人教版数学九年级上册 第24章 圆 与圆的位置关系 专题练习题 含答案-精选教育文档

合集下载

人教版九年级数学上册第二十四单元圆和圆的位置关系同步练习1带答案

人教版九年级数学上册第二十四单元圆和圆的位置关系同步练习1带答案

人教版九年级数学上册第二十四单元《圆和圆的位置关系》同步练习1带答案◆随堂检测1.大圆半径为6,小圆半径为3,两圆圆心距为10,那么这两圆的位置关系为( )A .外离B .外切 C.相交 D .内含2.已知两圆的半径别离为3和7,且这两圆有公共点,那么这两圆的圆心距d 为( )A .4 .10 C 或10 D.104≤≤d3.如下图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB=2,半圆O 的半径为2,那么BC 的长为_________.半径别离为cm 5和cm 4,这两个圆的圆4.已知相切两圆的心距是_________.5.已知1O ⊙和2O ⊙的半径别离是一元二次方程2320x x -+=的两根,且122OO =,请判定1O ⊙和2O ⊙的位置关系. ◆典例分析半径别离为5和32的两圆相交,测得公共弦长为6,求两圆的圆心距是多少?分析:在平常学习中,咱们所见到的两圆相交大多数是两圆圆心都在公共弦异侧的情形,而两圆圆心还有在公共弦同侧的情形,而这种情形又常常被咱们所忽略掉,因此常常会显现少解的情形.在做几何题时,当题目中没有画出图形时,专门要注意有无多种情形,是不是需要分类讨论,要考虑全面,不要少解、漏解.讨论时,第一应依照不同情形进行作图,然后对所做图形别离进行描述,再说明所做的辅助线,最后进行有关线段的计算与转换. 解:分类讨论:(1)当两圆圆心在公共弦异侧时,如下图:圆A ,圆B 的半径别离为5和32,圆A 与圆B 相交于C 、D ,CD 的长为6,别离连接AB ,E D CA BAC ,BC ,设AB 交CD 于E ,因为圆A ,圆B 的公共弦,AB 为圆A ,圆B 的连心线,因此AB 垂直平分CD.在直角三角形ACE 中,因为AC=5,CE=21CD=3,依照勾股定理得AE 2+CE 2=AC 2,因此22EC AC -=2235-=4,在直角三角形BCE 中,因为BC=32,依照勾股定理得BE 2+CE 2=BC 2,因此BE=22CE BC -=3,因此AB=AE+BE=7. (2)当两圆圆心在公共弦同侧时,如下图:圆A ,圆B 的半径别离为5和32,圆A 和圆B 别离交于C 、D ,CD 的长为6,连接AB ,延长AB 交CD 于E ,别离连接AC 、BC ,因为CD 为圆A ,圆B 的公共弦,AB 为圆A ,圆B 的连心线,因此直线AB 垂直平分CD.在直角三角形ACE 中,因为AC=5,CE=3,依照勾股定理AE=22EC AC -=4,在直角三角形BCE 中,因为BC=32,依照勾股定理得BE 2+CE 2=BC 2,因此BE=22CE BC -=3,因此AB=AE-BE=1.综上所述,两圆的圆心距为7或1.◆课下作业●拓展提高1.已知两圆的半径别离为5cm 和7cm ,圆心距为8cm ,那么这两个圆的位置关系是( )A .内切B .相交C .外切D .外离2.如图,已知EF 是⊙O 的直径,把∠A 为60°的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P,点B 与点O 重合.将三角板ABC 沿OE 方向平移,使得点B 与点E 重合为止.设∠POF=x °,那么x 的取值范围是( )A .3060x ≤≤B .3090x ≤≤C .30120x ≤≤D .60120x ≤≤C ED A B3.⊙O 从直线AB 上的点A(圆心O 始终在直线AB 上,移动速度1cm/秒)向右运动,已知线段AB=6cm ,⊙O 、⊙B 的半径别离为1cm 和2cm.当两圆相交时,⊙O 的运动时刻t(秒)的取值范围为_________.4.已知ABC △的三边别离是a b c ,,,两圆的半径12r ar b ==,,圆心距d c =,那么这两个圆的位置关系是________.5.如图,在以O 为圆心的两个同心圆中,AB 通过圆心O ,且与小圆相交于点A .与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分∠ACB .(1)试判定BC 所在直线与小圆的位置关系,并说明理由;(2)试判定线段之间的数量关系,并说明理由;(3)假设8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的面积.(结果保留π)●体验中考1.(2020年,肇庆)假设1O ⊙与2O ⊙相切,且125O O =,1O ⊙的半径12r =,那么2O ⊙的半径2r 是( )A .3B .5C .7D .3或72.(2020年,湖州)已知1O ⊙与2O ⊙外切,它们的半径别离为2和3,那么圆心距12O O 的长是( )A .12O O =1B .12O O =5C .1<12O O <5D .12O O >53.(2020年,齐齐哈尔市)已知相交两圆的半径别离为5cm 和4cm ,公共弦长为6cm ,那么这两个圆的圆心距是______________.参考答案:◆随堂检测.. 两圆相交或相切.4.cm 1或cm 95.解:将方程2320x x -+=化为()()120x x --=,解得11x =,22x =.∵122OO =,∴211212x x OO x x -<<+,∴1O ⊙和2O ⊙相交. ◆课下作业●拓展提高..3.35t <<或79t <<.4.相交.5.解:(1)BC 所在直线与小圆相切.理由如下:过圆心O 作OE BC ⊥,垂足为E ,∵AC 是小圆的切线,AB 通过圆心O ,∴OA AC ⊥,又∵CO 平分ACB OE BC ∠⊥,.∴OE OA =.∴BC 所在直线是小圆的切线.(2)AC+AD=BC.理由如下:连接OD .∵AC 切小圆O 于点A ,BC 切小圆O 于点E ,∴CE CA =.∵在Rt OAD △与Rt OEB △中,90OA OE OD OB OAD OEB ==∠=∠=,,, ∴Rt Rt OAD OEB △≌△(HL ),∴EB AD =.∵BC CE EB =+,∴BC AC AD =+.(3)∵90BAC ∠=,810AB C ==,B ,∴6AC =.BC AC AD =+,∴4AD BC AC =-=.圆环的面积)(2222OA OD OA OD S -=-=πππ,又222OD OA AD -=,∴22164cm S ππ==.●体验中考1.D ..3.(4.。

九年级数学上册第二十四章圆典型例题(带答案)

九年级数学上册第二十四章圆典型例题(带答案)

九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。

【期末专项复习】人教版数学九年级(上)第24章:圆 压轴题专项训练(附详细解答)

【期末专项复习】人教版数学九年级(上)第24章:圆  压轴题专项训练(附详细解答)

【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。

人教版-数学-九年级上册 第24-2-6点和圆、直线和圆的位置关系 练习

人教版-数学-九年级上册 第24-2-6点和圆、直线和圆的位置关系 练习

初中-数学-打印版 (第7题) 24.2.5 圆与圆的位置关系1.已知矩形ABCD 中,AB=4,BC=8,以点A 为圆心,r 为半径作⊙A ,(1)当半径r 为 时,⊙A 与BC 相切;(2)当半径r 为 时,⊙A 与CD 相切;(3)当半径r 为 时,⊙A 与BD 相切;(4)当半径的范围为 时,⊙A 与直线BC 相交且与直线CD 相离.2.两圆的半径分别为11cm 和14cm ,当两个圆相切时,圆心距为 .3.在直角坐标系中,⊙O 的圆心在圆点,半径为3,⊙A 的圆心A 的坐标为(3-,1),半径为1,那么⊙O 与⊙A 的位置关系是 .4.如图4,在126⨯的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 相切,那么⊙A 由图示位置需向右平移 个单位.5.如图是一个滚珠轴承的平面示意图,若该滚珠轴承的内、外圆周的半径分别为2 和6,则在两圆周之间所放滚珠最大半径为 ,这样的滚珠最多能放_______颗. 6. 2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( ).A .相交或相切B .相交或内含C .相交或相离D .相切或相离7.两圆的半径和为24cm ,半径之比为1:2,圆心距为8cm ,则两圆的位置关系为( )A .外离B .相交C . 内切D .外切8.若两圆的半径分别是2cm 和3cm ,圆心距为6cm ,则这两圆的位置关系是( )A .内切B .相交C .外切D .外离9.在平面直角坐标系中,已知圆⊙O 1和⊙O 2的半径的3和7,圆心O 1的坐标为(0,6),圆心⊙O 2的坐标为(8,0),那么这两个圆的位置关系是( )A .外离B .相交C . 内切D .外切10.已知圆⊙O 1和⊙O 2的半径分别为1和3,且圆⊙O 1和⊙O 2外切,则在平面上,半径为4且与圆⊙O 1和⊙O 2的都相切的圆有( )A .2个B .3个C .4个D .5个11.如图是公园的路线图,⊙O 1,⊙O 2,⊙O 两两相切,点A ,B ,O 分别是切点,甲乙二人骑自行车,同时从点A 出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是( )A.甲 (第11题)A B1OO 2O A B (5题)初中-数学-打印版 B.乙C.甲乙同时D.无法判定12.如图,已知△ABC 的三边长分别为AB=4cm ,BC=5cm ,AC=6cm ,以A 、B 、C 为圆心的三个圆两两外切,分别求这三个圆的半径.13.已知:如图,⊙O 1与⊙O 2相交于A 、B ,若两圆半径分别为8和6,O 1O 2=10,求AB 的长.(第12题) ABC O 1O 2(第13题)。

人教版九年级上册数学24章《圆》 期末专项练习 (含答案)

人教版九年级上册数学24章《圆》  期末专项练习 (含答案)

人教版九年级上册数学24章《圆》期末专项练习一.选择题(共10小题)1.如图,点C是⊙O的优弧上一点,∠AOB=80°,则∠ACB的度数为()A.40°B.140°C.80°D.60°2.正方形的外接圆与内切圆的周长比为()A.:1B.2:1C.4:1D.3:13.如图,在⊙O中,∠ABC=50°,则∠ACO等于()A.55°B.50°C.45°D.40°4.若⊙O的半径是3,点P在圆外,则点OP的长可能是()A.B.3C.2D.5.如图,在△ABC中,AB=3,BC=6,∠ABC=60°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.9﹣3πB.C.D.6.如图,AB是O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=2,则△PMN周长的最小值为()A.5B.6C.7D.87.如图,AB是半圆O的直径,C、N为半圆上的两点,且=,过点C作半圆O的切线,交AB的延长线于M,若∠M=40°,则∠BON的度数()A.30°B.25°C.20°D.22.5°8.在练习掷铅球项目时,某同学掷出的铅球在操场地上砸出一个直径为6cm、深2cm的小坑,则该铅球的直径为()A.cm B.6cm C.cm D.8cm9.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,则该球的半径是()cmA.8B.6C.12D.1010.如图,在平面直角坐标系中,⊙P的圆心坐标(6,a)(a>5),半径为5,函数y=x的图象被截得的弦AB的长为8,则a的值为()A.6B.6+C.3D.6+3二.填空题(共5小题)11.如图,以原点O为圆心的圆过点A(4,0),圆内一个固定点B(﹣1,2),过点B作直线,交圆于M,N两点,求MN的最小值为.12.如图,在⊙O中,点D为弧BC的中点,∠COD=40°,则∠BAD=.13.如图,P A,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为.14.如图,△ABC中,AC=3,BC=4,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为.15.如图,△ABC中,AC=BC=6,∠ACB=90°,若D是与点C在直线AB异侧的一个动点,且∠ADB=45°,则CD的最大值为.三.解答题(共6小题)16.如图,AB为⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠C=23°,试求∠EOB的度数.17.[概念引入]在一个圆中,圆心到该圆的任意一条弦的距离,叫做这条弦的弦心距.[概念理解](1)如图1,在⊙O中,半径是5,弦AB=8,则这条弦的弦心距OC长为.(2)通过大量的做题探究;小明发现:在同一个圆中,如果两条弦相等,那么这两条弦的弦心距也相等.但是小明想证明时却遇到了麻烦.请结合图2帮助小明完成证明过程如图2,在⊙O中,AB=CD,OM⊥AB,ON⊥CD,求证:OM=ON.[概念应用]如图3,在⊙O中AB=CD=16,⊙O的直径为20,且弦AB垂直于弦CD于E,请应用上面得出的结论求OE的长.18.如图,△ABC的三个顶点在⊙O上,⊙O的半径为5,∠A=60°,求弦BC的长.19.如图,已知等边△ABC中,AB=12.以AB为直径的半⊙O与边AC相交于点D.过点D作DE⊥BC,垂足为E;过点E作EF⊥AB,垂足为F,连接DF.(1)求证:DE是⊙O的切线;(2)求EF的长.20.如图,△ABC内接于⊙O,高AD经过圆心O.(1)求证:AB=AC;(2)若BC=16,⊙O的半径为10.求△ABC的面积.21.如图,四边形ABCD是⊙O内正方形,P是圆上一点(点P与点A,B,C,D不重合),连接P A,PB,PC.(1)若点P是上一点,①∠BPC度数为;②求证:P A+PC=PB;小明的思路为:这是线段和差倍半问题,可采用截长补短法,请按小明思路完成下列证明过程(也可按自己的想法给出证明).证明:在PC的延长线上截取点E.使CE=P A,连接BE.(2)探究当点P分别在,,上,求P A,PB,PC的数量关系,直接写出答案,不需要证明.参考答案与试题解析一.选择题(共10小题)1.如图,点C是⊙O的优弧上一点,∠AOB=80°,则∠ACB的度数为()A.40°B.140°C.80°D.60°【分析】根据圆周角定理求解即可.【解答】解:∵∠AOB=2∠ACB,∠AOB=80°,∴∠ACB=40°,故选:A.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.2.正方形的外接圆与内切圆的周长比为()A.:1B.2:1C.4:1D.3:1【分析】根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,设AE=x,则OA===,故==,即正方形的外接圆与内切圆的周长比为::1.故选:A.【点评】本题考查的是正方形的性质及勾股定理.根据题意画出图形,利用数形结合求出答案是解答此题的关键.3.如图,在⊙O中,∠ABC=50°,则∠ACO等于()A.55°B.50°C.45°D.40°【分析】根据圆周角定理得到∠AOC=100°,根据等腰三角形的性质及三角形内角和定理求解即可.【解答】解:∵∠AOC=2∠ABC,∠ABC=50°,∴∠AOC=100°,∵OA=OC,∴∠ACO=∠CAO=×(180°﹣100°)=40°,故选:D.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.4.若⊙O的半径是3,点P在圆外,则点OP的长可能是()A.B.3C.2D.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是3,点P在圆外,∴OP的长大于3.故选:A.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.5.如图,在△ABC中,AB=3,BC=6,∠ABC=60°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.9﹣3πB.C.D.【分析】连接AD,根据等边三角形的性质得到AD=AB=3,∠ADB=60°,根据勾股定理得到AC==3,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接AD,∵AB=BD=3,∠ABC=60°,∴△ABD是等边三角形,∴AD=AB=3,∠ADB=60°,∵BC=6,∴CD=3,∴AD=CD,∴∠C=∠CAD,∵∠C+∠CAD=∠ADB=60°,∴∠C=30°,∴∠BAC=90°,∴AC==3,∴图中阴影部分的面积=AB•AC﹣=3×﹣=﹣,故选:D.【点评】本题考查了扇形面积的进行,等边三角形的判定和性质,直角三角形的性质,勾股定理,推出△ABD 是等边三角形是解题的关键.6.如图,AB是O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=2,则△PMN周长的最小值为()A.5B.6C.7D.8【分析】根据轴对称的性质得到:点N关于AB的对称点N′,连接MN′交AB于P,此时PM+PN最小,即△PMN周长的最小,利用圆心角、弧、弦的关系以及轴对称的性质进行计算即可.【解答】解:如图,作点N关于AB的对称点N′,则点N′在⊙O上,连接MN′交AB于P,此时PM+PN最小,即PM+PN=MN′,∵点N是的中点,∠BAM=20°,∴==,∴∠BAN′=10°,∴∠MAN′=20°+10°=30°,∴∠MON′=60°,∴△MON′是正三角形,∴OM=ON′=MN′=AB=4,又∵MN=2,∴△PMN周长的最小值为2+4=6,故选:B.【点评】本题考查圆周角定理,圆心角、弧、弦的关系以及轴对称,掌握圆周角定理,圆心角、弧、弦的关系以及轴对称的性质是解决问题的关键.7.如图,AB是半圆O的直径,C、N为半圆上的两点,且=,过点C作半圆O的切线,交AB的延长线于M,若∠M=40°,则∠BON的度数()A.30°B.25°C.20°D.22.5°【分析】连接OC,根据=,可得∠CON=∠BON,根据MC为半圆O的切线,可得∠OCM=90°,再根据直角三角形两个锐角互余即可解决问题.【解答】解:如图,连接OC,∵=,∴∠CON=∠BON,∵MC为半圆O的切线,∴∠OCM=90°,∵∠M=40°,∴∠COM=50°,∴∠BON=COM=25°,故选:B.【点评】本题主要考查圆周角定理、切线的性质,解决本题的关键是掌握切线的性质.8.在练习掷铅球项目时,某同学掷出的铅球在操场地上砸出一个直径为6cm、深2cm的小坑,则该铅球的直径为()A.cm B.6cm C.cm D.8cm【分析】由题意画出图形,设出未知数,由勾股定理列出方程,解方程,即可解决问题.【解答】解:如图,由题意知,AB=6cm,CD=2cm,OD是半径,且OC⊥AB,∴AC=CB=AB=3(cm),设铅球的半径为rcm,则OC=(r﹣2)cm,在Rt△AOC中,根据勾股定理得:OC2+AC2=OA2,即(r﹣2)2+32=r2,解得:r=,则铅球的直径为:2r=(cm),故选:A.【点评】本题考查的是垂径定理的应用和勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.9.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,则该球的半径是()cmA.8B.6C.12D.10【分析】设圆心为O点,连接OE,交AB于C,则OE⊥AB,由垂径定理得AC=BC=8cm,设⊙O的半径为Rcm,则OC=(R﹣4)cm,然后在Rt△OAC中,由勾股定理得出方程,解方程即可.【解答】解:设圆心为O点,连接OA、AB、OE,OE交AB于C,如图,由题意得:AB=16cm,CE=4cm,E为的中点,则OE⊥AB,∴AC=BC=AB=8(cm),设⊙O的半径为Rcm,则OC=(R﹣4)cm,在Rt△OAC中,由勾股定理得:OA2=AC2+OC2,即R2=82+(R﹣4)2,解得R=10,即该球的半径是10cm.故选:D.【点评】本题考查了垂径定理的应用以及勾股定理等知识,熟练掌握垂径定理和勾股定理是解题的关键.10.如图,在平面直角坐标系中,⊙P的圆心坐标(6,a)(a>5),半径为5,函数y=x的图象被截得的弦AB的长为8,则a的值为()A.6B.6+C.3D.6+3【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,由于OC=6,PC=a,易得D点坐标为(6,6),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=4,在Rt△PBE中,利用勾股定理可计算出PE=3,则PD=PE=3,所以a=6+3.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(6,a),∴OC=6,PC=a,把x=6代入y=x得y=6,∴D点坐标为(6,6),∴CD=6,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×8=4,在Rt△PBE中,PB=5,∴PE==3,∴PD=PE=3,∴a=6+3.故选:D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.二.填空题(共5小题)11.如图,以原点O为圆心的圆过点A(4,0),圆内一个固定点B(﹣1,2),过点B作直线,交圆于M,N两点,求MN的最小值为2.【分析】可知当MN⊥OB时,MN最小,根据勾股定理求出BM===,再根据垂径定理得MN=2BM=2即可.【解答】解:如图,连接OB,OM,可知当MN⊥OB时,MN最小,∵B(﹣1,2),∴OB2=12+22=5,∵OM=OA=4,∴BM===,∵MN⊥OB,∴MN=2BM=2,∴MN的最小值为2.故答案为:2.【点评】本题考查了垂径定理,正确作出图形是关键.12.如图,在⊙O中,点D为弧BC的中点,∠COD=40°,则∠BAD=20°.【分析】根据题意推出=,再根据圆周角定理求解即可.【解答】解:∵点D为弧BC的中点,∴=,∴∠BAD=∠COD,∵∠COD=40°,∴∠BAD=20°,故答案为:20°.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.13.如图,P A,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为40°.【分析】连接OA、OB,先根据圆周角定理求出∠AOB,根据切线的性质得到∠OAP=∠OBP=90°,然后根据四边形内角和可计算出∠P的度数.【解答】解:连接OA、OB,如图,∵∠ACB=70°,∴∠AOB=2∠ACB=140°,∵P A,PB是⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠P=360°﹣90°﹣90°﹣140°=40°,故答案为:40°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.14.如图,△ABC中,AC=3,BC=4,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为1.【分析】根据=得∠ACB=∠CDP.再由∠ACB=45°可得到∠BDC=135°,于是点D在以BC为弦,∠BDC=135°的圆弧上运动,再由∠BMC=90°可证明∠ACM=90°,从而算出AM=5,再由当A、D、M三点共线时,AD最小,求出此时AD的长即可.【解答】解:∵=,∴∠ACB=∠CDP.∵∠ACB=45°,∴∠CDP=45°,∴∠BDC=180°﹣45°=135°,∴点D在以BC为弦,∠BDC=135°的圆弧上运动,如图,设D点运动的圆弧圆心为M,取优弧BC上一点N,连接MB,MC,NB,NC,AM,MD,则∠BNC=180°﹣∠BDC=45°,∴∠BMC=90°,∵BM=CM,∴△BMC为等腰直角三角形,∴∠MCB=45°,MC=BC=4,∵∠ACB=45°,∴∠ACM=90°,∴AM===5,∴当A、D、M三点共线时,AD最小,此时,AD=AM﹣MD=5﹣4=1.故答案为:1.【点评】此题主要考查了三角形的外接圆,圆周角定理、等腰直角三角形的性质、勾股定理、三角形三边关系,解决此题的关键是证明出∠BDC=135°,分析出D在以BC为弦,∠BDC=135°的圆弧上运动.15.如图,△ABC中,AC=BC=6,∠ACB=90°,若D是与点C在直线AB异侧的一个动点,且∠ADB=45°,则CD的最大值为6+6.【分析】以AB为底边,在AB的下方作等腰直角三角形AOB,则OA=AC=6,根据点与圆的位置关系可知,当CD过圆心时,CD最大,利用勾股定理求出CO的长即可.【解答】解:以AB为底边,在AB的下方作等腰直角三角形AOB,则OA=AC=6,∵∠ADB=45°,∴点D在以O为圆心,6为半径的圆上运动,当CD过圆心时,CD最大,∵AC=AO=6,∠CAO=90°,∴CO=6,∴CD的最大值为6+6,故答案为:6+6.【点评】本题主要考查了等腰直角三角形的性质,圆周角定理,利用定边定角确定点D的运动路径是解题的关键.三.解答题(共6小题)16.如图,AB为⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠C=23°,试求∠EOB的度数.【分析】利用半径相等和等腰三角形的性质求得∠EDO,从而利用三角形的外角的性质求解.【解答】解:∵CD=OA=OD,∠C=23°,∴∠ODE=2∠C=46°,∵OD=OE,∴∠E=∠EDO=46°,∴∠EOB=∠C+∠E=46°+23°=69°.【点评】本题考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.17.[概念引入]在一个圆中,圆心到该圆的任意一条弦的距离,叫做这条弦的弦心距.[概念理解](1)如图1,在⊙O中,半径是5,弦AB=8,则这条弦的弦心距OC长为3.(2)通过大量的做题探究;小明发现:在同一个圆中,如果两条弦相等,那么这两条弦的弦心距也相等.但是小明想证明时却遇到了麻烦.请结合图2帮助小明完成证明过程如图2,在⊙O中,AB=CD,OM⊥AB,ON⊥CD,求证:OM=ON.[概念应用]如图3,在⊙O中AB=CD=16,⊙O的直径为20,且弦AB垂直于弦CD于E,请应用上面得出的结论求OE的长.【分析】[概念理解](1)连接OB,在Rt△BOC中,应用勾股定理求解即可;(2)连接BO、OC,证明Rt△BOM≌Rt△CON(HL)即可;[概念应用]过点O作OG⊥CD交于G,过点O作OH⊥AB交于H,连接DO,根据(2)的结论,得到四边形GEHO是正方形,在Rt△GOD中,用勾股定理求出GO=6,在等腰Rt△GOE中,求出EO=6.【解答】[概念理解](1)解:连接OB,∵CO⊥AB,∴BC=AC,∠BCO=90°,∵AB=8,∴BC=4,∵BO=5,∴CO==3,故答案为:3;(2)证明:连接BO、OC,∵OM⊥AB,∴BM=AM,∠BMO=90°,∵ON⊥CD,∴CN=DN,∠CNO=90°,∵AB=CD,∴BM=CN,∵BO=CO,∴Rt△BOM≌Rt△CON(HL),∴OM=ON;[概念应用]解:过点O作OG⊥CD交于G,过点O作OH⊥AB交于H,连接DO,∵AB=CD=16,∴GO=OH,∵AB⊥CD,∴∠GEH=90°,∴四边形GEHO是正方形,∴GE=GO,∵CD=16,∴DG=8,∵⊙O的直径为20,∴DO=10,∴GO==6,∴GE=GO=6,∴EO=6.【点评】本题考查圆的综合应用,熟练掌握垂径定理,勾股定理,三角形全等的判定及性质,正方形的性质是解题的关键.18.如图,△ABC的三个顶点在⊙O上,⊙O的半径为5,∠A=60°,求弦BC的长.【分析】连接CO并延长交⊙O于D,根据圆周角定理得到∠D=∠A=60°,∠CBD=90°,根据勾股定理即可得到结论.【解答】解:连接CO并延长交⊙O于D,连接BD,则∠D=∠A=60°,∠CBD=90°,∵⊙O的半径为5,∴CD=10,∴BD=CD=5,∴BC===5,故弦BC的长为5.【点评】本题考查了三角形外接圆与外心,圆周角定理,直角三角形的性质,勾股定理,正确地作出辅助线是解题的关键.19.如图,已知等边△ABC中,AB=12.以AB为直径的半⊙O与边AC相交于点D.过点D作DE⊥BC,垂足为E;过点E作EF⊥AB,垂足为F,连接DF.(1)求证:DE是⊙O的切线;(2)求EF的长.【分析】(1)连接OD,证明OD∥BC,根据平行线的性质得到DE⊥OD,根据切线的判定定理证明结论;(2)求出CD=6,进而求出CE,即可求出BE,根据正弦的定义求出EF.【解答】(1)证明:连接OD,∵△ABC为等边三角形,∴∠A=∠C,∵OA=OD,∴∠A=∠ODA,∴∠ODA=∠C,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:由(1)知,OD∥BC,∵OA=OB,∴AD=CD,∵AC=12,∴CD=6,在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=3,∴BE=BC﹣CE=9,在Rt△BEF中,∠B=60°,∴EF=BE•sin B=9×=.【点评】本题考查了等边三角形的性质和判定、切线的判定、勾股定理、含30度角的直角三角形的性质、锐角三角函数,正确作出辅助线是解本题的关键.20.如图,△ABC内接于⊙O,高AD经过圆心O.(1)求证:AB=AC;(2)若BC=16,⊙O的半径为10.求△ABC的面积.【分析】(1)根据垂径定理可得,根据等弧所对的弦相等,即可证明;(2)连接OB,勾股定理求得OD,继而得出AD,根据三角形面积公式进行计算即可求解.【解答】(1)证明:∵AD⊥BC,∴,∴AB=AC;(2)解:连接OB,∵AD⊥BC,∴BD=BC=8,在Rt△OBD中,BO=10,BD=8,∴OD==6,∴AD=AO+OD=10+6=16,∴S△ABC=BC•AD=×16×16=128.【点评】本题考查了垂径定理,弧与弦的关系,勾股定理,掌握以上知识是解题的关键.21.如图,四边形ABCD是⊙O内正方形,P是圆上一点(点P与点A,B,C,D不重合),连接P A,PB,PC.(1)若点P是上一点,①∠BPC度数为45°;②求证:P A+PC=PB;小明的思路为:这是线段和差倍半问题,可采用截长补短法,请按小明思路完成下列证明过程(也可按自己的想法给出证明).证明:在PC的延长线上截取点E.使CE=P A,连接BE.(2)探究当点P分别在,,上,求P A,PB,PC的数量关系,直接写出答案,不需要证明.【分析】(1)①理由正方形的性质和圆周角的度数等于它所对弧的度数的一半解答即可;②在PC的延长线上截取点E.使CE=P A,连接BE,利用全等三角形的判定与性质和等腰直角三角形的判定与性质解答即可;(2)利用截长补短法,依题意画出相应图形,按小明思路完成解答即可.【解答】(1)①解:∠BPC=45°,理由:∵四边形ABCD是正方形,∴,∴的度数为90°,∴∠BPC=90°=45°,故答案为:45°;②证明:在PC的延长线上截取点E,使CE=P A.连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,又∵点P在上,∴四边形ABCP为⊙O内接四边形∴∠P AB=∠BCE.在△P AB和△ECB中,,∴△P AB≌△ECB(SAS),∴PB=PE,∠ABP=∠CBE,∵∠ABP+∠PBC=90°,∴∠PBC+∠CBE=90°∴∠PBE=90°,∴△PBE为等腰直角三角形,∴PE=PB,∴P A+PC=CE+PC=PE=PB;(2)当点P在上时,PC﹣P A=PB;在PC上取点E,使CE=P A,连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,在△P AB和△ECB中,,∴△P AB≌△ECB(SAS),∴PB=PE,∠ABP=∠CBE,∵∠ABE+∠EBC=90°,∴∠PBA+∠ABE=90°,∴∠PBE=90°,∴△PBE为等腰直角三角形,∴PE=PB,∴PC﹣P A=PC﹣EC=PE=PB;当点P在上时,P A﹣PC=PB,在P A上取点E,使AE=PC,连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,在△ABE和△BCP中,,∴△ABE≌△BCP(SAS),∴BE=BP,∠ABE=∠CBP,∵∠ABE+∠CBE=90°,∴∠CBE+∠CBP=90°,∴∠EBP=90°,∴△EBP为等腰直角三角形,∴PE=PB,∴P A﹣PC=P A﹣AE=PE=PB;当点P在上时,P A+PC=PB,理由:在P A的延长线上截取点E,使AE=PC,连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,又∵点P在上,∴四边形ABCP为⊙O内接四边形∴∠EAB=∠BCP.在△EAB和△PCB中,,∴△EAB△PCB(SAS),∴BE=BP,∠ABE=∠PBC.∵∠ABP+∠PBC=90°,∴∠ABP+∠ABE=90°,∴∠EBP=90°.∴△EBP为等腰直角三角形,∴PE=PB,∴P A+PC=P A+AE=PE=PB.【点评】本题主要考查了圆的有关性质,圆周角定理,圆的内接四边形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,本题是阅读型题目,理解并熟练应用截长补短法,构造恰当的辅助线解答是解题的关键.。

人教版九年级上册数学 第二十四章 圆 单元测试题(含多套试题)

人教版九年级上册数学  第二十四章 圆 单元测试题(含多套试题)

第二十四章圆含多套试题一、选择题1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定2.下列说法正确的是( )A. 同圆或等圆中弧相等,则它们所对的圆心角也相等B. 0°的圆心角所对的弦是直径C. 平分弦的直径垂直于这条弦D. 三点确定一个圆3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O 外D. 无法确定4.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A. 70°B. 60°C. 50°D. 30°5.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A. 16B. 10C. 8D. 66.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A. 3 cmB. 6cmC. 8cmD. 9 cm7.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°8.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A. 20°B. 30°C. 35°D. 70°9.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 6010.如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A. 5﹕3B. 4﹕1C. 3﹕1D. 2﹕111.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF 等于()A. 80°B. 50°C. 40°D. 20°12.如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A. 倍B. 倍C. 2倍D. 4倍二、填空题13.在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.14.半径为4cm,圆心角为60°的扇形的面积为________ cm2.15.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.16.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是________.17.⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为________.18.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________19.如图,AB是圆O的弦,若∠A=35°,则∠AOB的大小为________度.20.如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.21.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为________22.如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为________.三、解答题23.如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.25.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.26.如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.27.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为3,求弧BC的长.28.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.参考答案一、选择题1. A2.A3. C4. B5.A6. A7. C8. C9. A 10. D 11. D 12. B二、填空题13.4π14. π 15.10 16.相切17. 50°18.819.110 20.3 21.2π 22.8三、解答题23.证明:= ,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OB.在△COD与△COE中,∵,∴△COD≌△COE(SAS),∴CD=CE24.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.25.解:(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B=∠OPB,∴∠OPB=∠C,∴OP∥AC,∵PD⊥AC,∴OP⊥PD,∴PD是⊙O的切线;(2)解:连结AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在RtBAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.26.(1)证明:连接OC,∵CA=CD,∠ACD=120°,∴∠A=∠D=30°,∴∠COD=2∠A=2×30°=60°,∴∠OCD=180°-60°-30°=90°,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形OBC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.27.(1)解:∵AB=AC,∴弧AB=弧AC,∵D是弧的中点,∴,∴,∴∠ACB=2∠ACD,∵四边形ABCD内接于⊙O,∴∠BCD=∠EAD=105°∴∠ACB+∠ACD=105°,即3∠ACD=105°,∴∠CAD=∠ACD=35°(2)解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=40°,连结OB,OC,则∠BOC=2∠BAC =80°,∴的长.28.(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.圆(A)卷一、 填空题(每题3分,共33分)1、已知△ABC 中,∠C=90°,AC=4㎝,AB=5㎝,CD ⊥AB 于D ,以C 为圆心,3㎝为半径作⊙C ,则点A 在⊙C_______,点B 在⊙C_______,点D 在⊙C_________(填“上”或“内”或“外”)。

九年级数学上册《第二十四章 直线和圆的位置关系》练习题附答案-人教版

九年级数学上册《第二十四章 直线和圆的位置关系》练习题附答案-人教版

九年级数学上册《第二十四章直线和圆的位置关系》练习题附答案-人教版一、选择题1.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( )A.r<6B.r=6C.r>6D.r≥62.圆的直径为13cm,如果圆心与直线的距离是d,则( )A.当d=8cm时,直线与圆相交B.当d=4.5cm时,直线与圆相离C.当d=6.5cm时,直线与圆相切D.当d=13cm时,直线与圆相切3.如图,在Rt△ABC中,∠C=90°,CB=3cm,AB=4cm,若以点C为圆心,以2cm为半径作⊙C,则AB与⊙C的位置关系是( )A.相离B.相切C.相交D.相切或相交4.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为( )A.2B. 3C. 2D.1 25.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是( )A.BD=CDB.AC⊥BCC.AB=2ACD.AC=2OD6.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为( )A.3B.4C.6D.97.如图,⊙B的半径为4 cm,∠MBN=60°,点A、C分别是射线BM、BN上的动点,且直线AC ⊥BN.当AC平移到与⊙B相切时,AB的长度是( )A.8 cmB.6 cmC.4 cmD.2 cm8.如图,在△ABC中,∠A=66°,点I是△ABC的内心,则∠BIC的大小为( )A.114°B.122°C.123°D.132°9.如图,正方形网格中的每个小正方形边长都相等,△ABC的三个顶点A,B,C都在格点上.若格点D在△ABC外接圆上,则图中符合条件的格点D(点D与点A,B,C均不重合)有( )A.3个B.4个C.5个D.6个10.如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是( )A.DI=DBB.DI>DBC.DI<DBD.不确定二、填空题11.⊙O的半径为R,点O到直线l的距离为d,R,d是关于x的方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为________.12.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是 .13.如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆半径为3cm,那么大圆半径为 cm.14.当宽为3 cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为________cm.15.在△ABC中,点I是内心,若∠A=80°,则∠DEF= .16.在边长为3cm、4cm、5cm的三角形白铁皮上剪下一个最大的圆,此圆的半径为cm.三、解答题17.如图,在Rt△ABC中,∠C=90°,∠B=60°,若AO=x cm,⊙O的半径为1 cm,当x在什么范围内取值时,直线AC与⊙O相离、相切、相交?18.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.19.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°(1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;(2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.21.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.22.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.参考答案1.C.2.C.3.C.4.B.5.C.6.C7.A.8.C.9.C.10.A.11.答案为:4.12.答案为:相离.13.答案为:5.14.答案为:25615.答案为:50°.16.答案为:1.17.解:作OD ⊥AC 于点D.∵∠C =90°,∠B =60°,∴∠A =30°.∵AO =x cm ,∴OD =12x cm. (1)若⊙O 与直线AC 相离,则有OD>r ,即12x >1,解得x >2; (2)若⊙O 与直线AC 相切,则有OD =r ,即12x =1,解得x =2; (3)若⊙O 与直线AC 相交,则有OD<r ,即12x <1,解得x <2,∴0<x<2. 综上可知:当x >2时,直线AC 与⊙O 相离;当x =2时,直线AC 与⊙O 相切; 当0<x <2时,直线AC 与⊙O 相交.18.解:(1)∵∠COD=2∠CAD,∠D=2∠CAD∴∠D=∠COD.∵PD与⊙O相切于点C∴OC⊥PD,即∠OCD=90°∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形∴OC=CD=2由勾股定理,得OD=22+22=2 2∴BD=OD-OB=22-219.(1)证明:连接OE.∵OE=OB∴∠OBE=∠OEB∵BE平分∠ABC∴∠OBE=∠EBC∴∠EBC=∠OEB∴OE∥BC∴∠OEA=∠C∵∠ACB=90°∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H由题意可知四边形OECH为矩形∴OH=CE∵BF=6∴BH=3在Rt△BHO中,OB=5∴OH=4∴CE=4.20.解:(1)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°∴∠ACB=90°∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°∵D为弧AB的中点,∠AOB=180°∴∠AOD=90°∴∠ABD=45°;(2)连接OD∵DP切⊙O于点D∴OD⊥DP,即∠ODP=90°由DP∥AC,又∠BAC=38°∴∠P=∠BAC=38°∵∠AOD是△ODP的一个外角∴∠AOD=∠P+∠ODP=128°∴∠ACD=64°∵OC=OA,∠BAC=38°∴∠OCA=∠BAC=38°∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.21.解:(1)如图,连接OD,∵AB为⊙O的直径∴∠ADB=90°,即∠A+∠ABD=90°又∵CD与⊙O相切于点D∴∠CDB+∠ODB=90°∵OD=OB∴∠ABD=∠ODB∴∠A=∠BDC;(2)∵CM平分∠ACD∴∠DCM=∠ACM又∵∠A=∠BDC∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM∵∠ADB=90°,DM=1∴DN=DM=1∴MN=2.22.解:(1)直线DE与⊙O相切,理由如下:连接OD ∵OD=OA∴∠A=∠ODA∵EF是BD的垂直平分线∴EB=ED∴∠B=∠EDB∵∠C=90°∴∠A+∠B=90°∴∠ODA+∠EDB=90°∴∠ODE=180°﹣90°=90°∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x∵∠C=∠ODE=90°∴OC2+CE2=OE2=OD2+DE2∴42+(8﹣x)2=22+x2,解得:x=4.75 则DE=4.75.。

人教版数学九年级上册:24《圆》专题练习(附答案)

人教版数学九年级上册:24《圆》专题练习(附答案)

word版初中数学第二十四章《圆》专题练习目录专题1 与圆周角有关的辅助线作法 (1)专题2圆周角定理 (3)专题3 证明切线的两种常用方法 (4)专题4与切线长有关的教材变式 (5)专题5与圆的切线有关的计算与证明 (6)专题6 求阴影部分的面积 (8)专题1 与圆周角有关的辅助线作法类型1 构造同弧或等弧所对的圆周角或圆心角1.如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,点B 是AC ︵的中点,则∠D 的度数是( )A .70°B .55°C .35.5°D .35°2.如图,点A ,B ,C ,D 分别是⊙O 上的四点,∠BAC =50°,BD 是直径,则∠DBC 的度数是( )A .40°B .50°C .20°D .35°3.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =50°,AO ∥DC ,则∠B 的度数为( ) A .50°B .55°C .60°D .65°4.如图,A ,B ,C 在⊙O 上,∠ACB =40°,点D 在ACB ︵上,M 为半径OD 上一点,则∠AMB 的度数不可能为( )A .45°B .60°C .75°D .85°类型2 利用直径构造直角三角形5.如图,在⊙O 中,∠OAB =20°,则∠C 的度数为 .6.如图,在⊙O 中,AB 为直径,∠ACB 的平分线交⊙O 于点D ,AB =6,则BD = .7.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于 .8.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于点D ,AC =5,DC =3,AB =42,则⊙O 的半径为 .类型3 构造圆内接四边形9.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60°C.80° D.100°10.如图,已知A,B,C,D是⊙O上的四个点,⊙O的直径AB=2 3.若∠ACD=120°,则线段AD的长为.专题2 圆周角定理1.如图,四边形APBC 是圆内接四边形,延长BP 至E ,若∠EPA =∠CPA ,判断△ABC 的形状,并证明你的结论.2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°. (1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.3.如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB =∠ABD =45°.(1)求证:BD 是该圆的直径; (2)连接CD ,求证:2AC =BC +CD.专题3 证明切线的两种常用方法类型1 直线与圆有交点:连半径,证垂直 (一)借助角度转换证垂直1.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,AB 与CD 交于点E ,点P 是CD 延长线上的一点,AP =AC ,且∠B =2∠P.求证:PA 是⊙O 的切线.(二)利用平行证垂直2.如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且点C 为BF ︵的中点,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D.求证:CD 是⊙O 的切线.(三)利用全等证垂直3.如图,AB 是⊙O 的直径,BC ⊥AB 于点B ,连接OC 交⊙O 于点E ,弦AD ∥OC.求证: (1)DE ︵=BE ︵; (2)CD 是⊙O 的切线.(四)利用勾股定理的逆定理证垂直4.(南充中考改编)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB =2,PC =4.求证:PC 是⊙O 的切线.类型2 不确定直线与圆是否有交点:作垂直,证半径5.如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,OB 与⊙O 相交于点E.求证:AC 是⊙O 的切线.专题4 与切线长有关的教材变式1.如图,AB ,BC ,CD 分别与⊙O 相切于点E ,F ,G ,若∠BOC =90°,求证:AB ∥CD.2.如图,⊙O的直径AB=12 cm,AM和BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C 两点.设AD=x,BC=y,求y关于x的函数解析式.3.如图,Rt△ABC的内切圆⊙O与AB,BC,AC分别相切于点D,E,F,且AC=13,AB=12,∠ABC=90°,则⊙O 的半径为.4.如图,△ABC的周长为18,其内切圆⊙O分别切三边于D,E,F三点,AF=3,FC=4,则BE=.5.已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为()A.32B.32C. 3 D.2 3专题5 与圆的切线有关的计算与证明1.如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 是优弧ABC ︵上不与点A ,点C 重合的一个动点,连接AD ,CD.若∠APB =80°,则∠ADC 的度数是( )A .15°B .20°C .25°D .30°2.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( )A.3+12 B.3-32 C.3+13 D.3-333.如图,矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC 的内切圆,则PQ 的长是( )A.52B. 5C.52D .2 24.如图,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于点D ,连接BD 并延长至点F ,使得BD =DF ,连接CF ,BE.求证: (1)DB =DE ;(2)直线CF 为⊙O 的切线.5.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4.求弦CE的长.6.如图,PA,PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O 的半径为1,求菱形ACBP 的面积.7.如图,⊙O 是边长为6的等边△ABC 的外接圆,点D 为BC ︵的中点,过点D 作DE ∥BC ,DE 交AC 的延长线于点E ,连接AD ,CD.(1)DE 与⊙O 的位置关系是相切; (2)求△ADC 的内切圆半径r.专题6 求阴影部分的面积类型1 直接利用公式求面积1.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( ) A.π2 m 2 B.32π m 2 C .π m 2 D .2π m 2类型2 利用和差法求面积2.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D.若点D 为AB 的中点,则阴影部分的面积是( )A .23-23πB .43-23πC .23-43π D.23π3.如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A .2π-4B .4π-8C .2π-8D .4π-44.如图,分别以五边形ABCDE 的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为( )A.32π B .3π C.72π D .2π5.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是( )A.2π3 B .23-π3 C .23-2π3 D .43-2π36.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是( )A .18+36πB .24+18πC .18+18πD .12+18π7.如图,在平行四边形ABCD 中,AB <AD ,∠D =30°,CD =4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为 .8.如图,在Rt △ABC ,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是 .类型3 利用等积转化法求面积9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( )A .2πB .Π C.π3 D.2π310.如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变 B.由大变小C.由小变大 D.先由小变大,后由大变小11.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC =10 cm,∠BAC=36°,则图中阴影部分的面积为()A.5π cm2 B.10π cm2 C.15π cm2 D.20π cm212.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD =6,EF=8.则图中阴影部分的面积是()A.252π B.10π C.24+4π D.24+5π13.如图,在△ACB中,∠BAC=90°,AC=2,AB=3,现将△ACB绕点A逆时针旋转90°得到△AC1B1,则阴影部分的面积为.参考答案:专题1 与圆周角有关的辅助线作法1.D2.A3.D4.D5.110°__.67.1.829.D11.3.专题2 圆周角定理——教材P90T14的变式与应用1.解:△ABC是等腰三角形,理由:∵四边形APBC是圆内接四边形,∴∠EPA=∠ACB.∵∠EPA=∠CPA,∠CPA=∠ABC,∴∠ACB=∠ABC.∴AB=AC.∴△ABC是等腰三角形.2.解:(1)证明:∵∠ABC=∠APC=60°,∠BAC=∠APC=60°,∴∠ABC=∠BAC=60°.∴△ABC是等边三角形.(2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.证明:(1)∵∠ACB =∠ADB =45°, ∠ABD =45°, ∴∠BAD =90°. ∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA. ∵∠ABD =∠ADB ,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABC =∠ADE ,BC =DE ,∴△ABC ≌△ADE (SAS ). ∴∠BAC =∠DAE.∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∵∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形.∴2AC=CE.∴2AC=DE+CD=BC+CD.专题3 证明切线的两种常用方法1.证明:连接OA,AD.∵∠B=2∠P,∠B=∠ADC.∴∠ADC=2∠P.又∵AP=AC,∴∠P=∠ACP.∴∠ADC=2∠ACP.∵CD为直径,∴∠DAC=90°.∴∠ADC=60°,∠ACD=30°.∴△ADO为等边三角形.∴∠AOP=60°.而∠P=∠ACP=30°,∴∠OAP=90°.∴OA⊥PA.又∵AO为⊙O的半径,∴PA是⊙O的切线.2.证明:连接OC,∵CF ︵=CB ︵,OA =OC , ∴∠DAC =∠BAC =∠ACO. ∴AD ∥OC. ∵CD ⊥AF 于点D , ∴∠DCO =90°. 又∵OC 为⊙O 的半径, ∴CD 为⊙O 的切线. 3.证明:(1)连接OD. ∵AD ∥OC ,∴∠DAO =∠COB ,∠ADO =∠DOC. 又∵OA =OD ,∴∠DAO =∠ADO. ∴∠COB =∠COD. ∴DE ︵=BE ︵.(2)由(1)知∠DOE =∠BOE , 在△COD 和△COB 中, ⎩⎪⎨⎪⎧CO =CO ,∠DOC =∠BOC ,OD =OB ,∴△COD ≌△COB (SAS ). ∴∠CDO =∠B.又∵BC ⊥AB ,∴∠CDO =∠B =90°.∵点D在⊙O上,∴CD是⊙O的切线.4.证明:连接OC.∵⊙O的半径为3,∴OC=OB=3.又∵BP=2,∴OP=5.在△OCP中,OC2+PC2=32+42=52=OP2,∴△OCP为直角三角形,∠OCP=90°.∴OC⊥PC.∵C是⊙O上一点,∴PC为⊙O的切线.5.证明:连接OA,OD,作OF⊥AC于点F,垂足为F. ∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC.∵AB与⊙O相切于点D,∴OD⊥AB.而OF⊥AC,∴OF=OD.∴AC是⊙O的切线.专题4 与切线长有关的教材变式1.证明:∵∠BOC=90°,∴∠OBC+∠OCB=90°.又∵BE与BF为⊙O的切线,∴BO为∠EBF的平分线.∴∠OBE=∠OBF.同理可得∠OCB=∠OCG.∴∠OBE+∠OCG=90°.∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°.∴AB∥CD.2.解:过点D作DF⊥BC于点F.∵AD,BC分别是⊙O的切线,∴∠OAD=∠OBF=90°.又∵DF⊥BC,∴四边形ABFD为矩形.∴DF=AB=12 cm,BF=AD.∵AD,BC,DC分别为⊙O的切线,∴DE=DA=x,CE=CB=y.∴DC=x+y,CF=y-x.在Rt △DCF 中,由勾股定理,得DC 2=CF 2+DF 2,即(x +y )2=(y -x )2+122,整理,得xy =36.∴y =36x. ∴y 关于x 的函数解析式y =36x(x>0). 3.2.4.2.5.C专题5 与圆的切线有关的计算与证明1.C2.B3.B4.证明:(1)∵E 为△ABC 的内心,∴∠DAC =∠DAB ,∠CBE =∠EBA.又∵∠DBC =∠DAC ,∠DBE =∠DBC +∠CBE ,∠DEB =∠EAB +∠EBA ,∴∠DBE =∠DEB.∴DB =DE.(2)连接OD.∵BD =DF ,O 是BC 的中点,∴OD ∥CF.又∵BC 为⊙O 的直径,OB =OD ,∴∠ODB =∠DBO =∠DAC =45°.∴∠OCF =∠BOD =90°.∴OC ⊥CF.又∵OC 为⊙O 的半径,∴直线CF 为⊙O 的切线.5.解:(1)证明:过点O 作OD ⊥PB ,连接OC.∵AP 与⊙O 相切,∴OC ⊥AP.又∵OP 平分∠APB ,∴OD =OC.∴PB 是⊙O 的切线.(2)过点C 作CF ⊥PE 于点F.在Rt △OCP 中,OP =OC2+CP2=5.∵S △OCP =12OC ·CP =12OP ·CF ,∴CF =125. 在Rt △COF 中,OF =CO2-CF2=95. ∴FE =3+95=245.在Rt △CFE 中,CE =CF2+EF2=1255. 6.解:(1)证明:连接AO ,BO.∵PA ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,PA =PB ,∠APO =∠BPO =12∠APB =30°. ∴∠AOP =60°.∵OA =OC ,∴∠OAC =∠OCA.∴∠AOP =∠CAO +∠ACO.∴∠ACO =30°.∴∠ACO =∠APO.∴AC =AP.同理BC =PB ,∴AC =BC =BP =AP.∴四边形ACBP 是菱形.(2)连接AB 交PC 于点D ,则AD ⊥PC.在Rt △AOD 中,∠AOD =60°,∴∠OAD =30°.∴OD =12OA =12. ∴AD =OA2-OD2=12-(12)2=32.∴PA =2AD =3,AB =2AD = 3.∴OP =OA2+PA2=2,PC =OP +OC =2+1=3.∴菱形ACBP 的面积为12AB ·PC =332. 7.解:∵D 为BC ︵的中点,∴BD ︵=DC ︵.∴∠BAD =∠DAC =30°.又∵AB =AC ,∴AD 垂直平分BC.∴AD 为⊙O 的直径.∴∠ACD =90°.在Rt △ACD 中,∠DAC =30°,设DC =x ,则AD =2x.由勾股定理,得AD 2=DC 2+AC 2,即(2x )2=x 2+62.解得x =2 3.∴DC =23,AD =4 3.作Rt △ADC 的内切圆⊙O ′,分别切AD ,AC ,DC 于点F ,G ,H ,易知CG =CH =r , ∴AG =AF =6-r ,DH =DF =23-r.∵AF +DF =AD ,∴6-r +23-r =4 3.∴r =3- 3.专题6 求阴影部分的面积1.A2.A3.A4.C5.C6.C73823 9.D10.A11.B12.A13.94π.。

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版九年级数学上册第24章圆训练题(精练)一、单选题(本大题10题,每小题3分,共30分)1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D.162.(本题3分)如图,AB是⊙O的直径,BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC⊙30°⊙AC⊙4,则⊙O的半径为()A.4B.8C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .(π)cm 2B .(π)cm 2C .(2π)cm 2D .(2π-)cm 26.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2BC .32 D7如图,在一个圆内有AB 、CD 、EF ,若AB +CD =EF ,则AB +CD 与EF 的大小关系是( )A .AB +CD =EFB .AB +CD <EFC .AB +CD ≤EF D .AB +CD >EF8.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .C .6D .9.如图,在ABC 的外接圆上,,,AB BC CA 所对的圆心角的度数比为12:13:11.在BC 上取一点D ,过D 分别作直线,AC AB 的平行线,交BC 于,EF 两点,则EDF ∠的度数为( )A .55°B .60°C .65°D .70°10.如图,在Rt ABC 中,90,30∠=︒∠=︒C A ,在AC 边上取点O 为圆心画圆,使O 经过,A B 两点,下列结论:①2AO CO =;②AO BC =;③以O 圆心,OC 为半径的圆与AB 相切;④延长BC 交O 于点D ,则,,A B D 是O 的三等分点.其中正确结论的序号是( )A .①②③④B .①②③C .②③④D .①③④二、填空题(本大题7题,每小题4分,共28分)11.(本题4分)若四边形ABCD 是⊙O 的内接四边形,∠A=120°,则∠C 的度数是___.12.(本题4分)如图,四边形ABCD 内接于⊙O ,∠C =130°,则∠BOD 的度数是______.13.(本题4分)如图,四边形ABCD 是菱形,∠B =60°,AB =1,扇形AEF 的半径为1,圆心角为60°,则图中阴影部分的面积是______.14.(本题4分)如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A OB '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)15.(本题4分)如图,在Rt⊙ABC 中,⊙ACB=90°⊙AC=6⊙BC=8,点D 是AB 的中点,以CD 为直径作⊙O⊙⊙O分别与AC⊙BC交于点E⊙F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____⊙16.(本题4分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC 平分AB)可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.17.(本题4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边 BC 相交于点E,过点E作EF⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF 的长为_____.三、解答题(本大题7题,18-23每小题7分,24题20分,共62分)18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD⊥CE 于点D,AC 平分∠DAB.(1)求证:直线CE 是⊙O 的切线;(2)若AB=10,CD=4,求BC 的长.19.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D⊙连接AD,BD⊙求四边形ABCD的面积.20.如图,在△ABC中,AB⊙AC⊙∠BAC⊙54°,以AB为直径的⊙O分别交AC⊙BC于点D⊙E,过点B作直线BF,交AC的延长线于点F⊙⊙1)求证:BE⊙CE⊙⊙2)若AB⊙6,求弧DE的长;⊙3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.21.如图,在圆O 中,弦AB =8,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD ⊥AC ,OE ⊥BC ,垂足分别是点D 、E(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.22.如图1,AB 为半圆的直径,点O 为圆心,AF 为半圆的切线,过半圆上的点C 作//CD AB 交AF 于点D ,连接BC .(1)连接DO ,若//BC OD ,求证:CD 是半圆的切线;(2)如图2,当线段CD 与半圆交于点E 时,连接AE ,AC ,判断AED ∠和ACD ∠的数量关系,并证明你的结论.23.如图,已知AB是⊙P的直径,点C在⊙P上,D为⊙P外一点,且∠ADC=90°,直线CD为⊙P的切线.⑴试说明:2∠B+∠DAB=180°⑵若∠B=30°,AD=2,求⊙P的半径.24.若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD 中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形奇妙四边形(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论参考答案1.B【详解】⊙⊙O中最长的弦为8cm,即直径为8cm⊙⊙⊙O的半径为4cm⊙故选B.2.C【详解】∵AC AC,∴∠ABC=12∠AOC=12×80°=40°,故选C.3.A【详解】∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选A.4.B【详解】连接OC ,如图,∵CD 为⊙O 的切线,∴OC ⊥CD ,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°,故选B .5.C【详解】连接AD ,∵△ABC 是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°, ∵BD=CD ,∴AD ⊥BC ,∴=∴S 阴影=S △ABC -3S 扇形AEF =12×4×﹣26023360π⨯⨯﹣2π)cm 2, 故选C .6.D【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.7.D【详解】如图,在弧EF上取一点M,使EM CD=,则FM AB=,所以AB=FM,CD=EM,在⊙MEF中,FM+EM>EF,所以AB+CD>EF,故选:D.8.D【详解】如图,设光盘圆心为O,连接OC⊙OA⊙OB⊙∵AC⊙AB都与圆O相切,∴AO平分∠BAC⊙OC⊥AC⊙OB⊥AB⊙∴∠CAO=∠BAO=60°⊙∴∠AOB=30°⊙在Rt△AOB中,AB=3cm⊙∠AOB=30°⊙∴OA=6cm⊙根据勾股定理得:=⊙则光盘的直径为⊙故选D.9.C【详解】解:,,AB BC CA 所对的圆心角的度数比为12:13:11,BC ∴所对的圆心角的度数为13360130,121311⨯︒=︒++ 65BAC ︒∴∠=//,//,AC ED AB DF,FED ACB EFD ABC ∴∠=∠∠=∠18018065EDF FED EFD ACB ABC BAC ∴∠=︒-∠-∠=︒-∠-∠=∠=︒.故选C .10.D【详解】①如图,连接OB ,则OA OB =.90,30C OAB ︒︒∠=∠=,30,60ABO OAB ABC ︒︒∴∠=∠=∠=,30,2CBO OB OC ︒∴∠=∴=.2AO CO ∴=,故①正确;②在Rt OCB △中,90,,C OB BC AO OB ︒∠=>=,AO BC ∴>,故②错误;③如图,过点O 作OE AB ⊥于点E ,90,30ACB ABO CBO ︒︒∠=∠=∠=,OC OE ∴=,∴以O 圆心,OC 为半径的圆与AB 相切,故③正确;④如图,延长BC ,交O 于点D ,连接AD .90,ACB DC BC ︒∠=∴=.AD AB ∴=,60ABC ︒∠=,ADB ∴是等边三角形.,AD AB BD AD AB BD ∴==∴==,,,A B D ∴是O 的三等分点,故④正确;故正确的有①③④.11.60°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为60°.12.100°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.6π- 【详解】连接AC ,∵四边形ABCD 是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=1,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形,∴AC=AD=1,∵AB=1,∴△ADC的高为2,AC=1, ∵扇形BEF 的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G ,在△ADH 和△ACG 中,34160AD ACD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADH ≌△ACG(ASA),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =2601113602π⨯⨯-⨯6π,故答案为64π-. 14.4π.【详解】解:根据题意,知OA=OB .又∠AOB=36°,∴∠OBA=72°.∴点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π.【点睛】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.15.125⊙ 【详解】如图,在Rt △ABC 中,根据勾股定理得,AB=10⊙∴点D是AB中点,∴CD=BD=12AB=5⊙连接DF⊙∵CD是⊙O的直径,∴∠CFD=90°⊙∴BF=CF=12BC=4⊙∴连接OF⊙∵OC=OD⊙CF=BF⊙∴OF∥AB⊙∴∠OFC=∠B⊙∵FG是⊙O的切线,∴∠OFG=90°⊙∴∠OFC+∠BFG=90°⊙∴∠BFG+∠B=90°⊙∴FG⊥AB⊙∴S△BDF=12DF×BF=12BD×FG⊙∴FG=3412==55 DF BFBD⨯⨯⊙故答案为125. 16.10 【详解】解:∵弦8AB =米,半径OC ⊥弦AB ,∴4=AD , ∴3OD ==,∴2OA OD -=,∴弧田面积12=(弦×矢+矢2)()21822102=⨯⨯+=, 故答案为1017.2【详解】连接AE,作CM⊥FD, ∵AB=AC,AE⊥BC, ∴BE=EC,AB∥CM, ∴CM=BF, ∴666sin ,sin 446410CM CM AF D D CD AD AC CM CM ∠==∠====++++ , ∴6410CM CM=+ , ∴CM=2或CM=-12(舍去),∴BF=2.18.【详解】(1)如图,连接OC∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠OCA=∠CAB,∴∠OCA=∠DAC,∴AD∥CO,∵CD⊥AD,∴OC⊥CD,∵OC是⊙O直径且C在半径外端,∴CD为⊙O的切线;(2)∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴DC AC BC AB,∴BC•AC=DC•AB=4×10=40,∵BC 2+AC 2=100,∴(BC+AC)2=BC 2+AC 2+2BC •AC=180,(BC -AC)2= BC 2+AC 2-2BC •AC=20,∴AC ﹣BC ﹣∴19.S 四边形ADBC ⊙49⊙cm 2⊙⊙【详解】∵AB 为直径,∴∠ADB=90°,又∵CD 平分∠ACB ,即∠ACD=∠BCD ,∴AD BD =,∴AD=BD ,∵直角△ABD 中,AD=BD ,AD 2+BD 2=AB 2=102,则,则S △ABD =12AD•BD=12=25(cm 2),在直角△ABC 中,=6(cm),则S △ABC =12AC•BC=12×6×8=24(cm 2), 则S 四边形ADBC =S △ABD +S △ABC =25+24=49(cm 2).20.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=12∠BAC=12×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=5439 18010ππ⨯⨯=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.21.⊙1⊙【详解】(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=12 AB,∵AB=8,∴DE=4;(2)过点O作OH⊥AB,垂足为点H,则OH=3,连接OA,∵OH经过圆心O,∴AH=BH=12 AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.【详解】(1)证明:连接OC ,AF 为半圆的切线,AB 为半圆的直径,AB AD ∴⊥,//CD AB ,//BC OD ,∴四边形BODC 是平行四边形,OB CD ∴=,OA OB =,CD OA ∴=,∴四边形ADCO 是平行四边形,//OC AD ∴,//CD BA ,CD AD ∴⊥,//OC AD ,OC CD ∴⊥,CD ∴是半圆的切线;(2)解:90AED ACD ∠+∠=︒,理由:如图2,连接BE ,AB 为半圆的直径,90AEB ∴∠=︒,90EBA BAE ∴∠+∠=︒,90DAE BAE ∠+∠=︒,ABE DAE ∴∠=∠,ACE ABE ∠=∠,ACE DAE ∴∠=∠,90ADE ∠=︒,90DAE AED AED ACD ∴∠+∠=∠+∠=︒. 23.【详解】解:⊙ 连接CP⊙PC =PB ,⊙⊙B =⊙PCB ,⊙⊙APC=⊙PCB+⊙B=2⊙B⊙CD是⊙OP的切线,⊙⊙DCP=90°⊙⊙ADC=90°,⊙⊙DAB+⊙APC=180°⊙2⊙B+⊙DAB=180°⊙ 连接AC⊙⊙B=30°,⊙⊙APC=60°,⊙PC=P A,⊙⊙ACP是等边三角形,⊙AC=P A,⊙ACP=60° ⊙⊙ACD=30°,⊙AC=2AD=4,⊙P A=4答:⊙P的半径为4.24.【详解】解:(1)矩形的对角线相等但不垂直,所以矩形不是奇妙四边形;故答案为不是;(2)连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴在等腰△OBD中,∠OBD=30°,在Rt △OBH 中,∵∠OBH=30°, ∴132126OH OB ==⨯=,∴BH ==∴2BD BH ==∵四边形ABCD 是奇妙四边形,∴AC BD ==AC BD ⊥∴112542ABCD BD A S C =⨯==四边形; (3)12OM AD =. 理由如下:连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3, ∵OE ⊥AD ,∴在等腰△AOD 中,12AE DE AD ==, 又∵22BOC BAC BOM ∠=∠=∠,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°, ∵∠BOM+∠OBM=90°, ∴∠OBM=∠AOE , 在△BOM 和△OAE 中 90BMO OEA OBM AOEOB AO ⎧∠∠=⎪∠∠⎨⎪⎩=== ∴()BOM OAE AAS ≌, ∴OM=AE , ∴12OM AD =.1。

九年级上册数学第24章《圆》分类练习试卷及答案解析

九年级上册数学第24章《圆》分类练习试卷及答案解析
3...的直径为8,点尸在直线2上,且加4,那么直线1与..的位置关系是〔〕
A.相离B.相切C.相交D,相切或相交
4.两圆半径分别为6.5的和3馆,圆心距为3.5M,那么两圆的位置关系是〔〕
A.相交B.外切C.内切D,内含
5.两圆的半径分别为2和5,圆心距为7,那么这两圆的位置关系为〔〕
A.外离.B.外切.C.相交.D.内切.
九年级上册第
知识点一:点与圆、直线与圆、圆与圆的位置关系
1...的半径为5,圆心.的坐标为〔0, 0〕,点尸的坐标是〔4, 3〕,那么点尸在.〕
A.内B.上C.外D,不确定
2.假设.0半径为1,点尸到圆心.的距离为W关于的方程3-2e4=0有两个实数根,那么 点?在〔〕
A...的内部B.0.上
C.的外部D.在..上或.0的内部
ቤተ መጻሕፍቲ ባይዱ4题图
5.如下图,.0的直径和弦Q?相交于点属 月f=lcm,属=5cm,/DEB=60:求切的长.
知识点三:切线的性质及判定
1.如图,月6和月.与圆.分别相切于点3和点.,点,是圆.上一点,假设/胡C=74°,那么乙必C
等于〔〕
A.46°B.53°C.74°D.106°
知识点二:弦、弦心距、圆心角、圆周角之间的关系
1.如图,皿是.的直径,弦SLA5,垂足为必,以下结论不成立的是〔〕
3.如图,..的半径是2,四是.0的弦,点尸是弦相上的动点,且1W灼2,那么弦相 所对的圆周角的度数是〔〕
A.60°B.120°C.60° 或 120°D,30° 或 150°
4 .如图,AB、4:都是圆.的弦,.归_孙ONA.AC,垂足分别为M N,如果MV=3,那么6.

人教版九年级数学上册第二十四单元圆和圆的位置关系同步练习2带答案

人教版九年级数学上册第二十四单元圆和圆的位置关系同步练习2带答案

人教版九年级数学上册第二十四单元《圆和圆的位置关系》同步练习2带答案◆随堂检测⊙O 1与⊙O 2的半径别离为5cm 和3cm ,圆心距020=7cm ,那么两圆的位置关系为( )A .外离B .外切C .相交D .内切2.已知1O ⊙和2O ⊙相切,1O ⊙的直径为9cm ,2O ⊙的直径为4cm .那么12O O 的长是( )A .5cm 或13cmB .C .D .或3.已知两圆半径别离为2和3,圆心距为d ,假设两圆没有公共点,那么以下结论正确的选项是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >4.一个等腰梯形的高恰好等于那个梯形的中位线,假设别离以那个梯形的上底和下底为直径作圆,那么这两个圆的位置关系是( )5.如图,在平面直角坐标系中,点1O 的坐标为(40)-,,以点1O 为圆心,8为半径的圆与x 轴交于A B ,两点,过A 作直线l 与x 轴负方向相交成60°的角,且交y 轴于C 点,以点2(135)O ,为圆心的圆与x 轴相切于点D .求直线l 的解析式.◆典例分析假设两圆半径r 和R 别离为2和6,圆心距d 为5,请判定两圆的位置关系?分析:此题尽管简单,却是常见的易错题.很多同窗对两圆位置关系的判定思路不明确,由268,5r R d +=+==,直接得d r R <+,取得两圆内含的错误结论.解:∵r R +=2+6=8,且R r -=6-2=4,∵48d <<,∴R r d r R -<<+. ∴两圆相交.◆课下作业●拓展提高1.如下图,⊙O 的半径为7cm ,点A 为⊙O 外一点,OA=15cm ,求:(1)作⊙A 与⊙O 外切,并求⊙A 的半径是多少?(2)作⊙A 与⊙O 相内切,并求出现在⊙A 的半径.2.要在一个矩形纸片上画出半径别离是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小..值.是_________. 1O 和2O 的半径别离为3cm 和2cm ,且121cm O O =,请判定1O 与2O 的位置关系. 1cm 或2cm 的两圆外切,那么与这两个圆都相切且半径为3的圆有多少个?5.如图,AB ,BC 别离是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.●体验中考1.(2020年,陕西省)图中圆与圆之间不同的位置关系有( )A .2种B .3种C .4种D .5种2.(2020年,益阳市)已知⊙O 1和⊙O 2的半径别离为1和4,若是两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的选项是( )H M B EO FG CA DAO B . D . A . C .3.(2020年,绍兴市)如图,A ⊙,B ⊙的半径别离为1cm ,2cm ,圆心距AB 为5cm .若是A ⊙由图示位置沿直线AB 向右平移3cm ,那么现在该圆与B ⊙的位置关系是_____________.参考答案:◆随堂检测.... 高等于上下底和的一半,等于两圆半径之和.5.解:由题意得|4||8|12OA =-+=,∴A 点坐标为(120)-,. ∵在Rt AOC △中,60OAC ∠=°,OC =∴C点的坐标为(0-,.设直线l 的解析式为y kx b =+,由l 过A C 、两点,得012b k b ⎧-=⎪⎨=-+⎪⎩解得b k ⎧=-⎪⎨=⎪⎩ ∴直线l的解析式为:y =-◆课下作业●拓展提高1.(1)⊙A 与⊙O 外切时⊙A 的半径是8cm.(2)⊙A 与⊙O 内切时⊙A 的半径是22cm.2. 矩形的长为9,宽为8,9×8=72.3.解:已知1O 和2O 的半径别离为3cm 和2cm ,且121cm O O =,因此12r r d -=,因此1O 和2O 的位置关系为内切.4.解:有三种情形共5个圆.○1与⊙1O 和⊙2O 都相外切(存在2个);○2与⊙1O 和⊙2O 都相内切(存在1个);○3和⊙1O 和⊙2O 中的一个内切,另一个外切(存在2个).5.(1)证明:连接OC ,∵HC HG =,∴HCG HGC ∠=∠. ∵HC 切O ⊙于C 点,∴190HCG ∠+∠=°,∵OB OC =,∴12∠=∠.∵3HGC ∠=∠,∴2390∠+∠=°. ∴90BFG ∠=°,即DE AB ⊥.(2)连接BE .由(1)知DE AB ⊥.∵AB 是O ⊙的直径, ∴BD BE =.∴BED BME ∠=∠.∵四边形BMDE 内接于O ⊙,∴HMD BED ∠=∠.∴HMD BME ∠=∠.∵BME ∠是HEM △的外角,∴BME MHE MEH ∠=∠+∠.∴HMD MHE MEH ∠=∠+∠.●体验中考. 相交、内切..3.外切.。

人教版九年级数学上《第二十四章圆》单元测试题含答案

人教版九年级数学上《第二十四章圆》单元测试题含答案

第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。

人教版九年级上《24.2点和圆的位置关系》专题练习题含答案

人教版九年级上《24.2点和圆的位置关系》专题练习题含答案

人教版九年级上《24.2点和圆的位置关系》专题练习题含答案人教版九年级数学上册第二十四章圆24.2点和圆、直线和圆的位置关系点和圆的位置关系专题练习题1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( )A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( )A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定5.过一点可以作_________个圆;过两点可以作_______个圆,这些圆的圆心在两点连线的___________________上;过不在同一条直线上的三点可以作________个圆.6.下列关于确定一个圆的说法中,正确的是( )A.三个点一定能确定一个圆B.以已知线段为半径能确定一个圆C.以已知线段为直径能确定一个圆D.菱形的四个顶点能确定一个圆7.下列命题中,错误的有( )①三角形只有一个外接圆;②三角形的外心是三角形三条边的垂直平分线的交点;③等边三角形的外心也是其三边的垂直平分线、高及角平分线的交点;④任何三角形都有外心.A.3个B.2个C.1个D.0个8.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M9.直角三角形的外心是________的中点,锐角三角形的外心在三角形的_________,钝角三角形的外心在三角形的__________.10.如图,一只猫观察到一老鼠洞的三个洞口A,B,C,这三个洞口不在同一条直线上,请问这只猫应该在什么地方才能最省力地同时顾及三个洞口?作出这个位置.11.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A .有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°12.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,当点B 在⊙A 内时,实数a 的取值范围在数轴上表示正确的是( )13.在Rt △ABC 中,AB =6,BC =8,则这个三角形的外接圆的直径为( )A .5B .10C .5或4D .10或814.(2016·宜昌)在公园的O 处附近有E ,F ,G ,H 四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E ,F ,G ,H 四棵树中需要被移除的为( )A .E ,F ,GB .F ,G ,HC .G ,H ,ED .H ,E ,F15.如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是_____________.16.已知⊙O 的半径为1,点P 与圆心O 的距离为d ,且方程x 2-2x +d =0没有实数根,则点P 与⊙O 的位置关系是_________________.17.已知⊙O 1过坐标原点O ,点O 1的坐标为(1,1),试判断点P(-1,1),Q(1,0),R(2,2)与⊙O 1的位置关系,并说明理由.18.如图,在△ABC 中,∠ACB =90°,AB =10,BC =8,CD ⊥AB 于D ,O 为AB 的中点.(1)以C 为圆心,6为半径作圆C ,试判断A ,D ,B 与⊙C 的位置关系;(2)⊙C的半径为多少时,点O在⊙C上?(3)⊙C的半径为多少时,点D在⊙C上?19.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,DB长为半径的圆上,并说明理由.答案:1. D2. A3. 24. O B ,D C5. 无数无数垂直平分线一6. C7. D8. B9. 斜边内部外部10. 解:图略.连接AB ,BC ,分别作线段AB ,BC 的垂直平分线,其交点O 即为所求11. D12. D13. D14. A15. 3<r<5< p="">16. 点P 在⊙O 外17. 解:⊙O 1的半径r =2,PO 1=2>2,QO 1=1<2,RO 1=2,故点P 在⊙O 1外,点Q 在⊙O 1内,点R 在⊙O 1上18. 解:(1)∵CA=6,CD =245<6,CB =8>6,∴点A 在⊙C 上,点D 在⊙C 内,点B 在⊙C 外(2)∵OC =12AB =5,∴⊙C 的半径为5时,点O 在⊙C 上(3)∵CD=245,∴⊙C 的半径为245时,点D 在⊙C 上19. 解:(1)∵AD 为圆的直径,AD ⊥BC ,∴BD ︵=CD ︵,∴BD =CD(2)B ,E ,C 三点在以D 为圆心,DB 长为半径的圆上,理由:∵BE 平分∠ABC ,∴∠ABE =∠EBF ,∵∠BED =∠BAD+∠ABE ,∠EBD =∠EBF +∠CBD ,又∵∠CBD=∠CAD=∠BAD ,∴∠BED =∠EBD ,∴DE =DB ,又∵DB=DC ,∴DB =DE =DC ,∴B ,E ,C 三点在以D 为圆心,DB 长为半径的圆上</r<5<>。

九年级数学上册《第二十四章 点和圆、直线和圆的位置关系》同步练习题及答案-人教版

九年级数学上册《第二十四章 点和圆、直线和圆的位置关系》同步练习题及答案-人教版

九年级数学上册《第二十四章 点和圆、直线和圆的位置关系》同步练习题及答案-人教版班级 姓名 学号一、选择题:1.下列直线中一定是圆的切线的是( )A .与圆有公共点的直线B .到圆心的距离等于半径的直线C .垂直于圆的半径的直线D .过圆的直径端点的直线2.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P ,那么点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定3.在△ABC 内部取一点P 使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的哪三条线交点( )A .高B .角平分线C .中线D .边的垂直平分4.如图,在△ABC 中,∠BAC 的平分线AD 与∠ACB 的平分线CE 交于点O ,下列说法正确的是( )A .点O 是△ABC 的内切圆的圆心B .CE ⊥ABC .△ABC 的内切圆经过D ,E 两点 D .AO =CO5.如图,AB 是O 的直径,点P 是O 外一点,PO 交O 于点C ,连接BC ,PA .若36P ∠=︒ 且PA 与O 相切,则此时B ∠等于( )A .27︒B .32︒C .36︒D .54︒6.如图点I 是△ABC 的内心,∠BIC=130°,则∠BAC=( )A .65°B .50°C .80°D .100°7.如图,在△ABC 中70A ∠=︒.⊙O 截ABC 的三条边所得的弦长相等,则BOC ∠的度数为( )A .125︒B .110︒C .160︒D .135︒8.如图,在Rt ABC 中90C ∠=︒,8AC =和14BC =,点D 在边BC 上,6CD =,以点D 为圆心作D ,其半径长为r ,要使点A 恰在D 外,点B 在D 内,则r 的取值范围是( )A .810r <<B .68r <<C .610r <<D .214r <<9.如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )A .AG=BGB .AB ∥EFC .AD ∥BC D .∠ABC=∠ADC二、填空题:10.若三角形的三边长分别为6、8、10,则此三角形的内切圆半径为 .11.如图,线段AB 与⊙O 相切于点B ,线段AO 与⊙O 相交于点C ,AB=12,AC=8,则⊙O 的半径长为 .12.如图,PA ,PB 是⊙O 的两条切线,切点分别是A 、B ,PA=10,CD 是⊙O 的切线,交PA 于点C ,交PB 于点D ,则△PCD 的周长是13.如图,过O 上一点C 作O 的切线,与O 直径AB 的延长线交于点D ,若38D ∠=︒,则E ∠的度数为 .14.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题:15.如图1,图2,在 66⨯ 的方格上建立平面直角坐标系(小方格的单位长度为1), A , B , C , D , E , F 都在格点上.(1)请在图1中作出经过 A , B , C 三点的圆,并求出圆的半径.(2)请在图2中作出经过 D , E , F 三点的圆,并求出圆的半径.16.ΔABC 为等腰三角形,O 为底边BC 的中点,腰AB 与O 相切于点D .求证:AC 是O 的切线.17.如图,在平面直角坐标系中,以点M(3,5)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,求点B的坐标.=,以AC为直径的O与AB交于点D,过点B作BE AC,与过点C 18.如图,在ABC中AB AC=.的O的切线相交于点E.求证:BD BE19.如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交于点E,连接BE,DE.(1)求证:∠BED=∠C;(2)若OA=5,AD=8,求AC的长.参考答案:1.B 2.D 3.B 4.A 5.A 6.C 7.A 8.A 9.C 10.211.512.2013.26°14.12 515.(1)解:圆O'即为所求:半径r=222+1=5;(2)解:圆A即为所求:半径r=223+1=1016.证明:过点O作OE⊥AC于点E,连结OD,OA∵AB 与O 相切于点D∴AB ⊥OD∵△ABC 为等腰三角形,O 是底边BC 的中点∴AO 是∠BAC 的平分线∴OE=OD ,即OE 是O 的半径∵AC 经过O 的半径OE 的外端点且垂直于OE∴AC 是O 的切线。

人教版初三数学九年级上册 第24章 圆 24.2点与圆、直线和圆的位置关系 同步练习 含答案

人教版初三数学九年级上册 第24章 圆  24.2点与圆、直线和圆的位置关系 同步练习 含答案

人教版初三数学九年级上册 第24章 圆 24.2.1 点与圆的位置关系 同步练习1. 在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆( )A .与x 轴相交,与y 轴相切B .与x 轴相离,与y 轴相交C .与x 轴相切,与y 轴相交D .与x 轴相切,与y 轴相离2. ⊙O 的半径为6,一条弦长63,以3为半径的同心圆与这条弦的位置关系是( )A .相切B .相交C .相离D .相切或相交3. 如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,OP 交⊙O 于点C ,下列结论中,错误的是( )A .∠1=∠2B .PA =PBC .AB⊥OP D.点C 是OP 的中点4. 如图,△ABC 内接于⊙O ,AB 是直径,BC=4,AC=3,CD 平分∠ACB ,则弦AD 长为( )A.52 B .52 C D .3 5. 下列说法中,正确的是( )A .与圆有公共点的直线是圆的切线B .经过半径外端的直线是圆的切线C .经过切点的直线是圆的切线D.圆心到直线的距离等于半径的直线是圆的切线6. 经过一点P可以作_______个圆;经过两点P、Q可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.7.边长为a的等边三角形外接圆半径为_______,圆心到边的距离为________.8.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________.9. 如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.10. 如图,Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r =____.11. 如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.12. 如图,⊙O是△ABC的外接圆,D是AB上一点,连结BD,并延长至E,连结AD,•若AB=AC,∠ADE=65°,试求∠BOC的度数.13. 如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆,求证:AC与⊙D相切.心,DB长为半径作⊙D14. 如图,PA,PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB =60°.(1)求PA的长;(2)求∠COD的度数.参考答案:1---5 CADBD6. 无数, 无数 ,线段PQ 的垂直平分线, 一个, 三边中垂线7. a 8. 斜边 内 外9. 相切10. 211. 6012. 100°13. 解:过D 作DH ⊥AC 于H ,由角平分线的性质可证DB =DH ,∴AC 与⊙D 相切14. 解:(1)由切线长定理可得CA =CE ,同理DE =DB ,PA =PB ,∴三角形PCD 的周长=PD +CD +PC =PD +PC +CA +BD =PA +PB =12,则PA 的长为6(2)连接OA ,OE ,OB ,∵∠P=60°,∴∠AOB=180°-∠P=120°,由切线长定理可得∠AOC=∠EOC=12∠AOE,∠DOB=∠EOD=12∠EOB,∴∠COD=∠EOC+∠EOD=12∠AOB=60°。

(必考题)初中九年级数学上册第二十四章《圆》经典习题(含答案解析)

(必考题)初中九年级数学上册第二十四章《圆》经典习题(含答案解析)

一、选择题1.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等 2.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .2453.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 4.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 5.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .1 6.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A.12B.16C.13D.147.如图,正六边形ABCDEF内接于O,过点O作OM 弦BC于点M,若O的半径为4,则弦心距OM的长为()A.23B.3C.2 D.228.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.1029.下列命题中,正确的是()A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.三角形的外心在三角形的外面D.与某圆一条半径垂直的直线是该圆的切线10.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A .22+1B .22+2C .42+1D .42-2 11.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .3312.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .2B .1C .2D .2213.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π14.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE= D .BC=2CE 15.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.17.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.18.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)19.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.20.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一⊥于N,点Q是MN的中点,当点P沿着圆周点,过点P作PM AB⊥于M,PN CD从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.OA=,AB是O的切线,点B是切点,弦21.如图,A是半径为1的O外一点,2BC OA,连接AC,则图中阴影部分的面积为________.//22.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为____.23.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.24.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,若以C为圆心,r为半径所作的圆与斜边AB相切,则r的值是________25.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.26.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________三、解答题27.如图,在⊙O 中,C 是AB 的中点,∠ACB=∠AOB .求证:四边形OACB 是菱形.28.如图,在平面直角坐标系中,点A 的坐标为()3,2-,点B 的坐标为()0,2. (1)画出将绕点O 顺时针旋转90后的图形,记为A OB ''△;(2)在题(1)旋转过程中线段OA 扫过的面积为_______(直接写出答案)29.如图,AB为⊙O的直径,C,D是⊙O上的点,P是⊙O外一点,AC⊥PD于点E,AD 平分∠BAC.(1)求证:PD是⊙O的切线;(2)若DE=3,,∠BAC=60°,求⊙O的半径.30.如图,ABC内接于O,60BAC∠=︒,点D是BC的中点.BC,AB边上的高AE,CF相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.。

人教版数学九年级上册 第24章 圆 与圆的位置关系 专题练习题 含答案

人教版数学九年级上册    第24章 圆    与圆的位置关系  专题练习题 含答案

人教版数学九年级上册第24章圆与圆的位置关系专题练习题含答案人教版数学九年级上册 第24章 圆 与圆的位置关系 专题练习题1. 以坐标原点O 为圆心,作半径为2的圆,若直线y =-x +b 与⊙O 相交,则b 的取值范围是(D)A .0≤b <2 2B .-2 2≤b ≤2 2C .-2 3<b <2 3D .-22<b <2 22.如图,直线l 是⊙O 的切线,A 为切点,B 为直线l 上一点,连接OB 交⊙O 于点C.若AB =12,OA =5,则BC 的长为(D)A .5B .6C .7D .83.如图,AB 是⊙O 的直径,DB ,DC 分别切⊙O 于点B ,C ,若∠ACE=25°,则∠D 的度数是(A)A .50°B .55°C .60°D .65°4.如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,连接PO 并延长交⊙O 于点C ,连接AC ,AB =10,∠P =30°,则AC 的长度是(A)A .5 3B .5 2C .5 D.525.如图,AB 是半圆O 的直径,C 是半圆O 上一点,CD 是半圆O 的切线,OD ∥BC ,OD 与半圆O 交于点E ,则下列结论中不一定正确的是(C)A .AC ⊥BCB .BE 平分∠ABC C .BE ∥CD D .∠D =∠A6.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为(C) A.32 B.32C. 3 D .2 3 7.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若∠ABC=55°,则∠ACD 等于(A)A .20°B .35°C .40°D .55°(2)解:∵BD∥PC,∴∠C =∠ABD,∴∠C =∠PDB,∴∠ABD =∠PDB,∴BC ∥PD ,∴四边形BCPD 为平行四边形,∴ OP ⊥BD ,∴BE =ED ,∠BEO =90°,∴∠ABD +∠BOE=90°,∴∠BOE =2∠PDB,∴∠BOE =2∠ABD,∴∠ABD =30°,∴ OB =2OE ,∴OE =3,BE =DE =33,PE =3,∴S 四边形BCPD =BD·PE=18 3.15.如图,在△ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 于点D ,E 在BC 边上,且满足EB =ED.(1)求证:DE 是⊙O 的切线;(2)连接AE ,若∠C=45°,AB =10 2,求sin ∠CAE 的值.(1)证明:如解图①,连接OD ,OE ,在△ODE 与△OBE 中,图①⎩⎪⎨⎪⎧OD =OB ,DE =BE ,OE =OE ,∴△ODE ≌△OBE(SSS),又∵∠ABC=90°,∴∠ODE =90°,∵D 在圆上,∴DE 为⊙O 切线;(2)解:如解图②,过E 作EF⊥AC 于点F ,连接BD ,AE ,在Rt △ABC 中,∠C =45°,∴∠CAB =45°,∵AB =10 2,∴BC =10 2,图②∵AB 为直径,∴∠ADB =∠BDC=90°,又∵在△CBD 中,∠C =45°,∴∠DBC =90°-45°=45° 又∵∠CDE+∠EDB=∠EBD+∠C=90°,∴∠EDC =∠ECD,∴EB =EC ,∴E 平分BC ,EB =EC =12AB =5 2.在Rt △ABE 中,AB =2BE ,∴AE =510,BE =52, ∴EF =22EC =22BE =5,∴在Rt △AFE 中,sin ∠CAE =EF AE =5510=1010.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学九年级上册 第24章 圆 与圆的位置关系 专题练习题
1. 以坐标原点O 为圆心,作半径为2的圆,若直线y =-x +b 与⊙O 相交,则b 的取值范围是(D)
A .0≤b <2 2
B .-2 2≤b ≤2 2
C .-2 3<b <2 3
D .-22<b <2 2
2.如图,直线l 是⊙O 的切线,A 为切点,B 为直线l 上一点,连接OB 交⊙O 于点C.若AB =12,OA =5,则BC 的长为(D)
A .5
B .6
C .7
D .8
3.如图,AB 是⊙O 的直径,DB ,DC 分别切⊙O 于点B ,C ,若∠ACE=25°,则∠D 的度数是(A)
A .50°
B .55°
C .60°
D .65°
4.如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,连接PO 并延长交⊙O 于点C ,连接AC ,AB =10,∠P =30°,则AC 的长度是(A)
A .5 3
B .5 2
C .5 D.52
5.如图,AB 是半圆O 的直径,C 是半圆O 上一点,CD 是半圆O 的切线,OD ∥BC ,OD 与半圆O 交于点E ,则下列结论中不一定正确的是(C)
A .AC ⊥BC
B .BE 平分∠AB
C C .BE ∥C
D D .∠D =∠A
6.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为(C) A.32 B.32
C. 3 D .2 3 7.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若∠ABC=55°,则∠ACD 等于(A)
A .20°
B .35°
C .40°
D .55°
8.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°.⊙O 与边AB 、AD 都相切,AO =10,则⊙O 的半径长等于(C)
A .5
B .6
C .2 5
D .3 2
9. 如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相切,点E ,F 分别在边AD ,DC 上,现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处,若DE =2,则正方形ABCD 的边长是(C )
A .3
B .4
C .2+ 2
D .2 2
10.如图,AT 切⊙O 于点A ,AB 是⊙O 的直径.若∠ABT=40°,则∠ATB=50°.
11.如图,点A 、B 、C 分别是⊙O 上的点,∠ABC =60°,AC =3,CD 是⊙O 的直
径,P 是CD 延长线上的一点,且AP =AC.则PD 12.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为D ,AB =BC =2,则∠AOB= 60°.
13.如图,点A 、B 、C 均在6×6的正方形网格格点上.过A 、B 、C 三点的外接圆除经过A 、B 、C 三点外还能经过的格点数为 5 .
14.如图,⊙O 的直径AB =12 cm ,C 为AB 延长线上一点,CP 与⊙O 相切于点P ,过点B 作弦BD∥CP,连接PD.
(1)求证:点P 为BD ︵的中点;
(2)若∠C=∠D,求四边形BCPD 的面积.
(1)证明:如解图,连接OP ,
∵PC 为⊙O 的切线,
∴OP ⊥PC ,
∵BD ∥PC,∴OP ⊥BD
∴P 为BD ︵的中点.
(2)解:∵BD∥PC,
∴∠C =∠ABD,
∴∠C =∠PDB,
∴∠ABD =∠PDB,
∴BC ∥PD ,
∴四边形BCPD 为平行四边形,
∴ OP ⊥BD ,∴BE =ED ,∠BEO =90°,
∴∠ABD +∠BOE=90°,
∴∠BOE =2∠PDB,∴∠BOE =2∠ABD,
∴∠ABD =30°,∴ OB =2OE ,
∴OE =3,BE =DE =33,PE =3,
∴S 四边形BCPD =BD·PE=18 3.
15.如图,在△ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 于点D ,E 在BC 边上,且满足EB =ED.
(1)求证:DE 是⊙O 的切线;
(2)连接AE ,若∠C=45°,AB =10 2,求sin ∠CAE 的值.
(1)证明:如解图①,连接OD ,OE ,
在△ODE 与△OBE 中,
图①
⎩⎪⎨⎪⎧OD =OB ,DE =BE ,OE =OE ,
∴△ODE ≌△OBE(SSS),
又∵∠ABC=90°,
∴∠ODE =90°,
∵D 在圆上,∴DE 为⊙O 切线;
(2)解:如解图②,过E 作EF⊥AC 于点F ,连接BD ,AE ,
在Rt △ABC 中,∠C =45°,∴∠CAB =45°, ∵AB =10 2,∴BC =10 2,
图②
∵AB 为直径,∴∠ADB =∠BDC=90°,
又∵在△CBD 中,∠C =45°,∴∠DBC =90°-45°=45° 又∵∠CDE+∠EDB=∠EBD+∠C=90°,
∴∠EDC =∠ECD,
∴EB =EC ,
∴E 平分BC ,EB =EC =12AB =5 2.
在Rt △ABE 中,AB =2BE ,∴AE =510,BE =52, ∴EF =22EC =2
2BE =5,
∴在Rt △AFE 中,sin ∠CAE =EF AE =5510=10
10.。

相关文档
最新文档