彩的表演15.peak n. 顶峰;山峰;尖形16.highlight n. 最好或最精彩的部分vt.突出;强调;使醒目17.goat n. 山羊18.grizzly bear n. 灰熊19.drill vi.&vt.钻(孔);打(眼)n.钻(头);训练;演习20.freezing a. 极冷的;冰冻的21.freezing cold 极冷的;冻僵的22.freeze vi.&vt.( froze,frozen)结冰;(使)冻住23.mall n. also shopping mall购物商场;购物广场24.prairie n. 北美草原25.anticipate vt. 预料;预见;期望26.bunch n. 束;串;捆27. a bunch of 一束;一串;一群;大量28.thunder vi. 打雷;轰隆隆地响;轰隆隆地快速移动n.雷声;轰隆声29.frost n. 霜;严寒天气;霜冻vt.使蒙上霜.结霜30.curtain n. 窗帘31.border n. 国界;边界(地区)32.duration n. 持续时间;期33.harbor n. (海)港;港口34.enroll vi.&vt.(使)加入;注册;登记35.quarry n. 采石场36.idiom n. 习语;成语37.contrary a. 相反的;相对立的n.相反的事实(或事情)38.contrary to 相反的;相对立的39.anyhow ad. (结東交谈或转换话题时)不过;反正40.alongside prep 在…旁边;与…一起ad在旁边41.proceed vi. 行进;继续做42.proceed to sth 进而做(参加)43.shore n. 岸;滨44.astonish vt. 使十分惊讶;使吃惊45.misty a. 多雾的;模糊的46.mist n. 薄雾;水汽47.steel n. 钢;钢铁工业48.dusk n. 黄昏;傍晚49.advertisement n 广告;启事50.accent n. 口音51.photographer n. 摄影师;拍照者52.owe vt. 欠(账、债、情等)53.owe sth to sb 欠(某人情);把…归功于某人54.toast n. 烤面包片;吐司;干杯vt.为…干杯vi烤(尤指面包)55.cobblestone a. 铺有鹅卵石的56.coherent a. 有条理的;清楚易懂的57.Halifax 哈利法克斯(加拿大城市)58.Vancouver 温哥华(加拿大城市)ke Louise 路易斯湖60.Jasper 贾斯珀(加拿大城市61.Toronto 多伦多(加拿大城市)62.Edmonton 埃德蒙顿(加拿大城市63.Winnipeg 温尼伯(加拿大城市)64.Ontario 安大略省(加拿大65.Butchar Gardens 布查特花园ke Huron 休伦湖67.Quebec City 魍北克市(加拿大城市)68.Montreal 蒙特利尔(加拿大城市)69.Niagara Falls 尼亚加拉瀑布70.St Lawrence River 圣劳伦斯河71.Jean- Philippe 让-菲利普72.Nova Scotia 新斯科舍省(加拿大)Unit 51.technique n. 技能;技术;技艺2.leaflet n. 散页印刷品;传单;小册子an n .(人或动植物的)器官4.toxin n. 素(尤指细菌产生的致病物质)5.ray n 光线;光束;(热、电等)射线6.sense of touch 触觉7.radiation n 辐射;放射线8.acid n. 酸a.酸的;酸性的limeter n. 毫米;千分之一米10.minor a. 较小的;次要的;轻微的yer n. 层;表层;层次12.electric a. 电的;用电的;电动的13.electric shock 触电;电击14.victim n. 受害者;患者15.swollen a. (身体部位)肿起的;肿胀的16.swell vi.( swelled,swollen)膨胀;肿胀17.blister n. (皮肤上因摩擦、烫伤等引起的)水疱;(金属等表面的)气泡、水泡18.underneath prep.&ad.在…底下;隐藏在下面19.nerve n. 神经20.fabric n. 织物;布料;(社会、机构等的)结构21.loose a. 松的;未系紧的;宽松的22.urgent a 紧急的;急迫的;急切的23.ease vi.&vt.(使)宽慰;减轻;缓解n.容易;舒适;自在24.paramedic n. 急救医生;护理人员25.swallow vt.&vi.吞下;咽下26.wrap vt. 包、裹;(用手臂等)围住27.bathtub n. 浴缸;浴盆28.bath n. 洗澡;(BrE=bathtub)浴缸;浴盆vt.给…洗澡29.slip vi. 滑倒;滑落;走n.滑倒;小错误;纸条30.mosquito n. 蚊子31.elderly a. 年纪较大的;上了年纪的(婉辞)32.carpet n. 地毯33.operator n. 电话接线员;操作员34.ambulance n. 救护车35.delay vi&vt推迟;延期(做某事).眈误;耽搁n.延误;耽搁(的时间);推迟36.needle n. 针;缝衣针;注射针;指针37.IV needle 静脉注射针38.vital sign 生命体征39.ward n. 病房40.drown vi.&vt.(使)淹死;溺死;浸泡;淹没41.sprain vi . 扭伤(关节) n.扭伤42.ankle n. 踝;踝关节43.bleeding n. 流血;失血44.bleed vi.(bled,bled)流血;失血45.panic vi.&vt.(使)惊慌n.惊恐;恐慌46.interrupt vi&vt.打断;打扰.使暂停;使中断47.scream vi.&vt.(因愤怒或恐惧)高声喊;大声叫n.尖叫;尖锐刺耳的声音48.fellow a. 同类的;同事的;同伴的;同情况的n.男人;家伙;同事;同辈;同类49.diner n. (尤指餐馆的)就餐者50.choke vi.&vt.(使)室息;(使)哽咽51.steak n. 牛排;肉排52.throat n. 咽喉;喉咙53.desperate a. 绝望的;孤注一掷的;非常需要的54.slap vt. (用手掌)打、拍n.(用手掌)打、拍;拍击声55.help sb to one’s feet 帮助某人站起身来56.practical a. 切实可行的;实际的;实践的57.obstruction n. 阻碍;堵塞;阻塞物58.fist n. 拳;拳头59.grab vt. 抓住;攫取n.抓取;抢夺60.tightly ad. 紧紧地;牢固地;紧密地61.tight a. 牢固的;紧身的;绷紧的;严密的adv.紧紧地;牢固地62.motion n. 运动;移动63.face up/down 面朝上(朝下)64.justify vt. 证明……有道理;为……辩护;是…的正当理由65.welfare n. 幸福;福祉;安康;福利66.collapse vi. (突然)倒塌;(因病等)昏倒67.manual n. 使用手册;说明书a.用手的;手工的;体力的;手控的68.sleep in 迟起;睡过头;睡懒觉69.out of shape 健康状况不好70.foggy a. 有雾的71.suburb n. 郊区;城外72.membership n. 会员身份;全体会员;会员人数73.Taylor 泰勒74.CPR abbr. cardiopulmonary resuscitation 心肺复苏(包括人工呼吸和体外心脏按压)75.mouth-to-mouth rescue breathing 口对口人工呼吸76.Heimlich manoeuvre 海姆利克式操作法。
Nobel Prize in Physics
The Nobel Prize in Physics 2005 was divided, one half awarded to Roy J. Glauber "for his contribution to the quantum theory of optical coherence",the other half jointly to John L. Hall and Theodor W. Hä nsch "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique“.
2002年,美国科学家雷蒙德·戴维斯、日本科学家小柴昌俊和美国科学 家里卡尔多·贾科尼获得诺贝尔物理学奖。他们在天体物理学领域作出了先 驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面取 得的成就。
The Nobel Prize in Physics 2003 was awarded jointly to Alexei A.
2005年,美国科学家罗伊·格劳伯、约翰·霍尔和德国科学家特 奥多尔·亨施因为“对光学相干的量子理论的贡献”和对基于激光的 精密光谱学发展作出了贡献而获奖。
The Nobel Prize in Physics 2006 was awarded jointly to John C. Mather and George F. Smoot "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation“
新型无机闪烁体的能量分辨率(中英文对照)
成都理工大学学生毕业设计(论文)外文译文极,(b)光电子是后来ηNph,(c)这些∝ηNph电子在第一倍增极和到达(d)倍增极的k(k = 1,2…)放大后为δk 并且我们假设δ1=δ2=δ3=δk=δ的,并且δ/δ1≈1的。
我们可以得出:R2=Rlid2=5.56δ/[∝ηNph(δ-1)] ≈5.56/Nel (3)Nel表示第一次到达光电倍增管的数目。
在试验中,δ1≈10>δ2=δ3=δk,因此,在实际情况下,我们可以通过(3)看出R2的值比实际测得大。
请注意,对于一个半导体二极管(不倍增极结构)(3)也适用。
那么Nel就是是在二极管产生电子空穴对的数目。
在物质不均匀,光收集不完整,不相称和偏差的影响从光电子生产过程中的二项式分布及电子收集在第一倍增极不理想的情况下,例如由于阴极不均匀性和不完善的重点,我们有:R2=Rsci2+Rlid2≈5.56[(νN-1/Nel)+1/Nel] (4)νN光子的产生包括所有非理想情况下的收集和1/Nel的理想情况。
为了说明,我们在图上显示,如图1所示。
ΔE/E的作为伽玛射线能量E的函数,为碘化钠:铊闪烁耦合到光电倍增管图。
1。
对ΔE/E的示意图(全曲线)作为伽玛射线能量E功能的碘化钠:铊晶体耦合到光电倍增管。
虚线/虚线代表了主要贡献。
例如见[9,10]。
对于Rsci除了1/(Nel)1/2的组成部分,我们看到有两个组成部分,代表在0-4%的不均匀性,不完整的光收集水平线,等等,并与在0-400代表非相称keV的最大曲线。
表1给出了E=662Kev时的数值(137Cs)在传统的闪烁体资料可见。
从图一我们可以清楚的看到在低能量E<100Kev,如果Nel,也就是Nph增大的话,是可以提高能量分辨率的。
这是很难达到的,因为光额产量已经很高了(见表1)在能量E>300Kev时,Rsci主要由能量支配其能量分辨率,这是没办法减小Rsci 的。
然而,在下一节我们将会讲到,可以用闪烁体在高能量一样有高的分辨率。
liquid–liquid phase separation
Biophysical Chemistry 109(2004)105–1120301-4622/04/$-see front matter ᮊ2003Elsevier B.V .All rights reserved.doi:10.1016/j.bpc.2003.10.021Cloud-point temperature and liquid–liquid phase separation ofsupersaturated lysozyme solutionJie Lu *,Keith Carpenter ,Rui-Jiang Li ,Xiu-Juan Wang ,Chi-Bun Ching a ,a a b bInstitute of Chemical and Engineering Sciences,Ayer Rajah Crescent 28,࠻02-08,Singapore 139959,Singapore aChemical and Process Engineering Center,National University of Singapore,Singapore 117576,SingaporebReceived 31July 2003;received in revised form 8October 2003;accepted 16October 2003AbstractThe detailed understanding of the structure of biological macromolecules reveals their functions,and is thus important in the design of new medicines and for engineering molecules with improved properties for industrial applications.Although techniques used for protein crystallization have been progressing greatly,protein crystallization may still be considered an art rather than a science,and successful crystallization remains largely empirical and operator-dependent.In this work,a microcalorimetric technique has been utilized to investigate liquid–liquid phase separation through measuring cloud-point temperature T for supersaturated lysozyme solution.The effects of cloud ionic strength and glycerol on the cloud-point temperature are studied in detail.Over the entire range of salt concentrations studied,the cloud-point temperature increases monotonically with the concentration of sodium chloride.When glycerol is added as additive,the solubility of lysozyme is increased,whereas the cloud-point temperature is decreased.ᮊ2003Elsevier B.V .All rights reserved.Keywords:Biocrystallization;Microcalorimetry;Cloud-point temperature;Liquid–liquid phase separation1.IntroductionKnowledge of detailed protein structure is essen-tial for protein engineering and the design of pharmaceuticals.Production of high-quality pro-tein crystals is required for molecular structure determination by X-ray crystallography.Although considerable effort has been made in recent years,obtaining such crystals is still difficult in general,and predicting the solution conditions where pro-*Corresponding author.Tel.:q 65-6874-4218;fax:q 65-6873-4805.E-mail address:lujie@.sg (J.Lu ).teins successfully crystallize remains a significant obstacle in the advancement of structural molecu-lar biology w 1x .The parameters affecting protein crystallization are typically reagent concentration,pH,tempera-ture,additive,etc.A phase diagram can provide the method for quantifying the influence of solu-tion parameters on the production of crystals w 2,3x .To characterize protein crystallization,it is neces-sary to first obtain detailed information on protein solution phase behavior and phase diagram.Recently physics shows that there is a direct relationship between colloidal interaction energy106J.Lu et al./Biophysical Chemistry109(2004)105–112and phase diagram.Gast and Lekkerkerker w4,5x have indicated that the range of attraction between colloid particles has a significant effect on the qualitative features of phase diagram.A similar relationship should hold for biomacromolecules, i.e.the corresponding interaction potentials govern the macromolecular distribution in solution,the shape of the phase diagram and the crystallization process w6x.Many macromolecular crystallizations appear to be driven by the strength of the attractive interactions,and occur in,or close to,attractive regimes w7,8x.Recent intensive investigation has revealed that protein or colloidal solution possesses a peculiar phase diagram,i.e.liquid–liquid phase separation and sol–gel transition exists in general in addition to crystallization w9,10x.The potential responsible for the liquid–liquid phase separation is a rather short range,possibly van der Waals,attractive potential w11,12x.The measurement of cloud-point temperature T can provide useful informationcloudon the net attractive interaction between protein molecules,namely,the higher the cloud-point tem-perature,the greater the net attractive interaction. Herein Taratuta et al.w13x studied the effects of salts and pH on the cloud-point temperature of lysozyme.Broide et al.w14x subsequently meas-ured the cloud-point temperature and crystalliza-tion temperature for lysozyme as a function of salt type and concentration.From these works the cloud-point temperature was found to be typically 15–458C below the crystallization temperature. Furthermore,Muschol and Rosenberger w15x deter-mined the metastable coexistence curves for lyso-zyme through cloud-point measurements,and suggested a systematic approach to promote pro-tein crystallization.In general,an effective way to determine the strength of protein interactions is to study temperature-induced phase transitions that occur in concentrated protein solutions.Liquid–liquid phase separation can be divided into two stages w11x:(1)the local separation stage at which the separation proceeds in small regions and local equilibrium is achieved rapidly;and(2) the coarsening stage at which condensation of these small domains proceeds slowly to reduce the loss of interface free energy w16x.The coexisting liquid phases both remain supersaturated but differ widely in protein concentration.The effect of a metastable liquid–liquid phase separation on crystallization remains ambiguous w17x.Molecular dynamics simulations and analyt-ical theory predict that the phase separation will affect the kinetics and the mechanisms of protein crystal nucleation w18x.tenWolde and Frenkel w19x have demonstrated that the free energy barrier for crystal nucleation is remarkably reduced at the critical point of liquid–liquid phase separation, thus in general,after liquid–liquid phase separa-tion,crystallization occurs much more rapidly than in the initial solution,which is typically too rapid for the growth of single crystal with low defect densities w15x.The determination of the location of liquid–liquid phase separation curve is thus crucial for efficiently identifying the optimum solution conditions for growing protein crystals. Microcalorimetry has the potential to be a useful tool for determining:(1)the metastable-labile zone boundary;(2)the temperature-dependence of pro-tein solubility in a given solvent;and(3)the crystal-growth rates as a function of supersatura-tion w20x.Microcalorimeters can detect a power signal as low as a few microwatts whereas standard calorimeters detect signals in the milliwatt range. Because of this greater sensitivity,samples with small heat effects can be analyzed.In addition, microcalorimetry has the advantage of being fast, non-destructive to the protein and requiring a relatively small amount of material.The present work is concerned with the analysis of the transient heat signal from microcalorimeter to yield liquid–liquid phase separation information for lysozyme solutions at pH4.8.To further examine the role of salt and additive on interprotein interactions, cloud-point temperature T has been determinedcloudexperimentally as a function of the concentrations of salt,protein and glycerol.2.Materials and methods2.1.MaterialsSix times crystallized lysozyme was purchased from Seikagaku Kogyo,and used without further107J.Lu et al./Biophysical Chemistry 109(2004)105–112purification.All other chemicals used were of reagent grade,from Sigma Chemical Co.2.2.Preparation of solutionsSodium acetate buffer (0.1M )at pH 4.8was prepared with ultrafiltered,deionized water.Sodi-um azide,at a concentration of 0.05%(w y v ),was added to the buffer solution as an antimicrobial agent.Protein stock solution was prepared by dissolving protein powder into buffer.To remove undissolved particles,the solution was centrifuged in a Sigma centrifuge at 12000rev.y min for 5–10min,then filtered through 0.22-m m filters (Mil-lex-VV )into a clean sample vial and stored at 48C for further experiments.The concentration of protein solution was determined by measuring the absorbance at 280nm of UV spectroscopy (Shi-madzu UV-2550),with an extinction coefficient of 2.64ml y (mg cm )w 21x .Precipitant stock solution was prepared by dissolving the required amount of sodium chloride together with additive glycerol into buffer.The pH of solutions was measured by a digital pH meter (Mettler Toledo 320)and adjusted by the addition of small volumes of NaOH or HAc solution.2.3.Measurement of solubilitySolubility of lysozyme at various temperatures and precipitant y additive concentrations was meas-ured at pH 4.8in 0.1M acetate buffer.Solid–liquid equilibrium was approached through both crystallization and dissolution.Dissolving lasted 3days,while the period of crystallization was over 2weeks.The supernatant in equilibrium with a macroscopically observable solid was then filtered through 0.1-m m filters (Millex-VV ).The concen-tration of diluted supernatant was determined spec-troscopically and verified by refractive meter(Kruss)until refractive index remained unchanged ¨at equilibrium state.Solubility of each sample was measured in duplicate.2.4.Differential scanning microcalorimetry Calorimetric experiments were performed with a micro-differential scanning calorimeter with anultra sensitivity,micro-DSC III,from Setaram SA,France.The micro-DSC recorded heat flow in microwatts vs.temperature,thus can detect the heat associated with phase transition during a temperature scan.The sample made up of equal volumes of protein solution and precipitant solu-tion was filtered through 0.1-m m filters to remove dust particles further.To remove the dissolved air,the sample was placed under vacuum for 3min while stirring at 500rev.y min by a magnetic stirrer.The degassed sample was placed into the sample cell of 1.0ml,and a same concentration NaCl solution was placed into the reference cell.The solutions in the micro-DSC were then cooled at the rate of 0.28C y min.After every run,the cells were cleaned by sonicating for 10–15min in several solutions in the following order:deionized water,methanol,ethanol,acetone,1M KOH and finally copious amounts of deionized water.This protocol ensured that lysozyme was completely removed from the cells.The cells were then placed in a drying oven for several hours.The rubber gaskets were cleaned in a similar manner except acetone and 1M KOH were omitted and they were allowed to dry at low temperature.3.Results and discussionA typical micro-DSC scanning experiment is shown in Fig.1.The onset of the clouding phe-nomenon is very dramatic and easily detected.The sharp increase in the heat flow is indicative of a liquid–liquid phase separation process producing a latent heat.This is much consistent with many recent investigations of the liquid–liquid phase separation of lysozyme from solution w 22,23x .In fact,such a liquid–liquid phase separation is a phase transition with an associated latent heat of demixing.In this work,the cloud-point tempera-tures at a variety of lysozyme,NaCl and glycerol concentrations are determined by the micro-DSC at the scan rate of 128C y h.3.1.Effect of protein concentrationIn semilogarithmic Fig.2we plot the solid–liquid and liquid–liquid phase boundaries for lyso-108J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.1.Heat flow of a typical micro-DSC scan of lysozyme solution,50mg y ml,0.1M acetate buffer,pH 4.8,3%NaCl.The scan rate 128C y h is chosen referenced to the experimental results of Darcy and Wiencek w 23x .Note the large deflection in the curve at approximately 4.38C indicating a latent heat resulting from demixing (i.e.liquid–liquid phase separation )process.Fig.2.Cloud-point temperature and solubility determination for lysozyme in 0.1M acetate buffer,pH 4.8:solubility (5%NaCl )(s );T (5%NaCl,this work )(d );T (5%cloud cloud NaCl,the work of Darcy and Wiencek w 23x )(*);solubility (3%NaCl )(h );T (3%NaCl )(j ).cloud Fig.3.Cloud-point temperature determination for lysozyme as a function of the concentration of sodium chloride,50mg y ml,0.1M acetate buffer,pH 4.8.zyme in 0.1M acetate buffer,pH 4.8,for a range of protein concentrations.It is worth noting that,at 5%NaCl,our experimental data of T from cloud micro-DSC are quite consistent with those from laser light scattering and DSC by Darcy and Wiencek w 23x ,with difference averaging at approx-imately 0.88C.This figure demonstrates that liquid–liquid phase boundary is far below solid–liquid phase boundary,which implies that the liquid–liquid phase separation normally takes place in a highly metastable solution.In addition,cloud-point temperature T increases with the cloud concentration of protein.3.2.Effect of salt concentrationFig.3shows how cloud-point temperature changes as the concentration of NaCl is varied from 2.5to 7%(w y v ).The buffer is 0.1M acetate (pH 4.8);the protein concentration is fixed at 50mg y ml.Over the entire range of salt concentrations studied,the cloud-point temperature strongly depends on the ionic strength and increases monotonically with the concentration of NaCl.Crystallization is driven by the difference in chemical potential of the solute in solution and in the crystal.The driving force can be simplified as w 24xf sy Dm s kT ln C y C (1)Ž.eq109J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.4.The driving force required by liquid–liquid phase sep-aration as a function of the concentration of sodium chloride,50mg y ml lysozyme solution,0.1M acetate buffer,pH 4.8.In the same way,we plot the driving force,f ,required by liquid–liquid phase separation as a function of the concentration of sodium chloride in Fig.4.At the moderate concentration of sodium chloride,the driving force required by liquid–liquid phase separation is higher than that at low or high salt concentration.As shown in Fig.3,with NaCl concentration increasing,the cloud-point temperature increases,which is in accord with the results of Broide et al.w 14x and Grigsby et al.w 25x .It is known that protein interaction is the sum of different potentials like electrostatic,van der Waals,hydrophobic,hydration,etc.The liquid–liquid phase separation is driven by a net attraction between protein molecules,and the stronger the attraction,the higher the cloud-point temperature.Ionic strength is found to have an effect on the intermolecular forces:attractions increase with ionic strength,solubility decreases with ionic strength,resulting in the cloud-point temperature increases with ionic strength.It is worth noting that,the effect of ionic strength on cloud-point temperature depends strongly on the specific nature of the ions w 13x .Kosmotropic ions bind adjacent water molecules more strongly than water binds itself.When akosmotropic ion is introduced into water,the entro-py of the system decreases due to increased water structuring around the ion.In contrast,chaotropes bind adjacent water molecules less strongly than water binds itself.When a chaotrope is introduced into water,the entropy of the system increases because the water structuring around the ion is less than that in salt-free water.This classification is related to the size and charge of the ion.At high salt concentration ()0.3M ),the specific nature of the ions is much more important w 25x .The charges on a protein are due to discrete positively and negatively charged surface groups.In lysozyme,the average distance between thesecharges is approximately 10Aw 26x .As to the salt ˚NaCl used as precipitant,Na is weakly kosmo-q tropic and Cl is weakly chaotropic w 27x .At low y NaCl concentrations,as the concentration of NaCl increases,the repulsive electrostatic charge–charge interactions between protein molecules decrease because of screening,resulting in the increase of cloud-point temperature.While at high NaCl con-centrations,protein molecules experience an attrac-tion,in which differences can be attributed to repulsive hydration forces w 14,25x .That is,as the ionic strength increases,repulsive electrostatic or hydration forces decrease,protein molecules appear more and more attractive,leading to higher cloud-point temperature.At various salt concentra-tions,the predominant potentials reflecting the driving force for liquid–liquid phase separation are different.Fig.4shows that the driving force,f ,is parabolic with ionic strength,while Grigsby et al.w 25x have reported that f y kT is linear with ionic strength for monovalent salts.The possible reasons for that difference include,their model is based on a fixed protein concentration of 87mg y ml,which is higher than that used in our study,yet f y kT is probably dependent on protein concentration,besides the solutions at high protein and salt concentrations are far from ideal solutions.3.3.Effect of glycerolFig.5compares cloud-point temperature data for 50mg y ml lysozyme solutions in absence of glycerol and in presence of 5%glycerol,respec-110J.Lu et al./Biophysical Chemistry109(2004)105–112parison of cloud-point temperatures for lysozyme at different glycerol concentrations as a function of the con-centration of sodium chloride,50mg y ml,0.1M acetate buffer, pH4.8:0%glycerol(s);5%glycerol(j).Fig.6.Cloud-point temperatures for lysozyme at different glycerol concentrations,50mg y ml lysozyme,5%NaCl,0.1M acetate buffer,pH4.8.Fig.7.Cloud-point temperature and solubility determination for lysozyme at different concentrations of glycerol in0.1M acetate buffer,5%NaCl,pH4.8:solubility(0%glycerol)(s); T(0%glycerol)(d);solubility(5%glycerol)(h);cloudT(5%glycerol)(j).cloudtively.Fig.6shows the cloud-point temperature as a function of the concentration of glycerol.The cloud-point temperature is decreased as the addi-tion of glycerol.In semilogarithmic Fig.7we plot the solid–liquid and liquid–liquid phase boundaries at dif-ferent glycerol concentrations for lysozyme in0.1 M acetate buffer,5%NaCl,pH4.8,for a range of protein concentration.This figure demonstrates that liquid–liquid and solid–liquid phase bounda-ries in the presence of glycerol are below those in absence of glycerol,and the region for growing crystals is narrowed when glycerol is added. Glycerol has the property of stabilizing protein structure.As a result,if crystallization occurs over a long period of time,glycerol is a useful candidate to be part of the crystallization solvent and is often included for this purpose w28x.In addition,glycerol is found to have an effect on the intermolecular forces:repulsions increase with glycerol concentra-tion w29x.Our experiment results of solubility and cloud-point temperature can also confirm the finding.The increased repulsions induced by glycerol can be explained by a number of possible mecha-nisms,all of which require small changes in the protein or the solvent in its immediate vicinity.The addition of glycerol decreases the volume of protein core w30x,increases hydration and the size of hydration layer at the particle surface w31,32x. In this work,we confirm that glycerol shifts the solid–liquid and liquid–liquid phase boundaries. The effect of glycerol on the phase diagram strong-111 J.Lu et al./Biophysical Chemistry109(2004)105–112ly depends on its concentration and this canprovide opportunities for further tuning of nuclea-tion rates.4.ConclusionsGrowing evidence suggests protein crystalliza-tion can be understood in terms of an order ydisorder phase transition between weakly attractiveparticles.Control of these attractions is thus keyto growing crystals.The study of phase transitionsin concentrated protein solutions provides one witha simple means of assessing the effect of solutionconditions on the strength of protein interactions.The cloud-point temperature and solubility datapresented in this paper demonstrate that salt andglycerol have remarkable effects on phase transi-tions.The solid–liquid and liquid–liquid bounda-ries can be shifted to higher or lower temperaturesby varying ionic strength or adding additives.Ourinvestigation provides further information upon therole of glycerol used in protein crystallization.Glycerol can increase the solubility,and decreasethe cloud-point temperature,which is of benefit totuning nucleation and crystal growth.In continuingstudies,we will explore the effects of other kindsof additives like nonionic polymers on phasetransitions and nucleation rates.Much more theo-retical work will be done to fully interpret ourexperimental results.AcknowledgmentsThis work is supported by the grant from theNational Natural Science Foundation of China(No.20106010).The authors also thank Professor J.M.Wiencek(The University of Iowa)for kinddiscussion with us about the thermal phenomenaof liquid–liquid phase separation.Referencesw1x A.McPherson,Current approaches to macromolecular crystallization,Eur.J.Biochem.189(1990)1–23.w2x A.M.Kulkarni, C.F.Zukoski,Nanoparticle crystal nucleation:influence of solution conditions,Langmuir18(2002)3090–3099.w3x E.E.G.Saridakis,P.D.S.Stewart,L.F.Lloyd,et al., Phase diagram and dilution experiments in the crystal-lization of carboxypeptidase G2,Acta Cryst.D50(1994)293–297.w4x A.P.Gast, C.K.Hall,W.B.Russel,Polymer-induced phase separations in non-aqueous colloidal suspensions,J.Colloid Interf.Sci.96(1983)251–267.w5x H.N.W.Lekkerkerker,W.C.K.Poon,P.N.Pusey,et al., Phase-behavior of colloid plus polymer mixtures,Euro-phys.Lett.20(1992)559–564.w6x A.Tardieu,S.Finet,F.Bonnete,Structure of the´macromolecular solutions that generate crystals,J.Cryst.Growth232(2001)1–9.w7x D.Rosenbaum,C.F.Zukoski,Protein interactions and crystallization,J.Cryst.Growth169(1996)752–758.w8x A.George,W.W.Wilson,Predicting protein crystalli-zation from a dilute solution property,Acta Cryst.D50(1994)361–365.w9x D.Rosenbaum,P.C.Zamora, C.F.Zukoski,Phase-behavior of small attractive colloidal particles,Phys.Rev.Lett.76(1996)150–153.w10x V.J.Anderson,H.N.W.Lekkerkerker,Insights into phase transition kinetics from colloid science,Nature416(2002)811–815.w11x S.Tanaka,K.Ito,R.Hayakawa,Size and number density of precrystalline aggregates in lysozyme crys-tallization process,J.Chem.Phys.111(1999)10330–10337.w12x D.W.Liu,A.Lomakin,G.M.Thurston,et al.,Phase-separation in multicomponent aqueous-protein solutions,J.Phys.Chem.99(1995)454–461.w13x V.G.Taratuta,A.Holschbach,G.M.Thurston,et al., Liquid–liquid phase separation of aqueous lysozymesolutions:effects of pH and salt identity,J.Phys.Chem.94(1990)2140–2144.w14x M.L.Broide,T.M.Tominc,M.D.Saxowsky,Using phase transitions to investigate the effect of salts onprotein interactions,Phys.Rev.E53(1996)6325–6335. w15x M.Muschol,F.Rosenberger,Liquid–liquid phase sep-aration in supersaturated lysozyme solutions and asso-ciated precipitate formation y crystallization,J.Chem.Phys.107(1997)1953–1962.w16x C.Domb,J.H.Lebowitz,Phase Separation and Critical Phenomena,Academic,London,1983.w17x D.F.Rosenbaum,A.Kulkarni,S.Ramakrishnan,C.F.Zukoski,Protein interactions and phase behavior:sen-sitivity to the form of the pair potential,J.Chem.Phys.111(1999)9882–9890.w18x O.Galkin,P.G.Vekilov,Nucleation of protein crystals: critical nuclei,phase behavior and control pathways,J.Cryst.Growth232(2001)63–76.w19x P.R.tenWolde, D.Frenkel,Enhancement of protein crystal nucleation by critical density fluctuations,Sci-ence277(1997)1975–1978.w20x P.A.Darcy,J.M.Wiencek,Estimating lysozyme crystal-lization growth rates and solubility from isothermalmicrocalorimetry,Acta Cryst.D54(1998)1387–1394.112J.Lu et al./Biophysical Chemistry109(2004)105–112w21x A.J.Sophianopoulos,C.K.Rhodes,D.N.Holcomb,K.E.vanHolde,Physical studies of lysozyme.I.Characteri-zation,J.Biol.Chem.237(1962)1107–1112.w22x Y.Georgalis,P.Umbach, A.Zielenkiewicz,et al., Microcalorimetric and small-angle light scattering stud-ies on nucleating lysozyme solutions,J.Am.Chem.Soc.119(1997)11959–11965.w23x P.A.Darcy,J.M.Wiencek,Identifying nucleation tem-peratures for lysozyme via differential scanning calorim-etry,J.Cryst.Growth196(1999)243–249.w24x M.L.Grant,Effects of thermodynamics nonideality in protein crystal growth,J.Cryst.Growth209(2000)130–137.w25x J.J.Grigsby,H.W.Blanch,J.M.Prausnitz,Cloud-point temperatures for lysozyme in electrolyte solutions:effectof salt type,salt concentration and pH,Biophys.Chem.91(2001)231–243.w26x D.Voet,J.Voet,Biochemistry,Wiley,New Y ork,1990. w27x K.D.Collins,Charge density-dependent strength of hydration and biological structure,Biophys.J.72(1997)65–76.w28x R.Sousa,Use of glycerol and other protein structure stabilizing agents in protein crystallization,Acta Cryst.D51(1995)271–277.w29x M.Farnum, C.F.Zukoski,Effect of glycerol on the interactions and solubility of bovine pancreatic trypsininhibitor,Biophys.J.76(1999)2716–2726.w30x A.Priev,A.Almagor,S.Yedgar,B.Gavish,Glycerol decreases the volume and compressibility of proteininterior,Biochemistry35(1996)2061–2066.w31x S.N.Timasheff,T.Arakawa,Mechanism of protein precipitation and stabilization by co-solvents,J.Cryst.Growth90(1988)39–46.w32x C.S.Miner,N.N.Dalton,Glycerol,Reinhold Publishing, New Y ork,1953.。
水驱油藏聚乙烯亚胺交联聚合物凝胶体系研究进展
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 3 期水驱油藏聚乙烯亚胺交联聚合物凝胶体系研究进展王凯1,罗明良1,李明忠1,黄飞飞2,蒲春生1,蒲景阳3,樊乔1(1 中国石油大学(华东)石油工程学院,山东 青岛 266580;2 延安大学石油工程与环境工程学院,陕西 延安716000;3 中国石油大学(北京)碳中和示范性能源学院,北京 102249)摘要:聚乙烯亚胺(PEI )是一种低毒性环保材料,它与聚合物交联的凝胶体系具有适用温度范围广、成胶时间可控、成胶后强度大、高温稳定时间长、几乎不受储层岩石矿物影响等优点。
本文回顾了以PEI 作为交联剂的各类凝胶体系的研究动态,阐明了PEI 与各类聚合物的交联反应机理及其凝胶体系特点,分析了各类因素对凝胶性能的影响,并列举了改善凝胶性能的方法和成功的矿场应用实例,重点分析了提高凝胶体系交联活性的方法研究。
最后,提出聚丙烯酰胺(PAM )/PEI 凝胶体系作为环保型调驱体系在中低温油藏深部调控方面具有非常大的应用前景,应继续深入研究提高PAM/PEI 凝胶体系交联效率的方法及其作用机理,以降低聚合物与交联剂用量,为这一体系的推广应用提供理论依据与实验基础。
关键词:聚合物;凝胶;聚乙烯亚胺;交联剂;黏度;调剖堵水中图分类号:TE39 文献标志码:A 文章编号:1000-6613(2024)03-1506-18Research progress of polyethyleneimine crosslinked polymer gel systemin water-drive reservoirsWANG Kai 1,LUO Mingliang 1,LI Mingzhong 1,HUANG Feifei 2,PU Chunsheng 1,PU Jingyang 3,FAN Qiao 1(1 College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China;2School of Petroleum Engineering and Environmental Engineering, Yan ’an University, Yan ’an 716000, Shaanxi, China;3College of Carbon Neutral Energy, China University of Petroleum (Beijing), Beijing 102249, China)Abstract: Polyethyleneimine (PEI) is an environment-friendly and low toxic material. PEI and polymer crosslinked gel system has the advantages of controllable gelation time, high strength of mature gel, high-temperature resistance, long-time stability, and almost unaffected by minerals of reservoir. This paper reviewed the research of various polymer gel systems with PEI as crosslinker. The crosslinking mechanism and the characteristics of those gel systems were clarified. The influence of various factors on the gel system was analyzed. And, the methods to improve the gel performance and successful filed trial were listed, the methods to improve the crosslinking activity of gel system were emphatically analyzed. Finally, it was pointed out that polyacrylamide(PAM)/PEI gel system, as an environment-friendly system, had great application prospects in conformance control and water shutoff of medium and low temperature reservoirs, and it was suggested that the method and the corresponding mechanism of improving theDOI :10.16085/j.issn.1000-6613.2023-0376收稿日期:2023-03-13;修改稿日期:2023-04-12。
流体力学常用名词中英文对照
流体力学常用名词流体动力学fluid dynamics连续介质力学mechanics of continuous介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动] flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge 涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point总压[力] total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single-component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow 浮体floating body定倾中心metacenter阻力drag, resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance, inlet出口exit, outlet扰动disturbance, perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass 收缩contraction镜象法image method无量纲参数dimensionless parameter 几何相似geometric similarity运动相似kinematic similarity动力相似[性] dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动] non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动] compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave 激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强] over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed, wave velocity 波高wave height波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise 水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow 水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula 欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow 堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition 沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation 泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag 壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation 边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method 说明氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem 静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel 水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer,laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer 热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer 动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer 热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equationKDU方程KDV equation修正微分方程modified differential equation拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition 数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method 人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method,FLIC method通量校正传输法flux-corrected transport method 通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method 特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method 质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme 穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme 迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子Riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell Reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method。
正丁醇与水双液系气液平衡相图
正丁醇与水双液系气液平衡相图摘要:本实验通过测量不同浓度正丁醇水溶液的沸点及其液相和气相的折光率,通过其折光率与浓度的对应关系,得出其不同沸点时气相和液相的组成,由此绘制正丁醇与水双液系的相图。
关键词:不同组成双液系气液平衡沸点双液系相图Binary Liquid Systems of n-butanol and water vapor-liquid equilibrium phase diagramAbstract:The experiment measured the boiling point of n-butanol aqueous solution of different concentrations and the liquid phase and the gas phase refractive index. We calculated the composition of the vapor and liquid phases in different boiling point though the relationship between the refractive index and the composition of the different phases. Thus I draw the phase diagram of the n-butanol and water Binary Liquid Systems.Keywords:Binary Liquid Systems of different components Vapor-liquid equilibrium boiling point Dual liquid phase diagram前言:多相系统相平衡的研究有着重要的实际意义。
例如研究金属冶炼过程中相的变化,根据相变进而研究金属的成分、结构与性能之间的关系。
英文超晶格
英文超晶格Here is a 1,000-word essay on the topic of "English Superlattice":The concept of the English superlattice has fascinated linguists and language researchers for decades. A superlattice, in the context of language, refers to a structured arrangement of linguistic elements, such as sounds, words, or grammatical patterns, that exhibit periodic repetition and emergent properties beyond those of the individual components. In the case of the English superlattice, this phenomenon manifests in the intricate and multifaceted nature of the English language, which has evolved over centuries to become a remarkably versatile and adaptable mode of communication.At the heart of the English superlattice lies the rich diversity of the language's vocabulary. English has a vast lexicon, drawing from a multitude of linguistic sources, including Germanic, Romance, and Latinate roots. This linguistic melting pot has endowed the language with an extraordinary capacity for nuance, precision, and expressiveness. Each word in the English superlattice carries with it a unique history, connotation, and contextual significance, allowing speakers to convey complex ideas and emotions with remarkable subtlety.Moreover, the grammatical structure of the English language further enhances the complexity of the superlattice. The combination of rigid syntactical rules, flexible word order, and a range of grammatical constructions, such as tenses, moods, and voice, enables English speakers to craft intricate and sophisticated sentences. This structural versatility allows for the seamless expression of diverse communicative intentions, from the objective and factual to the imaginative and poetic.One of the most intriguing aspects of the English superlattice is its ability to accommodate and assimilate new linguistic elements. As the world becomes increasingly interconnected, English has absorbed words, phrases, and idioms from countless languages, further expanding the boundaries of the superlattice. This dynamic process of linguistic cross-pollination has enriched the language, making it a truly global medium of communication.The superlattice metaphor also extends to the contextual and pragmatic dimensions of the English language. The appropriate use of English often depends on the social, cultural, and situational factors at play. Mastering the nuances of register, tone, and communication styles is essential for effective language use, as the same words and grammatical structures can convey vastly different meanings and intentions depending on the context.Furthermore, the English superlattice is not limited to the written and spoken forms of the language. It also encompasses the diverse range of non-verbal communication modes, such as body language, facial expressions, and gestures, which play a crucial role in shaping the overall communicative experience. These paralinguistic elements seamlessly integrate with the linguistic components of the superlattice, creating a multidimensional tapestry of expression.The complexity of the English superlattice is further amplified by the dynamic nature of the language. English is continuously evolving, with new words, idioms, and grammatical constructions constantly emerging, while others fall out of use or undergo semantic shifts. This ongoing process of linguistic transformation ensures that the superlattice remains a living, breathing entity, constantly adapting to the changing needs and preferences of its users.Mastering the English superlattice is a lifelong endeavor, as the depth and breadth of the language defy easy categorization or complete understanding. Even the most proficient speakers and writers of English often encounter novel linguistic challenges, requiring them to navigate the intricate web of the superlattice with creativity, flexibility, and a deep appreciation for the language's nuances.In conclusion, the English superlattice is a remarkable linguistic phenomenon that defies simple explanation. It is a multifaceted and dynamic system that encompasses a vast array of linguistic elements, each with its own unique history, meaning, and contextual significance. The superlattice metaphor captures the extraordinary complexity and adaptability of the English language, which continues to captivate and inspire language enthusiasts, scholars, and communicators around the world.。
桂林2024年03版小学五年级上册G卷英语第3单元期末试卷
20. 填空题: I can ______ (跑步) very fast.
21. 填空题: We visit the ______ (艺术中心) to see exhibits.
22. 填空题: I love to create stories with my _________ (玩具车) and _________ (人物).
12. 填空题: We can _______ (一起) plant flowers.
13. 填空题: I believe that everyone should try to _______ (动词) their best in school. It is very _______ (形容词).
25. 填空题: I enjoy cooking new recipes with my _______ (家人). It’s a fun way to bond and try _______ (新事物).
26. 听力题: A hydronium ion is formed when an acid donates a ______.
43. 选择题: How do you say "thank you" in English? A. Sorry B. Please C. Thank you D. Hello 答案:C
44. 听力题: The stars are _______ (shining) brightly.
45. 听力题: The dog is barking ___. (loudly)
37. 听力题: The capital of Portugal is __________.
金兹堡朗道理论
Ginzburg–Landau theoryFrom Wikipedia, the free encyclopediaIn physics, Ginzburg–Landau theory, named after Vitaly Lazarevich Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenological model which could describe type-I superconductors without examining their microscopic properties. Later, a version of Ginzburg–Landau theory was derived from the Bardeen-Cooper-Schrieffer microscopic theory by Lev Gor'kov, thus showing that it also appears in some limit of microscopic theory and giving microscopic interpretation of all its parameters.Contents•1Introduction•2Simple interpretation•3Coherence length and penetration depth•4Fluctuations in the Ginzburg–Landau model•5Classification of superconductors based on Ginzburg–Landau theory•6Landau–Ginzburg theories in string theory•7See also•8References•8.1PapersIntroduction[edit]Based on Landau's previously-established theory of second-order phase transitions, Ginzburg and Landau argued that the free energy, F, of a superconductor near the superconducting transition can be expressed in terms ofa complex order parameter field, ψ, which is nonzero below a phase transition into a superconducting state and isrelated to the density of the superconducting component, although no direct interpretation of this parameter was given in the original paper. Assuming smallness of |ψ| and smallness of its gradients, the free energy has the form ofa field theory.where F n is the free energy in the normal phase, α and β in the initial argument were treated as phenomenologicalparameters, m is an effective mass, e is the charge of an electron, A is the magnetic vector potential, and is the magnetic field. By minimizing the free energy with respect to variations in the order parameter and the vector potential, one arrives at the Ginzburg–Landau equationswhere j denotes the dissipation-less electric current density and Re the real part. The first equation — which bears some similarities to the time-independent Schrödinger equation, but is principally different due to a nonlinear term —determines the order parameter, ψ. The second equation then provides the superconducting current.Simple interpretation[edit]Consider a homogeneous superconductor where there is no superconducting current and the equation for ψ simplifies to:This equation has a trivial solution: ψ = 0. This corresponds to the normal state of the superconductor, that is for temperatures above the superconducting transition temperature, T>T c.Below the superconducting transition temperature, the above equation is expected to have a non-trivial solution (that is ψ ≠ 0). Under this assumption the equation above can be rearranged into:When the right hand side of this equation is positive, there is a nonzero solution for ψ (remember that the magnitude of a complex number can be positive or zero). This can be achieved by assuming the following temperature dependence of α: α(T) = α0 (T - T c) with α0/ β > 0:•Above the superconducting transition temperature, T > T c, the expression α(T) / β is positive and the right hand side of the equation above is negative. The magnitude of a complex number must be a non-negative number, so only ψ = 0 solves the Ginzburg–Landau equation.•Below the superconducting transition temperature, T < T c, the right hand side of the equation above is positive and there is a non-trivial solution for ψ. Furthermorethat is ψ approaches zero as T gets closer to T c from below. Such a behaviour is typical for a second order phase transition.In Ginzburg–Landau theory the electrons that contribute to superconductivity were proposed to forma superfluid.[1] In this interpretation, |ψ|2 indicates the fraction of electrons that have condensed into a superfluid.[1] Coherence length and penetration depth[edit]The Ginzburg–Landau equations predicted two new characteristic lengths in a superconductor which wastermed coherence length, ξ. For T > T c (normal phase), it is given bywhile for T < T c (superconducting phase), where it is more relevant, it is given byIt sets the exponential law according to which small perturbations of density of superconducting electrons recover their equilibrium value ψ0. Thus this theory characterized all superconductors by two length scales. The second one is the penetration depth, λ. It was previously introduced by the London brothers in their London theory. Expressed in terms of the parameters of Ginzburg-Landau model it iswhere ψ0 is the equilibrium value of the order parameter in the absence of an electromagnetic field. The penetration depth sets the exponential law according to which an external magnetic field decays inside the superconductor. The original idea on the parameter "k" belongs to Landau. The ratio κ = λ/ξ is presently known asthe Ginzburg–Landau parameter. It has been proposed by Landau that Type I superconductors are those with 0 < κ< 1/√2, and Type II superconductors those with κ> 1/√2.The exponential decay of the magnetic field is equivalent with the Higgs mechanism in high-energy physics. Fluctuations in the Ginzburg–Landau model[edit]Taking into account fluctuations. For Type II superconductors, the phase transition from the normal state is of second order, as demonstrated by Dasgupta and Halperin. While for Type I superconductors it is of first order as demonstrated by Halperin, Lubensky and Ma.Classification of superconductors based on Ginzburg–Landau theory[edit]In the original paper Ginzburg and Landau observed the existence of two types of superconductors depending on the energy of the interface between the normal and superconducting states.The Meissner state breaks down when the applied magnetic field is too large. Superconductors can be divided into two classes according to how this breakdown occurs. In Type I superconductors, superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value H c. Depending on the geometry of the sample, one may obtain an intermediate state[2] consisting of a baroque pattern[3] of regions of normal material carrying a magnetic field mixed with regions of superconducting material containing no field. In Type II superconductors, raising the applied field past a critical value H c1 leads to a mixed state (also known as the vortex state) in which an increasing amount of magnetic flux penetrates the material, but there remains no resistance to the flow of electric current as long as the current is not too large. At a second critical field strength H c2, superconductivity is destroyed. The mixed state is actually caused by vortices in the electronic superfluid, sometimes called fluxons because the flux carried by these vortices is quantized. Most pure elemental superconductors, except niobium and carbon nanotubes, are Type I, while almost all impure and compound superconductors are Type II.The most important finding from Ginzburg–Landau theory was made by Alexei Abrikosov in 1957. He used Ginzburg–Landau theory to explain experiments on superconducting alloys and thin films. He found that in a type-II superconductor in a high magnetic field, the field penetrates in a triangular lattice of quantized tubes offlux vortices.[citation needed]Landau–Ginzburg theories in string theory[edit]In particle physics, any quantum field theory with a unique classical vacuum state and a potential energy witha degenerate critical point is called a Landau–Ginzburg theory. The generalization to N=(2,2) supersymmetric theories in 2 spacetime dimensions was proposed by Cumrun Vafa and Nicholas Warner in the November 1988 article Catastrophes and the Classification of Conformal Theories, in this generalization one imposes thatthe superpotential possess a degenerate critical point. The same month, together with Brian Greene they argued that these theories are related by a renormalization group flow to sigma models on Calabi–Yau manifolds in thepaper Calabi–Yau Manifolds and Renormalization Group Flows. In his 1993 paper Phases of N=2 theories intwo-dimensions, Edward Witten argued that Landau–Ginzburg theories and sigma models on Calabi–Yau manifolds are different phases of the same theory. A construction of such a duality was given by relating the Gromov-Witten theory of Calabi-Yau orbifolds to FJRW theory an analogous Landau-Ginzburg "FJRW" theory in The Witten Equation, Mirror Symmetry and Quantum Singularity Theory. Witten's sigma models were later used to describe the low energy dynamics of 4-dimensional gauge theories with monopoles as well as brane constructions. Gaiotto, Gukov & Seiberg (2013)See also[edit]•Domain wall (magnetism)•Flux pinning•Gross–Pitaevskii equation•Husimi Q representation•Landau theory•Magnetic domain•Magnetic flux quantum•Reaction–diffusion systems•Quantum vortex•Topological defectReferences[edit]1.^ Jump up to:a b Ginzburg VL (July 2004). "On superconductivity and superfluidity (what I have and havenot managed to do), as well as on the 'physical minimum' at the beginning of the 21 st century". Chemphyschem.5 (7): 930–945. doi:10.1002/cphc.200400182. PMID15298379.2.Jump up^ Lev D. Landau; Evgeny M. Lifschitz (1984). Electrodynamics of Continuous Media. Course ofTheoretical Physics8. Oxford: Butterworth-Heinemann. ISBN0-7506-2634-8.3.Jump up^ David J. E. Callaway (1990). "On the remarkable structure of the superconductingintermediate state". Nuclear Physics B344 (3): 627–645. Bibcode:1990NuPhB.344..627C.doi:10.1016/0550-3213(90)90672-Z.Papers[edit]•V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz.20, 1064 (1950). English translation in: L. D. Landau, Collected papers (Oxford: Pergamon Press, 1965) p. 546• A.A. Abrikosov, Zh. Eksp. Teor. Fiz.32, 1442 (1957) (English translation: Sov. Phys. JETP5 1174 (1957)].) Abrikosov's original paper on vortex structure of Type-II superconductors derived as a solution of G–L equations for κ > 1/√2•L.P. Gor'kov, Sov. Phys. JETP36, 1364 (1959)• A.A. Abrikosov's 2003 Nobel lecture: pdf file or video•V.L. Ginzburg's 2003 Nobel Lecture: pdf file or video•Gaiotto, David; Gukov, Sergei; Seiberg, Nathan (2013), "Surface Defects and Resolvents" (PDF), Journal of High Energy Physics。
27026594_超级火山喷发及其环境效应
74000年前印度尼西亚多巴火山喷发是第四纪以来规模 最大的一次超级火山喷发事件(Chesneretal.,1991)。最新 研究表明,其喷出岩浆的体积约 5300km3DRE,对应的 VEI> 9(Costaetal.,2014)。它向平流层注入的 SO2 总量是 1991 年皮纳图博火山喷发的 100倍左右,其火山灰在印度、东南 亚、非洲、印 度 洋、中 国 南 海 等 地 都 有 发 现 (Costaetal., 2014)。气候模拟显示,多巴 火 山 喷 发 后 造 成 北 美 洲 和 亚 洲 大部分地区长达 10年的降温,部分地区降温甚至达到 10℃, 同时还导致全球大部分地区降水减少(Blacketal.,2021)。
金荞麦超微粉对肉鸡免疫功能、生长发育的影响
中国畜牧兽医 2〇17!%(11):3195-3200China Animal Husbandry & Veterinary Medicinedoi : 10.16431%. cnki. 1671-7236.2017.11.006金荞麦超微粉对肉鸡免疫功能、生长发育的影响胡逸楓,梁夏瑜,王航*,汤承,岳华(西南民族大学药学院,成都610041)摘要:本试验为研究金荞麦超微粉对肉鸡免疫功能和生长发育的影响,将160只1日龄白羽肉鸡随机分为4组,7日龄时用新城疫活疫苗滴鼻"头份/只#同时颈部皮下注射新城疫一禽流感二联灭活疫苗(0. 3m L /只#间隔 12 h 后各组分别饲喂含不同药物的饲料,自由采食。
低、高剂量组分别在饲料中添加4. 50〇、8. 750金荞麦超微 粉,连续给药7 d 。
阳性对照组在饲料中添加400 g /L 黄芪多糖,连续给药7 d ;空白对照组饲料中不添加任何药物。
随后在给药结束后的第7&1和35天翅下静脉采血用于分离淋巴细胞和血清,用C C K -8法测定外周血淋巴细胞增殖能力;微量血凝抑制试验评价血清中抗体效价;同时称量各组肉鸡体重,屠宰后解剖,取脾脏、法氏囊和胸腺计算 免疫器官指数。
结果显示,与对照组相比,在给药结束后7&1和35 d ,金荞麦超微粉高、低剂量组与黄芪多糖组料 重比均不同程度降低(P >0. 05#此外给药组可提高肉鸡外周血淋巴细胞增殖能力、免疫抗体水平和肉鸡体重,其 中给药结束后21 d,金荞麦超微粉高剂量组禽流感病毒和新城疫病毒抗体效价与对照组相比差异极显著(P <.01#同时还能提高脾脏和法氏囊的脏器系数,并具有量效关系。
综上所述,金荞麦超微粉可以显著提高雏鸡的 细胞免疫、体液免疫和非特异性免疫功能,并显著增加体重。
表明金荞麦超微粉具有增强白羽肉鸡免疫力和促进 生长发育的功效,为开发金荞麦超微粉为新型天然植物药、饲料添加剂提供了依据。
211122228_超疏水亲油MTCS
超疏水亲油MTCS/mSiO 2/NCC 气凝胶的制备与表征刘延波1,2,3,庞蓉蓉1,2,陈倩1,2,陈志军1,2,3,郝铭3,胡晓东3,杨波1,2(1.武汉纺织大学纺织科学与工程学院,武汉430200;2.武汉纺织大学省部共建纺织新材料与先进加工技术国家重点实验室,武汉430200;3.天津工业大学纺织科学与工程学院,天津300387)摘要:为了制备一种超疏水亲油材料基于纤维素可生物降解的环保特性,采用废棉制备了超疏水亲油的甲基三氯硅烷(MTCS )/mSiO 2/纳米微晶纤维素(NCC )气凝胶。
首先将废棉打碎酸解成NCC ,再用KH560对SiO 2进行改性,然后以NCC 和mSiO 2为原料,制备mSiO 2/NCC 复合气凝胶,最后以MTCS 为疏水改性剂对mSiO 2/NCC 气凝胶改性,制备成超疏水亲油的MTCS/mSiO 2/NCC 气凝胶,并使用红外光谱仪、X 射线衍射仪、扫描电子显微镜、接触角测试仪,对超疏水亲油材料的形貌、结构及表面浸润进行表征。
结果表明:制备得到了一种三维多孔、结果稳定的超疏水亲油MTCS/mSiO 2/NCC 气凝胶,静态水接触角最高达150.97毅,对食用油、机油和石蜡油的最大吸油倍率分别为60.00g/g 、58.15g/g 和43.27g/g ,能够快速分离油水混合物,具备良好的超疏水亲油性能。
关键词:超疏水;亲油;纳米微晶纤维素;气凝胶;吸油中图分类号:TS176.5文献标志码:A 文章编号:员远苑员原园圆源载(圆园22)园3原园园15原07Preparation and characterization of superhydrophobic oil-philicMTCS/mSiO 2/NCC aerogelLIU Yan-bo 1,2,3,PANG Rong-rong 1,2,CHEN Qian 1,2,CHEN Zhi-jun 1,2,3,HAO Ming 3,HU Xiao-dong 3,YANG Bo 1,2(1.School of Textile Science and Engineering ,Wuhan Textile University ,Wuhan 430200,China ;2.State Key Laboratory of New Textile Materials and Advanced Processing Technology ,Wuhan Textile University ,Wuhan 430200,China ;3.Schoolof Textile Science and Engineering ,Tiangong University ,Tianjin 300387,China )Abstract :In order to prepare kind of superhydrophobic oil-philic material袁based on the biodegradable environmental char鄄acteristics of cellulose袁MTCS/mSiO 2/NCC aerogel was prepared using waste cotton.Firstly袁the waste cotton was broken into nanocrystalline cellulose 渊NCC冤by acid hydrolysis袁and then SiO 2was modified with KH560.Then袁NCC and mSiO 2were used as raw materials to prepare mSiO 2/NCC composite aerogel.Finally袁mSiO 2/NCC aerogel was modified with methyl trichlorosilane 渊MTCS冤as hydrophobic modifier.MTCS/mSiO 2/NCC aerogels were pre鄄pared.The morphology袁structure and surface infiltration of superhydrophobic and oil-philic materials were char鄄acterized by infrared spectrometer袁X-ray diffractometer袁scanning electron microscope and contact angle tester.The results show that a three-dimensional porous and stable super-hydrophobic oil-philic MTCS/mSiO 2/NCC aerogel is obtained袁with a maximum static water contact angle of 150.97毅袁and a maximum oil absorption rate of60.00g/g袁58.15g/g and 43.27g/g for cooking oil袁oil and paraffin oil袁respectively袁which can quickly separateoil-water mixture.It has good super hydrophobic and oil-philic properties.Key words :superhydrophobic曰lipophilic曰nanocrystalline cellulose渊NCC冤曰aerogel曰oil absorption收稿日期:2022-园3-园7基金项目:国家自然科学基金资助项目(51973168);湖北省科技计划纳米纤维宏量制备创新引智基地项目(XKCX2019000006);武汉纺织大学博士启动金(017/215163)第一作者:刘延波(1965—),女,博士,教授,主要研究方向为静电纺丝技术与原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:085.473v1[cond-ma t.s u pr-c on]3May28Superfluidity and vortices:A Ginzburg-Landau model ∗Mauro Fabrizio †May 30,2008Abstract The paper deals with the study of superfluidity by a Ginzburg-Landau model that investigates the material by a second order phase transition,in which any particle has simultaneouly a normal and superfluid motion.This pattern is able to describe the classical effects of superfluidity as the phase diagram,the vortices,the second sound and the thermomechanical effect.Finally,the vorticities and turbulence are described by an extension of the model in which the material time derivative is used.Keywords:Superconductivity,Ginzburg-Landau equations,critical fields,existence and uniqueness.1Introduction The behavior of superfluids is very different from the phenomenology of a perfect fluid,as well as superconductivity [14]is a phenomenon very different from per-fect conductivity (see Bardeen [4],Chandrasekhar [6],Landau [17],[16],London [19],Mendelsshon [20],Fabrizio,Gentili and Lazzari [10]).Meanwhile,there is an evident similarity between the behavior of superfluids and superconductors.By the way,London claims in [19]§22”...in either case,superconductivity and superfluid helium,the basic equations can be written in the same form”,and Mendelsshon asserts ”However,frictionless flow and persistent currents are not the only features in which He II resembles a superconductor.As at the transi-tion of a metal to the superconductive state,there occurs in helium also a rapiddrop in the entropy.Moreover,superfluid flow,just as a persistent supercurrent,is distinguished by zero entropy”.In view of the apparent analogies betweensuperfluidity and superconductivity,in this paper we present a phase transition model,which use the two fluids Ginzburg-Landau view point,in which the equa-tion governing the motion of superfluid component v s assumes an analogous form as the equation for superconducting electrons.It turns out in our analysis that ∇×v s =0.Accordingly,the equations allow to predict existence of vor-tices,which have been widely studied by several authors (see:[21]cap.6,[1],[2],[3],[5]).Moreover in this paper,we characterize superfluidity as a second order phase transition 1.Thus,our model for superfluidity is able to explain the phase diagram represented in Fig.1,at least in the region close to the λ−line,which is the most significant area.At the same time,it allows to prove the existence of a critical velocity of superflow,beyond which the frictionless flow breaks down.Normal LiquidSolid SuperfluidGasTemperature (K)P r e s s u r e (M P a )16234512345Fig.1.Helium II.Phase diagram.A remarkable feature of our model is the constraint on the rotational motion by means of the equation ∇×v s =v n which relates v s with the normal component of the velocity v n .So that the velocity is defined byv =v n +f 2v s .(1)The formula (1)does not allow to define the superfluids by means of two compo-nents,”the treatment of the liquid as a mixture of normal and superfluid parts is simply a form of words ....Like any description of quantum effects in classical terms,it is not entirely adequate.It does not at all mean that the liquid canactually be separated into parts”[15].Actually as in(1),any superfluid particle is capable of two types of motion simultaneously,corresponding to the energy spectrum of phonons and rotons.”One of these motions is normal.i.e.has the same properties as that of an ordinary viscous liquid;the other is superfluid”[15].In Section2we will examine thermodynamical consistence of the model. Then,in view of the similarity between superfluidity and superconductivity,we will prove existence of vortices,whenever a superfluid,contained in a cylindrical bucket,rotates rapidly around its axis.In particular,in accordance with exper-imental results,we will show that,if the angular velocity is low,the superfluid stays at rest.Instead,when the velocity exceeds a threshold value,there occur vortices,similar to the vortices observed in superconductivity.Moreover,the proposed model allows to explain thermomechanical effect,in which we observe a motion of liquid produced by heat,but in the same direction to heatflux. Finally,we prove the existence of the phenomenon of second sound.In section3,we investigate the problem which arising when theflow is such that we need to consider the material time derivative of the velocities.This study introduces new non-linear terms that increase the complexity of the model and require a suitable change of the previous pattern.In the last part of the paper we study the connection between this model and the turbulence.So that,as observed by Mendelsshon[20]”It is now clear that the dependence of the heat conduction on the heat current originally observed in Cambridge in1937......is evidence of turbulence”.A remarkable feature of our model is the constraint on the rotational motion∇×v s=v n,that relates v s with the normal component of the velocity v n and which provides the behavior of a disordered set of thin vortices.2Afirst model for superfluidityIn this section we shall provide afirst approximate model for the study of superfluidity in a domainΩ⊂R3as a second order phase transition,by means of the Ginzburg-Landau equation∂f∇2f−f(f2−1+u+λp+v2s)(2)κwhere f denotes the order parameter(or phasefield),while p is the pressure,u is the absolute temperature andκ,λare positive constants.As studied in[8],the Ginzburg-Landau equation has to be considered as a newfield equation,that we obtain by the balance law on the structure order(See Appendix).Indeed, following Landau,we suppose that the transition of the HeII from a normal to a superfluid state induces a change in the internal structure order.The phase of this transition is represented by the scalar parameter f∈[−1,1]that is linked with the density n s of the superfluid particles by the formulan s=f2.3Hence the phasefield f2=0denotes the normal state,while f2∈(0,1]describes a superfluid state.In this framework,in equation(2)ifR=u+λp+v2s−1>0,then thefluid is in the normal state,while when R<0the pattern describes the superfluid phase.In this work we do not employ the classical twofluids model which introduces two different velocities and densities,as for a mixture,but we suppose the velocity of any particle composed of two excitements,the normal component v n and the superfluid component v s,such thatv=v n+f2v s.(3) Because superfluidity as well as superconductivity must be studied as a second order phase transition,then under the transition temperature,the phase of some particles f can be still equal to zero.Nevertheless,according as the particles are in the normal phase(f2=0)or in the superfluid one(f2>0),we cannot interpret this different behavior as two differentfluids.Henceforth in this paper we chooseλ=0,and the densityρa positive constant.In addition,in thisfirst approximate model we suppose the motion such that the acceleration a n=∂v n=−∇p−µ∇×∇×v n−µ∇×f2v s+g(4)∂twhere g denotes the external force andµis the viscosity coefficient.Since we have supposed the superfluid as an incompressible material,then the continuity equation provides∇·v n=0(5)Furthermore,we suggest the following equations for the component v s∂v s3ThermodynamicsIn order to obtain the heat equation,let us consider thefirst law of thermody-namics in the form˙E=P f+P v s+h,(10) where E is the total energy and h is the rate at which the heat is absorbed by the material.The internal powers P f,P v s,related to the variables f,v s,are given2byP f=f2t+14 (1−f2)2 t+ff t(u+v2s)(11)P v s=12v2n+14(1−f2)2+12v2n+14(1−f2)2+12See Appendix.5In our model the Fourier theory of heat conduction will not be modified.Ac-cordingly,the constitutive equation relating the heatflux q to the gradient of the temperature,assumes the classical formq=−k(u)∇u,(16)where the conductivity k depends on the absolute temperature.In this frame-work,since the conductivity is very small when the absolute temperature is close to zero,we suppose thatk(u)=k0u,k0>0.(17)The heat balance is expressed by the equationh=−∇·q+r,(18)from which we deduce the entropy equation(see[7])hu2q·∇u=−∇·qu.(19)Therefore,K=hu2q·∇u(20)can be identified with the rate(per unit volume)at which entropy is absorbed, while q/u and r/u represent the entropyflux and the entropy supply.Then equation(19)describes the entropy balance[7],[11].Because of the non-local constitutive model given by system(2-7),we can state the following(see[7], [9])Second law of thermodynamics(non-local form).There exists a function η(u,f),called entropy function,such that∂ηu −1udu−G(f).(22)where G(f)=1u u t−˙G(f)=∇·(f2v s)+k0∇2u+rNow,let us evaluate the free energyψdefined byψ=e−uη.From expressions(14)and(22)of the internal energy and the entropy,it followsthatψ=14(1−f2)2+uG(f)+(1−u) c(u)∂t=1∂t=−∇φ−µ∇×∇×v s−µf2v s+∇u+µh(27)∇·f2v s=−τf2φ(28) c(u)∂t−f∂fu(29)Moreover,we associate to system(26-29)the boundary conditions on the domain Ω∇f·n|∂Ω=0,(∇×v s)×n|∂Ω=ω(30)v s·n|∂Ω=0,v n|∂Ω=0,u|∂Ω=u b(31) 7It is worth noting that,when f=0,in view of(3),v=v n and equation (6)is inessential,since the motion is described by means of the Navier-Stokes equations∂v∂t=−∇φ−µ∇×∇×v s−∇u+µh,(33) while(28)is satisfied identically.The temperature u is univocally determined through(29),endowed with suitable initial and boundary conditions.However, since equation(33)is no longer coupled with(28),uniqueness of solutions cannot be proved.For this reason,it is necessary a choice of a gauge,which consists in decomposing the velocity v s asv s=A+∇ϕ,or∇×A=v nThe vector A is specified byfixing a value for its divergence and choosing suit-able boundary conditions.By analogy with superconductivity,we will choose London’s gauge∇·A=0,A·n|∂Ω=0.Therefore,from(33)we deduce∂Aκ∇2f−f(f2−1+˜u+γv2s)=0(35)−∇φ−µ∇×∇×v s−µf2v s=0(36)∇·f2v s+τf2φ=0(37) together with the boundary conditions∇f·n|∂Ω=0,(∇×v s)×n|∂Ω=ω,v s·n|∂Ω=0.(38)If the angular velocity is below a critical valueωc1,depending on the geometryof the problem,the superfluid component stays at rest,with the exception of8a very small penetration depth close to the boundary3.This equilibrium state is called Landau’s state.The phenomenon is analogous to the diamagnetism shown in superconductivity by the Meissner effect,when for a second typesuperconductor the magneticfield is lower that a givenfield H c1.When theangular velocity is greater thatωc1,we observe the creation of vortex lines in anexactly similar way as in superconductivity.Since,problem(35)-(38)is identical to the Ginzburg-Landau system in stationary case,studied by Abrikosov[1],for superconductors of type II.Therefore,whenω>ωc1with the same analysis,we may prove the existence of vortex lines in a superfluid.Moreover,as observed in[21],when the rotation velocity exceeds a second threshold valueωc2,owing to increase of vortices and to the overlapping of their cores,superfluidity is destroyed.Even this effect is analogous with the corresponding phenomena in superconductivity and it can be explained by(34).Indeed,for sufficiently large values of v s we have˜u+v2s>1,so that thefluid is in the normal phase.In every practical situations,angular velocitiesωsatisfy the conditionω<ωc2.Moreover,thefirst critical velocity is such thatωc1≪1.Another important phenomenon occurring in superfluidity,it is the thermome-chanical effect according to which the particles of the superfluidflow in the same direction to heatflux.This phenomenon,which contradicts the classical behavior of thermo-fluid mechanics,can be explained by means of equation(6). Indeed in(6)the sign of∇u is the same as the acceleration v st of the superfluid∂rkTherefore,from(36)we obtain∇φ(r)=0d2vθrdvθI1(R)where I1is the modified Bessel functions of imaginary argument.Because of the behavior of I1(r)for r<R,the velocity vθ(r)will be confined to a thin layer next to the boundary.9component.This means that the gradient of the temperature causes an increase of the velocity v s in the same direction.Moreover,to understand better the phenomenon,we have to observe that in the thermo-mechanical effect the tube may be straight and very narrow.As a consequence,the motion of the super-fluid phase(f=0)through the tube is required to satisfy∇×v s=v n=0 and hence the velocity is given by v=f2v s.In other words,since the normal component is absent,the motion is necessarily that of the superfluid component. This in turn allows for theflow through very narrow tubes.It follows from(6) that,in stationary conditions,the motion is governed by the equation−∇φ−f2v s+∇u+h=0,(39) which,consistent by(39),shows that the term∇u favors the particle dis-placement toward regions at a higher temperature.Moreover,because of the narrowness of the tube,only superfluid particles(f=0)are allowed toflow in. Instead the normal component undergoes to a viscous resistance which forbids theflow to cross the tube.Finally,we study the second sound effect.For this problem,let us suppose f=const.and the supplies h=0,r=0.Then,from(27)-(29)it follows that∇·v st=−∇2φ−µ∇·f2v s+∇2u(40)αu tt=∇·(f2v st)+k0∇2u t(41) whereα=c(u)dt=∂Fdt which we denote only with˙F.In addition we suppose thefluid incompress-ible with a given constant densityρ=1.Then,on the domainΩ,the differential system assumes the new form˙f=1˙v s=−∇φ−µ∇×v n−µf2v s+∇u+µh(44)∇·f2v s=−τf2φ(45) Because of the use of the material time derivative,even if we supposeµ∇×h=g−∇p,it is not possible to prove that from equations(43)and(44)we obtain equation(4).Otherwise,if we consider the curl of the equation(44)and compare this new equation with(43),we have the restriction∇×˙v s=˙v n(46) Moreover,the internal powers P f,P v s,assume the analogous formP f=˙f2+14 (1−f2)2 ·+f˙f(u+v2s)(47)P v s=µ∇×v n·˙v s+µ−1(˙v s+∇φ−∇u)2+f2v s·˙v s+u∇·f2v s+τf2φ2(48) In particular,from(43-44)we have0= Ω(12 v2n ·−∇×v n·˙v s)dx(49)Hence,if(9)holds the identity(49)is satisfied,but the vice versa is not true. However,from(49)and(31)we obtain the restrictionΩ( 12κ (∇f)2 ·+14(1−f2)2+1udu−G(f).(54) 11and under the same approximations,the following heat equationc(u)u,(55) From expressions(15)and(54)of the internal energy and the entropy,it followsthatψ=14(1−f2)2+uG(f)+(1−u) c(u)∂t=1∂t−˙G(f)=∇·(f2v s)+k0∇2u+ru=c0positive constant.Thissystem is completed by the boundary conditions(30-31).12Now,let us consider the phenomenon of turbulence in viscousfluids.As for a superfluid we suppose the velocity given by(3).While,we suggest for the differential problem afirst order phase transition model by the following system˙f=12(N2R F′(f)+v2s G′(f))(63)˙v n=−∇p−µ∇×∇×v n−µ∇×G(f)v s+g(64)∇×˙v s=˙v n,∇·v n=0(65)˙v s=−∇φ−µ∇×v n−µG(f)v s+µh(66)∇·G(f)v s=−νG(f)φ(67) where g and h are related by(8),N R is a constant related with the Reynolds number andνa positive constant.Moreover,because of thefirst order phase transition described by the system(63-67),the functions F(f)and G(f)are now given by the following fourth order polynomialsF(f)=f43,G(f)=f43+f22κ (∇f)2 ·+N R˙F(f)+˙G(f)v2s(69)P v s=G(f)v s·˙v s+µ−1(˙v s+∇φ)2+12 v2n ·(71)For this isothermal problem the laws of thermodynamics are given by the followingDissipation Principle.There exists a functionalψ(f,v s),called free en-ergy,such that˙ψ≤˙f2+12κ(∇f)2+N R F(f)136AppendixIn many natural phenomena,as phase transitions,chemical reactions,biological (processes)models,we can observe a natural evolution toward change of ma-terial structure order.We suggest that this behavior is related with a natural process which we may represent as a balance law on the structure order and it will be given as a function of order parameter f.Moreover,as for the otherfield equations,to this new law we may connect an internal power,which must be considered in the energy balance law.In this framework the structure order is a new form of energy,because during the transformation we observe a variation of the structural energy.Actually,if we consider a phase transition we no-tice a transformation from a less ordered material structure to a more ordered one or vice versa(see[8],[13]).Moreover,below a critical temperature,the structure order of many materials is greater then above.We meet,analogous behaviors,during biological precesses and chemical reactions,always connected with structure order variations.In order to obtain a balance law on the structure order.Consider a body B,for any sub-body S⊂B,we denote with S i(S)the rate at which structure order is absorbed by the material per unit time,given byS i(S)= Sρkdv(72) whereρis the density and k the internal specific structure order.While,the external order structure S e(S)assumes the formS e(S)= ∂S p·n ds+ Sρδdv(73) where the vector p denotes the order structureflux andδthe structure order supply.Hence,the order structure balance is given for any S⊂B by the equalitySρkdv= ∂S p·n ds+ Sρδdv(74) In local form the integral equality(74)implies the identityρk=∇·p+ρδ(75) In any model of phase transitions the functions k and p are usually defined byk=f t+F′(f)+mG′(f)(76)p=14−f22(78)14while m=u+λp+v2s,from which we obtain by(75),(76)and(77)the equation1ρf t=[11]M.Fr´e mond,Non-smooth thermomechanics.Springer-Verlag,Berlin(2002).[12]A.P.Finne,T.Araki,R.Blaauwgeers and V.B.Eltsov,An intrinsicvelocity-independent criterion for superfluid turbulence-Nature,2003 [13]E.Fried and M.Gurtin,Continuum theory of thermally induced phasetransitions based on a order parameter,Physica D68,(1993)326-343. [14]V.L.Ginzburg and ndau,On the theory of superconductivity,Zh.Eksp.Teor.Fiz.20,(1950)1064–1082.[15]E.M.Lifsic and L.P.Pitaevskii,Statistical Physics,Part2:Volume9,Pergamon Press.Oxford(1980).[16]ndau,Unbranched model of intermediate state,Phys.Z.Sowjet.11,(1937)129–138.[17]ndau,On the theory of superfluidity of helium II,SR.5,(1941)71-77.[18]ndau and E.M.Lifshitz,Fluid Mechanics.Pergamon Press.Oxford(1987).[19]F.London,Superfluids II,John Wiley&Sons,New York(1950).[20]K.Mendelssohn,Liquid Helium,in S.Flugge(ed.),Handbuch Physik,Springer Verlag,Berlin1956,370–461[21]D.R.Tilley,J.Tilley,Superfluidity and superconductivity,Graduate stu-dent series in physics138,Bristol(1990).[22]M.Tinkham,Introduction to superconductivity,McGraw-Hill,New York(1975).16。