第8讲一次函数与反比例函数
一次函数与反比例函数
一次函数与反比例函数一、知识点1、变量与函数1)变量:在一个变化过程中,我们称数值发生变化的量为变量,那么数值始终不变的量称之为常量。
2)函数:在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,那么我们就说x•是自变量,y是x的函数。
如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值。
3)自变量的取值范围:使式子有意义的自变量的值。
练习1:1、求下列函数中自变量x的取值范围。
(1)y=3x-l (2)y=2x2+7 (3)y=1x+2(4)y=x-22、下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离。
根据图象回答下列问题:1、菜地离小明家多远?小明走到菜地用了多少时间?2、小明给菜地浇水用了多少时间?3、菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4、小明给玉米地锄草用了多长时间?5、玉米地离小明家多远?小明从玉米地走回家平均速度是多少?2、正比例函数1)定义:一般地,•形如y=•kx•(k是常数,k•≠0)的函数,叫做正比例函数,其中k 叫做比例系数。
2)正比例函数图象特征:①正比例函数的图象都经过坐标原点。
②作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。
③在正比例函数y=kx的图象中,当k>0时,图象经过三、一象限,从左向右上升,即随x 的增大y也增大。
④在正比例函数y=kx的图象中,当k>0时,图象经过二、四象限,从左向右下降,即随x 的增大y却减小。
⑤y=kx与y= -kx图象关于y轴对称。
练习2:1、下列一次函数中,y 的值随x 值的增大而增大的是( )A 、y=-5x+3B 、y=-x-7C 、y=x 3x-5D 、y=-x7x+4 2、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=32x-8 B 、y=-x+3 C 、y=2x+5 D 、y=7x-6 3、一次函数 1)定义:一般地,形如y=kx+b (k 、b 是常数,k ≠0)的函数,叫做一次函数。
一次函数与反比例函数
一次函数与反比例函数第一部分 知识梳理一、一次函数和反比例函数的解析式1.一次函数的定义:函数y= kx+b (k 、b 为常数,k ≠0,自变量x 的次数是1次)叫做一次函数。
2.一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
二、一次函数和反比例函数的图像1.一次函数y=kx+b 的k 、b 的值对一次函数图象的影响。
y① k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限; ② k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③ k ﹤0,b ﹥0, y =kx +b 的 图象在一、二、四象限; ④ k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。
2.反比例函数的性质3.反比例函数中反比例系数的几何意义 ①过双曲线xky =(k ≠0) 上任意一点作x 轴、y 轴的垂线段,所得矩形(如图)面积为k 。
第二部分 例题与解题思路方法归纳类型一 一次函数的图像与性质【例题1】已知一次函数y=(6+3m )x+n ﹣4. (1)当m 、n 为何值时,函数的图象过原点?(2)当m 、n 满足什么条件时,函数的图象经过第一、二、三象限?〖选题意图〗本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.〖解题思路〗(1)将点(0,0)代入一次函数解析式y=(6+3m)x+n﹣4求得n值,利用一次函数的性质知系数6+3m≠0求得m值;(2)根据一次函数的性质知,当该函数的图象经过第一、二、三象限时,6+3m>0,且n ﹣4>0,据此求m、n的值.〖参考答案〗解:(1)∵一次函数y=(6+3m)x+n﹣4的图象过原点,∴6+3m≠0,且n﹣4=0,解得,m≠﹣2,n=4;(2)∵该函数的图象经过第一、二、三象限,∴6+3m>0,且n﹣4>0,解得m>﹣2,n>4.【课堂训练题】1.如图,直线y=﹣x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x 轴交于点C,则△ABC的面积为.〖参考答案〗解:因为直线y=﹣x+4中,b=4,故A点坐标为(0,4);令﹣x+4=0,则x=3,故D点坐标为(3,0).令x+=0,则,x=﹣1,故C点坐标为(﹣1,0),因为B点为直线y=﹣x+4直线y=x+的交点,故可列出方程组﹣,解得,故B点坐标为(,2),故S△ABC=S△ACD﹣S△BCD=CD•AO﹣CD•BE=×4﹣×4×2=4.2.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.〖参考答案〗解:由题意可知当直线y=﹣2x+b经过A(1,1)时b的值最小,即﹣2×1+b=1,b=3;当直线y=﹣2x+b过C(2,2)时,b最大即2=﹣2×2+b,b=6,故能够使黑色区域变白的b 的取值范围为3≤b≤6.3.已知直线l n:y=﹣+(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1,(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=﹣x+与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2;…依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.则s1+s2+s3+s4+s5=;S n=.〖参考答案〗解出l1、l2、l3、l4…l n的解析式为l1:y=﹣2x+1,l2:y=﹣x+,l3:y=﹣x+,l4:y=﹣x+,l5:y=﹣x+…l n:y=﹣+(n是不为零的自然数).于是S1=1××=;S2=××=;S3=××=;S4=××=;S5=××=….S n=××=()s1+s2+s3+s4+s5=++++=.4.(2011•绍兴)在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(l,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上,求a,b 的值.〖参考答案〗(1)解:∵1×2≠2×(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)解:由题意得:当a>0时,(a+3)×2=3a,∴a=6,点P(a,3)在直线y=﹣x+b上,代入得:b=9当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6,点P(a,3)在直线y=﹣x+b上,代入得:b=﹣3,∴a=6,b=9或a=﹣6,b=﹣3.类型二一次函数图像与几何变换【例题2】(2011•咸宁)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任意一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上…由此我们知道,平移n 次后在函数的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.〖选题意图〗本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.〖解题思路〗(1)根据点的平移特点描出每次平移后P点的位置即可;(2)先根据P点平移一次后的点的坐标求出过此点的函数解析式,再根据函数图象平移的性质解答即可;(3)设点Q 的坐标为(x ,y ),求出Q 点的坐标,得出n 的取值范围,再根据点Q 的坐标为正整数即可进行解答.〖参考答案〗解:(1)如图所示:(2)设过(0,2),(1,0)点的函数解析式为:y=kx+b (k≠0), 则,解得 ﹣ , 故第一次平移后的函数解析式为:y=﹣2x+2; ∴答案依次为:y=﹣2x+2;y=﹣2x+4;y=﹣2x+2n . (3)设点Q 的坐标为(x ,y ),依题意, ﹣.解这个方程组,得到点Q 的坐标为(,).∵平移的路径长为x+y , ∴50≤≤56.∴37.5≤n≤42. ∵点Q 的坐标为正整数,∴点Q 的坐标为(26,26),(28,28). 【课堂训练题】1.(1)点(0,1)向下平移2个单位后的坐标是 ,直线y=2x+1向下平移2个单位后的解析式是 ;(2)直线y=2x+1向右平移2个单位后的解析式是 ;(3)如图,已知点C 为直线y=x 上在第一象限内一点,直线y=2x+1交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC 方向平移 个单位,求平移后的直线的解析式.〖参考答案〗解:(1)(0,﹣1),y=2x+1﹣2=2x﹣1;(2)y=2(x﹣2)+1=2x﹣3;(3)y=2(x﹣3)+1+3,即y=2x﹣2.2.如图,将直线y=2x沿y轴向下平移后,得到的直线与x轴交于点(,),与双曲线在第一象限交于点B,且△OAB的面积.(1)求直线AB的解析式(2)求双曲线的解析式.〖参考答案〗解:(1)直线AB的解析式为y=2x﹣b,把A(,0)代入得,0=2×﹣b,解得b=5,故此直线的解析式为:y=2x﹣5;(2)作BD⊥x轴,∵△OAB的面积,即OA•BD=,∵A(,0),∴BD=3,∵B点在直线y=2x﹣5上,∴3=2x﹣5,解得x=4,∴B (4,3)∵B 点在反比例函数y=上, ∴k=3×4=12,∴此反比例函数的解析式为:y=.3.如图,直线y=x+4与x 轴、y 轴分别交于A 、B 两点,点C 在OB 上,若将△ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是 (0,1.5) .〖参考答案〗解:由题意得:A (﹣3,0),B (0,4); ∴OA=3,OB=4.那么可得AB=5.易得△ABC ≌△ADC ,∴AD=AB=5,∴OD=AD ﹣OA=2.设OC 为x .那么BC=CD=4﹣x .那么x 2+22=(4﹣x )2,解得x=1.5, ∴C (0,1.5).类型三 反比例函数的图像与性质【例题3】(2011•防城港)如图,是反比例函数y=和y=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值是( )A .1B .2C .4D .8〖选题意图〗本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd ﹣ab=4是解此题的关键.〖解题思路〗设A (a ,b ),B (c ,d ),代入双曲线得到k 1=ab ,k 2=cd ,根据三角形的面积公式求出cd ﹣ab=4,即可得出答案.〖参考答案〗解:设A (a ,b ),B (c ,d ),代入得:k 1=ab ,k 2=cd , ∵S △AOB =2,∴cd ﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故选C.【课堂训练题】1.(2011•东营)如图,直线l和双曲线(>)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A、S1<S2<S3B、S1>S2>S3C、S1=S2>S3D、S1=S2<S3〖参考答案〗解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.故选D.2.如图,点A是反比例函数y=的图象上任意一点,延长AO交该图象于点B,AC⊥x 轴,BC⊥y轴,求Rt△ACB的面积.〖参考答案〗解:设点A的坐标为(x,y),则点B坐标为(﹣x,﹣y),所以AC=2y,BC=2x,所以Rt△ACB的面积为AC•BC=×2x•2y=2xy=2|k|=24.类型四反比例函数与一次函数的交点问题【例题4】(2011•雅安)如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(﹣2,3),BC⊥x轴于C,四边形OABC面积为4.(1)求反比例函数和一次函数的解析式;(2)求点D的坐标;(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)〖选题意图〗此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,利用图象判定函数的大小关系是中学的难点同学们应重点掌握.〖解题思路〗(1)先设出反比例函数和一次函数的解析式:y=和y=ax+b,把点B的坐标代入反比例函数的解析式求出k即可;(2)两个解析式联立,求得点D的坐标即可;(3)利用函数图象求出分别得出使一次函数的值大于反比例函数的值的x的取值范围.〖参考答案〗解:(1)设反比例函数的解析式y=和一次函数的解析式y=ax+b,图象经过点B,∴k=﹣6,∴反比例函数解析式为y=﹣,又四边形OABC面积为4.∴(OA+BC)OC=8,∵BC=3,OC=2,∴OA=1,∴A(0,1)将A、B两点代入y=ax+b有﹣,解得﹣∴一次函数的解析式为y=﹣x+1,(2)联立组成方程组得﹣﹣,解得x=﹣2或3,∴点D(3,﹣2)(3)x<﹣2或0<x<3.【课堂训练题】1.(2011•潼南县)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.〖参考答案〗解:(1)由图象可知:点A的坐标为(2,)点B的坐标为(﹣1,﹣1)∵反比例函数(m≠0)的图象经过点(2,),∴m=1∴反比例函数的解析式为:∵一次函数y=kx+b(k≠0)的图象经过点(2,)点B(﹣1,﹣1)∴﹣﹣解得:k=b=﹣∴一次函数的解析式为﹣(2)由图象可知:当x>2或﹣1<x<0时一次函数值大于反比例函数值2.如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交点A(1,3).(1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.〖参考答案〗解:(1)由题意,得3=1+m,解得:m=2.所以一次函数的解析式为y1=x+2.由题意,得3=,解得:k=3.所以反比例函数的解析式为y2=.由题意,得x+2=,解得x1=1,x2=﹣3.当x2=﹣3时,y1=y2=﹣1,所以交点B(﹣3,﹣1).(2)由图象可知,当﹣3≤x<0或x≥1时,函数值y1≥y2.类型五函数的应用【例题5】(2011•岳阳)某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:(1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求y与x之间的函数关系式.(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.〖选题意图〗此题主要考查了一次函数的应用,一次函数的应用是中考中的重点题型,利用图表得出正确的信息是解决问题的关键.〖解题思路〗(1)根据图表得出16x+12y+10(20﹣x﹣y)=240,从而求出y与x的关系式即可;(2)利用(1)中关系式即可得出方案;(3)分别求出(2)中方案的利润即可.〖参考答案〗解:(1)∵厂方计划由20个工人一天内加工完成,设加工甲种配件的人数为x,加工乙种配件的人数为y,∴加工丙种配件的人数为(20﹣x﹣y)人,∴16x+12y+10(20﹣x﹣y)=240,∴y=﹣3x+20;(2)设加工丙种配件的人数为z=(20﹣x﹣y)人,当x=3时,y=11,z=6,当x=4时,y=8,z=8,当x=5时,y=5,z=10,其他都不符合题意,∴加工配件的人数安排方案有三种;(3)由图表得:方案一利润为:3×16×6+11×12×8+10×6×5=1644元,方案二利润为:4×16×6+8×12×8+10×8×5=1552元,方案三利润为:5×16×6+5×12×8+10×10×5=1460元,∴应采用(2)中方案一,最大利润为1644元.【课堂训练题】1.(2011•孝感)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?〖参考答案〗解:(1)设该公司组装A型器材x套,则组装B型器材(40﹣x)套,依据题意得(﹣),(﹣)解得22≤x≤30,由于x 为整数,所以x取22,23,24,25,26,27,28,29,30.故组装A、B两种型号的健身器材共有9套组装方案;(2)总的组装费用y=20x+18(40﹣x)=2x+720,∵k=2>0,∴y随x的增大而增大,∴当x=22时,总的组装费用最少,最少组装费用是2×22+720=764元,总的组装费用最少的组装方案为:组装A型器材22套,组装B型器材18套.2.为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?〖参考答案〗解:(1)门票定价为50元/人,那么10人应花费500元,而从图可知实际只花费300元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费400元,而原价是500元,可以知道是打8折得到的价格,所以b=8,看图可知m=10;(2)设y1=kx,当x=10时,y1=300,代入其中得,k=30y1的函数关系式为:y1=30x同理可得,y2=50x(0≤x≤10),当x>10时,设其解析式为:y2=(x﹣10)×50×0.8+500,化简得:y2=40x+100;(3)设A团有n人,则B团有(50﹣n)人,当0≤n≤10时,50n+30(50﹣n)=1900解得,n=20这与n≤10矛盾,当n>10时,40n+100+30(50﹣n)=1900,解得,n=30,50﹣30=20.答:A团有30人,B团有20人.【例题6】用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?〖选题意图〗现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.〖解题思路〗(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,后根据题意代入求出k1和k2即可;(2)当y=0.5时,求出此时小红和小敏所用的水量,后进行比较即可.〖参考答案〗解:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,将和分别代入两个关系式得:1.5=,2=,解得:k1=1.5,k2=2.∴小红的函数关系式是=,小敏的函数关系式是.(2)把y=0.5分别代入两个函数得:=0.5,=0.5,解得:x1=3,x2=4,10×3=30(升),5×4=20(升).答:小红共用30升水,小敏共用20升水,小敏的方法更值得提倡.【课堂训练题】1.一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.〖参考答案〗解:(1)设ρ=,当V=10m3时,ρ=1.43kg/m3,所以1.43=,即k=14.3,所以ρ与V的函数关系式是ρ=;(2)当V=2m3时,把V=2代入得:ρ=7.15(kg/m3),所以当V=2m3时,氧气的密度为7.15(kg/m3).类型六一次函数与反比例函数的综合题【例题7】(2011•宜宾)如图,一次函数的图象与反比例函数﹣(<)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(>)的图象与﹣(<)的图象关于y轴对称,在y2=(>)的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.〖选题意图〗此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.〖解题思路〗(1)根据x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值得到点A的坐标,利用待定系数法求函数的解析式即可;(2)求得B点的坐标后设出P点的坐标,利用告诉的四边形的面积得到函数关系式求得点P的坐标即可.〖参考答案〗解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则﹣,解之得﹣,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与﹣(<)的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设p(n,)n>2,S四边形BCQP=S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).【课堂训练题】1.(2011•成都)如图,已知反比例函数()的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.〖参考答案〗解:(1)把点(,8)代入反比例函数(),得k=•8=4,∴反比例函数的解析式为y=;又∵点Q(4,m)在该反比例函数图象上,∴4•m=4,解得m=1,即Q点的坐标为(4,1),而直线y=﹣x+b经过点Q(4,1),∴1=﹣4+b,解得b=5,∴直线的函数表达式为y=﹣x+5;(2)联立﹣,解得或,∴P点坐标为(1,4),对于y=﹣x+5,令y=0,得x=5,∴A点坐标为(0,5),∴S△OPQ=S△AOB﹣S△OBP﹣S△OAQ=•5•5﹣•5•1﹣•5•1=.2.(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B、(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.〖参考答案〗解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,∴点B坐标为(2,2),∴k=xy=2×2=4.(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,∴ON=OM=2OA=4,∴点E横坐标为4,点F纵坐标为4.∵点E、F在函数y=的图象上,∴当x=4时,y=1,即E(4,1),当y=4时,x=1,即F(1,4).设直线EF解析式为y=mx+n,将E、F两点坐标代入,得,∴m=﹣1,n=5.∴直线EF的解析式为y=﹣x+5.第三部分课后自我检测试卷A类试题:1.(2011•阜新)反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2 C.3 D.12.如图,直线y=x+2交x轴于A,交y轴于B(1)直线AB关于y轴对称的直线解析式为;(2)直线AB绕原点旋转180度后的直线解析式为;(3)将直线AB绕点P(﹣1,0)顺时针方向旋转90度,求旋转后的直线解析式.3.将一次函数y=kx﹣1的图象向上平移k个单位后恰好经过点A(3,2+k).(1)求k的值;(2)若一条直线与函数y=kx﹣1的图象平行,且与两个坐标轴所围成的三角形的面积为,求该直线的函数关系式.4.(2011•肇庆)如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.5.如图所示,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A (4,m).(1)求m的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B、C,求线段BC的长.B类试题:6.已知直线x﹣2y=﹣k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k的取值范围;(2)若k为非整数,点A的坐标(2,0),点P在直线x﹣2y=﹣k+6上,求使△PAO为等腰三角形的点的坐标.7.在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求证:△AEC≌△DFB.C 类试题:9.如图,双曲线y= (k >0,x >0)的图象上有两点P 1(x 1,y 1)和P 2(x 2,y 2),且x 1<x 2,分别过P 1和P 2向x 轴作垂线,垂足为B 、D .过P 1和P 2向y 轴作垂线,垂足为A 、C .(1)若记四边形AP 1BO 和四边形CP 2DO 的面积分别为S 1和S 2,周长为C 1和C 2,试比较S 1和S 2,C 1和C 2的大小;(2)若P 是双曲线y=(k >0,x >0)的图象上一点,分别过P 向x 轴、y 轴垂线,垂足为M 、N .试问当P 点落在何处时,四边形PMON 的周长最小?10.(2011•曲靖)如图:直线y=kx+3与x 轴、y 轴分别交于A 、B 两点,OA OB =,点C (x ,y )是直线y=kx+3上与A 、B 不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.课后自我检测试卷参考答案A类试题:1.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选A.2.解:由题意得:A(﹣4,0),B(0,2),(1)∵关于y轴对称则:此直线过点(0,2)和(4,0),∴可得函数解析式为i:y=﹣x+2(2)∵关于原点对称的两点的横坐标纵坐标都互为相反数,∴可得函数解析式过点(0,﹣2)和(﹣4,0),∴函数解析式为:y=﹣x﹣2(3)设函数解析式为y=2x+b,又∵过点(﹣1,0),∴函数解析式为:y=2x+2.3.解:(1)根据平移规律可知,平移后解析式为y=kx﹣1+k,将点A(3,2+k)代入,得3k﹣1+k=2+k,解得k=1;(2)设所求直线解析式为y=x+b,则图象与坐标轴两交点坐标为(﹣b,0),(0,b),由三角形面积公式得×|b|×|﹣b|=,解得b=±1,∴y=x+1或y=x﹣1(不合题意,舍去),故所求直线的函数关系式为y=x+1.4.解:(1)把点B(﹣1,0)代入一次函数y=x+b得:0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=,;(2)反比例函数y=,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y=,∴当1≤x≤6时,反比例函数y的值:≤y≤2.5.解:(1)∵点A (4,m)在反比例函数y=的图象上,∴m==1,∴A (4,1),把A (4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3,(2)∵直线x=2与反比例和一次函数的图象分别交于点B、C,∴当x=2时,y B==2,y C=2﹣3=﹣1,∴线段BC的长为|y B﹣y C|=2﹣(﹣1)=3.B类试题:6.解:(1)由题可得:﹣﹣,解得:﹣,∴两直线的交点坐标为(k+4,k﹣1),又∵交点在第四象限,∴>﹣<,解得:﹣4<k<1;(2)由于k为非负整数且﹣4<k<1,∴k=0,此函数的解析式为:x﹣2y=6.直线x﹣2y=6与y轴的交点坐标为:(0,﹣3),与x轴交点坐标为(6,0),∵2<3,∴等腰三角形△PAO只有以OA为底边,∴可得P点坐标为(1,﹣).7.解:(1)当P把△ABC分成如图(一)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AB上,设P运动了t秒,则BP=t,AP=12﹣t,由题意得:BP+BD=(AP+AC+CD),即t+3=(12﹣t+12+3),解得t=7秒;(2)当DP把△ABC分成如图(二)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AC上,设P运动了t秒,则AB+AP=t,PC=AB+AC﹣t,由题意得:BD+t=2(PC+CD),即3+t=2(12+12﹣t+3),即3t=51,t=17秒.∴当t=7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.解:(1)由题意得1=,∴m=6,∴n=,∴n=2;(2)设直线AB的函数解析式为y=kx+b﹣由题意得,解得∴直线AB的函数解析式为y=﹣2x+8;(3)∵y=﹣2x+8,∴A(0,8),B (4,0)∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB∵AE=DF=2,CE=BF=1∴△AEC≌△DFB.C类试题:9.解:(1)根据反比例函数系数k的几何意义可知S1=S2=k;当y1﹣y2=x2﹣x1即AC=BD时C1=C2;当y1﹣y2<x2﹣x1即AC<BD时C1<C2;当y1﹣y2>x2﹣x1即AC>BD时C1>C2.(2)设P(x,y),即(x,),四边形PMON的周长=2(x+y)=2(x+),因为面积相等的四边形中正方形的周长最小,所以x=,解得x=,故四边形PMON的周长最小=2(x+y)=4.10.解:(1)∵直线y=kx+3与y轴分别交于B点,∴B(0,3),∵OA OB= ,∴OA=4,∴A (4,0),∵直线y=kx+3过A (4,0),∴4k+3=0,∴k=﹣ ,∴直线的解析式为:y=﹣ x+3;(2)∵A (4,0),∴AO=4,∵△AOC 的面积是6,∴△AOC 的高为:3,∴C 点的纵坐标为3,∵直线的解析式为:y=﹣ x+3,∴3=﹣ x+3,x=0,∴点C 运动到B 点时,△AOC 的面积是6;(3)当过点C 的另一直线CD 与y 轴相交于D 点,且CD ⊥y 轴于点D 时,BD=BO=3,△BCD 与△AOB 全等, ∴C 点纵坐标为6,∴6=﹣ x+3,解得:x=﹣4,∴C 点坐标为:(﹣4,6).。
一次函数与反比例函数的性质
05
典型例题解析
一次函数典型例题
例题1
已知一次函数 y = 2x + 1,求该函数在 x = 3 时的函数值。
例题2
已知一次函数 y = kx + b(k ≠ 0)的图像经 过点(2,3)和(-1,-2),求该函数的解 析式。
例题3
已知一次函数 y = -x + 4 与 x 轴交于点 A, 与 y 轴交于点 B,求 △AOB 的面积。
3
例题3
已知一次函数 y = kx + b 与反比例函数 y = m/x 的图像交于 C、D 两点,且 C 、D 两点的纵坐标分别为 -4 和 6,CD = 10,求这两个函数的解析式及 k、b、 m 的值。
06
总结与展望
知识体系总结
一次函数与反比例函数的基本性质
01
包括定义域、值域、单调性、奇偶性等基础概念。
一次函数的增减性与 其图像的斜率方向一 致。
当一次函数的比例系 数小于0时,函数在 整个定义域内是减函 数。
一次函数的对称性
一次函数不具有轴对称性,因为其图像是一 条直线,无法关于某条直线对称。
一次函数具有中心对称性,即其图像关于某 一点中心对称。该点即为一次函数的中心点 ,坐标为(h, k),其中h和k分别为一次函数与 x轴和y轴的交点横纵坐标的平均值。
。
综合应用典型例题
1
例题1
已知一次函数 y = ax + b(a ≠ 0)与反 比例函数 y = k/x(k ≠ 0)的图像交于 A、B 两点,且 A、B 两点的横坐标分别 为 -1 和 3,求这两个函数的解析式。
2
例题2
已知一次函数 y = -2x + m 与反比例函 数 y = n/x 的图像交于 A(-1,4)和 B (3,-2)两点,求这两个函数的解析式 及 m、n 的值。
一次函数和反比例函数
一次函数和反比例函数一次函数和反比例函数是数学中常见的两种函数类型。
它们在数学、工程、经济等领域中都有广泛的应用。
本文将详细介绍一次函数和反比例函数的概念、性质、图像和应用。
一、一次函数一次函数又称为一次方程,是指形如y=ax+b的函数,其中a和b是常数,x和y分别表示自变量和因变量。
一次函数的图像是一条直线,其中a称为直线斜率,表示直线倾斜的程度,b称为截距,表示直线与y轴的交点。
1. 性质(1)斜率为零的直线是水平直线,斜率为正的直线是向上倾斜的直线,斜率为负的直线是向下倾斜的直线。
(2)当x取不同的值时,y的变化量与x的变化量成正比例关系。
(3)直线的截距表示当x为0时,直线与y轴的交点的纵坐标。
2.图像一次函数的图像是一条直线,其斜率和截距决定了直线的位置和形状。
可以通过画出两个点来确定一条直线,但也可以通过斜率和截距来快速绘制出直线。
如果一次函数的斜率为2,截距为1,则可以画出通过点(0,1)和(1,3)的直线。
3.应用一次函数在很多领域中都有广泛的应用。
斜率表示了物体运动的速率和变化率,截距表示了与x轴的位移,因此一次函数可以被用来描述运动、重力、天体物理等等。
二、反比例函数反比例函数是指形如y=k/x的函数,其中k是常数,x和y分别表示自变量和因变量。
当x趋近于0时,y趋近于无限大;当x趋近于无限大时,y趋近于0。
反比例函数的图像是一条无限接近x和y轴的双曲线。
(1)当x趋近于0时,y趋近于无限大;当x趋近于正无穷大时,y趋近于0。
(2)反比例函数的图像是一条双曲线,其两条渐进线是x轴和y轴。
(3)当x增大时,y减小,反之亦然。
反比例函数在很多领域中都有广泛的应用。
它可以被用来计算电路中的电流和电压、计算物体的加速度、分析经济学中的消费和产量关系等等。
反比例函数的性质和图像使得其在工程、经济等领域中具有很大的实用价值。
在实际应用中,一次函数和反比例函数经常被用来描述各种现象和过程。
第8讲 一次函数与反比例函数勾股定理的综合应用---Pdf
一次函数及反比例函数测试卷一、选择题(每小题3分,共24分)1.函数y x =+,自变量x 的取值范围是( ) A .全体实数B .0x ≤C .0x <D .0x >2.在平面直角坐标系内,若点P 的横坐标是3−,且点P 到x 轴的距离为5,则点P 的坐标是( ) A .(5,3−)或(5−,3−) B .(3−,5−)或(3−,5) C .(3−,5)D .(3−,5−)3.正比例函数()12y m x =−的图象经过点(1x ,1y )和点(2x ,2y ),当12x x <时,12y y >,则m 的取值范围是( )A .0m <B .0m >C .0.5m <D .0.5m >4.反比例函数()0ky k x=≠的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( ) A .10 B .5 C .2 D .0.15.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别作y 轴的垂线,得到三个三角形△P 1A 1O 、△P 2A 2O 、△P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3C .S 1<S 3<S 2D .S 1=S 2=S 36.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如右图所示.若y (℃)表示0时到t 时内骆驼体温的温差(0时到t 时最高温度与最低温度的差).则y 与t 之间的函数关系用图象表示,大致正确的是( )A B C D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若210x ≤≤,则y 与x 的函数图象是( )8.正比例函数与反比例函数的图象都经过点(1,4),在第一象限内正比例函数的图象在反比例函数图象上方的自变量x 的取值范围是( )A .1x >B .01x <<C .4x >D .04x <<二、填空题(每小题3分,共18分)9.以点(1,0)为圆心,以3为半径画圆,则此圆与x 轴的交点的坐标是___________,与y 轴交点的坐标是____________.10.一次函数3y x =−+,当03x ≤≤时,函数y 的最大值是____________.11.函数4y x =−与4y x=−的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC的面积为___________.12.直线132y x =−+向_______平移_______个单位,就可以得到直线112y x =−+. 13.若正比例函数y kx =与2y x =的图象关于x 轴对称,则k 的值等于____________.14.已知函数:(1)图象不经过第二象限;(2)图象经过点(2,−5).请你写出一个同时满足(1)和(2)的函数关系式_____________.三、解答题(每小题5分,共20分)15.函数12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,且2x =时19y =,3x =时19y =,求y 与x 的函数关系式.16.某市为了鼓励市民节约用水,规定自来水的收费标准如下表:每月每户用水量 不超过10吨部分超过10吨而不超过20吨部分超过20吨部分每吨水价(元)0.50 0.75 1.50(1)现已知胡老师家4月份用水18吨,则应缴水费____________元;(2)写出每月每户的水费y 与用水量x 之间的函数关系式;(3)若已知胡老师家5月份的水费为17元,问他家5月份用水多少吨?17.某巡逻船在码头外巡逻,离开码头的距离s (米)与巡逻的时间t (分)的函数关系可用图中的曲线来表示.同时,一艘游船到码头的距离s (米)与时间t (分)的函数关系可用50500s t =+来表示.(1)在同一直角坐标系中画出函数50500s t =+的图象.(2)根据图象估计在哪些时刻游船和巡逻船到码头的距离相等(时间精确到分,允许误差1±分).18.人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人运动时所能承受的每分钟心跳的最高数,那么()=−.0.8220b a(1)正常情况下,运动时,一个16岁的学生所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时,10秒心跳次数为20次,他有危险吗?四、解答题(每小题6分,21题和21’题选作一道,共24分)19.有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图2是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米;(2)开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?21.如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.(1)求点A的坐标:(2)若直线AB交x轴于点C,求△AOC的面积.21’.如图5,已知点A 是一次函数y x =的图象与反比例函数2y x=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么AOB Δ的面积为( )22.如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过A 作x 轴的平行线,交函数()20y x x=−<的图象于B ,交函数()60y x x=>的图象于C ,过C 作y 轴的平行线交BO 的延长线于D . (1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比; (2)如果点A 的坐标为(0,a ),求线段AB 与线段CA 的长度之比; (3)在(2)的条件下,四边形AODC 的面积为________.五、解答题(每小题7分,共14分)23.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?24.如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点在AD边上时,求S与t的函数解析式。
一次函数反比例函数及二次函数课件
考点 2 含参数问题的讨论 师生互动 考向 1 区间固定对称轴动型 [例 1]已知函数 f(x)=x2+2ax+2,求 f(x)在[-5,5]上的最 大值与最小值. 解:f(x)=x2+2ax+2=(x+a)2+2-a2,x∈[-5,5],对称 轴为直线 x=-a. (1)当-a<-5,即 a>5 时,函数 f(x)在[-5,5]上单调递 增,如图 2-8-2(1), ∴f(x)max=f(5)=52+2a×5+2=27+10a,
根据图象知,A 选项 b=0 不对 ; B 选项,若 g(x)成立,则 a>0,b>0,- 2ba<0,此时 f(x)图 象不对;
C 选项,若 g(x)成立,则 a<0,b>0,- b >0,此时 f(x)图 2a
象不对;
D 选项显然是正确的,故选 D. 答案:D
2. 设 abc >0,二次函数 f(x) =ax2 +bx +c 的图象可能是 ()
∴f(10)-f(t)=12-t,即 t2-17t+72=0.
解得 t=8(舍去)或 t=9.∴t=9. 综上所述,存在常数 t=15-2 17或 t=8 或 t=9 满足条件.
【考法全练】 2.(多选题)一般地,若函数 f(x)的定义域为[a,b],值域为[ka, kb],则称[a,b]为 f(x)的“k 倍跟随区间”;特别地,若函数 f(x) 的定义域为[a,b],值域也为[a,b],则称[a,b]为 f(x)的“跟随
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;
一次函数与反比例函数
一次函数与反比例函数一、一次函数一次函数是指函数的最高次数为1的函数,通常表达式为y = ax + b,其中a和b为常数,且a不等于0。
一次函数常见的图像为直线,其特点是在直角坐标系中呈现出线性关系。
我们来详细介绍一次函数的性质和应用。
1.1 斜率与截距一次函数的斜率代表直线的斜率,定义为直线上任意两点之间纵坐标的差与横坐标的差的比值。
斜率可以用来判断直线的走势,正斜率表示向上倾斜,负斜率表示向下倾斜,斜率为0表示直线平行于x轴。
一次函数的截距代表直线与y轴交点的纵坐标,可以通过给定x轴坐标为0来求得截距。
截距可以用来确定直线在纵向上的位置。
1.2 判定函数性质通过斜率和截距的值,我们可以判定一次函数的性质。
当斜率大于0时,函数为增函数,即随着x的增大,y的值也增大。
当斜率小于0时,函数为减函数,即随着x的增大,y的值减小。
当斜率等于0时,函数为常数函数,即y的值保持不变。
1.3 应用举例一次函数在实际生活中有着广泛的应用。
比如,我们可以通过记录一辆汽车行驶的距离和时间来建立一次函数模型,从而预测汽车未来的行驶距离。
又如,我们可以通过一次函数来计算销售商品的总收入,这对于商务决策非常重要。
二、反比例函数反比例函数是指函数的形式为y = k/x,其中k为常数,且k不等于0。
反比例函数的图像通常为双曲线的一支,其特点是x与y成反比例关系,即当x增大时,y减小;当x减小时,y增大。
接下来,我们将详细介绍反比例函数的性质和应用。
2.1 反比例性质反比例函数的性质可以用比例的关系来表达,即y与x乘积的值等于常数k,即y * x = k。
2.2 判定函数性质反比例函数的性质可以通过k的值来判断。
当k大于0时,函数为单调递减函数,即随着x的增大,y的值减小。
当k小于0时,函数为单调增加函数,即随着x的增大,y的值增大。
2.3 应用举例反比例函数在实际生活中也有着广泛的应用。
例如,当我们计算两个物体间的引力时,根据牛顿定律,引力与两个物体间距离的平方成反比。
第八讲 一次函数与反比例函数PPT教学课件
性质: 当 k>0 时,图像的两支分别在第一、三象限内,
且在每个象限内 y 随 x 增大而减小
当 k<0 时,图像的两支分别在第二、四象限内, 且在每个象限内 y 随 x 的增大而增大
例3、若函数 y(m2)xm 23m 1是反比例函数,
且当 x 0 时,y 随 x 的增大而减小,求 m 的值
概念:函数 ykxb(k0 )称 y 是 x 的一次函数 当 b=0 时,ykx(k0)称 y 是 x 的正比例函数
图像: 一次函数 ykxb(k0 )的图像是经过
(0,b),(b,0) 的一条直线, k
b 叫做直线在 y 轴上的截距
性质: 当 k >0 时,y 随 x 的增大而增大 当 k <0 时,y 随 x 的增大而减小
反比例函数 y k 的图像关于原点成中心对称 x
函数 y k 呢? x2
左加右减 (2,0)
函数 y k 1呢? x2
上加下减 (2,1)
函数 y k b(k0) xa
平移法则
(a,b)
例4、求函数 y x 2 的对称中心,
x 1
并说出其图像是如何变化而来的
已知一次函数
yx6和反比例函数
y
k x
(k
0)
有两个交点A , B,试判断∠AOB是锐角还是钝角,
并说明理由。
PPT教学课件
谢谢观看
Thank You For Watching
例1、已知一直线经过点A(-1,-1)和B(1,-5) 求直线AB的解析式.
例2、已知一次函数 y(m 3 )x m 2 1 6, 且 y 的值随 x 的增大而增大 (1)求 m 的取值范围 (2)若它恰好是正比例函数,求m的值
中考数学回归教材重难点08 反比例函数与一次函数综合问题(解析版)
回归教材重难点08 反比例函数与一次函数综合问题反比例函数与一次函数综合问题是初中《反比例函数》章节的重点内容,考查的相对比较综合,把反比例函数与一次函数结合起来,以不等式、方程组等为核心。
在中考数学中,主要是以解答题形式出现。
通过熟练运用的方程、不等式与函数三者之间的关系,提升数学学科素养,提高逻辑思维推断能力。
本考点是中考五星高频考点,在全国各地的中考试卷中均有出现,题目难度较大,甚至有些地方将其作为选填题的压轴题。
1.反比例函数中的有关面积问题如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错2.待定系数法求反比例函数解析式反比例函数y =kx (k≠0)系数k 的几何意义:从反比例函数y =kx (k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.反比例函数y =kx (k≠0)系数k 的几何意义:从反比例函数y =kx (k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.1.(2021·湖南湘潭·中考真题)如图,点,2A a 在反比例函数4y x=的图象上,//AB x 轴,且交y 轴于点C ,交反比例函数ky x=于点B,已知2AC BC =. yx DC FEOB A(1)求直线OA 的解析式; (2)求反比例函数ky x=的解析式; (3)点D 为反比例函数ky x=上一动点,连接AD 交y 轴于点E ,当E 为AD 中点时,求OAD △的面积. 【答案】(1)y x =;(2)2y x=-;(3)3.【分析】(1)先求解A 的坐标,再把A 的坐标代入正比例函数y mx =,解方程即可得到答案; (2)利用2,AC BC = 先求解B 的坐标,再利用待定系数法求解解析式即可;(3)设2,,D n n ⎛⎫- ⎪⎝⎭ 而()2,2,A E 为AD 的中点,利用中点坐标公式求解,D E 的坐标,再利用()12OAD ODE OAE A D S S S OE x x =+=+,计算即可得到答案.【详解】解:(1) 点,2A a 在反比例函数4y x=的图象上,24,2,a a ∴== 则()2,2,A 2,AC ∴= 设直线AO 为:,y mx = 22,m ∴= 则1,m = 所以直线AO 为:,y x =(2) //AB x 轴, 2=2AC BC =.1,BC ∴= ()1,2,B ∴- 122,k xy ∴==-⨯=-所以反比例函数为:2.y x=-(3)设2,,D n n ⎛⎫- ⎪⎝⎭ 而()2,2,A E 为AD 的中点,()120,2E x n ∴=+=2,n ∴=-()32,1,0,,2D E ⎛⎫∴- ⎪⎝⎭()12OADODE OAEA D SSSOE x x ∴=+=+ ()1322 3.22=⨯⨯+= 【点睛】本题考查的利用待定系数法求解一次函数与反比例函数的解析式,图形与坐标,中点坐标公式,熟练应用以上知识解题是关键.2.(2021·辽宁鞍山·中考真题)如图,在平面直角坐标系中,一次函数1y k x b =+的图象分别与x 轴、y 轴交于A ,B 两点,与反比例函数2k y x =的图象在第二象限交于C ,(6,2)D -两点,//DE OC 交x 轴于点E ,若13AD AC =. (1)求一次函数和反比例函数的表达式. (2)求四边形OCDE 的面积.【答案】(1)8y x +=,12y x=-;(2)643【分析】(1)先利用待定系数法求反比例函数解析式,然后结合相似三角形的判定和性质求得C 点坐标,再利用待定系数法求函数关系式;(2)根据一次函数图象上点的坐标特征并结合待定系数法求得A 点和E 点坐标,然后用AOC △的面积减去AED 的面积求解.【详解】解:(1)将(62)D -,代入2k y x=中,26212k ⨯=-=-, ∴反比例函数的解析式为12y x=-; 过点D 作DM x ⊥轴,过点C 作CN x ⊥轴,//DE OC ,ADE ACO ∴∽,13AD AE DM AC AO CN ∴===,36CN DM ∴==, 将6y =代入12y x=-中,126x =-,解得:2x =-,∴C 点坐标为()2,6-,将()2,6C -,()6,2D -代入1y k x b +=中,可得112662k b k b -+=⎧⎨-+=⎩,解得:118k b =⎧⎨=⎩,∴一次函数的解析式为8y x +=; (2)设直线OC 的解析式为y mx =,将()2,6C -代入,得:26m -=,解得:3m =-,∴直线OC 的解析式为3y x =-,由//DE OC ,设直线DE 的解析式为3y x n +=-, 将()6,2D -代入可得:()362n ⨯+--=,解得:16n =-,∴直线DE 的解析式为316y x -=-,当0y =时,3160x --=,解得:163x =-,∴E 点坐标为16,03⎛⎫- ⎪⎝⎭,163OE ∴=,在8y x +=中,当0y =时,80x +=,解得:8x =-,∴A 点坐标为()8,0-,8OA ∴=,168833AE ∴-==, AOCAEDOCDE S SS四边形=﹣1122OA CN AE DM =⋅-⋅118862223=⨯⨯-⨯⨯8243=-643=.【点睛】本题考查反比例函数与一次函数的应用,相似三角形的判定和性质,掌握一次函数及反比例函数图象上点的坐标特征,利用待定系数法求函数解析式是解题关键.3.(2021·山东淄博·中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP △的面积; (3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集. 【答案】(1)11y x =-+,26y x=-;(2)152ABPS=;(3)20x -<<或3x > 【分析】(1)由题意先求出2y ,然后得到点B 的坐标,进而问题可求解;(2)由(1)可得ABP △以PB 为底,点A 到PB 的距离为高,即为点A 、B 之间的纵坐标之差的绝对值,进而问题可求解;(3)根据函数图象可直接进行求解.【详解】(1)把点()2,3A -代入反比例函数解析式得:6k =-,∴26y x=-,∴点B 在反比例函数图象上,∴26m -=-,解得:3m =,∴()3,2B -,把点A 、B 作代入直线解析式得:112332k b k b -+=⎧⎨+=-⎩,解得:111k b =-⎧⎨=⎩,∴11y x =-+;(2)由(1)可得:()2,3A -,()3,2B -,∴//BP x 轴,∴3BP =,∴点A 到PB 的距离为()325--=,∴1153522ABPS =⨯⨯=; (3)由(1)及图象可得:当21k k x b x+<时,x 的取值范围为20x -<<或3x >. 【点睛】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.4.(2021·山东济宁·中考真题)如图,Rt ABC △中,90ACB ∠=︒,AC BC =,点()2,0C ,点()0,4B ,反比例函数()0ky x x=>的图象经过点A .(1)求反比例函数的解析式;(2)将直线OA 向上平移m 个单位后经过反比例函数,图象上的点()1,n ,求m ,n 的值. 【答案】(1)12y x =;(2)12n =,353m =【分析】(1)作AD x ⊥轴,可知BOC CDA △≌△,得出A 点坐标,待定系数法求出解析式即可, (2)将点()1,n 代入(1)中解析式和直线OA 的解析式中,分别求出m ,n 的值即可. 【详解】(1)如图,作AD x ⊥轴,则90ADC ∠=︒90ACB ∠=︒,AC BC =,90BCO ACD ∴∠+∠=︒90BCO CBO ∠+∠=︒ACD CBO ∴∠=∠∴()BOC CDA AAS △≌△点()2,0C ,点()0,4B 2,4OC OB ∴==4,2CD OB AD OC ∴====,∴OD =OC +CD =6,(6,2)A ∴ 代入k y x=中,2612k =⨯=12y x ∴=.(2)()1,n 在12y x=上,12n ∴= (6,2)(0,0)A O ,设直线OA 解析式为1y k x =12=6k ∴,113k =13y x ∴=直线OA 向上平移m 个单位后的解析式为:13y x m =+ 图象经过(1,12),11213m ∴=⨯+,解得:353m =,12n ∴=,353m =.【点睛】本题考查了待定系数法求反比例函数解析式,正比例函数解析式,函数图像的平移,三角形全等的性质与判定,解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想. 5.(2021·山东泰安·中考真题)如图,点P 为函数112y x =+与函数(0)m y x x=>图象的交点,点P 的纵坐标为4,PB x ⊥轴,垂足为点B .(1)求m 的值; (2)点M 是函数(0)m y x x =>图象上一动点,过点M 作MD BP ⊥于点D ,若1tan 2PMD ∠=,求点M 的坐标.【答案】(1)24;(2)M 点的坐标为(8,3)【分析】(1)根据交点坐标的意义,求得点P 的横坐标,利用k =xy 计算m 即可; (2)利用分类思想,根据正切的定义,建立等式求解即可. 【详解】(1)∴点P 纵坐标为4,∴1412x =+,解得6x =,(6,4)P ∴∴4=6m ,∴24m =.(2)∴1tan 2PMD ∠=,∴12PD PM =, 设(0)PD t t =>,则2DM t =,当M 点在P 点右侧,∴M 点的坐标为(62,4)t t +-,∴(6+2t )(4-t )=24,解得:11t =,20t =(舍去),当11t =时,(8,3)M ,∴M 点的坐标为(8,3),当M 点在P 点的左侧,∴M 点的坐标为(62,4)t t -+,∴(6-2t )(4+t )=24, 解得:10t =,21t =-,均舍去. 综上,M 点的坐标为(8,3).【点睛】本题考查了一次函数与反比例函数的交点问题,反比例函数解析式的确定,三角函数,一元二次方程的解法,熟练掌握函数图像交点的意义,灵活运用三角函数的定义,构造一元二次方程并准确解答是解题的关键.6.(2022·重庆·模拟预测)如图,一次函数1y k x b =+的图像与反比例函数ky x=的图像相交于点A (3,1),B (﹣1,n )两点.(1)分别求出一次函数和反比例函数的解析式; (2)根据图像,直接写出满足1+≥kk x b x的x 的取值范围; (3)连接BO 并延长交双曲线于点C ,连接AC ,求ABC ∆的面积.【答案】(1)反比例函数的解析式是3y x=,一次函数的解析式是2y x =-;(2)10x -≤<或3x ≥;(3)8 【分析】(1)把点A 的坐标代入反比例函数的解析式,即可求出反比例函数的解析式,再把点B 的坐标代入反比例函数的解析式可求出B 的坐标,把点A 、B 的坐标代入一次函数1y k x b =+即可求出函数的解析式; (2)根据函数的图像和A 、B 的坐标即可得出答案;(3)过C 点作CD y ∥轴,交直线AB 于D ,求出D 的坐标,即可求得CD ,然后根据ABC ACD BCD S S S =+△△△即可求出答案.【详解】(1)解:∴点A (3,1),B (﹣1,n )两点在反比例函数图像上 ∴把A (3,1)代入k y x=得:313k =⨯=,∴反比例函数的解析式是3y x =,又∴B (﹣1,n )代入反比例函数3y x=得:3n =-,∴B 的坐标是(﹣1,﹣3),把A 、B 的坐标代入一次函数1y k x b =+得:11313k b k b +=⎧⎨-+=-⎩,解得:11k =,2b =-,∴一次函数的解析式是2y x =-. (2)解:从图像可知:1+≥kk x b x的x 的取值范围是当10x -≤<或3x ≥. (3)解:过C 点作CD y ∥轴,交直线AB 于D ,∴B (﹣1,﹣3),B 、C 关于原点对称,∴C (1,3), 把1x =代入2y x =-得,1y =-,∴D (1,﹣1),∴4CD =,∴()142282△△△=+=⨯⨯+=ABC ACD BCD S S S .【点睛】本题考查一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力.数形结合思想的运用是解题的关键. 7.(2021·山东泰安·模拟预测)如图,在平面直角坐标系xOy 中,一次函数在图象与反比例函数y kx=(k <0)的图象在第二象限交于点A (﹣3,m ),B(n ,2)两点.(1)当m =1时,求一次函数的解析式.(2)若点E 在x 轴上,满足∴AEB =90°,且AE =2﹣m ,分别连接OA ,OB ,求∴OAB 的面积. 【答案】(1)y 23=x +3;(2)289108【分析】(1)将点A 坐标代入反比例函数解析式中求出k ,进而得出点B 坐标,最后用待定系数法求出直线AB 的解析式;(2)先判断出BF =AE ,进而得出∴AEG ∴Rt∴BFG (AAS ),得出AG =BG ,EG =FG ,即BE =BG +EG =AG +FG =AF ,再求出m 23=-n ,进而得出BF =223+n ,MN =n +3,即BE =AF =n +3,再判断出∴AME ∴∴ENB ,根据相似三角形的性质得出ME 23=BN ,最后用勾股定理求出m ,根据梯形的面积公式即可得出结论. 【详解】(1)解:当m =1时,点A (﹣3,1), ∴点A 在反比例函数y kx=的图象上,∴k =﹣3×1=﹣3, ∴反比例函数的解析式为y 3x=-; ∴点B (n ,2)在反比例函数y 3x=-图象上,∴2n =﹣3,∴n 32=-,设直线AB 的解析式为y =ax +b ,则31322b a b -+=⎧⎪⎨-+=⎪⎩,∴233a b ⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为y 23=x +3; (2)如图,过点A 作AM ∴x 轴于M ,过点B 作BN ∴x 轴于N ,过点A 作AF ∴BN 于F ,交BE 于G , 则四边形AMNF 是矩形,∴FN =AM ,AF =MN , ∴A (﹣3,m ),B (n ,2),∴BF =2﹣m , ∴AE =2﹣m ,∴BF =AE ,在∴AEG 和∴BFG 中,90AGE BGFAEG BFG AE BF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴∴AEG ∴∴BFG (AAS ),∴AG =BG ,EG =FG ,∴BE =BG +EG =AG +FG =AF ,∴点A (﹣3,m ),B (n ,2)在反比例函数y kx=的图象上,∴k =﹣3m =2n ,∴m 23=-n ,∴BF =BN ﹣FN =BN ﹣AM =2﹣m =223+n ,MN =n ﹣(﹣3)=n +3,∴BE =AF =n +3,∴∴AEM +∴MAE =90°,∴AEM +∴BEN =90°,∴∴MAE =∴NEB ,∴∴AME =∴ENB =90°,∴∴AME ∴∴ENB ,∴22223333nME AE m BN BE n n +-====++,∴ME 23=BN 43=,在Rt∴AME 中,AM =m ,AE =2﹣m ,根据勾股定理得,AM 2+ME 2=AE 2,∴m 2+(43)2=(2﹣m )2, ∴m 59=,∴k =﹣3m 53=-,∴2n 53=-,∴n 56=-,∴A (﹣3,59),B (56-,2),∴AM 59=,OM =3,BN =2,ON 56=,∴MN 136=, ∴∴OAB 的面积=S 四边形AMNB +S △BNO ﹣S △AOM =S 四边形AMNB 12=(AM +BN )•MN 12=⨯(59+2)132896108⨯=.【点睛】本题考查反比例函数和一次函数的综合应用,解决问题的关键是利用好交点的坐标.8.(2022·江西南昌·一模)如图,反比例函数y 1=kx(x >0)与直线y 2=ax +b 的图象相交于A ,B 两点,其中点B (3,3),且AB =2BC .(1)求反比例函数解析式.(2)求直线AB 解析式.(3)请根据图象,直接写出当y 1<y 2时,x 的取值范围. 【答案】(1)19y x=;(2)2312y x =-+;(3)13x << 【分析】(1)将B 点坐标代入反比例函数解析式,求出k 的值即可;(2)过点A 、D 分别作x 轴的垂线,垂足分别为D ,E .由此即易证ADC BEC △△,得出BE BCAD AB=.再根据2AB BC =,即得出13BE AD =.结合B 点坐标,即可求出A 点纵坐标,将A 点纵坐标代入反比例函数解析式,即求出A 点横坐标.最后结合A 、B 两点坐标利用待定系数法即可求出直线AB 的解析式; (3)根据当12y y <时,反比例函数图象在一次函数图象下方,结合图象即可写出x 的取值范围. 【详解】(1)将B 点坐标代入反比例函数解析式得:33k=,解得:9k =. 故反比例函数解析式为:19y x=;(2)如图,过点A 、D 分别作x 轴的垂线,垂足分别为D ,E .根据作图易证ADC BEC △△,∴BE BC AD AB =. ∴2AB BC =,∴13BC AC =,即13BE AD =. ∴3B BE y ==,∴39A y AD BE ===,将9A y =代入19y x=,即得出99x =,解得:1x =,即A (1,9). 将A (1,9)和B (3,3)代入2y ax b =+,得:933a b a b =+⎧⎨=+⎩,解得:312a b =-⎧⎨=⎩,∴直线AB 的解析式为2312y x =-+; (3)当12y y <时,即反比例函数图象在一次函数图象下方即可,由图象可知当13x <<时反比例函数图象在一次函数图象下方,∴当13x <<时,12y y <.【点睛】本题考查一次函数和反比例函数的综合,利用待定系数法求函数解析式,相似三角形的判定和性质.掌握利用待定系数法求函数解析式是解题关键.9.(2021·山东青岛·一模)如图,直线y 1=k 1x +b 与双曲线y 2=2k x在第一象限内交于A 、B 两点,已知A (1,m ),B (2,1).(1)分别求出直线和双曲线的解析式;(2)设点P 是线段AB 上的一个动点,过点P 作PD ∴x 轴于点D ,E 是y 轴上一点,当∴PED 的面积最大时,请直接写出此时P 点的坐标为 . 【答案】(1)y 1=﹣x +3,22y x =;(2)33,22⎛⎫ ⎪⎝⎭【分析】(1)依据反比例函数图象上点的坐标特征,即可得到m 和2k 的值,再根据待定系数法即可得出直线AB 的解析式;(2)设点P (x ,﹣x+3),用含x 的代数式表示出△PED 的面积,即可求解.【详解】(1)解:∴点B (2,1)在双曲线上,∴2k =2×1=2,∴双曲线的解析式为22y x=, ∴A (1,m )在双曲线22y x =,∴m =2,∴A (1,2). ∴直线AB :y 1=k 1x +b 过A (1,2)、B (2,1)两点,则11221k b k b +=⎧⎨+=⎩,解得113k b =-⎧⎨=⎩, ∴直线AB 的解析式为y =﹣x +3;(2)解:设点P (x ,﹣x +3),且1≤x ≤2,∴PED 的面积=12PD •OD =12x (﹣x +3)=﹣12(x ﹣32)2+98, 当x =32时,∴PED 的面积取得最大值,此时点P 的坐标为(32,32), 故答案为:(32,32). 【点睛】本题是反比例函数的综合题,主要考查了一次函数和反比例函数的图象与性质,二次函数的最值以及三角形的面积公式,求出直线AB 的解析式是解题的关键.10.(2021·江苏常州·二模)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =k x(k >0,x >0)的图象上,CD 在x 轴上,点B 在y 轴上,已知CD =2.(1)点A 是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标.【答案】(1)点A 在反比例函数图象上,理由见解析;(2)Q 317+【分析】(1)过点P 作x 轴垂线PG ,连接BP ,可得BP =2,G 是CD 的中点,所以P (23; (2)易求D (3,0),E (43,待定系数法求出DE 的解析式为y 3﹣3次函数即可求点Q .【详解】(1)解:点A 在该反比例函数的图象上,理由如下:过点P 作x 轴垂线PG ,连接BP ,∴P 是正六边形ABCDEF 的对称中心,CD =2,∴BP =2,G 是CD 的中点,∴PG=BO=BC 3sin 602︒=3∴P (23, ∴P 在反比例函数y =k x (k >0,x >0)的图象上,∴k =3∴y 23 由正六边形的性质,A (1,3,∴点A 在反比例函数图象上;(2)解:由(1)得D (3,0),E (43,设DE 的解析式为y =mx +b ,∴3043m b m b +=⎧⎪⎨+=⎪⎩∴333m b ⎧=⎪⎨=-⎪⎩,∴y 3﹣3 由方程23333y y x ⎧=⎪⎨⎪=-⎩,解得x 317+,∴Q 317+ .【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标结合是解题的关键.11.(2021·广东清远·二模)如图,一次函数y 1=k 1x +4与反比例函数22k y x =的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C .(1)求一次函数与反比例函数的表达式;(2)过点A 作AD ∴x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =4:1时,求点P 的坐标;(3)点M 是y 轴上的一个动点,当∴MBC 为直角三角形时,直接写出点M 的坐标.【答案】(1)y =x +4,12y x =;(2)41515⎝;(3)(0,−2)或(0,−8) 【分析】(1)根据点B 的坐标,利用待定系数法即可求出k 1、k 2的值;(2)根据一次函数图象上点的坐标特征求出点A 、C 的坐标,根据梯形的面积公式求出S 四边形ODAC 的值,进而即可得出S △ODE 的值,结合三角形的面积公式即可得出点E 的坐标,利用待定系数法即可求出直线OP 的解析式,再联立直线OP 与双曲线的解析式成方程组,通过解方程组求出点P 的坐标;(3)分∴CMB =90°或∴CBM =90°两种情况考虑,当∴CMB =90°时,根据点B 的坐标即可找出点M 的坐标;当∴CBM =90°时,由直线AB 的解析式可得出∴BCM 为等腰直角三角形,根据等腰直角三角形的性质结合点A 、B 的坐标即可得出点M 的坐标,综上即可得出结论.【详解】(1)解:将点B (−6,−2)代入y 1=k 1x +4,−2=−6k 1+4,解得:k 1=1,故一次函数的解析式为;y =x +4 将点B (−6,−2)代入22k y x =①,226k -=-,解得:k 2=12, 故反比例函数的解析式为12y x=; (2)解:依照题意,画出图形,如图2所示.当x =2时,m =2+4=6,∴点A 的坐标为(2,6);当x =0时,y 1=x +4=4,∴点C 的坐标为(0,4),∴()114621022()ODAC S OC AD OD =+⋅=⨯+⨯=四边形,S 四边形ODAC :S △ODE =4:1, ∴111210224ODE S OD DE DE =⋅=⨯=⨯,∴DE =2.5,即点EE 的坐标为(2,2.5), 设直线OP 的解析式为y =kx ,将点E (2,2.5)代入y =kx ,得2.5=2k ,解得:54k =,∴直线OP 的解析式为54y x =, 1254y x y x ⎧=⎪⎪⎨⎪=⎪⎩,解得:1141515x y ⎧=⎪⎨⎪=⎩2241515x y ⎧=⎪⎨⎪=⎩, ∴点P 在第一象限,∴点P 的坐标为41515⎝; (3)解:依照题意画出图形,如图3所示.当∴CMB =90°时,BM x ∥轴,∴点M 的坐标为(0,−2);当90CBM ∠'=︒时,∴B (-6,-2),C (0,4),6BM CM ∴==,∴∴BCM =45°,∴∴BCM 为等腰直角三角形,BC=BM ,∴=6M M CM '=,∴点M 的坐标为(0,−8),综上所述:当∴MBC 为直角三角形时,点M 的坐标为(0,−2)或(0,−8).【点睛】本题考查了待定系数法求出一次及反比例函数解析式、一次函数图象上点的坐标特征、梯形(三角形)的面积公式,等腰直角三角形的判定与性质,解题的关键是根据题意画出图形,作出辅助线. 12.(2021·四川眉山·一模)如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)与反比例函数y m x=(m ≠0)的图象相交于A ,B 两点,过点A 作AD ∴x 轴于点D ,AO =5,OD :AD =3:4,B 点的坐标为(﹣6,n )(1)求一次函数和反比例函数的表达式;(2)求∴AOB的面积;(3)P是y轴上一点,且∴AOP是等腰三角形,请直接写出所有符合条件的P点坐标.【答案】(1)y23=x+2,y12x=;;(2)∴AOB的面积S9=;(3)P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,258)【分析】(1)设OD=3a,AD=4a,则AO=5a=5,解得:a=1,故点A(3,4),故反比例函数的表达式为:y=12x,故B(-6,2),将点A、B的坐标代入一次函数表达式,即可求解;(2)∴AOB的面积S=12×OM×(xA-xB)=12×2×(3+6)=9;(3)分AP=AO、AO=PO、AP=PO三种情况,分别求解即可.【详解】(1) AO=5,OD:AD=3:4,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y12x=,故B(﹣6,﹣2),将点A、B的坐标代入一次函数表达式y=kx+b得:4326k bk b=+⎧⎨-=-+⎩,解得:232kb⎧=⎪⎨⎪=⎩,故一次函数的表达式为:y23=x+2;(2)解:设一次函数y23=x+2交y轴于点M(0,2),∴点A (3,4),B (﹣6,﹣2),∴∴AOB 的面积S 12=⨯OM ×(xA ﹣xB )12=⨯2×(3+6)=9; (3)解:设点P (0,m ),而点A 、O 的坐标分别为:(3,4)、(0,0),AP 2=9+(m ﹣4)2,AO 2=25,PO 2=m 2,当AP =AO 时,9+(m ﹣4)2=25,解得:m =8或0(舍去0);当AO =PO 时,同理可得:m =±5;当AP =PO 时,同理可得:m 258=; 综上,P 点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,258). 【点睛】本题考查了反比例函数与一次函数综合,等腰三角形的判定与性质,利用形数结合解决此类问题,是非常有效的方法.13.(2021·广东云浮·一模)如图,反比例函数k y x=图像和一次函数y ax b =+经过()1,6M 和()2,N a .(1)求一次函数解析式:(2)一次函数y ax b =+与x 轴交于点B ,与y 轴交于点A ,求证:AM BN =.【答案】(1)39y x =-+;(2)见解析【分析】(1)把两点的坐标分别代入两解析式,即可求得a 的值,再利用待定系数法确定一次函数的关系式即可;(2)求出A 、B 两点坐标,再根据坐标特征可证得APM NQB ≌,即可证得结论.【详解】(1)解:∴(1,6)和(2,a )经过反比例函数k y x =,∴6=2k k a ⎧⎪⎨=⎪⎩,解得63k a =⎧⎨=⎩ ,∴N (2,3), 又∴一次函数y ax b =+经过M (1,6)和N (2,3),∴623a b a b +=⎧⎨+=⎩ 得到39a b =-⎧⎨=⎩,∴一次函数解析式为39y x =-+; (2)解:如图:过M 作MC ∴y 轴,垂足为点C ;过点N 作ND ∴x 轴,垂足为点D ;∴90ACM NDB ∠=∠=︒在一次函数解析式39y x =-+中,令x =0,得y =9;令y =0,得x =3,即A (0,9),B (3,0),∴AO =9,BO =3, ∴M (1,6)和N (2,3),∴CO =6,MC =1,DO =2,ND =3,∴AC =AO -CO =9-6=3,BD =BO -DO =3-2=1,∴AC =ND =3,MC =BD =1,在∴APM 和∴NQB 中,90AP NQ APM NQB PM QB =⎧⎪∠=∠=︒⎨⎪=⎩,∴()APM NQB SAS ≌,∴AMNB =. 【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,全等三角形的判定与性质,把点的坐标代入函数关系式是常用的方法,将坐标转化为线段的长是解决问题的关键.。
第八讲反比例函数
(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(四)充分利用数形结合的思想解决问题.例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=_________②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而______ (填“增大”或“减小”).4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x0,3).①求x0的值;②求一次函数和反比例函数的解析式.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,则().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x 轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B 且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.反比例函数综合练习1.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.2.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.3.在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.4.反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()A.B.C.D.5.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A. B.C.D.6.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣17.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<18.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1) B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称 D.当x<0时,y随x的增大而减小二.填空题(共8小题)9如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是_________ .10双曲线y=所在象限内,y的值随x值的增大而减小,则满足条件的一个数值k为_________ .11.若函数y=的图象在同一象限内,y随x增大而增大,则m的值可以是_________ (写出一个即可).12.下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是_________ .13.如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为_________ .14.如图,反比例函数y=(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC 的面积为5,AD:OD=1:2,则k的值为_________ .15.如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为_________ .16.如图,反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为_________ .三.解答题(共9小题)17.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.18.已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).19.如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB于点E.(1)k的值为_________ ;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.20.已知反比函数y=,当x=2时,y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.21如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.22.如图,函数y=的图象过点A(1,2).(1)求该函数的解析式;(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.23如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式的解集.24已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.25.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?。
中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)
⑶实际问题:符合实际意义.
8.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:
⑴列表.
⑵描点.
⑶连线.
9.函数解析式与函数图象的关系:
⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上.
⑵函数图象上点的坐标满足函数解析式.
考点03一次函数
(3)函数关系式在书写时有顺序性.例如: 是表示 是 的函数,若写成 就表示 是 的函数.
(4)求 与 的函数关系时,必须是只用变量 的代数式表示 ,得到的等式右边只含 的代数式.
自变量的取值范围:
7.自变量取值范围:在初中阶段,自变量的取值范围考虑下面几个方面:
⑴根式:当根指数为偶数时,被开方数为非负数.
10.用坐标表示地理位置:根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向.
3.一次函数的图象及其画法:
(1)一次函数 ( , , 为常数)的图象是一条直线.
(2)由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.如果这个函数是正比例函数,通常取 , 两点.如果这个函数是一般的一次函数( ),通常取 , ,即直线与两坐标轴的交点.
(3)反比例函数与一次函数的联系.
③解方程(组),得到待定系数的值.
④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.
8.一次函数与一元一次方程的关系:
一次函数与反比例函数
一次函数与反比例函数一、一次函数一次函数是指函数y = kx + b,其中k和b都是常数,x和y都是变量,且k≠0 。
y 随着x增加而增加,k为斜率,b为截距。
一次函数的图像是一条直线,可以通过它的截距和斜率来确定。
当斜率为正数时,图像向右上方倾斜;当斜率为负数时,图像向右下方倾斜;当斜率为零时,图像是水平的。
一次函数在实际生活中的应用非常广泛,例如物理学中的匀速直线运动和斜抛运动,经济学中的成本和收益函数,以及工程学中的比例关系等等。
在数学中,一次函数也是其他函数的基础,我们可以通过它的特性来了解其他函数的性质。
二、反比例函数反比例函数是指函数y=k/x,其中k为常数,x和y都是变量,且x≠0。
当x越大,y 越小,反之亦然。
反比例函数的图像是一个双曲线。
反比例函数在实际生活中也有很多应用,比如两个物体间的万有引力、电荷间的库仑力以及利率与本金的关系等等。
在经济学中,反比例函数也被应用于规模经济学和边际效应等领域。
在数学中,反比例函数也是其他函数的基础,我们可以通过它的特性来了解其他函数的性质。
三、一次函数与反比例函数的异同一、异同点1. 定义不同:一次函数是一个线性函数,反比例函数是一个非线性函数。
2. 处理方法不同:一次函数中,当变量x增加1个单位时,y增加k个单位;而反比例函数中,当变量x增加1个单位时,y减少k个单位。
3. 图像不同:一次函数的图像是一条直线,反比例函数的图像是一个双曲线。
二、一次函数和反比例函数的相似点1. 都是函数,x的每个值都对应一个y的唯一值。
2. 都可以用数学模型来表达实际问题。
3. 都是其他函数的基础,例如一次函数可以用于描述函数的斜率、相关系数、线性回归等等,反比例函数可以用于描述函数的变化速率、图像对称轴等等。
4. 在解决问题时,可以相互转化。
两个物体间的万有引力可以用反比例函数来描述,但是在求解实际问题时,可以将其转化为一次函数,使问题变得更加简单。
四、总结一次函数和反比例函数虽然有许多不同点,但是它们都是数学中基本的函数类型,而且在实际生活中都有广泛的应用。
一次函数与反比例函数 知识点
一次函数与反比例函数知识点一、一次函数一次函数,也叫线性函数,是数学中最简单的函数之一。
它的特点是自变量的最高次数为1,即一次方程。
一次函数的一般形式可以表示为y = kx + b,其中k和b为常数,k代表斜率,b代表截距。
一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,当k>0时,直线向右上方倾斜;当k<0时,直线向右下方倾斜。
截距b决定了直线与y轴的交点位置,当b>0时,直线在y轴上方与之交点;当b<0时,直线在y轴下方与之交点。
一次函数在实际生活中有广泛的应用。
例如,我们可以利用一次函数来描述物体的匀速直线运动,其中x表示时间,y表示位置;我们还可以利用一次函数来描述成本和产量之间的关系,从而帮助企业做出经济决策。
二、反比例函数反比例函数,也叫倒数函数,是一种特殊的函数关系,其自变量和因变量之间的关系可以表示为y = k/x,其中k为常数。
反比例函数的特点是自变量和因变量之间的乘积为常数。
反比例函数的图像是一条双曲线,其对称轴为坐标轴。
当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。
因此,反比例函数的图像会有一个渐近线,与x轴和y轴分别交于一点。
反比例函数在实际生活中也有很多应用。
例如,我们可以利用反比例函数来描述人的行驶速度和所需时间之间的关系,从而帮助规划交通路线;我们还可以利用反比例函数来描述电阻和电流之间的关系,从而帮助设计电路。
三、一次函数与反比例函数的比较一次函数和反比例函数在数学上具有不同的特点和应用。
一次函数是一条直线,其斜率决定了直线的倾斜程度,截距决定了直线与y 轴的交点位置;反比例函数是一条双曲线,其渐近线与x轴和y轴分别交于一点。
在实际应用中,一次函数常用于描述线性关系,如物体的运动和经济成本与产量的关系;而反比例函数常用于描述反比关系,如速度与时间的关系和电阻与电流的关系。
一次函数和反比例函数的图像形状也有所不同。
一次函数的图像是一条直线,可以通过两个点确定;而反比例函数的图像是一条双曲线,可以通过渐近线和一个点确定。
一次函数与反比例函数交点与k关系
一次函数与反比例函数交点与k关系一次函数与反比例函数交点与k的关系是研究函数图像的重要内容之一。
在数学中,一次函数也称为线性函数,其函数表达式为y = kx + b,其中k和b为常数,k代表斜率,b代表y轴截距。
而反比例函数的函数表达式为y = k/x,其中k为常数。
要求出一次函数与反比例函数的交点,就是要找到满足两个函数表达式的相等的x和y的值。
即对于一次函数y = kx + b和反比例函数y = k/x,找到满足kx + b = k/x的x和y的值。
通过解由此方程组成的二元一次方程组,即可求出相应于某个特定值k的一次函数与反比例函数的交点。
为了更清楚地研究一次函数与反比例函数交点与k的关系,可以进行以下步骤:1. 假设一次函数的k取固定值,例如k = 2,代入到方程kx +b = k/x中,求解方程,找到关于b的值。
例如,当k = 2时,方程简化为2x + b = 2/x,将方程转化为2x² + bx - 2 = 0,通过求解二次方程,得到关于b的值。
2. 将得到的关于b的值代入到一次函数的表达式中,得到特定k值对应的一次函数。
3. 对于反比例函数y = k/x,假设x取不同的值(可以取正数或负数),计算出相应的y值。
4. 通过解方程kx + b = k/x,找到满足此方程的x和y的值。
5. 继续重复步骤1-4,对于不同的k值进行计算和求解,得到不同k值下的一次函数与反比例函数的交点。
通过以上步骤,可以逐步计算出一次函数与反比例函数的交点,并且得到一次函数与k的关系。
可以通过绘制函数图像、计算坐标点等方式来更具体地说明一次函数与反比例函数交点与k的关系。
同时,还可以考虑使用数学软件或计算工具来进行计算和可视化展示,例如使用Matlab、Python语言中的数学库等来进行数值计算和绘图分析,以更方便地研究一次函数与反比例函数交点与k的关系。
需要注意的是,以上只是一种可能的研究方法,具体的分析过程和结论还需要根据具体情况和问题来确定。
反比例函数与一次函数不等式解集
反比例函数与一次函数不等式解集一、什么是反比例函数和一次函数?反比例函数是指函数的自变量x和因变量y之间的关系满足y=k/x 的函数形式,其中k为常数且k≠0。
反比例函数的图像通常是一个双曲线。
一次函数是指函数的自变量x和因变量y之间的关系满足y=ax+b的函数形式,其中a和b为常数且a≠0。
一次函数的图像通常是一条直线。
二、反比例函数的不等式解集对于反比例函数y=k/x,其中k为常数且k≠0,我们可以通过以下步骤求解不等式解集:1. 将不等式转化为等式,得到y=k/x;2. 根据k的正负性和不等式的方向,确定x的取值范围;3. 将确定的x值代入y=k/x,求解y的取值范围;4. 将x和y的取值范围组合起来,得到最终的不等式解集。
举个例子来说明,考虑不等式y>2/x,我们可以按照上述步骤求解:1. 将不等式转化为等式,得到y=2/x;2. 由于k=2>0,且不等式方向为“大于”,所以x的取值范围为x<0或x>0;3. 将确定的x值代入y=2/x,求解y的取值范围。
当x<0时,y<0;当x>0时,y>0;4. 将x和y的取值范围组合起来,得到不等式解集为{x<0}∪{x>0, y>0}。
三、一次函数的不等式解集对于一次函数y=ax+b,其中a和b为常数且a≠0,我们可以通过以下步骤求解不等式解集:1. 将不等式转化为等式,得到y=ax+b;2. 根据a的正负性和不等式的方向,确定x的取值范围;3. 将确定的x值代入y=ax+b,求解y的取值范围;4. 将x和y的取值范围组合起来,得到最终的不等式解集。
举个例子来说明,考虑不等式y≥3x-1,我们可以按照上述步骤求解:1. 将不等式转化为等式,得到y=3x-1;2. 由于a=3>0,且不等式方向为“大于等于”,所以x的取值范围为整个实数集R;3. 将确定的x值代入y=3x-1,求解y的取值范围。
反比例函数与一次函数的综合-完整版课件
为学生后续学习更复 杂的数学知识和解决 实际问题打下基础。
培养学生的数学思维 和解决问题的能力, 提高学生的数学素养 。
课件内容概述
01
02
03
04
反比例函数的基本概念、图像 和性质。
一次函数的基本概念、图像和 性质。
反比例函数与一次函数的综
通过实例和练习题,加深学生 对反比例函数和一次函数的理
下节课预习提示和作业布置
预习提示
下节课将学习反比例函数与二次函数的综合应用,请学生提前预习相关内容,了 解基本概念和性质
作业布置
布置与反比例函数与一次函数综合应用相关的练习题和思考题,要求学生认真完 成并提交作业
THANKS FOR WATCHING
感谢您的观看
反比例函数的图像关于原点对称,即 满足奇函数的性质 $f(-x) = -f(x)$。
反比例函数在其定义域内具有单调性 :在第一、三象限内单调递减,在第 二、四象限内单调递增。
反比例函数在其定义域内没有极值点 ,也没有拐点。
CHAPTER 03
一次函数基本概念与性质
一次函数定义及表达式
一次函数定义
可导性
一次函数的导数为常数 $k$, 即其斜率。
对称性
一次函数图像关于点 $(h, k)$ 中心对称,其中 $h = b/2a$,$k = f(h)$。
线性变换性质
一次函数具有线性变换性质, 即 $f(ax+b) = k(ax+b) + b
= akx + (ab+b)$。
CHAPTER 04
反比例函数与一次函数综合 应用
一次函数是形如 $y = kx + b$(其 中 $k neq 0$)的函数,它描述了两 个变量之间的线性关系。
一次函数与反比例函数
一次函数与反比例函数一次函数和反比例函数是数学中两种特殊的函数形式。
在函数图像中,一次函数是一条直线,反比例函数则是一条非线性的曲线。
一次函数通常写作y=ax+b的形式,其中a和b是常数,且a不等于零。
一次函数的图像是一条斜率为a的直线。
斜率表示函数图像的斜率。
当a大于零时,函数图像向上倾斜;当a小于零时,函数图像向下倾斜。
常数b表示函数图像与y轴的截距,即函数图像与y轴的交点。
一次函数具有以下特征:1.直线性质:一次函数的图像是一条直线。
2.斜率:斜率表示函数图像的倾斜程度,决定了直线的陡峭程度。
3.截距:截距表示函数图像与y轴的交点,也可以说是函数图像在x轴上的零点。
反比例函数通常写作y=k/x的形式,其中k是常数,且k不等于零。
反比例函数的图像是一条非线性的曲线,呈现出双曲线的形状。
这是因为反比例函数的定义域不能包含x=0。
在反比例函数的图像中,曲线趋向于x轴和y轴,但从来不会触及。
反比例函数具有以下特征:1.双曲线性质:反比例函数的图像是一个双曲线,与x轴和y轴相交。
2.反比例关系:反比例函数表示的是y和x之间的反比例关系,即y和x成反比例关系。
3.渐进线:反比例函数的曲线趋向于x轴和y轴,但永远不会触及。
一次函数和反比例函数在实际生活中有很多应用。
一次函数应用:1.物品价格:一次函数可以用来表示商品价格与销售量之间的关系。
斜率表示了价格随销售量的变化速率。
2.飞行路径:飞机的飞行路径可以用一次函数表示。
斜率表示了飞机的升降速度。
3.速度与时间:速度与时间之间的关系可以用一次函数表示。
斜率表示了速度的变化速率。
反比例函数应用:1.法速关系:根据牛顿第二定律,物体的加速度与所施加的力成反比。
反比例函数可以描述这种关系。
2.电阻与电流:根据欧姆定律,电阻与电流成反比。
反比例函数可以表示电阻与电流之间的关系。
3.人口密度:人口密度与土地面积成反比。
反比例函数可以表示人口密度与土地面积之间的关系。
一次函数与反比例函数的关系
一次函数与反比例函数的关系一次函数和反比例函数是数学中常见的两种函数类型,它们在数学和实际应用中都具有重要的作用。
本文将介绍一次函数和反比例函数的定义、性质以及它们之间的关系。
一次函数是指函数图像为一条直线的函数,其形式为y=ax+b,其中a和b为常数,且a不等于零。
一次函数的图像是一条斜率为a的直线,其特点是通过点(0,b)和斜率为a。
反比例函数是指函数的值与其自变量的乘积为常数的函数,其形式为y=k/x,其中k为常数,且k不等于零。
反比例函数的图像是一条经过原点的拋物线的对称轴。
一次函数和反比例函数之间的关系可以通过以下几个方面来进行理解:1. 图像特征:一次函数的图像是一条直线,它的斜率可以表示其增长速率。
斜率越大,函数的增长速度越快。
而反比例函数的图像是一条对称轴经过原点的拋物线,它的曲率表示了函数的增长速度。
曲率越大,函数的增长速度越快。
2. 变化规律:一次函数的自变量和函数值之间的变化是线性的,即自变量每增加一个单位,函数值也相应地增加或减少一个固定的值。
而反比例函数的自变量和函数值之间的变化规律是非线性的,自变量每增加一个单位,函数值会相应地减少或增加一个固定的比例。
3. 两者关系:一次函数和反比例函数可以通过变量的转换相互转化。
对于一次函数y=ax+b,可以通过变量的替换y=1/x,x=1/y将其转化为反比例函数y=k/x。
同样地,反比例函数y=k/x也可以通过变量的替换x=1/y,y=1/x将其转化为一次函数y=ax+b。
这个变量的转换过程也说明了一次函数和反比例函数之间的内在联系。
在实际应用中,一次函数和反比例函数都有很多重要的应用。
一次函数可以用来描述直线运动的速度与时间的关系、物体的重量与体积的关系等。
反比例函数可以用来描述两个量之间的比例关系,例如人们常说的“时间和速度成反比”,即行驶的时间越长,速度越慢,行驶的距离越短。
总之,一次函数和反比例函数在数学和实际应用中具有重要的地位。
一次函数与反比例函数的比较
一次函数与反比例函数的比较一次函数和反比例函数是数学中常见的两种函数类型,在现实生活中也有广泛的应用。
本文将就一次函数和反比例函数的定义、图像特征、性质以及应用进行比较,以帮助读者更好地理解和应用这两种函数。
1. 一次函数一次函数又称为线性函数,其定义为y = kx + b,其中k和b为常数,且k不等于零。
一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数项b决定了直线与y轴的交点。
一次函数具有以下特点和性质:- 斜率k代表了函数的变化速率,若k大于零,则函数呈正比例关系;若k小于零,则函数呈反比例关系。
- 直线的斜率越大,表示变化速率越快;斜率为零时,表示函数的变化速率为常数。
- 一次函数的图像在平面直角坐标系中是一条直线,在坐标系中容易进行可视化和分析。
2. 反比例函数反比例函数又称为倒数函数,其定义为y = k/x,其中k为常数且不等于零。
反比例函数的图像为一条非零常数k和y轴所形成的双曲线。
反比例函数具有以下特点和性质:- 函数的值随着自变量的增大而减小,而增大的速度是与自变量的倒数成正比的。
- 当自变量等于零时,函数的值不存在;当自变量趋近于零时,函数的值趋近于正无穷大或负无穷大。
- 反比例函数的图像在坐标系中呈现双曲线的特征,随着自变量的增大或减小,曲线逐渐逼近x轴和y轴。
3. 比较与应用一次函数和反比例函数在现实生活中都有广泛的应用。
一次函数的应用:- 物体的匀速直线运动可以用一次函数进行描述,其中斜率代表了物体的速度。
- 成本、收入、利润等与数量相关的经济问题可以用一次函数进行建模和分析。
- 人口增长、温度变化等随时间变化的现象也可以通过一次函数进行表达和预测。
反比例函数的应用:- 电阻与电流的关系、泡沫油炸的时间与温度的关系等都可以用反比例函数进行描述。
- 常见的速率与时间、浓度与体积等相关问题也可以用反比例函数进行建模和求解。
- 人口密度、物体在空气中受到的阻力等与距离的关系也可以通过反比例函数进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲 中考中的一次函数
考点一、应用问题:
问题1、(泰州2011.25).小明从家骑自
行车出发,沿一条直路到相距2400m 的邮局
办事,小明出发的同时,他的爸爸以96m /min
速度从邮局同一条道路步行回家,小明在邮局
停留2min 后沿原路以原速返回,设他们出发
后经过t min 时,小明与家之间的距离为s 1 m ,
小明爸爸与家之间的距离为s 2 m ,图中折线
OABD 、线段EF 分别表示s 1、s 2与t 之间的
函数关系的图象。
(1)求s 2与t 之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
问题2(河北2011。
24).已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或
火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订. 现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:
⑴汽车的速度为__________千米/时,火车的速度
为_________千米/时;
(2)设每天用汽车和火车运输的总费用分别为
y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围)及x 为何值时 y 汽>y 火;(总费用
=运输费+冷藏费+固定费用)
周一 周二 周三 周四 周五 周六 周日 时间 图13 ②
问题3(2011江苏扬州,27)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示。
根据图象提供的信息,解答下列问题:
(1)图2中折线ABC表示槽中的深度与注水时间之间的关系,线段DE表示槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B的纵坐标表示的实际意义是
(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果)。
二、一次函数与几何图形:
问题4. (2011浙江绍兴,21,10分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x 轴,y轴的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.
M N是否为和谐点,并说明理由;
(1)判断点(1,2),(4,4)
(2)若和谐点(,3)P a 在直线()y x b b =-+为常数上,求点,a b 的值.
问题5、(2011•常州)如图,在△ABO 中,已知点
、B (﹣1,﹣1)、C (0,
0),正比例函数y=﹣x 图象是直线l ,直线AC ∥x 轴交直线l 与点C . (1)C 点的坐标为 ;
(2)以点O 为旋转中心,将△ABO 顺时针旋转角α(90°<α<180°),使得点B 落在直线l 上的对应点为B′,点A 的对应点为A′,得到△A′OB′. ①∠α= ;②画出△A′OB′
.
(3)写出所有满足△DOC ∽△AOB 的点D 的坐标.
问题6(2011浙江温州,24)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b)(b>0). P 是直线AB 上的一个动点,作PC⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P'(点P'不在y 轴上),连结PP',P'A ,P'C .设点P 的横坐标为a .
(1)当b =3时,①求直线AB 的解析式;
②若点P'的坐标是(-1,m),求m 的值;
(2)若点P 在第一象限,记直线AB 与P'C 的交点为D . 当P'D :DC=1:3时,求a 的值;
(3)是否同时存在a ,b ,使△P'CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.
问题7(2011江苏盐城,28)如图,已知一次函数y = - x +7与正比例函数y = 4
3
x
的图象交于点A ,且与x 轴交于点B. (1)求点A 和点B 的坐标;
(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从原点O 出发,以每秒
1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度沿x 轴向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线
段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不
存在,请说明理由.
(备用图)
望子成龙学校家庭作业
校区:教室:科目:数学学生姓名:_________
第次课授课老师:熊老师作业等级:______
1. (2011湖北武汉市,15)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.
2. (2011福建福州,19,12分)如图8,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当02
≤≤时,自变量x的取值范围;
y
(2)将线段AB绕点B逆时针旋转90o,得到线段BC,请在答题卡
指定位置画出线段BC.若直线BC的函数解析式为y kx b
=+,
则y随x的增大而 (填“增大”或“减小”).。