双柏县2017年八年级下期末教学质量监测数学模拟试卷含答案(北师大版)

合集下载

【北师大版】八年级数学下期末模拟试题(及答案)

【北师大版】八年级数学下期末模拟试题(及答案)

一、选择题1.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定 2.如图,平行四边形ABCD 的周长为36cm ,若点E 是AB 的中点,则线段OE 与线段AE的和为( )A .18cmB .12cmC .9cmD .6cm3.如图,在Rt △ABC 中,∠B=90°,AB=8,BC=5,点E 是AB 上的点,AC 为平行四边形AECF 的对角线,则EF 的最小值是( )A .5B .6C .8D .104.已知关于x 的分式方程422x k x x -=--的解为正数,则k 的取值范围是( ) A .80k -<<B .8k >-且2k ≠-C .8k >-且2k ≠D .4k <且2k ≠-5.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( )A .1010302x x -=B .102010602x x+=C .1010302x x +=D .102010602x x -= 6.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b + A .4B .3C .2D .1 7.多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),则m 的值是( )A .4B .﹣4C .10D .﹣10 8.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+C .()2484x x x +-D .()241x x - 9.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .233m m m m ⎛⎫-=- ⎪⎝⎭C .243(4)3a a a a --=--D .22()()a b a b a b -=+-10.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .11.在平面直角坐标系中,将点A (m -1,n +2)先向右平移3个单位,再向上平移2个单位,得到点A ′.若点A ′位于第二象限,则m 、n 的取值范围分别是( )A .m <0,n >0B .m <0,n <-2C .m <-2,n >-4D .m <1,n >-2 12.数学课上,探究角的平分线的作法时,小宇用直尺和圆规作∠AOB 的平分线,方法如下:如图,(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ; (2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C ;(3)画射线OC .射线OC 即为所求. 其中的道理是,作出△OMC ≌△ONC ,根据全等三角形的性质,得到∠AOC =∠BOC ,进而得到OC 是∠AOB 的平分线. 其中,△OMC ≌△ONC 的依据是( )A .SSSB .SASC .ASAD .AAS二、填空题13.正五边形每个内角的度数是_______. 14.如图,已知矩形ABCD 中,6cm AB =,8cm BC =,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于_____cm .15.已知5a b +=,6ab =,b a a b +=______. 16.若关于x 的分式方程233x m x x=---的解为正数,则常数m 的取值范围是______. 17.分解因式:324x xy -=___________________________________.18.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).19.不等式21302x --的非负整数解共有__个. 20.如图,在等腰直角三角形ABC 中,90,A AC AB ∠=︒=.BD 为ABC ∠的平分线,交AC 于点D ,若BCD △的面积为2,则ABD △的面积为____________.三、解答题21.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2、C 2的坐标;(3)在平面内有一动点P ,使得以P 、A 、B 、C 为顶点的四边形是平行四边形,满足条件的点P 的个数为_______.22.武汉新冠疫情爆发,湖北物资告急,岳阳主动援助一批口罩.现有甲、乙两种货车,已知每辆甲种货车比乙种货车多装20箱口罩,且甲货车装1000箱口罩所用车辆与乙货车装800箱口罩所用车辆相同.(1)求甲、乙两种货车每辆车分别可装多少箱口罩?(2)若每一辆甲货车运送一趟运费为300元,每一辆乙货车运送一趟运费为200元,现共有甲、乙两种货车共10辆,要求总运费不超过2600元,请问最多可以安排几辆甲货车? 23.分解因式:454x x -+24.如图,在边长为1的小正方形网格中,ABC ∆的顶点都在格点上,建立适当的平面直角坐系xOy ,使得点A 、B 的坐标分别为()2,3、()3,2.(1)画出平面直角坐标系;(2)画出将ABC ∆沿y 轴翻折,再向左平移1个单位长度得到的A B C ''';(3)点()P m n ,是ABC ∆内部一点,写出点P 经过(2)中两次变换后的对应点P 的坐标__________.25.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.26.如图是由边长为1的小正方形构成的网格(下面所画三角形顶点都在小正方形顶点上).(1)在图1中画出以AB 为直角边的等腰直角三角形ABC ,并且直接写出线段BC 的长度;(2)在图2中画出一个以DE 为一腰的等腰三角形DEF ,使S △DEF =8.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】如图(见解析),过点M 作//MN BC ,交CD 于点N ,先根据平行四边形的判定可得四边形AMND 和四边形BMNC 都是平行四边形,再根据平行四边形的性质即可得.【详解】如图,过点M 作//MN BC ,交CD 于点N ,四边形ABCD 是平行四边形,//,//AB CD AD BC ∴,////AD BC MN ∴,∴四边形AMND 和四边形BMNC 都是平行四边形,12,DMN CMN S S SS ∴==, 12DMN CMN S S SS S ∴=+=+, 故选:A .【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键. 2.C解析:C【分析】结合已知证明EO 是△ABC 的中位线,进而得出答案.【详解】解:∵平行四边形ABCD 的周长为36cm ,∴AB+BC =18cm ,∵四边形ABCD 是平行四边形,∴O 是AC 的中点,又∵点E 是AB 的中点,∴EO 是△ABC 的中位线,∴EO =12BC ,AE =12AB , ∴AE+EO =12×18=9(cm ). 故选:C .【点睛】本题考查了平行四边形的性质和中位线定理,熟知“平行四边形的对角线互相平分”和“三角形的中位线平行于第三边,且等于第三边的一半”是解题关键.3.A解析:A【分析】由平行四边形的对角线互相平分、垂线段最短知,当OE ⊥AB 时,EF 取最小值.【详解】解:∵在Rt △ABC 中,∠B=90°,∴BC ⊥AB ,∵四边形AECF 是平行四边形,∴OE=OF ,OA=OC ,∴当OE 取最小值时,线段EF 最短,此时OE ⊥AB ,∴OE 是△ABC 的中位线,∴OE=12BC=2.5, ∴EE=2OE=5,∴EF 的最小值是5.故选:A .【点睛】本题考查平行四边形的性质,以及垂线段最短,解题关键是熟练掌握 “平行四边形的对角线互相平分”的性质.4.B解析:B【分析】令分母等于0解出增根,去分母后,把增根代入求出k 值;去分母解出x ,因为解为正数,从而求出k 的范围【详解】解:令x-2=0,解得分式方程的增根是2去分母得:()42x x k --=- 代入增根2,解得k=−2去分母解得x=k+83∵分式方程解为正数 ∴k+803> 解得k 8>- 综合所述k 的取值范围是:8k >-且2k ≠-故答案选B【点睛】本题主要考察了分式方程的增根,一元一次不等式等知识点,准确记住增根的解题步骤是解题关键.5.D解析:D【分析】设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,由题意得: 102010602x x-=, 故选:D .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.6.A解析:A【分析】分母是整式且整式中含有字母,根据这点判断即可.【详解】 ∵3x 中的分母是3,不含字母, ∴3x 不是分式; ∵1n 中的分母是n ,是整式,且是字母, ∴1n 是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b +中的分母是15,不含字母, ∴15a b +不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y 是分式; ∵()22ab a b +中的分母是2()a b +,是整式,含字母a ,b , ∴()22ab a b +是分式;故选A .【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键. 7.B解析:B【分析】直接利用因式分解法得出m 与3,-7的关系.【详解】解:∵多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),∴m =﹣7+3=﹣4.故选:B .【点睛】此题主要考查了因式分解法分解因式,正确掌握常数项与一次项系数的关系是解题关键. 8.D解析:D【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答.【详解】解:32484x x x -+=2421)x x x -+(=()241x x -,故选:D .【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键. 9.D解析:D【分析】直接利用因式分解的定义得出答案.【详解】A 、2(3)(3)9a a a +-=-,是整式乘法,故此选项不合题意;B 、233m m m m ⎛⎫-=- ⎪⎝⎭,不符合因式分解的定义,故此选项不合题意; C 、243(4)3a a a a --=--,不符合因式分解的定义,故此选项不合题意;D 、22()()a b a b a b -=+-是分解因式,符合题意;故选:D .此题主要考查了因式分解的意义,正确分解因式是解题关键.10.B解析:B【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形不是中心对称图形,故不符合题意;D、是轴对称图形不是中心对称图形,故不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;11.C解析:C【分析】根据点的平移规律可得向右平移3个单位,再向上平移2个单位得到(m-1+3,n+2+2),再根据第二象限内点的坐标符号可得.【详解】点A(m-1,n+2)先向右平移3个单位,再向上平移2个单位得到点A′(m+2,n+4),∵点A′位于第二象限,∴2040 mn+<⎧⎨+>⎩解得:m<-2,n>-4,故选C.【点睛】此题主要考查了坐标与图形变化-平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.12.A解析:A【分析】根据角平分线的作图方法解答即可;【详解】根据角平分线的作法可知,OM=ON,CM=CN,又∵OC 是公共边,∴△OMC ≌△ONC 的根据是“SSS”,故选:A .【点睛】本题考查了作图-基本做图,全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.二、填空题13.【分析】先求出正n 边形的内角和再根据正五边形的每个内角都相等进而求出其中一个内角的度数【详解】解:∵正多边形的内角和为∴正五边形的内角和是则每个内角的度数是故答案为:【点睛】此题主要考查了多边形内角 解析:108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.14.20【分析】连接ACBD 根据三角形的中位线求出HGGFEFEH 的长再求出四边形EFGH 的周长即可【详解】如图连接ACBD 四边形ABCD 是矩形AC =BD =8cmEFGH 分别是ABBCCDDA 的中点HG解析:20【分析】连接AC 、BD ,根据三角形的中位线求出HG ,GF ,EF ,EH 的长,再求出四边形EFGH 的周长即可.【详解】如图,连接AC 、BD ,四边形ABCD 是矩形,AC =BD =8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,HG =EF =12AC =4cm ,EH =FG =12BD =4cm , 四边形EFGH 的周长等于4+4+4+4=16cm.【点睛】本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半. 15.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯= 136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 16.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条 解析:6m <且3m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:∵233x m x x=---, ∴62x x m =--, ∴63m x -=, ∵方程的解为正数,则603m x -=>, ∴6m <, ∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.17.【分析】先提取公因式再用平方差公式分解即可【详解】解:x3-4xy2=x(x2-4y2)=x(x+2y)(x-2y)故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式分解因式要先提取公因解析:()()22x x y x y +-【分析】先提取公因式,再用平方差公式分解即可.【详解】解:x 3-4xy 2,=x(x 2-4y 2),=x(x+2y)(x-2y),故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式,分解因式要先提取公因式,再运用公式;注意:分解要彻底. 18.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.19.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.20.【分析】由等腰直角三角形的性质得到然后利用三角形的面积公式即可求出答案【详解】解:作DE⊥BC垂足为E如图:∵为的平分线∴∵∴△ABC是等腰直角三角形∴∵的面积为2∴∴∴∴的面积为:;故答案为:【点【分析】由等腰直角三角形的性质,得到2BC AB,然后利用三角形的面积公式,即可求出答案.【详解】解:作DE ⊥BC ,垂足为E ,如图:∵BD 为ABC ∠的平分线,∴AD DE =,∵90,A AC AB ∠=︒=,∴△ABC 是等腰直角三角形, ∴2BC AB ,∵BCD △的面积为2,∴122BC DE •=, ∴1222DE •=, ∴122AB DE •= ∴ABD △的面积为:122AB DE •= 2【点睛】本题考查了角平分线的性质,等腰直角三角形的性质,以及三角形的面积公式,解题的关键是熟练掌握角平分线的性质定理和等腰直角三角形的性质,正确得到2BC AB .三、解答题21.(1)见解析;(2)画图见解析;B 2(4,2-),C 2 (1,3-);(3)3【分析】(1)分别作出A 、B 、C 的对应点A 1、B 1、C 1即可;(2)分别作出B ,C 的对应点B 2、C 2即可;(3)分别作出P 的位置即可.【详解】解:(1)如图:(2)如图,可以得到B 2(4,2-),C 2(1,3-);(3)如图,满足条件的P 点有3个.【点睛】本题考查的是图形的变换以及平行四边形的存在性,注意掌握旋转和平移作图的知识点和正确认识平行四边形即可.22.(1)甲、乙两种货车每辆车分别可装100箱口罩和80箱口罩;(2)最多可以安排6辆甲货车.【分析】(1))设乙货车每辆车可装x 箱口罩,由题意可以列出方程100080020x x =+,求x 的值并检验即可;(2)设可以安排a 辆甲货车,根据题意可以列出()300200102600a a +-≤,求a 的取值即可;【详解】解:(1)设乙货车每辆车可装x 箱口罩, 由题意得:100080020x x=+ 解得x 80=,经检验x 80=是原方程的解,且符合题意∴20100x +=答:甲、乙两种货车每辆车分别可装100箱口罩和80箱口罩;(2)设可以安排a 辆甲货车,∴()300200102600a a +-≤解得6a ≤答:最多可以安排6辆甲货车.【点睛】本题考查了分式方程的应用问题,解题的关键在于读懂题意并列出方程进行求解即可;23.()()3214x x x x -++-【分析】先将多项式减去2x 再加上2x ,然后利用分组分解法、平方差公式、十字相乘法和提取公因式法因式分解即可.【详解】解:454x x -+=42254x x x x -+-+=()()()22114xx x x -+-- =()()()()21114x x x x x -++--=()()()2114x x x x ⎡⎤-++-⎣⎦=()()3214x x x x -++-. 【点睛】此题考查的是因式分解,掌握利用添项法、分组分解法、平方差公式、十字相乘法和提取公因式法因式分解是解题关键.24.(1)见解析;(2)见解析;(3)()1,m n --【分析】(1)根据A 、B 两点坐标,确定平面直角坐标系即可;(2)分别作出A 、B 、C 三点沿y 轴翻折,再向左平移1个单位长度得到A B C '''、、,顺次连接A B C '''、、,即可得到A B C ''';(3)根据点的坐标沿着y 轴翻折以及点的坐标平移规律,即可得出答案.【详解】解:(1)如图所示:该平面直角坐标系为所求作;(2)如图所示: A B C '''为所求作;(3)点()P m n ,是ABC ∆内部一点,写出点P 经过(2)中两次变换后的对应点P 的坐标为:()1,m n --,故答案为:()1,m n --.【点睛】本题考查了平面直角坐标系中图形的变换,掌握图形变换是解题的关键.25.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .26.(1)见解析,52;(2)见解析【分析】(1)利用网格即可画出以AB 为直角边的等腰直角三角形△ABC ;由勾股定理求出线段BC 的长度即可;(2)作EF=DE ,连接DF 即可.【详解】解:(1)如图1,等腰直角三角形ABC 即为所求∵227152BC =+=,22345AB =+=,22345AC =+=∴222AB AC BC +=,AB AC =∴△ABC 为等腰直角三角形;(2)如图,△DEF 即为所求作的等腰三角形,∵DF=4,EG=4,1144822DEF S DF EG ∆=⨯=⨯⨯= 【点睛】本题考查了作图-应用与设计作图,等腰三角形的判定,勾股定理,等腰直角三角形,解决本题的关键是综合运用以上知识.。

北师大版八年级下册期末模拟考试数学试卷(含答案解析).doc

北师大版八年级下册期末模拟考试数学试卷(含答案解析).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】八年级期末质量检测数学(BS)本试卷满分120分,时间90分钟.一、 选择题(共8小题,每小题3分,共24分) 1.若x y >,则下列式子中错误的是( ) A.33x y ->- B.33x y> C.33x y +>+D.33x y ->-2.下列因式分解正确的是( ) A.()()2444x x x -=+-B.()22211x x x +-=- C.()()222211x x x -=+-D.()22212x x x x -+=-+3.如图,ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件可以使ABE CDF ∆≅∆,则下列条件不成立的是( )A.AE CF =B.BE FD =C.BF DE =D.12∠=∠4.下列式子中,x 可以取2和3的是( )A.242x x -- B.13x - 2x - 3x -5.若关于x 的方程4233x mx x +=+--有增根,则m 的值是( ) A.7B.3C.5D.06.如图,如果把ABC ∆的顶点A 先向下平移3格,再向左平移1格到达A '点,连接A B ',则线段A B '与线段AC 的关系是( )A.垂直B.平行C.平分D.平分且垂直7.如图,直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +<-的解集在数轴上表示正确的是( )A. B.C.D.8.如图,ABCD 中,延长AB 到E ,使BE AB =,连接DE 交BC 于F ,则下列结论不一定成立的是( )A.E CDF ∠=∠B.EF DF =C.2AD BF =D.2BE CF =第Ⅱ卷(非选择题,共96分)二、填空题(共7小题,每小题3分,共21分)9.铁路部门规定旅客免费携行李箱的长宽高之和不超过160cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为20cm ,长与宽之比为3:2,则该行李箱宽度的最大值是_______.10.把多项式25x mx ++的因式分解成()()51x x ++,则m 的值为________.11.计算:111aa a+--的结果是________. 12.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是________.13.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()4,3D 在边AB 上,以C 为中心,把CDB ∆旋转90︒,则旋转后点D 的对应点D '的坐标是________.14.如图,ABC ∆中,AB AC =,120A ∠=︒,AB 的垂直平分线分别交BC 、AB 于M 、N ,若1MN =,则BC =________.15.如图,ABC ∆中,AB AC =,40A ∠=︒,点D 为AC 边上一动点(不与点A 、C 重合),当BCD ∆为等腰三角形时,ABD ∠的度数是________.三、解答题(共9小题,共75分)16.先化简,再求值:215816111x x x x x -+⎛⎫+-÷⎪--⎝⎭,其中2x =-. 17.如图,已知ABC ∆的三个顶点的坐标分别为()2,3A -、()6,0B -、()1,0C -.(1)请直接写出点A 关于原点对称的点的坐标;(2)将ABC ∆绕坐标原点O 逆时针旋转90︒得到111A B C ∆,画出111A B C ∆,直接写出点A 、B 的对应点的点1A 、1B 坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.18.解方程:()()31112xx x x-=--+.19.解不等式组3281522x xx x--≤⎧⎪⎨->⎪⎩①②并求其整数解的和.解:解不等式①,得_______;解不等式②,得________;把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集为________,由数轴知其整数解为________,和为________.在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结...合的思想....”,同学们要善于用数形结合的思想.......去解决问题.20.已知:如图ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形找出一对全等三角形:∆_______≅∆_______,并加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?21.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅又单独整理了20分钟才完成任务. (1)求王师傅单独整理这批实验器材需要多少分钟;(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?22.如图,在ABC∆中,90ACB∠=︒,30A∠=︒,AB的垂直平分线分别交AB和AC于点D、E.求证:13CE AC=.23.如图,ABC ∆,D 、E 分别是AB 、AC 的中点,图①是沿DE 将ADE ∆折叠,点A '落在BC 上,图②是绕点E 将ADE ∆顺时针旋转180︒.图①图②(1)在图①中,判断DBA '∆和ECA '∆形状.(填空)_____________________________________________________________________________ (2)在图②中,判断四边形DBA D ''的形状,并说明理由.24.类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整. 已知ABC ∆.图①图②图③(1)观察发现如图①,若点D 是ABC ∠和ACB ∠的角平分线的交点,过点D 作//EF BC 分别交AB 、AC 于、E ,F 填空:EF 与BE 、CF 的数量关系是_______________________________________________________.(2)猜想论证如图②,若D 点是外角CBE ∠和BCF ∠的角平分线的交点,其他条件不变,填:EF 与BE 、CF 的数量关系是_______________________________________________________.(3)类比探究如图③,若点D 是ABC ∠和外角ACM ∠的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.八年级第一学期期末质量检测参考答案部分一、选择题 1-5:DCACA6-8:DCD二、填空题 9.56cm 10.611.1-12.913.()1,0-或()1,814.615.15︒或30︒二、解答题 16.解:原式()()()21115114x x xx x +---=⋅=--()()()24414144x x xx x xx +--+⋅=---. 当2x =-时,原式()241423-+==--.17.解:(1)()2,-3 (2)()13,2A --,()10,6B -(3)()5,3--,()7,3-,()3,318.解:去分母,得()()()2123x x x x +--+=,去括号,得22223x x x x +--+=,移项并合并同类项,得1x =.经检验1x =是原分式方程的增根.因此原分式方程无解. 19.解:1x ≥- 2x <12x -≤< 1-,0,1 020.解:(1)DOE BOF四边形ABCD 是平行四边形,∴//AD BC ,∴EDO FBO ∠=∠.O 是BD 的中点,∴OD OB =.又DOE BOF ∠=∠,∴DOE BOF ∆≅∆.(答案不唯一)(2)BOF ∆可由DOE ∆绕点O 旋转180︒得到. 21.解:(1)设王师傅单独整理这批实验器材需要x 分钟. 根据题意,得1112020140x x ⎛⎫++⋅=⎪⎝⎭,解得80x =.经检验:80x =是原分式方程的解.(2)设李老师至少要工作y 分钟,根据题意,得11304080y ⎛⎫-+≤ ⎪⎝⎭. 解得25y ≥,∴李老师至少要工作25分钟. 22.证明:连接BE ,DE 为AB 边为垂直平分线,∴BE AE =.30A ∠=︒,90ACB ∠=︒,∴60ABC ∠=︒,∴30EBA A ∠=∠=︒,在Rt BCE ∆中,30EBC ABC EBA ∠=∠-∠=︒,∴1122EC BE AE ==, ∴13CE AC =. 23.解:(1)DBA '∆和ECA '∆均为等腰三角形. (2)四边形DBA D ''为平行四边形. 理由:D 、E 分别是AB 、AC 的中点,∴//DE BC ,12DE BC =. 由旋转的性质可知ED DE '=,∴DD BA ''=,∴四边形DBA D ''是平行四边形.24.解:(1)EF BE CF =+(2)EF BE CF =+ (3)不成立.EF BE CF =-.//ED BC ,∴CBD BDE ∠=∠.BD 平分ABC ∠,∴EBD CBD ∠=∠,∴EBD BDE ∠=∠,∴BE DE =.同理:CF DF =,∴EF BE CF =-.中考数学知识点代数式 一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

北师大版八年级数学下学期期末测试题(含答案)

北师大版八年级数学下学期期末测试题(含答案)

第I 卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的. )1.下列方程中是一元二次方程的是+1=0 +y=1 C. x 2+2=0 D.112=+x x2.不等式x+1<0的解集在数轴上表示正确的是( )3.在平面直角坐标系中,点(-2,-a 2-3)一定在A.第一象限B.第二象限C.第三象限D.第四象限4.下列各曲线中不能表示y 是x 函数的是A.5.将直线y=2x-3向右平移2个单位。

再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b 的说法正确的是A.与y 轴交于(0,-5)B.与x 轴交于(2,0)随x 的增大而减小 D. 经过第一、二、四象限6.关于x 的方程x 2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC 的两边长,则△ABC 的腰长为( )或9 或67.如图,四边形ABCD 为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间的关系为A. β= 180-αB. β=180°-α21 C. β=90°-α D.β=90°-α218.如图,在△ABC 中, AB=3, BC=4, AC=5,点D 在边BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A. 29如图,在平面直角坐标系中,已知点A (1, 3), B(n, 3), 若直线y=2x 与线段AB 有公共点,则n 的值不可能是( )B. C. 如图,在△ABC 中,∠C=90° , AC=8,BC=6, 点P 为斜边AB 上一动点,过点P 作PE ⊥AC 于E, PF ⊥BC 于点F ,连结EF ,则线段EF 的最小值为( )B.11. 如图,在平面直角坐标系xOy 中,点A 、C 、F 在坐标轴上,E 是OA 的中点,四边形AOCB 是矩形,四边形BDEF 是正方形,若点C 的坐标为(3,0), 则点D 的坐标为( )A. (1, 3)B. (1,31+)C. (1,3)D. (3,31+)12.如图,正方形ABCD 的边长为6,点E 、F 分别在边AB 、BC 上,若F 是BC 的中点,且∠EDF=45°,则DE 的长为( ) A.3105 B.102 5 D.5310 第11卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把箐案填在答题卡的横线上)13. 2x-3>- 5的解集是_________.14.定义运算a ★b=a- ab,若a=x+1,b=x,a ★b=-3,则x 的值为________.15. 如图,已知EF 是△ABC 的中位线,DE ⊥BC 交AB 于点D ,CD 与EF 交于点G,若CD ⊥AC,EF=8,EG=3,则AC 的长为___________.16. 为方便市民出行,2019 年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类 一日票二日票 三日票 五日票 七日票 单价(元/张) 20 30 40 70 90某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为______元.17. 如图1,边长为a 的正方形发生形变后成为边长为a 的菱形,如果这个菱形的一组对边之间的距离为h,我们把ha 的值叫做这个菱形的“ 形变度”。

北师大版2017-2018学年八年级数学第二学期期末测试题及答案

北师大版2017-2018学年八年级数学第二学期期末测试题及答案

八年级数学教学质量监测第1页(共5页)2017-2018学年八年级数学下册期末测试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。

2.答卷前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点。

3.答Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,答在本试卷上无效。

4.答第Ⅱ卷时,请用直径0.5毫米黑色字迹签字笔在答题卡上各题的答题区域内作 答。

答在本试卷上无效。

第Ⅰ卷 选择题一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................) 1. 不等式212+>+x x 的解集是 A.1>x B.1<x C.1≥x D.1≤x2. 多项式2222y x -分解因式的结果是 A. 2)(2y x +B. 2)(2y x -C. ))((2y x y x -+D. ))((2x y x y -+ 3. 下列图案中,不是中心对称图形的是A .B .C .D .4. 如图,△ABC 中,AB 的垂直平分线DE 交AC 于D ,如果AC =5cm ,BC =4cm ,那么△DBC 的周长是 A. 6 cm B. 7 cmC. 8 cmD. 9 cm5. 要使分式9632++-x x x 有意义,那么x 的取值范围是 A .x ≠3 B .x ≠3且x ≠-3 C .x ≠0且x ≠-3 D .x ≠-3 6.如果关于x 的不等式(a +1) x >a +1的解集为x <1,则a 的取值范围是八年级数学教学质量监测第2页(共5页)A .a <0 B. a <-1 C. a >1 D. a >-1 7. 如图,在平行四边形ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为 A .4 B .3C .52D .2 8. 将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为A .3cmB .6cmC .cmD .cm9. 如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为A. 24B. 36C. 40D. 4810. 如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为 A. x< B. x<3 C. x>D. x>311.已知ba ba ab b a -+=+则,622的值为 A. 2B. 2±C. 2D. 2±12. △ABC 为等腰直角三角形,∠ACB=90°,AC=BC=2,P 为线段AB 上一动点,D 为BC 上中点,则PC+PD 的最小值为A.1+八年级数学教学质量监测第3页(共5页)第Ⅱ卷 非选择题二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上)........... 13. 分解因式:=+-2422x x14.一个多边形的内角和与外角和的比是4:1,则它的边数是 15.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为(第15题图) (第16题图)16.如图,在Rt △ABC 中,∠ABC =90º,AB =BC=ABC 绕点A 逆时针旋转60º,得到△ADE ,连接BE ,则BE 的长是三、解答题(本大题有七道题,其中17题6分,18题7分,19题7分,20题7分,21题7分,22题9分,23题9分,共52分;把解答过程在答题卡上..........) 17.(6分)解分式方程:4161222-=-+-x x x18. (7分)解不等式组⎪⎩⎪⎨⎧-<-+≤-453143)3(265x x x x19. (7分)先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .A B八年级数学教学质量监测第4页(共5页)20. (7分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A 、B 、C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2; (2)计算线段AC 从开始变换到A 1 C 2的过程中扫过区域的面积(重叠部分 不重复计算)21. (7分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,F 是DE 延长线上的点,且EF=DE (1)图中的平行四边形有哪几个?请选择其中一个说明理由(2)若△AEF 的面积是3,求四边形BCFD 的面积22.(9分)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?23.(9分)已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.八年级数学教学质量监测第5页(共5页)八年级数学教学质量监测第6页(共5页)八年级期末数学试卷参考答案及评分标准一、选择题(本题有12小题,每题3分,共36分)二、填空题(本题有4小题,每题3分,共12分.)三、解答题(本大题有七道题,共52分)17. 解:方程两边同时乘以)2)(2(-+x x 得:16)2)(2()2(2=-+--x x x解得x=2-……4分检验:当x=2-时,)2)(2(-+x x =0 ∴x=2-是原方程的增根,原方程无解……6分18. 解:⎪⎩⎪⎨⎧⋯⋯-<-⋯⋯+≤-)2(453143)1()3(265xx x x 解不等式①得:x ≤4 ……2分 解不等式②得:x<2 ……4分 原不等式组的解集为x<2 ……7分19.解:原式a a a a a a a a )2)(2()2)(2(8)2(2-+÷⎥⎦⎤⎢⎣⎡-+--+= ……2分 )2)(2()2)(2(8)2(2-+⋅-+-+=a a aa a a a a222)2()2()2(-+-=a a a 2)2(1+=a 4412++=a a ………5分 0142=++a a 142-=+∴a a …………6分八年级数学教学质量监测第7页(共5页)∴原式31411=+-=…………7分20(1)如图所示:………4分(2)如图:观察可知,线段AC 变换到A 1C 2过程中所扫过部分为两个平行四边形和圆心角为45°扇形,所以扫过区域的面积=4×2+3×2+458360π⨯=14+π ………7分 21、(1)图中的平行四边形有:平行四边形ADCF ,平行四边形BDFC , ……2分理由是:∵E 为AC 的中点, ∴AE=CE , ∵DE=EF ,∴四边形ADCF 是平行四边形, ∴AD ∥CF ,AD=CF , ∵D 为AB 的中点, ∴AD=BD ,∴BD=CF ,BD ∥CF ,∴四边形BDFC 是平行四边形. ……5分 (2)由(1)知四边形ADCF 是平行四边形,四边形BDFC 是平行四边形, ∴△CEF 的面积和△CED 的面积都等于△AEF 的面积为3,∴平行四边形BCFD 的面积是12 ………7分≤1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,∵在△ABM和△FDM中,八年级数学教学质量监测第8页(共5页)八年级数学教学质量监测第9页(共5页),∴△ABM ≌△FDM (ASA ), ∴AB=DF ,∵BE=CE ﹣BC ,DE=EF ﹣DF , ∴BE=DE ,∴△BDE 是等腰直角三角形, ∴∠EBM=45°,∵在等腰直角△CEF 中,∠ECF=45°, ∴∠EBM=∠ECF ,∴MB ∥CF ; ……3分(2)解法一:如右图 ∵CB=a ,CE=2a ,∴BE=CE ﹣CB=2a ﹣a=a , ∵△ABM ≌△FDM , ∴BM=DM ,又∵△BED 是等腰直角三角形, ∴△BEM 是等腰直角三角形, ∴BM=ME=BE=a ;解法二:如答图2a 所示,延长AB 交CF 于点D ,则易知△BCD 与△ABC 为等腰直角三角形, ∴AB=BC=BD=a ,AC=AD=a ,∴点B 为AD 中点,又点M 为AF 中点, ∴BM=DF .分别延长FE 与CA 交于点G ,则易知△CEF 与△CEG 均为等腰直角三角形, ∴CE=EF=GE=2a ,CG=CF=a ,∴点E 为FG 中点,又点M 为AF 中点, ∴ME=AG . ∵CG=CF=a ,CA=CD=a ,∴AG=DF=a ,∴BM=ME=×a=a .……6分(3)证法一:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∴M是AF的中点,∴AM=FM,在△ABM和△FDM 中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,∵在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.证法二:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.八年级数学教学质量监测第10页(共5页)延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.……9分八年级数学教学质量监测第11页(共5页)。

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。

2017-2018学年北师大版八年级下期末测评数学试卷含答案

2017-2018学年北师大版八年级下期末测评数学试卷含答案

期末测评(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C )2.将下列多项式因式分解,结果中不含因式x-1的是(D )A.x 2-1B.x (x-2)+(2-x )C.x 2-2x+1D.x 2+2x+13.(2017·山东泰安中考)如图,在正方形网格中,线段A'B'是线段AB 绕某点逆时针旋转角α得到的,点A'与A 对应,则角α的大小为(C )A.30°B.60°C.90°D.120°4.对分式,当x=-m 时,下列说法正确的是(C )x +m2x -3A.分式的值等于0B.分式有意义C.当m ≠-时,分式的值等于032D.当m=时,分式没有意义325.下列说法不一定成立的是(C )A.若a>b ,则a+c>b+cB.若a+c>b+c ,则a>bC.若a>b ,则ac 2>bc 2D.若ac 2>bc 2,则a>b6.如图所示,在直角△ABC 中,∠BAC=90°,AB=8,AC=6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为(A )A.16B.15C.14D.137.(2017·江苏苏州中考)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为(B )A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF 的两条对角线ME ,NF 交于原点O ,点F 的坐标是(3,2),则点N 的坐标为(A )A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组的整数解有三个,则a 的取值范围是(A ){x >a ,x <3A.-1≤a<0B.-1<a ≤0C.-1≤a ≤0D.-1<a<010.导学号99804153如图所示,在▱ABCD 中,分别以AB ,AD 为边向外作等边△ABE ,△ADF ,延长CB 交AE 于点G ,点G 在点A ,E 之间,连接CG ,CF ,则下列结论不一定正确的是(C )A.△CDF ≌△EBCB.∠CDF=∠EAFC.CG ⊥AED.△ECF 是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a 3b+2a 2b 2+ab 3的值为18 .12.如图所示,在△ABC 中,点D ,E ,F 分别是AB ,BC ,AC 的中点,若平移△ADF ,则图中能与它重合的三角形是△DBE (或△FEC ) (写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA.若PC=4,则PD 的长是2 .14.若关于x 的分式方程=1的解为正数,那么字母a 的取值范围是a>1且a ≠2 .2x -ax -115.一次函数y=kx+b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的不等式kx+b>0的解集为x>-1 .(第15题图)(第16题图)16.如图所示,已知AB=10,点C ,D 在线段AB 上且AC=DB=2;P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是3 .三、解答题(共52分)17.(5分)(2017·天津中考)解不等式组:{x +1≥2, ①5x ≤4x +3. ②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ; (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .x ≥1 (2)x ≤3(3)如图所示.(4)1≤x ≤318.(5分)先化简,再求值:,(x 2-yx -x -1)÷x 2-y 2x 2-2xy +y 2其中x=,y=.26(x 2-y x -x -1)÷x 2-y 2x 2-2xy +y 2=(x 2-y x -x 2x -xx )×(x -y )2(x +y )(x -y )==-.-(x +y )x×x -y x +y x -y x 当x=,y=时,原式=-=-1+.262-62319.导学号99804154(6分)如图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,点B 和点C 重合.求证:四边形ACE'E 是平行四边形.DE 是△ABC 的中位线,∴DE ∥AC ,DE=AC.12∵将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,∴DE=DE',∴EE'=2DE=AC ,∴四边形ACE'E 是平行四边形.20.导学号99804155(6分)(2017·江苏南京中考)如图,在▱ABCD 中,点E ,F 分别在AD ,BC 上,且AE=CF ,EF ,BD 相交于点O ,求证:OE=OF.,连接BE ,DF.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC.∵AE=CF ,∴AD-AE=BC-CF.∴DE=BF ,∴四边形BEDF 是平行四边形.∴OF=OE.BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.导学号99804157(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF ,求证:AE=AD.∵△ABC 是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB ,∴EF ∥DC.∵EF=DC ,∴四边形EFCD 是平行四边形.(2)连接BE.∵BE=EF ,∠EFB=60°,∴△EBF 是等边三角形,∴EB=EF ,∠EBF=60°.∵DC=EF ,∴EB=DC.∵△ABC 是等边三角形,∴∠ACB=60°,AB=AC ,∴∠EBF=∠ACB ,∴△AEB ≌△ADC ,∴AE=AD.24.导学号99804158(9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?设甲工程队每天修路x 千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×,15=15x -0.5解得x=1.5.经检验x=1.5是原方程的解,且x-0.5=1.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。

2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)

2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)

第5题图 2016~2017学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )8. 下列说法中,正确的是( )设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)(1)因式分解 m 3n -9mn . (2)计算 2111a a a a -++-20. (本小题满分8分)(1)解方程 )12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt △ABC 中,∠C =90°,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连结DE .(1)证明DE ∥CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形.一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′25x1=即正方形的边长为中,,=AC= AC=2016—2017学年期末测试八年级数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里。

新教材【北师大版】八年级数学下期末模拟数学试题(含答案)

新教材【北师大版】八年级数学下期末模拟数学试题(含答案)

(新教材)北师大版精品数学资料北师大版八年级数学下册期末模拟数学试题一、选择题(本大题共12题,在每题给出的四个选项中,只有一个是正确的。

请把正确的选项选出来.每题选对得3分,选错、不选或选出的答案超过一个均记零分.)1、下列代数式中,是分式的是( )A.32- B.πxy 2 C.7x D.x+ 652、“x 的2倍与3的差不小于8”列出的不等式是( ) A .832≤-x B .832>-x C .832<-x D .832≥-x3、一次课堂练习,小颖做了如下4道因式分解题,你认为小颖做得不够完整的一题是( )A .))((22y x y x y x -+=-B .222)(2y x y xy x -=+-C .)(22y x xy xy y x -=-D .)1(23-=-x x x x4、如图1,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 米路,却踩伤了花草,真不应该呀.A .2B .4C .5D .6 5、下列说法正确的是( )A 、4的平方根是2B 、式子1-x 中的x 可取0C 、38是无理数D 、立方根等于它本身的数是0,1+,1- 6、在平面直角坐标系中,点(2,-3)关于y 轴对称的点的坐标是( ). A .(-2,-3) B .(2,-3) C .(-2,3) D .(2,3) 7)(A(B(C(D8、函数y ax a =-与a y x=(a ≠0)在同一直角坐标系中的图象可能是( )9、点A 是反比例函数图象上4y x=一点, AB ⊥y 轴于点B ,则△AOB 的面积是( )A 、1B 、2C 、3D 、410、如图2,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A 、51B 、41C 、31D 、10311、如图3已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º 12、.如图,小亮在操场上玩,一段时间内沿M →A →B→M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与x之间ABEDC关系的函数图象是( )二、填空题(本大题共8题,共24分,只要求填写最后结果,每题填对得3分)13、要使x -13-x有意义,则x 的取值范围是 。

北师大版八年级(下)期末考试数学试题(含答案)

北师大版八年级(下)期末考试数学试题(含答案)

北师大版八年级数学第二学期期末综合素质测试试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,计30分)1.在绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是 ( ) A. B. C. D.2.因式(m+2n)(m-2n)是下列哪个多项式分解因式的结果 ( )A.m 2+4n 2B.-m 2+4n 2C.m 2-4n 2D. –m 2-4n 23.如图所示,ΔABC 是等边三角形,且BD=CE ,∠1=15°,则∠2的度数为 ( )A. 15°B. 40°C. 45°D. 60°4.把分式y x y 3+中的x 和y 都扩大2倍,分式的值( )A. 扩大2倍B. 扩大4倍C. 不变D. 缩小2倍5.如图,在ΔAB C 中,AD 是角平分线,DE ⊥AB 于点E ,ΔABC 的面积为10,AB=6,DE=2,则AC 的长是( )A. 6B. 5C. 4D. 3 6.不等式的最大整数解为( )A.0B.4C.6D.77.2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x 人,根据题意,可列方程为( )A.B.C. D. 8.在四边形ABCD 中,AB=CD ,要判定此四边形是平行四边形,还需要满足的条件是( )A.∠A+∠C=180°B. ∠B+∠D=180°C. ∠A+∠B=180°D. ∠A+∠D=180°9.若关于x 的方程0552=--+--xm x x 有增根,则m 的值是 ( )A.-2B. 2C. 5D. 3 10.如图,在□ABCD 中,AC ,BD 为对角线,BC=10,BC 边上的高为6,则图中阴影部分的面积为( ) A. 6 B. 15C. 30D. 60第Ⅱ卷 非选择题(共70分)二、填空题(本大题共6小题,每小题3分,计18分)11.若a >b ,要使ac<bc ,则c________0.12.当x= 时,分式112--x x 值为0. 13.若一个正多边形的每一个外角都是72°,则这个多边形是_________边形.14.如图,已知线段DE 是由线段AB 平移而得,AB=DC=5cm ,EC=6cm ,则ΔDCE 的周长是 cm .15.在平行四边形ABCD 中,若AB :BC=2:3,周长为30cm ,则AB=______cm ,BC= ______cm . 16.三角形的三条中位线的长分别为3,4,5,则此三角形的周长为________.三、解答题(本大题共7小题,计52分)17.(本题8分) 因式分解:(1)x 3-25x (2)-2x 2y+16xy-32y .18.(本题5分) 尺规作图:如图,已知∠AOB 及M 、N 两点.请你在∠AOB 内部找一点P ,使它到这个角两边的距离相等,且到点M 、N 的距离也相等(不写做法,保留作图痕迹).19.(本题8分)解方程: (1) 189-=x x (2) xx x --=+-2132120.(本题7分)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF=DE ,连接BF .求证:BF=DC ;21.(本题8分)化简:(1)21442---a a(2)先化简212)121(2-+-÷+-x x x x ,然后在-2,-1,0,1,2五个数中给x 选择一个合适的数代入求值.22.(本题8分)如图,在□ABCD中,AE平分∠BAD,BE平分∠ABC,且AE、BE 相交于CD上的一点E.求证:AE⊥BE.23.(本题8分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成200万只医用外科口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天生产口罩的数量是乙厂每天生产口罩数量的2倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问甲、乙两厂每天各生产多少万只口罩?八年级数学参考答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10选项 B C D C C C A D D C二、填空题(每小题3分,共18分)11.12.-1 13. 5 14. 1615. 6;9 16. 24三、解答题(本题有7小题,计52分)17.(本题8分)解:(1)=x(x2-25)…………………………………………………………………2分.……………………………………………………4分(2)-2x2y+16xy-32y=-2y(x2-8x+16)………………………………………………………2分=-2y(x-4)2………………………………………………………………4分18、(本题5分)解:.………………………………………………4分如图所示:点P即为所求作的点.………………………………………5分19. (本题8分)解:(1)分式方程两边同乘以得:,…………………2分去括号得:,移项得:,合并同类项得:,…………………………………………………3分经检验:是原分式方程的解,原分式方程的解为;………………………………………………4分 分式方程两边同乘以得:,……………1分 去括号得:, 移项得:, 合并同类项得:,系数化为1得:,…………………………………………………3分 经检验:是原分式方程的增根,原分式方程无解.……………………………………………………4分20.(本题7分)证明:连接DB ,CF ,……………………………………1分∵DE 是△ABC 的中位线,∴CE=BE ,………………………………………………………………3分∵EF=ED ,∴四边形CDBF 是平行四边形,…………………………………………6分∴CD=BF ;…………………………………………………………………7分21.(本题8分)解:(1)原式=)2)(2(2)2)(2(a 4-++--+a a a a ……………………………………2分=)2)(2(a 2-+-a a=2a 1+-……………………………………………………………4分(2)原式=2)1(221--⋅--x x x x ……………………………………………………2分=11-x …………………………………………………………………3分当x=0时,原式=101-=-1…………………………………………………4分 (学生选值只要不是1,2即可)22.(本题8分)证明:四边形ABCD 是平行四边形,, ,…………………………………………………2分平分,BE 平分,,,………………………………………5分,,即.………………………………………………………………8分23.(本题8分)解:乙厂每天生产口罩x 万只,则甲厂每天生产口罩2x 万只,根据题意得:……………………………………………………………1分526060=-x x ,………………………………………………………………4分解得:x=6,………………………………………………………………………6分经检验x=6是原方程的解,且符合题意,∴2x=12答:甲厂每天生产口罩12万只,乙厂每天生产口罩6万只.……………8分。

北师大版八年级下期末测评数学试卷含答案

北师大版八年级下期末测评数学试卷含答案

期末测评(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C)2.将下列多项式因式分解,结果中不含因式x-1的是(D)A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+13.(2017·山东泰安中考)如图,在正方形网格中,线段A'B'是线段AB绕某点逆时针旋转角α得到的,点A'与A对应,则角α的大小为(C)A.30°B.60°C.90°D.120°,当x=-m时,下列说法正确的是(C) 4.对分式2-3A.分式的值等于0B.分式有意义时,分式的值等于0C.当m≠-32时,分式没有意义D.当m=325.下列说法不一定成立的是(C)A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b6.如图所示,在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为(A)A.16B.15C.14D.137.(2017·江苏苏州中考)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为(B)A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为(A)A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组,3的整数解有三个,则a的取值范围是(A)A.-1≤a<0B.-1<a≤0C.-1≤a≤0D.-1<a<010.导学号99804153如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是(C)A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a3b+2a2b2+ab3的值为18.12.如图所示,在△ABC中,点D,E,F分别是AB,BC,AC的中点,若平移△ADF,则图中能与它重合的三角形是△DBE(或△FEC)(写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA.若PC=4,则PD的长是2.=1的解为正数,那么字母a的取值范围是a>1且a≠2.14.若关于x的分式方程2--115.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的不等式kx+b>0的解集为x>-1.(第15题图)(第16题图)16.如图所示,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.三、解答题(共52分)17.(5分)(2017·天津中考)解不等式组:12,①54 3 ②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .x ≥1 (2)x ≤3(3)如图所示.(4)1≤x ≤318.(5分)先化简,再求值:2-- -1 2-2 2-22,其中x= 2,y= 6.2-- -1 2-2 2-22= 2- -2 - ( - )2( )( - )=-( )- =- -. 当x= 2,y= 6时,原式=- 2- 6 2=-1+ 3.19.导学号99804154(6分)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,点B和点C重合.求证:四边形ACE'E是平行四边形.证明∵DE是△ABC的中位线,AC.∴DE∥AC,DE=12∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,∴DE=DE',∴EE'=2DE=AC,∴四边形ACE'E是平行四边形.20.导学号99804155(6分)(2017·江苏南京中考)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.,连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD-AE=BC-CF.∴DE=BF,∴四边形BEDF是平行四边形.∴OF=OE.BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.解(1)如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.导学号99804157(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF,求证:AE=AD.∵△ABC是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB,∴EF∥DC.∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BE=EF,∠EFB=60°,∴△EBF是等边三角形,∴EB=EF,∠EBF=60°.∵DC=EF,∴EB=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.24.导学号99804158(9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?设甲工程队每天修路x千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×1515,-0 5解得x=1.5.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。

2017-2018学年北师大版八年级下期末测评数学试卷含精品解析

2017-2018学年北师大版八年级下期末测评数学试卷含精品解析

期末测评(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C )2.将下列多项式因式分解,结果中不含因式x-1的是(D )A.x 2-1B.x (x-2)+(2-x )C.x 2-2x+1D.x 2+2x+13.(2017·山东泰安中考)如图,在正方形网格中,线段A'B'是线段AB 绕某点逆时针旋转角α得到的,点A'与A 对应,则角α的大小为(C )A.30°B.60°C.90°D.120°4.对分式,当x=-m 时,下列说法正确的是(C )x +m2x -3A.分式的值等于0B.分式有意义C.当m ≠-时,分式的值等于032D.当m=时,分式没有意义325.下列说法不一定成立的是(C )A.若a>b ,则a+c>b+cB.若a+c>b+c ,则a>bC.若a>b ,则ac 2>bc 2D.若ac 2>bc 2,则a>b6.如图所示,在直角△ABC 中,∠BAC=90°,AB=8,AC=6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为(A )A.16B.15C.14D.137.(2017·江苏苏州中考)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为(B )A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF 的两条对角线ME ,NF 交于原点O ,点F 的坐标是(3,2),则点N 的坐标为(A )A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组的整数解有三个,则a 的取值范围是(A ){x >a ,x <3A.-1≤a<0B.-1<a ≤0C.-1≤a ≤0D.-1<a<010.导学号99804153如图所示,在▱ABCD 中,分别以AB ,AD 为边向外作等边△ABE ,△ADF ,延长CB 交AE 于点G ,点G 在点A ,E 之间,连接CG ,CF ,则下列结论不一定正确的是(C )A.△CDF ≌△EBCB.∠CDF=∠EAFC.CG ⊥AED.△ECF 是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a 3b+2a 2b 2+ab 3的值为18 .12.如图所示,在△ABC 中,点D ,E ,F 分别是AB ,BC ,AC 的中点,若平移△ADF ,则图中能与它重合的三角形是△DBE (或△FEC ) (写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA.若PC=4,则PD 的长是2 .14.若关于x 的分式方程=1的解为正数,那么字母a 的取值范围是a>1且a ≠2 .2x -ax -115.一次函数y=kx+b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的不等式kx+b>0的解集为x>-1 .(第15题图)(第16题图)16.如图所示,已知AB=10,点C ,D 在线段AB 上且AC=DB=2;P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是3 .三、解答题(共52分)17.(5分)(2017·天津中考)解不等式组:{x +1≥2, ①5x ≤4x +3. ②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ; (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .x ≥1 (2)x ≤3(3)如图所示.(4)1≤x ≤318.(5分)先化简,再求值:,(x 2-yx -x -1)÷x 2-y 2x 2-2xy +y 2其中x=,y=.26(x 2-y x -x -1)÷x 2-y 2x 2-2xy +y 2=(x 2-y x -x 2x -xx )×(x -y )2(x +y )(x -y )==-.-(x +y )x×x -y x +y x -y x 当x=,y=时,原式=-=-1+.262-62319.导学号99804154(6分)如图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,点B 和点C 重合.求证:四边形ACE'E 是平行四边形.DE 是△ABC 的中位线,∴DE ∥AC ,DE=AC.12∵将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,∴DE=DE',∴EE'=2DE=AC ,∴四边形ACE'E 是平行四边形.20.导学号99804155(6分)(2017·江苏南京中考)如图,在▱ABCD 中,点E ,F 分别在AD ,BC 上,且AE=CF ,EF ,BD 相交于点O ,求证:OE=OF.,连接BE ,DF.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC.∵AE=CF ,∴AD-AE=BC-CF.∴DE=BF ,∴四边形BEDF 是平行四边形.∴OF=OE.BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.导学号99804157(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF ,求证:AE=AD.∵△ABC 是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB ,∴EF ∥DC.∵EF=DC ,∴四边形EFCD 是平行四边形.(2)连接BE.∵BE=EF ,∠EFB=60°,∴△EBF 是等边三角形,∴EB=EF ,∠EBF=60°.∵DC=EF ,∴EB=DC.∵△ABC 是等边三角形,∴∠ACB=60°,AB=AC ,∴∠EBF=∠ACB ,∴△AEB ≌△ADC ,∴AE=AD.24.导学号99804158(9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?设甲工程队每天修路x 千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×,15x =15x -0.5解得x=1.5.经检验x=1.5是原方程的解,且x-0.5=1.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。

【最新】2017-2018学年北师大版八年级数学下学期期末模拟考试试卷及答案

【最新】2017-2018学年北师大版八年级数学下学期期末模拟考试试卷及答案

2017-2018学年度八年级(下)期末数学模拟试卷一、选择题(每小题3分,共30分)1.已知?ABCD的周长为32,AB=4,则BC=()A.4B.12 C.24 D.282.分式的值为0,则()A.x=﹣3 B.x=±3 C.x=3 D.x=03.下列从左到右的变形中,是因式分解的是()A.x2﹣6x+9=x(x﹣6﹣9)B.(a+2)(a﹣2)=a2﹣4C.2a(b﹣c)=2ab﹣2bc D.y2﹣4y+4=(y﹣2)24.下列说法中,错误的是()A.不等式x<3有两个正整数解B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个5.如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点7.下列变形正确的是()A.B.C.D.8.如图,平行四形ABCD中,∠A=100°,则∠B+∠D的度数是()A.80°B.100°C.160°D.180°9.若关于x的方程=有增根,则m的值为()A.3B.2C.1D.﹣110.如图,在?ABCD中,BC=7,CD=5,∠D=50°,BE平分∠ABC,则下列结论中不正确的是()A.∠C=130°B.A E=5 C.E D=2 D.∠BED=130°二、填空题(每小题3分,共24分)11.使式子1+有意义的x的取值范围是.12.若9x 2+kx+16是一个完全平方式,则k的值是或.13.如果一个多边形的内角和是其外角和的一半,那么这个多边形是边形.14.如图方格纸中△ABC绕着点A逆时针旋转度,再向右平移格可得到△DEF.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.。

【北师大版】初二数学下期末模拟试卷(带答案)(1)

【北师大版】初二数学下期末模拟试卷(带答案)(1)

一、选择题1.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解;(2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和;(4)多边形内角和等于360︒;(5)一组数据1,2,3,4,5的众数是0A .0个B .1个C .2个D .3个 2.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差 3.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A .众数是8B .中位数是8C .平均数是8.2D .方差是1.2 4.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S 2乙,则下列说法正确的是( ) A .S 2甲<S 2乙B .S 2甲=S 2乙C .S 2甲>S 2乙D .无法比较S 2甲和S 2乙的大小 5.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 6.已知A B ,两地相距240千米.早上9点甲车从A 地出发去B 地,20分钟后,乙车从B 地出发去A 地.两车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示,则下列描述不正确的是( )A .甲车的速度是60千米/小时B .乙车的速度是90千米/小时C .甲车与乙车在早上10点相遇D .乙车在12:00到达A 地 7.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,4 8.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个9.如图,在ABC 中,2,30,105AC ABC BAC =∠=︒∠=︒,D 为AB 边上一点,连接CD ,15ACD =︒∠,把ACD △沿直线AC 翻折,得到ACD '△,CD '与BA 延长线交于点E ,则D E '的长为( )A .33+B .33-C .33+D .33- 10.已知0<x<3,化简2(21)x =+-|x-5|的结果是( )A .3x-4B .x-4C .3x+6D .-x+611.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个12.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14二、填空题13.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2S 甲、2S 乙,则2S 甲____2S 乙.(填“>”,“=”或“<”)14.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.15.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______. 16.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.17.如图,△ABC 中,∠ACB =90°,AC =BC =4,D 是斜边AB 上一动点,将线段CD 绕点C 逆时针旋转90°至CE ,连接BE ,DE ,点O 是DE 的中点,连接OB 、OC ,下列结论:①△ADC ≌△BEC ;②OB =OC ;③DE >BC ;④AO 的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)18.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.19.使式子3x -有意义的x 的取值范围是______. 20.如图,Rt ABC △,90ACB ∠=︒,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则线段B F '的长为________.三、解答题21.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是 ;(2)由于C 、E 两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.22.山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m的值为;(2)统计的这组数据的众数是;中位数是;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg.23.已知点(2,﹣4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(﹣1,m)也在此函数y=kx的图象上,试求m的值.24.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB)顶端有一根绳子(AC),自然垂下后,绳子底端离地面还有BC ),工作人员将绳子底端拉到离宣传牌3m处(即点E到AB的距离0.7m(即0.7为3m),绳子正好拉直,已知工作人员身高(DE)为1.7m,求宣传牌(AB)的高度.25.(1)解不等式组3(2)4 2513x xxx--≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解;(2)计算:213904540+-.26.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于点E,垂足是D,F是BC 上一点,EF平分∠AFC,EG⊥AF于点G.(1)试判断EC与EG,CF与GF是否相等;(直接写出结果,不要求证明)(2)求证:AG=BC;(3)若AB=10,AF+BF=12,求EG的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义分别判断后即可确定正确的选项.【详解】解:(1)二元一次方程组的两个方程的所有公共解,叫做二元一次方程组的解,故原命题错误,不符合题意;(2)如果a>b,则当c<0时,ac>bc,故原命题错误,不符合题意;(3)三角形的外角等于与它不相邻的两个内角的和,正确,符合题意;(4)多边形内角和等于(n-2)×180°,故原命题错误,不符合题意;(5)数据1,2,3,4,5没有众数,故错误,不符合题意,正确的个数为1个,故选:B.【点睛】本题考查了二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义,属于基础知识,比较简单.2.D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为3+4+4+5=44,原数据的3,4,4,5的中位数为4+4=24,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为3+4+4+4+5=45,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.3.D解析:D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.4.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.D解析:D【分析】先解不等式组,根据不等式组有解,求得a的取值范围,即可判断一次函数()32y a x=-+的图象一定不经过的象限.【详解】∵20 210xx a->⎧⎨-+<⎩,∴212x a x >⎧⎪⎨-<⎪⎩, ∵不等式组有解, ∴122->a , ∴5a >, ∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限,故选:D .【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.6.C解析:C【分析】利用图象求出甲的速度为60千米/小时,进而求出乙的速度为90千米/小时,再求出两车相遇的时间,利用两人所用时间相差13小时得出相遇时间是几点及乙车到达A 地是几点. 【详解】 解:∵甲车的速度为601=60(千米/小时),乙车的速度为60113-=90(千米/小时), 所以①②对;根据题意,甲乙相遇的时间:(240-60×13)÷(90+60)=2215, 乙9点20分出发,经过2215小时(88分钟)甲乙相遇,也就是10点48分,所以③错; 乙车到达A 地的时间:240÷90=83,83+13=3,9+3=12,所以④对 故选C .【点睛】本题主要考查了一次函数的综合应用,根据已知利用两车时间差得出代数式是解题的关键.7.A解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 8.D解析:D【分析】根据甲、乙的图象去分析出甲、乙的行驶过程,从而求出速度,相遇时间等信息,去判断选项的正确性.【详解】解:通过乙的图象可以看出B 、C 两港之间距离是90海里,故①错误,甲从A 港出发,经过B 港,到达C 港,乙从B 港出发,到达C 港,甲比乙快,所以甲、乙只会相遇一次,故②正确,甲的速度:300.560÷=(海里/小时),乙的速度:90330÷=(海里/小时),甲比乙快30海里/小时,故③正确,A 港距离C 港3090120+=(海里),120602÷=(小时),即甲到C 港需要2小时,乙需要3小时,故④正确, ()3060301÷-=(小时),即甲追上乙需要1个小时,1个小时乙行驶了30海里,∴()1,30P ,故⑤正确,正确的有:②③④⑤.故选:D .【点睛】本题考查一次函数的应用,解题的关键是能够根据所给函数图象结合实际意义去进行分析得到想要的信息.9.D解析:D【分析】先根据三角形的内角和定理60CDE ∠=︒,再根据翻折的性质可得,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒,从而可得90,30CED D AE '∠=︒∠=︒,设D E x '=,然后利用直角三角形的性质、勾股定理可得(,3AE CE x ==+,最后在Rt ACE △中,利用勾股定理即可得.【详解】 3150,105,ABC B D A AC C ∠=︒∠=∠=︒︒,30018BCD ABC BAC ACD ∴∠=︒-∠-∠-∠=︒,60ABC BC CDE D ∴∠=∠+∠=︒,由翻折的性质得:,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒, 30DCE ACD ACD '∴∠=∠+∠=︒,90,9030CED D AE D ''∴∠=︒∠=︒-∠=︒,设D E x '=,则2,AD AD x AE '===,(2DE AD AE x ∴=+=,在Rt CDE △中,((222,3CD DE x CE x ==+==+,在Rt ACE △中,222AE CE AC +=,即)(2223x ⎡⎤++=⎣⎦,解得36x =或306x -+=<(不符题意,舍去),即36D E '= 故选:D .【点睛】本题考查了翻折的性质、直角三角形的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键.10.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.【详解】解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A .【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.11.C解析:C【分析】求得∠ADB=90°,即AD ⊥BD ,即可得到S ▱ABCD =AD•BD ;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE ,进而得出DB 平分∠CDE ;依据Rt △AOD 中,AO >AD ,即可得到AO >DE ;依据O 是BD 中点,E 为AB 中点,可得BE=DE ,利用三角形全等即可得OE ⊥BD 且OB=OD .【详解】解:在ABCD 中,∵∠BAD=∠BCD=60°,∠ADC=120°,DE 平分∠ADC ,∴∠ADE=∠DAE=60°=∠AED ,∴△ADE 是等边三角形,12AD AE AB ∴==, ∴E 是AB 的中点,∴DE=BE ,1302BDE AED ︒∴∠=∠=, ∴∠ADB=90°,即AD ⊥BD ,∴S ▱ABCD =AD•BD ,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠CDE-∠BDE=60°-30°=30°,∴∠CDB=∠BDE ,∴DB 平分∠CDE ,故②正确;∵Rt △AOD 中,AO >AD ,∵AD=DE ,∴AO >DE ,故③错误;∵O 是BD 的中点,∴DO=BO,∵E 是AB 的中点,∴BE=AE=DE∵OE =OE∴△DOE ≌△BOE(SSS)∴∠EOD=∠EOB∵∠EOD+∠EOB=180°∴∠BOE=90°∴OE 垂直平分BD ,故④正确;正确的有3个,故选择:C .【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,三角形全等判定与性质,熟练掌握平行四边形的性质,等边三角形的性质,直角三角形的性质定理和等边三角形判定定理,三角形全等判定方法和性质是解题的关键.12.C解析:C【分析】根据平行四边形的性质可得BO=DO ,再根据AOD △与AOB 的周长相差3,可分情况得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=AO ,∵AOD △与AOB 的周长相差3,∴AB-AD=3,或AD-AB=3,∵AB=8,∴AD 的长为5或11,故选C .【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形对角线互相平分.二、填空题13.【分析】先分别求出甲乙的平均数再根据方差公式计算各自的方差进行比较即可得【详解】即故答案为【点睛】本题考查了方差的计算熟练掌握方差的计算公式是解题的关键解析:<【分析】先分别求出甲、乙的平均数,再根据方差公式计算各自的方差,进行比较即可得.【详解】87869823==63x +++++甲, 74795713==62x +++++乙,222221232323238S =38769=633339⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲, 2222211313131331S =37459=6222212⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, 831912<, 即22S S <甲乙,故答案为<.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.14.2323【解析】【分析】根据中位数和众数的定义求解即可【详解】解:由折线统计图可知阅读20本的有4人21本的有8人23本的有20人24本的有8人共40人∴其中位数是第2021个数据的平均数即=23众解析:23 23【解析】【分析】根据中位数和众数的定义求解即可.【详解】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即23232+=23,众数为23, 故答案为23、23.【点睛】本题考查了折线统计图及中位数、众数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算. 15.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 16.(0)【分析】过A 和B 分别作AF ⊥OC 于FBE ⊥OC 于E 利用已知条件可证明△AFC ≌△CEB 再有全等三角形的性质和已知数据即可求出B 点的坐标然后求出直线BC 的解析式即可得到结论【详解】解:过A 和B 分解析:(0,83) 【分析】过A 和B 分别作AF ⊥OC 于F ,BE ⊥OC 于E ,利用已知条件可证明△AFC ≌△CEB ,再有全等三角形的性质和已知数据即可求出B 点的坐标,然后求出直线BC 的解析式,即可得到结论.【详解】解:过A 和B 分别作AF ⊥OC 于F ,BE ⊥OC 于E ,∵∠ACB =90°,∴∠ACF +∠CAF =90°∠ACF +∠BCE =90°,∴∠CAF =∠BCE , 在△AFC 和△CEB 中,90AFC CBE CAF BCE AC AC ︒⎧∠=∠=⎪∠∠⎨⎪=⎩= , ∴△AFC ≌△CEB (AAS ),∴FC =BE ,AF =CE ,∵点C 的坐标为(﹣2,0),点A 的坐标为(﹣6,3),∴OC =2,AF =CE =3,OF =6,∴CF =OF ﹣OC =4,OE =CE ﹣OC =2﹣1=1,∴BE =4,∴则B 点的坐标是(1,4),设直线BC 的解析式为:y =kx +b ,则420k b k b +=⎧⎨-+=⎩,∴4383 kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC的解析式为:y=43x+83,当x=0时,y=83,∴D(0,83).故答案为:(0,83).【点睛】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.17.①②【分析】先证明∠ACD=∠BCE根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE,根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得OB=OC;利用三角形三边关系可得DE BC≥;根据OB=OC可知点O在BC的垂直平分线上,找到点O的起始位置及终点位置,即可求出OA的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE是由CD旋转得到.∴CE=CD则在△ACD和△BCE中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D 在AB 边上运动时,O 在线段PQ 上运动,∴当O 与P 重合时,AO 的值最小为1222AB = 故④错误;故答案是:①②.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O 的运动路线. 18.【分析】由四边形ABCD 是平行四边形得到∠ABC=∠D=102°再AD=AE=BE 得出∠EAB=∠EBA ∠BEC=∠BCA 继而得到∠ACB=2∠BAC 再根据∠BAC+∠ACB=3∠BAC=180°-解析:26︒【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE ,得出∠EAB=∠EBA ,∠BEC=∠BCA ,继而得到∠ACB=2∠BAC ,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC 求解即可.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC , ∠ABC=∠D=102°,∵AD=AE=BE ,∴BC=AE=BE ,∴∠EAB=∠EBA ,∠BEC=∠BCA ,∵∠BEC=∠EAB +∠EBA=2∠EAB ,∴∠ACB=2∠BAC ,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.19.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 20.【分析】根据折叠性质和余角定理可知是等腰直角三角形是直角三角形运用勾股定理求出DF 的值最后用勾股定理得出的值【详解】解:根据折叠的性质可知∴;∵(三角形外角定理)(都是的余角同角的余角相等)∴∵在中解析:45【分析】根据折叠性质和余角定理可知CEF △是等腰直角三角形,B FD '是直角三角形,运用勾股定理求出DF 的值,最后用勾股定理得出B F '的值.【详解】解:根据折叠的性质可知3CD AC ==,4B C BC '==,∠=∠ACE DCE ,BCF B CF '∠=∠,CE AB ⊥,∴431B D B C CD '-=-'==;∵ECF DCE B CF ∠=∠+∠',EFC B BCF ∠=∠+∠(三角形外角定理),B ACE ∠=∠(B 、ACE ∠都是A ∠的余角,同角的余角相等),∴ECF EFC ∠=∠,∵在Rt ECF △中,90ECF EFC ∠+∠=︒,∴=45ECF EFC ∠∠=︒,∴ECF △是等腰直角三角形,EF CE =,∵EFC ∠和BFC ∠互为补角,∴135BFC B FC '∠=∠=︒,∴==1354590B FD B FC EFC ''∠∠-∠︒-︒=︒,B FD '为直角三角形, ∵1122ABC S AC BC AB CE =⋅=⋅△, ∴AC BC AB CE ⋅=⋅,∵根据勾股定理求得5AB =, ∴125CE =,∴125EF =,95ED AE === ∴35DF EF ED =-=,∴45B F '==. 故答案为:45. 【点睛】 本题考查折叠性质与勾股定理的应用,掌握折叠性质及勾股定理,运用等面积法求出CE 的值是解题关键.三、解答题21.(1)85;(2)最终候选人E 将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:952803905235⨯+⨯+⨯++=88(分),E的平均成绩是:852903905235⨯+⨯+⨯++=89(分),∴88<89,∴最终候选人E将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义.22.(1)28;(2)1.8kg,1.5kg;(3)平均数是1.52kg,总质量约为3800kg.【分析】(1)根据各种质量的百分比之和为1可得m的值;(2)根据众数、中位数、加权平均数的定义计算即可;(3)根据平均数的计算公式求出这组数据的平均数,再乘以总只数即可得出鸡的总质量.【详解】(1)图①中m的值为100﹣(32+8+10+22)=28,故答案为:28;(2)∵1.8kg出现的次数最多,∴众数为1.8kg,把这些数从小到大排列,则中位数为1.5 1.52+=1.5(kg);故答案为:1.8kg,1.5kg;(3)这组数据的平均数是:151114164++++×(5×1+11×1.2+14×1.5+16×1.8+4×2),=150⨯(5+13.2+21+28.8+8),=1.52(kg),∴2500只鸡的总质量约为:1.52×2500=3800(kg),所以这组数据的平均数是1.52kg,2500只鸡的总质量约为3800kg.【点睛】此题考查统计计算,正确掌握部分百分比的计算方法,众数的定义、中位数的定义,平均数的计算方法是解题的关键.23.(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即可得到答案;(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y =kx 的图象上∴-4=2k解得:k =-2;(2)结合(1)的结论得:正比例函数的解析式为y =-2x∵点(-1,m )在函数y =-2x 的图象上∴当x =-1时,m =-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.24.5.7m【分析】过点E 作EF AB ⊥于点F ,构造直角三角形,设m AF x =,根据勾股定理列方程,求出AF ,再根据矩形性质,加上DE 长即可.【详解】解:如图,过点E 作EF AB ⊥于点F .由题意,得AC AE =,0.7CB =, 1.7BF DE ==,3EF BD ==,∴ 1.70.71m CF BF BC DE BC =-=-=-=.设m AF x =,则(1)m AE AC x ==+,在Rt AEF 中,90AFE ︒∠=,由勾股定理,得222AE AF EF =+,即222(1)3x x +=+,解得4x =.∴4 1.7 5.7(m)AB AF BF =+=+=.答:宣传牌(AB )的高度为5.7m .【点睛】本题考查了勾股定理的应用和矩形的性质,恰当的作出辅助线,构造直角三角形,应用勾股定理建立方程是解题关键.25.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解.(2)先化简二次根式,再合并即可.【详解】解:(1)()3x24x?2x5x1?3⎧--≥-⎪⎨-<-⎪⎩①②由①去括号得,-3x+6≥4-x,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x<2,化系数为1得,x>-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)=55-=【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.26.(1),EC EG CF GF==;(2)证明见解析;(3)EG的长是134.【分析】(1)根据角平分线性质得出EC=EG,再根据勾股定理推出CF=GF即可.(2)连接BE,推出AE=BE,根据HL证出Rt△AGE≌Rt△BCE即可.(3)求出BC,根据勾股定理求出AC,设EG=EC=x,则AE=8﹣x,在Rt△AGE中,由勾股定理得出方程62+x2=(8﹣x)2,求出方程的解即可.【详解】(1)解:EC=EG,CF=GF,理由是:∵∠C=90°,EG⊥AF,EF平分∠AFC,∴CE =EG ,∵EF =EF ,∴由勾股定理得:2222,,CF EF CE GF EF EG =-=-∴ CF =GF .(2)证明:连接BE ,∵AB 的垂直平分线DE ,∴AE =BE ,在Rt △AGE 和Rt △BCE 中,AE BE EG EC=⎧⎨=⎩, ∴Rt △AGE ≌Rt △BCE (HL ),∴AG =BC .(3)解:,,AG BC FG FC ==∴ AG =BC =BF +GF ,212,AF BF AG GF BF AG +=++==∴AG =BC =12×12=6, 在Rt △ABC 中,由勾股定理得:22221068,AC AB BC =-=-=设EG =EC =x ,则AE =8﹣x , 在Rt △AGE 中,由勾股定理得:62+x 2=(8﹣x )2,22366416,x x x ∴+=-+1628,x ∴=解得:31,4x =∴EG 的长是31.4【点睛】本题考查的是角平分线的性质定理,勾股定理的应用,线段的垂直平分线的性质定理,直角三角形全等的判定与性质,掌握以上知识是解题的关键.。

【北师大版】2017年八年级下期末教学质量监测数学模拟试卷及答案

【北师大版】2017年八年级下期末教学质量监测数学模拟试卷及答案

ADCB第4题图双柏县2017学年末教学质量监测八年级数学模拟试卷命题:双柏县教研室 郎绍波 (全卷满分120分,考试时间120分钟)题 号 一 二 三 总 分 得 分一、填空题(本大题共6个小题,每小题3分,满分18分)1.9的平方根是 .2.分解因式:328x x -= .3.使二次根式2x -有意义的x 的取值范围是 .4.如图,在四边形ABCD 中,AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是 .5.不等式组25031x x ->⎧⎨-<-⎩的解集是 .6.正比例函数的图像经过点A (-2, 3),B (a ,-3), 则a = .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列计算正确的是( )A .45255-=B .2+3=5C .32=32+D .(16)(9)=169----g 8.不等式1+x <0的解集在数轴上表示正确的是( )A .B .C .D .9.下列说法不正确的是( )A .平行四边形的对边平行且相等B .平行四边形对角线互相平分C .平行四边形是轴对称图形D .平行四边形是中心对称图形 10.因式分解x 3-2x 2+x 正确的是( )A .(x -1) 2B .x (x -1) 2C .x ( x 2-2x +1)D .x (x +1) 211.等腰三角形的一个角是30°,那么它的顶角为( ) A .30° B .60° C .120° D .30°或120°得 分 评卷人得分 评卷人AB EC FDG12.我县今年5月某地6天的最高气温如下(单位︒C ):32,29,30,32,30,32. 则这组数据的众数和中位数分别是( ) A .30,32 B .32,30C .32,31D .32,3213.一次函数y kx b =+的图像如图,则k 和b 的值为( ) A .k <0,b <0 B .k >0,b <0C .k >0,b >0D .k <0,b >014.下列几组数能作为直角三角形的三边长的是( ) A .6,8,10 B .4,5,7 C .2,3,4 D .1,2,3三、解答题(本大题共9个小题,满分70分)15.(7分)解方程组: 428x y x y -=⎧⎨+=⎩16.(7分)解分式方程:2211x x x+=--17.(7分)如图,点B 、E 、C 、F 在同一直线上,AC 与DE 相交于点G , ∠A=∠D ,AC ∥DF .求证:AB ∥DE .得 分 评卷人xyo 第13题图BDC第19题图E AF18.(8分)先化简,再求值:22111x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中23x =.19.(8分)如图,在△ABC 中,AB=AC ,D 为BC 的中点,点E ,F 分别在AB 和AC 上,并且AE=AF . 求证:DE=DF .20.(9分)已知一次函数y=kx +b 的图象经过点A (-3,0),B (2,5)两点.正比例函数y=kx 的图象经过点B (2,3). (1)求这两个函数的表达式.(2)在直角坐标系中,画出这个函数的图象. (3)求三角形AOB 的面积.O 1 2 3 4 5 6 6 5 4 3 2 1-1 -2 -3 -4 -5 -6 -1 -2 -3 -4-5 -6 xy 第20题图EDFABC第23题图21.(7分)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度. (1)画出将△ABC 向下平移4个单位得到的△A 1B 1C 1; (2)画出△ABC 关于原点O 的中心对称图形△A 2B 2C 2;(3)画出△A 1B 1C 1绕着点A 1顺时针方向旋转90°后得到的△A 3B 3C 3.22.(8分)某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.23.(9分)如图,E 、F 是□ABCD 对角线AC 上两点,且AE=CF .(1)求证:四边形BFDE 是平行四边形.(2)如果把条件AE=CF 改为B E ⊥AC ,DF ⊥AC ,试问四边形BFDE 是平行四边形吗?为什么?(3)如果把条件AE=CF 改为BE=DF ,试问四边形BFDE 还是平行四边形吗?为什么?xyAOCBB DC第19题图E AF双柏县2017学年末教学质量监测八年级数学模拟试卷 参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.±3 2. 2x (x +2)(x -2) 3.x ≥2 4.AB=CD 或AD ∥BC 或∠A=∠C 或∠B=∠D 或∠A+∠B=180°或∠C+∠D=180°等 5.x >4 6.2二、选择题(本大题共8个小题,每小题只有一个正确的选项,每小题4分,满分32分)7.A 8.A 9.C 10.B 11.D 12.C 13.D 14.A三、解答题(本大题共9个小题,满分70分)15.(7分) 16.(7分) 解:方程两边同乘以x -1得, x -2=2(x -1)解得x =0经检验x =0是原方程的根 因此原方程的解是x =017.(7分)证明:∵AC ∥DF∴∠D=∠EGC 又∵∠A=∠D ∴∠A=∠EGC ∴AB ∥DE 18.(8分) 2222222222222222221111111211112(1)312(1)2(1)11111122131(31)11x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -⎛⎫⎛⎫+÷=+⋅ ⎪ ⎪-+--+⎝⎭⎝⎭--=⋅+⋅-+=++-=-+--⎛⎫⎡⎤+÷=+⋅ ⎪⎢⎥-+---⎝⎭⎣⎦++-----=⋅=⋅=---【解法一】【解法二】21311x x x-⋅=-当23x =时,原式=2313113x -=⨯-= 19.(8分)【证明一】∵ AB=AC∴∠B =∠C (等边对等角) 又∵ AE=AF∴AB -AE =AC - AF 即 EB=FC又∵ D 为BC 的中点 ∴ BD=CD∴△EBD ≌△FCD (SAS ) ∴DE=DF【证明二】连接AD ,∵ AB=AC ,D 为BC 的中点∴∠BAD =∠CAD (等腰三角形三线合一定理) 即∠EAD =∠FAD又∵ AE=AF ,且AD=AD ∴△EAD ≌△FAD (SAS )∴DE=DF20.(9分)解:(1)∵一次函数y=kx +b 的图象经过两点A (-3,0)、B (2,5)∴301,253k b k k b b -+==⎧⎧⎨⎨+==⎩⎩解得 ∴y=x +3 ∵正比例函数y=kx 的图象经过点B (2,5) ∴2k =5 得k =52 ∴y=52x (2)函数图像如右图 (3)∵△AOB 的底边OA=3,底边OA 上的高为5 ∴△AOB 的面积=3×5÷2=7.5O 1 2 3 4 5 6 6 5 4 3 2 1-1 -2 -3 -4 -5 -6 -1 -2-3-4-5 -6xy第20题图AB4 12821231244040x y x y x x x y x y -=⎧⎨+=⎩+=====⎧⎨=⎩L L L L L L ()()解:()()得 得将代入(1)得所以EDFABC第23题图OxyO ACB A 1C 1B 1A 2B 2C 2B 3C 3 (A 3)21.(7分)解:如图所示:(1)△A 1B 1C 1 (2)△A 2B 2C 2 (3)△A 3B 3C 322.(8分)解:设制作x 份材料时,甲公司收费y 1元,乙公司收费y 2元,则y 1=10x +1000 y 2=20x由y 1= y 2,得10x +1000=20x ,解得x =100 由y 1>y 2,得10x +1000>20x ,解得x <100 由y 1<y 2,得10x +1000<20x ,解得x >100所以,当制作材料为100份时,两家公司收费一样,选择哪家都可行;当制作材料超过100份时,选择甲公司比较合算; 当制作材料少于100份时,选择乙公司比较合算.23.(9分) (1)【证明一】∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF 又∵ AE=CF∴△BAE ≌△DCF (SAS ) ∴BE=DF ,∠AEB =∠CFD ∴∠BEF =180°-∠AEB ∠DFE =180°-∠CFD即:∠BEF=∠DFE∴BE ∥DF ,而BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形)【证明二】连接BD ,交AC 于点O∵ABCD 是平行四边形∴OA=OC OB=OD (平行四边形的对角线互相平分) 又∵ AE=CF∴OA -AE=OC -CF ,即OE=OF∴四边形BFDE 是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE 是平行四边形∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF ∵B E ⊥AC ,DF ⊥AC ∴∠BEA =∠DFC=90°,BE ∥DF∴△BAE ≌△DCF (AAS ) ∴BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形) (3)四边形BFDE 不是平行四边形因为把条件AE=CF 改为BE=DF 后,不能证明△BAE 与△DCF 全等。

【北师大版】八年级下期末教学质量监测数学模拟试卷及答案【推荐】.doc

【北师大版】八年级下期末教学质量监测数学模拟试卷及答案【推荐】.doc

1A DCB第4题图双柏县2020学年末教学质量监测八年级数学模拟试卷命题:双柏县教研室(全卷满分120分,考试时间120分钟)一、填空题(本大题共6个小题,每小题3分,满分18分)1.9的平方根是 .2.分解因式:328x x -= .3 .4.如图,在四边形ABCD 中,AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是 .5.不等式组25031x x ->⎧⎨-<-⎩的解集是.6.正比例函数的图像经过点A (-2, 3),B (a ,-3), 则a =.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列计算正确的是()A =B C .3 D 9-8.不等式1+<0的解集在数轴上表示正确的是( ) A .B .C .D .9.下列说法不正确的是( )A .平行四边形的对边平行且相等B .平行四边形对角线互相平分C .平行四边形是轴对称图形D .平行四边形是中心对称图形 10.因式分解3-22+正确的是( ) A .(-1) 2B . (-1) 2C .( 2-2+1)D . (+1) 211.等腰三角形的一个角是30°,那么它的顶角为( ) A .30° B .60°C .120°D .30°或120°12.我县今年5月某地6天的最高气温如下(单位︒C ):32,29,30,32,30,32.则这组数据的众数和中位数分别是( ) A .30,32B .32,30C .32,31D .32,3213.一次函数y kx b =+的图像如图,则和b 的值为2ABECFDG( ) A .<0,b <0 B .>0,b <0 C .>0,b >0 D .<0,b >014.下列几组数能作为直角三角形的三边长的是( ) A .6,8,10 B .4,5,7 C .2,3,4 D .1,2,3三、解答题(本大题共9个小题,满分70分)15.(7分)解方程组: 428x y x y -=⎧⎨+=⎩16.(7分)解分式方程:2211x x x+=--17.(7分)如图,点B 、E 、C 、F 在同一直线上,AC 与DE 相交于点G , ∠A=∠D ,AC ∥DF .求证:AB ∥DE .第13题图3BDC第19题图EAF18.(8分)先化简,再求值:22111x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中23x =.19.(8分)如图,在△ABC 中,AB=AC ,D 为BC 的中点,点E ,F 分别在AB和AC 上,并且AE=AF . 求证:DE=DF .20.(9分)已知一次函数y=+b 的图象经过点A (-3,0),B (2,5)两点.正比例函数y=的图象经过点B (2,3). (1)求这两个函数的表达式.(2)在直角坐标系中,画出这个函数的图象. (3)求三角形AOB 的面积.21.(7分)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度.(1)画出将△ABC向下平移4个单位得到的△A1B1C1;(2)画出△ABC关于原点O的中心对称图形△A2B2C2;(3)画出△A1B1C1绕着点A1顺时针方向旋转90°后得到的△A3B3C3.22.(8分)某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料4收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.23.(9分)如图,E、F是□ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?AEFB C第23题图56BDC第19题图E AF双柏县2020学年末教学质量监测八年级数学模拟试卷 参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.±3 2. 2(+2)(-2) 3.≥2 4.AB=CD 或AD ∥BC 或∠A=∠C或∠B=∠D 或∠A+∠B=180°或∠C+∠D=180°等 5.>4 6.2二、选择题(本大题共8个小题,每小题只有一个正确的选项,每小题4分,满分32分)7.A 8.A 9.C 10.B 11.D 12.C 13.D 14.A三、解答题(本大题共9个小题,满分70分)15.(7分) 16.(7分) 解:方程两边同乘以-1得, -2=2(-1)解得=0经检验=0是原方程的根 因此原方程的解是=017.(7分) 证明:∵AC ∥DF∴∠D=∠EGC 又∵∠A=∠D ∴∠A=∠EGC ∴AB ∥DE 18.(8分) 2222222222222222221111111211112(1)312(1)2(1)11111122131(31)11x x x xx x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -⎛⎫⎛⎫+÷=+⋅ ⎪ ⎪-+--+⎝⎭⎝⎭--=⋅+⋅-+=++-=-+--⎛⎫⎡⎤+÷=+⋅ ⎪⎢⎥-+---⎝⎭⎣⎦++-----=⋅=⋅=---【解法一】【解法二】21311x x x-⋅=-当23x =时,原式=2313113x -=⨯-= 19.(8分)【证明一】∵ AB=AC∴∠B =∠C (等边对等角) 又∵ AE=AF ∴AB -AE =AC - AF 即 EB=FC又∵ D 为BC 的中点 ∴ BD=CD∴△EBD ≌△FCD (SAS ) ∴DE=DF【证明二】连接AD ,∵ AB=AC ,D 为BC 的中点∴∠BAD =∠CAD (等腰三角形三线合一定理)412821231244040x y x y x x x y x y -=⎧⎨+=⎩+=====⎧⎨=⎩()()解:()()得 得将代入(1)得所以7即∠EAD =∠FAD又∵AE=AF,且AD=AD ∴△EAD≌△FAD(SAS)∴DE=DF20.(9分)解:(1)∵一次函数y=+b的图象经过两点A(-3,0)、B(2,5)∴301,253k b kk b b-+==⎧⎧⎨⎨+==⎩⎩解得∴y=+3∵正比例函数y=的图象经过点B(2,5)∴2=5 得=52∴y=52(2)函数图像如右图(3)∵△AOB的底边OA=3,底边OA∴△AOB的面积=3×5÷2=7.521.(7分)解:如图所示:(1A1B1C1 (2)△A2B2C2(3)△3B3C322.(8分)解:设制作份材料时,甲公司收费y1元,乙公司收费y2元,则y1=10+1000 y2=20由y1= y2,得10+1000=20,解得=100由y1>y2,得10+1000>20,解得<100由y1<y2,得10+1000<20,解得>100所以,当制作材料为100份时,两家公司收费一样,选择哪家都可行;当制作材料超过100份时,选择甲公司比较合算;当制作材料少于100份时,选择乙公司比较合算.23.(9分)(1)【证明一】∵ABCD是平行四边形∴AB=CD 且AB∥CD(平行四边形的对边平行且相等)∴∠BAE =∠DCF第20题图8EFABC第23题图O又∵ AE=CF∴△BAE ≌△DCF (SAS ) ∴BE=DF ,∠AEB =∠CFD∴∠BEF =180°-∠AEB ∠DFE =180°-∠CFD即:∠BEF=∠DFE∴BE ∥DF ,而BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形)【证明二】连接BD ,交AC 于点O∵ABCD 是平行四边形∴OA=OC OB=OD (平行四边形的对角线互相平分) 又∵ AE=CF∴OA-AE=OC-CF ,即OE=OF∴四边形BFDE 是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE 是平行四边形∵ABCD 是平行四边形 ∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF ∵BE ⊥AC ,DF ⊥AC∴∠BEA =∠DFC=90°,BE ∥DF∴△BAE ≌△DCF (AAS ) ∴BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形) (3)四边形BFDE 不是平行四边形因为把条件AE=CF 改为BE=DF 后,不能证明△BAE 与△DCF 全等。

北师大版八年级数学下册期末模拟考试(附答案)

北师大版八年级数学下册期末模拟考试(附答案)

北师大版八年级数学下册期末模拟考试(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)- 3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 8.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC6.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于_____5.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为__________.6.如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A 、B 为圆心,以大于12AB 长为半径作弧,两弧交于点P .若点C 的坐标为(,23a a -),则a 的值为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2450x x --=; (2)22210x x --=.2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.4.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.5.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、D5、B6、D7、D8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、如果两个角是同一个角的余角,那么这两个角相等3、a(a﹣b)2.4、40°.5、36、3三、解答题(本大题共6小题,共72分)1、(1)x1=5,x2=-1;(2)121122x x+==.2、3、-4≤a<-3.4、(1)略;(2)37°5、(1)略;(2)略.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A DCB第4题图双柏县2017学年末教学质量监测八年级数学模检测范围:八年级数学上下册(全卷满分120分,考试时间120分钟) 2017.6.26一、填空题(每小题3分,满分18分)1.9的平方根是 .2.分解因式:328x x -=.3x 的取值范围是 .4.如图,在四边形ABCD 中,AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是 .5.不等式组25031x x ->⎧⎨-<-⎩的解集是 .6.正比例函数的图像经过点A (-2, 3),B (a ,-3), 则a = .二、选择题(每小题4分,满分32分)7.下列计算正确的是()A.B.C.3D8.不等式1+x <0的解集在数轴上表示正确的是( )A .B .C .D .9.下列说法不正确的是( )A .平行四边形的对边平行且相等B .平行四边形对角线互相平分C .平行四边形是轴对称图形D .平行四边形是中心对称图形 10.因式分解x 3-2x 2+x 正确的是( )A.(x-1) 2 B.x (x-1) 2C.x( x2-2x+1) D.x (x+1) 211.等腰三角形的一个角是30°,那么它的顶角为()A.30°B.60°C.120°D.30°或120°12.我县今年5月某地6天的最高气温如下(单位︒C):32,29,30,32,30,32.则这组数据的众数和中位数分别是()A.30,32 B.32,30C.32,31 D.32,3213.一次函数y kx b=+的图像如图,则k和b的值为()A.k<0,b<0B.k>0,b<0C.k>0,b>0D.k<0,b>014.下列几组数能作为直角三角形的三边长的是()A.6,8,10 B.4,5,7C.2,3,4 D.1,2,3三、解答题(共70分)15.(7分)解方程组:4 28 x yx y-=⎧⎨+=⎩16.(7分)解分式方程:2211xx x+=--第13题图BDC第19题图E AFAB EC FDG17.(7分)如图,点B 、E 、C 、F 在同一直线上,AC 与DE 相交于点G , ∠A=∠D ,AC ∥DF .求证:AB ∥DE .18.(8分)先化简,再求值:22111xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中23x =.19.(8分)如图,在△ABC 中,AB=AC ,D 为BC 的中点,点E ,F 分别在AB 和AC 上,并且AE=AF .求证:DE=DF .20.(9分)已知一次函数y=kx +b 的图象经过点A (-3,0),B (2,5)两点.正比例函数y=kx 的图象经过点B (2,3).(1)求这两个函数的表达式.(2)在直角坐标系中,画出这个函数的图象. (3)求三角形AOB 的面积.21.(7分)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度. (1)画出将△ABC 向下平移4个单位得到的△A 1B 1C 1; (2)画出△ABC 关于原点O 的中心对称图形△A 2B 2C 2;(3)画出△A 1B 1C 1绕着点A 1顺时针方向旋转90°后得到的△A 3B 3C 3.x第20题图EDFABC第23题图22.(8分)某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.23.(9分)如图,E 、F 是□ABCD 对角线AC 上两点,且AE=CF .(1)求证:四边形BFDE 是平行四边形.(2)如果把条件AE=CF 改为B E ⊥AC ,DF ⊥AC ,试问四边形BFDE 是平行四边形吗?为什么?(3)如果把条件AE=CF 改为BE=DF ,试问四边形BFDE 还是平行四边形吗?为什么?E AF双柏县2017学年末教学质量监测八年级数学模拟试卷 参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.±3 2. 2x (x +2)(x -2) 3.x ≥2 4.AB=CD 或AD ∥BC 或∠A=∠C 或∠B=∠D 或∠A+∠B=180°或∠C+∠D=180°等 5.x >4 6.2二、选择题(本大题共8个小题,每小题只有一个正确的选项,每小题4分,满分32分)7.A 8.A 9.C 10.B 11.D 12.C 13.D 14.A三、解答题(本大题共9个小题,满分70分)15.(7分) 16.(7分) 解:方程两边同乘以x -1得, x -2=2(x -1)解得x =0经检验x =0是原方程的根 因此原方程的解是x =017.(7分)证明:∵AC ∥DF∴∠D=∠EGC 又∵∠A=∠D ∴∠A=∠EGC ∴AB ∥DE 18.(8分) 2222222222222222221111111211112(1)312(1)2(1)11111122131(31)11x x x xx x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -⎛⎫⎛⎫+÷=+⋅ ⎪ ⎪-+--+⎝⎭⎝⎭--=⋅+⋅-+=++-=-+--⎛⎫⎡⎤+÷=+⋅ ⎪⎢⎥-+---⎝⎭⎣⎦++-----=⋅=⋅=---【解法一】【解法二】21311x x x-⋅=-当23x =时,原式=2313113x -=⨯-= 19.(8分)【证明一】∵ AB=AC∴∠B =∠C (等边对等角) 又∵ AE=AF∴AB -AE =AC - AF 4 12821231244040x y x y x x x y x y -=⎧⎨+=⎩+=====⎧⎨=⎩()()解:()()得 得将代入(1)得所以又∵ D 为BC 的中点 ∴ BD=CD∴△EBD ≌△FCD (SAS ) ∴DE=DF【证明二】连接AD ,∵ AB=AC ,D 为BC 的中点∴∠BAD =∠CAD (等腰三角形三线合一定理) 即∠EAD =∠FAD又∵ AE=AF ,且AD=AD ∴△EAD ≌△FAD (SAS )∴DE=DF20.(9分)解:(1)∵一次函数y=kx +b 的图象经过两点A (-3,0)、B (2,5)∴301,253k b k k b b -+==⎧⎧⎨⎨+==⎩⎩解得 ∴y=x +3 ∵正比例函数y=kx 的图象经过点B (2,5∴2k =5 得k =52 ∴y=52x (2)函数图像如右图 (3)∵△AOB 的底边OA=3,底边OA ∴△AOB 的面积=3×5÷2=7.521.(7分)解:如图所示:(1)△A 1B 1C 1 (2)△A 2B 2C 2 (3)△A 3B 3C 322.(8分)解:设制作x 份材料时,甲公司收费y 1元,乙公司收费y 2元,则y 1=10x +1000 y 2=20x由y 1= y 2,得10x +1000=20x ,解得x =100 由y 1>y 2,得10x +1000>20x ,解得x <100 由y 1<y 2,得10x +1000<20x ,解得x >100所以,当制作材料为100份时,两家公司收费一样,选择哪家都可行;当制作材料超过100份时,选择甲公司比较合算; 当制作材料少于100份时,选择乙公司比较合算.x第20题图EDFABC第23题图O23.(9分) (1)【证明一】∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF 又∵ AE=CF∴△BAE ≌△DCF (SAS ) ∴BE=DF ,∠AEB =∠CFD ∴∠BEF =180°-∠AEB ∠DFE =180°-∠CFD即:∠BEF=∠DFE∴BE ∥DF ,而BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形)【证明二】连接BD ,交AC 于点O∵ABCD 是平行四边形∴OA=OC OB=OD (平行四边形的对角线互相平分) 又∵ AE=CF∴OA -AE=OC -CF ,即OE=OF∴四边形BFDE 是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE 是平行四边形∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF ∵B E ⊥AC ,DF ⊥AC ∴∠BEA =∠DFC=90°,BE ∥DF∴△BAE ≌△DCF (AAS ) ∴BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形) (3)四边形BFDE 不是平行四边形因为把条件AE=CF 改为BE=DF 后,不能证明△BAE 与△DCF 全等。

相关文档
最新文档