旋风分离器结构及参数标定方案设计

合集下载

旋风分离器设计方案

旋风分离器设计方案

旋风分离器设计方案用户:特瑞斯信力(常州)燃气设备有限公司型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00编制:日期:本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。

设计标准如下:a. TSG R0004-2009《固定式压力容器安全技术监察规程》b. GB150-1998《钢制压力容器》c. HG20584-1998《钢制化工容器制造技术要求》d. JB4712.2-2007《容器支座》2、旋风分离器结构与原理旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。

一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。

说明:旋风分离器的总体结构主要由:进料布气室、旋风分离组件、排气室、集污室和进出口接管及人孔等部分组成。

旋风分离器的核心部件是旋风分离组件,它由多根旋风分离管呈叠加布置组装而成。

旋风管是一个利用离心原理的2英寸管状物。

待过滤的燃气从进气口进入,在管内形成旋流,由于固、液颗粒和燃气的密度差异,在离心力的作用下分离、清洁燃气从上导管溜走,固体颗粒从下导管落入分离器底部,从排污口排走。

由于旋风除尘过滤器的工作原理,决定了它的结构型式是立式的。

常用在有大量杂物或有大量液滴出现的场合。

其设计的主要步骤如下:①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料;②设计参数的确定;③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚;④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件;⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚;⑥焊接接头型式的选择;⑦根据以上的容器设计计算,画出设计总设备图及零件图。

4、材料的选择①筒体与封头的材料选择:天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。

旋风分离器结构、性能及类型.ppt

旋风分离器结构、性能及类型.ppt
p ui 2
2
标准旋风分离器, 8.0
同一型式且尺寸比例相同的旋风分离器,粒级效率曲线和 阻力系数相同。
三、旋风分离器的结构型式及选用
采用细而长的器身 减小上涡流的影响 消除下旋流的流影响
10
职业教育环境监测与治理技术专业教学资源库《化工单元操作》课程
项目三 沉降过滤及设备操作
任务一、沉降过滤流程的确定和主体设备的选择 ---旋风分离器结构、性能与类型
承德石油高等专科学校
离心沉降设备 旋风分离器(Cyclone)
一 、操作原理
h
D ;B 2
D 4
;D1
D; 2
H1 2D;H2 2D;
S
D 8
;D2
D 4
特点:结构简单,没有活动部件,一般用来 除去5μm以上的颗粒。不适于处理粘性、含湿 量高及腐蚀性粉尘。
二、旋风分离器的性能 1. 临界粒径(Critical Diameter)
能够完全被分离下来的最小颗粒直径
假定: ①气流严格按螺旋形路线作等速运动,且其切向速度ut等
于进口气速ui ②颗粒向器壁的沉降距离为整个进气管宽度B ③颗粒在滞流区作自由沉降
10~25m/s
③ 含尘浓度
④ 加工精度
5
旋风分离器(Cyclone)
6
2.分离效率(Separation Efficiency)
(1)总效率:进入的全部颗粒被分离下来的质量分率
0
C1 C2 C1
100 %
(2)粒级效率:
p
C1i C2i C1i
100 %
n
0 xi p
i 1
7
3.压强降(Pressure Drop)
4

旋风集尘器分离器的原理及设计参数

旋风集尘器分离器的原理及设计参数

旋风集尘器分离器的原理及设计参数本帖最后由 bombcat 于 2010-11-4 12:22 编辑看了很多木有们DIY的旋风分离器,真是八仙过海各显神通,做出来的尺寸、比例也是五花八门。

在翻阅了论坛上关于旋风集尘器的帖子之后,感觉多数木有的DIY主要还是以模仿为主,似乎缺少那么点理论依据,于是我查阅了一些技术资料。

看过之后感觉在工业上要比较准确地分析和设计一个旋风分离器还是很复杂的,需要考虑风压、流速、粉料粒径、密度、粘度、桶壁光滑程度等诸多因素,这些对于我们收集木屑的用途来说过于复杂了,很多数据也是不可能掌握的,所以我本着避繁就简、简单实用的原则摘录一些资料,希望能对以后DIY旋风分离器的木友有所帮助。

工业上最常用的旋风式分离装置有两种形式:①旋风分离器:切向入口,本体为筒体+锥体型这种形式的旋风分离装置最常见,当然其入口、出口及灰斗处都有若干种变形可供选用,后面细说。

木有们DIY的旋风集尘器大多也是这个原理的,起码都是入风口在本体的切向,但DIY的集尘器本体就只是一个锥体,没有做成筒体+锥体形式的,可能是受国外那个成品旋风分离器DUST DEPUTY的影响吧。

绝大多数DIY这种造型分离器的木有都是采用花瓶作为锥体本体,比如=saga=f117whw做的这个:②旋风管:具有轴向导流叶片入口,本体为直筒型在木有DIY的集尘器中有类似这样旋风管结构的,比如xuelichina做的“大型旋风集尘器”以及岳阳楼用饮水机水桶改造的集尘器:这两位木有的集尘器虽然本体是直筒结构,但进风口还是采用与筒体切向,而不是标准旋风管那样从筒体顶盖处轴向进风。

从筒体顶盖轴向进风的好处是气流轴向对称,且因采用导流板,给进气流一定的向下的速度,使夹杂着灰尘的空气更快地向下运动,而不仅仅是靠重力。

先说说旋风式分离器的一些基本概念和原理吧。

按照第一张图所示,夹杂着尘粒的气体从进气口进入筒体后,沿筒内壁做向下的旋转运动,在这个过程中由于离心力的作用,气流内的尘粒被甩向桶壁,实现气体和固体的分离,尘粒在重力作用下沿桶壁旋转下降落入灰斗。

旋风分离器的设计

旋风分离器的设计
A:采用细而长的器身:减小器身直径可增大惯性离心力,增加器身长度可延
长气体停留时间,所以,细而长的器身有利于颗粒的离心沉降,使分离效率 提高。
B:减小上涡流的影响:含尘气体自进气管进入旋风分离器后,有一小部分气
体向顶盖流动,然后沿排气管外侧向下流动,当达到排气管下端时汇入上升 的内旋气流中,这部分气流称为上涡流。上涡流中的颗粒也随之由排气管排 出,使旋风分离器的分离效率降低。采用带有旁路分离室或采用异形进气管 的旋风分离器,可以改善上涡流的影响。
XLP型:XLP型是带有旁路分离室的旋风分离器,采用蜗壳式进气口,其上沿 较器体顶盖稍低。含尘气进入器内后即分为上、下两股旋流。“旁室”结构 能迫使被上旋流带到顶部的细微尘粒聚结并由旁室进入向下旋转的主气流而 得以捕集,对5am以上的尘粒具有较高的分离效果。根据器体及旁路分离室 形状的不同,XLP型又分为A和B两种形式,其阻力系数值可取〜。
临界粒径de的颗粒d50= J D/Ui(ps—p)]二am
d/ d50=
查询图可知,n为 四台旋风分离器并联
△p=Epui72
取△p=1460Pa,E二,允许的最大气速:Ui=(2△p/Ep)
取de=6am N=5,进气口宽度hB=Vs/ Ui= D2/8 ,
D=
D=4B B=0 0414m
入口高度h=D/2=
d50= J D/Ui(Ps-p)]
对于同一型式且尺寸比例相同的旋风分离器,无论大小,皆可通用同一条粒 级曲线。标准旋风分离器的np与d/d50的关系:
总效率no=2xinpi,Xi为进口处第i段颗粒占全部颗粒的质量分率。
②旋风分离器的压强降
压强降可表示为进口气体动能的倍数:△p=Epui2/2
E为阻力系数,对于同一型式及相同尺寸比例的旋风分离器,E为常数,标

旋风分离器设计标准

旋风分离器设计标准

旋风分离器设计标准
旋风分离器设计的标准主要包括以下几个方面:
1. 材料选择:旋风分离器通常用于固体颗粒的分离,因此应选择适用于固体颗粒的耐磨、耐腐蚀的材料。

常见的材料有不锈钢、碳钢等。

2. 设计要求:旋风分离器应满足预期的分离效率和产量要求。

设计时需要根据进料流量、粒径、粒度分布等参数确定分离器的尺寸、结构和几何形状。

3. 几何形状和结构设计:旋风分离器通常采用圆柱形或锥形结构,以便使颗粒沉积和分离。

另外,还需考虑分离器的入口和出口形式,以及进出口的位置和尺寸。

4. 气体流动设计:旋风分离器中的气体流动是实现颗粒分离的关键。

设计时需要考虑气体流速、流量和压力等参数,以确保良好的分离效果。

5. 清灰系统设计:旋风分离器在使用过程中会产生较多的颗粒沉积,需要设计合适的清灰系统,以定期清理分离器内的积灰。

6. 运行安全:旋风分离器设备需要满足相应的运行安全要求,包括防爆、防震、防尘等方面的设计。

7. 操作和维护:旋风分离器设备应设计方便操作和维护,方便人员对设备进行清理、检修和更换零部件。

总的来说,旋风分离器设计标准需要综合考虑颗粒特性、分离要求、运行条件等因素,以确保分离器具有高效、稳定、安全、可靠的性能。

旋风分离器设计

旋风分离器设计

旋风分离器:旋风分离器,是用于气固体系或者液固体系的分离的一种设备。

工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。

旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。

主要功能:旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。

机构简介:旋风分离器,是用于气固体系或者液固体系的分离的一种设备。

工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。

是工业上应用很广的一种分离设备。

工作原理:旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。

由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。

常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。

主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出粉口。

含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。

旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。

此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。

旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。

内、外旋流的旋转方向是相同的。

最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。

自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。

旋风分离器内部结构

旋风分离器内部结构

旋风分离器是一种用于分离固体颗粒与气体或液体的设备,其内部结构通常包括以下几个主要组成部分:
1.进料管道:进料管道是将含固体颗粒的气体或液体导入旋风分离器的入口。

进料管道通常位于分离器的顶部,有时会配备喷嘴或旋转装置,以使进料流能够形成旋转运动。

2.旋风体:旋风体是旋风分离器的核心组件,通常采用圆锥形或圆筒形结构。

在旋风体内部,气体或液体会形成旋转运动,从而产生离心力,引起固体颗粒的离心沉降。

3.出料管道:在旋风分离器的底部,设置有出料管道,用于排出分离后的固体颗粒。

出料管道通常具有适当的形状和尺寸,以确保固体颗粒的有效排放。

4.出气口:分离后的气体或液体通过出气口自旋风分离器的顶部排出。

出气口通常位于进料管道的上方,可避免固体颗粒随气体或液体一同排出。

5.废气排放管道:如果旋风分离器的气体中含有可排放的废气,需安装废气排放管道,将废气排放到外部环境中。

除上述组成部分外,旋风分离器还可能包括进气调节阀、压力表、液位计等附属设备,以实现对气体或液体的精确控制和监测。

需要注意的是,具体的旋风分离器内部结构和设计会根据不同的应用场景和需求而有所差异。

在实际操作中,应根据具体工艺要求和相关规范,进行合理设计和选择合适的材料,以确保旋风分离器的高效运行和分离效果。

旋风分离器的设计[1]1

旋风分离器的设计[1]1

旋风分离器的设计姓名:顾一苇班级:食工0801学号:2008309203499指导老师:刘茹设计成绩:华中农业大学食品科学与技术学院食品科学与工程专业2011年1月14日目录第一章、设计任务要求与设计条件 (3)第二章、旋风分离器的结构和操作 (4)第三章、旋风分离器的性能参数 (6)第四章、影响旋风分离器性能的因素 (8)第五章、最优类型的计算 (11)第六章、旋风分离器尺寸说明 (19)附录1、参考文献 (20)任务要求1.除尘器外筒体直径、进口风速及阻力的计算2.旋风分离器的选型3.旋风分离器设计说明书的编写4.旋风分离器三视图的绘制5.时间安排:2周6.提交材料含纸质版和电子版设计条件风量:900m3/h ;允许压强降:1460Pa旋风分离器类型:标准型(XLT型、XLP型、扩散式)含尘气体的参数:气体密度:1.1 kg/m3粘度:1.6×10-5Pa·s颗粒密度:1200 kg/m3颗粒直径:6μm旋风分离器的结构和操作原理:含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。

颗粒的离心力较大,被甩向外层,气流在内层。

气固得以分离。

在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。

在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出;固相沿内壁落入灰斗。

旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。

旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。

一般用于除去直径5um以上的尘粒,也可分离雾沫。

对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。

其最大缺点是阻力大、易磨损。

外圆筒内圆筒锥形筒切向入口关风器(防止空气进入)含尘气体固相净化气体外螺旋内螺旋旋风分离器的性能参数在满足气体处理量的前提下,评价旋风分离器性能的主要指标是尘粒的分离性能和气体经过旋风分离器的压强降。

旋风分离器的设计

旋风分离器的设计

旋风分离器的设计姓名:顾一苇班级:食工0801学号:29指导老师:刘茹设计成绩:华中农业大学食品科学与技术学院食品科学与工程专业2011年1月14日目录第一章、设计任务要求与设计条件 (3)第二章、旋风分离器的结构和操作 (4)第三章、旋风分离器的性能参数 (6)第四章、影响旋风分离器性能的因素 (8)第五章、最优类型的计算 (11)第六章、旋风分离器尺寸说明 (19)附录1、参考文献 (20)任务要求1.除尘器外筒体直径、进口风速及阻力的计算2.旋风分离器的选型3.旋风分离器设计说明书的编写4.旋风分离器三视图的绘制5.时间安排:2周6.提交材料含纸质版和电子版设计条件风量:900m3/h ;允许压强降:1460Pa旋风分离器类型:标准型(XLT型、XLP型、扩散式)含尘气体的参数:➢气体密度:1.1 kg/m3➢粘度:1.6×10-5Pa·s➢颗粒密度:1200 kg/m3➢颗粒直径:6μm旋风分离器的结构和操作原理:➢含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。

➢颗粒的离心力较大,被甩向外层,气流在内层。

气固得以分离。

➢在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。

➢在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出;➢固相沿内壁落入灰斗。

旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。

旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。

一般用于除去直径5um以上的尘粒,也可分离雾沫。

对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。

其最大缺点是阻力大、易磨损。

➢旋风分离器的性能参数在满足气体处理量的前提下,评价旋风分离器性能的主要指标是尘粒的分离性能和气体经过旋风分离器的压强降。

①分离性能分离性能的好坏常用理论上可以完全分离下来的最小颗粒尺寸:临界粒径dc及分离效率η表示。

旋风分离器结构及参数标定方案设计

旋风分离器结构及参数标定方案设计
上海第二医科大学瑞金医院放射科
AS的MRI表现
骶髂关节炎的MRI表现 脊柱的MRI表现 外周关节的MRI表现
上海第二医科大学瑞金医院放射科
骶髂关节炎的MRI表现
骨髓水肿
脂肪沉积
骨质破坏
骨性强直
上海第二医科大学瑞金医院放射科
骨髓水肿
?AS早期关节活动性病变的 重要征象
?关节旁骨髓炎最直接的征 象
?判断疗效最敏感的指标
上海第二医科大学瑞金医院放射科
MR显I 示 强直性脊柱 炎早期的骶 髂关节改变
上海第二医科大学瑞金医院放射科
脂肪沉积
?病变趋于稳定过程 ?对短期治疗反应不敏感
上海第二医科大学瑞金医院放射科
骨质破坏
?出现在疾病中后期 ?血管翳侵蚀破坏所致
?对治疗不敏感
上海第二医科大学瑞金医院放射科
骨性强直
?出现在疾病晚期 ?致畸
上海第二医科大学瑞金医院放射科
脊柱的MRI表现
椎体终板炎 椎间盘炎 脊柱滑膜关节炎 椎旁韧带炎 韧带骨化和骨性强直
上海第二医科大学瑞金医院放射科
椎体终板炎
?又称Romanus 病灶 ?发生在椎体前后缘的上下边 角 ?急性期:以骨髓水肿为主的 急性炎性反应 ?慢性期:表现为炎症后期 肪沉积
上海第二医科大学瑞金医院放射科
椎间盘炎
?即Andersson 病灶 ?表现为“椎间盘 -椎体单位” 信号异常 ?急性期:以骨髓水肿为主的 急性炎性反应 ?慢性期:表现为炎症后期脂 肪沉积
上海第二医科大学瑞金医院放射科
强直性脊柱炎的 MRI诊断价值
四川省骨科医院放射科 吴俊华
上海第二医科大学瑞金医院放射科
强直性脊柱炎 (ankylosing spondylitis , AS )

旋风分离器设计

旋风分离器设计

准备旋风分离器的设计规范4.旋风分离器的三个视图的图纸5.时间安排:2周6.提交材料包括纸质和电子版本。

设计条件:风量:900 m3 / h;允许压降:1460 Pa。

旋风分离器类型:标准型(XLT型,XLP型,扩散型):8.3气体密度:1.1 kg / m3×8.3粘度:1.6×10-5pa·s3颗粒密度:1200 kg / m383粒径:6μM。

旋风分离器的结构和工作原理:﹣8 ﹣3烟气从圆筒的上矩形切线入口进入,并沿圆筒的内壁旋转。

8.3粒子的离心力更大,被抛到外层,气流进入内层。

气体和固体可以分离。

8.3在圆锥形部分中,旋转半径减小,而切向速度增加,并且气流和颗粒以向下螺旋运动运动。

在锥体的底部附近,气流转向向上旋转,最后从上出口管排出。

固相8:3沿着内壁落入灰斗。

旋风分离器不适用于处理高粘度,高水分含量和高腐蚀性的粉尘。

气体量的波动对除尘效果和设备阻力有很大影响。

旋风分离器具有结构简单,成本低,没有活动部件,操作范围广,不受温度和压力的限制以及分离效率高的优点。

它通常用于去除直径大于5um 的灰尘颗粒,并且还可以分离雾气。

对于直径小于5um的粉尘,旋风分离器的效率不高,因此应使用袋式除尘器或湿法。

它的最大缺点是阻力大,不易磨损。

在满足气体处理能力的前提下,外部螺旋内螺旋内旋风分离器的性能参数,以防止空气进入载有粉尘的气体固相净化气体,评估旋风分离器性能的主要指标是粉尘颗粒的分离性能和除尘性能。

通过旋风分离器的气体的压降。

①分离性能分离性能通常用理论上可以完全分离的最小粒径表示:临界粒径DC和分离效率η。

A:临界粒径DC:是指可以通过旋风分离器100%去除的最小粒径。

假定颗粒与气流之间的相对运动是层流;分离器中颗粒的切线速度是恒定的,等于进口处的气体速度U I。

颗粒沉降的最大距离为入口的宽度b,得出临界粒径DC的估算公式:DC =(9μB /πneρSUI)1/2旋风分离器入口管的宽度b ,标准类型B = D / 4;NE:气流的有效转数,一般为0.5-3,标准型为3-5,通常取为5;U I进气速度(M / s);μ:气体粘度;ρs:固相D C的密度较小,分离效率较高。

旋风分离器的结构和设计原理

旋风分离器的结构和设计原理

旋风分离器的结构和设计原理
旋风分离器是一种常见的粉尘分离设备,它主要通过旋转气流来分离固体颗粒与气体的混合物。

下面我们将介绍旋风分离器的结构和设计原理。

1. 结构:
旋风分离器主要由以下几个组成部分构成:
- 进料管:用于将固体颗粒与气体混合物引入分离器。

- 锥形管道:连接进料管与分离室,它的作用是改变气流的流
速和流向,使之形成旋转气流。

- 分离室:在锥形管道的下方,形成一个大的圆筒状空间,用
于分离固体颗粒与气体。

- 出料管:位于分离室底部,用于排出已分离的固体颗粒。

- 排气管:位于分离室的顶部,用于排出经过分离后的气体。

2. 设计原理:
旋风分离器的工作原理基于气流中固体颗粒与气体的质量差异以及旋转气流的作用。

具体分为以下几个步骤:
- 混合物进入旋风分离器后,沿着进料管进入锥形管道。

- 锥形管道内的气流被迫缩窄,并且因为流体的连续性原理,
流速增大。

随着气流径向加速,固体颗粒会受到离心力的作用,向外运动。

- 在锥形管道的底部,气流经过一个小孔进入分离室,形成一
个旋转的气流场。

由于离心力的作用,固体颗粒会靠近分离室的壁面,并逐渐下沉。

- 固体颗粒最终沉积在分离室的底部,通过出料管排出。

- 分离后的气体则沿着分离室顶部的排气管被排出旋风分离器。

通过这样的分离过程,旋风分离器可以实现对固体颗粒与气体的分离。

设计中,分离室的尺寸和形状以及气流的速度和旋转方式等因素会影响分离效果。

同时,不同的应用场景也需要根据具体要求进行设计和优化。

旋风分离器设计标准

旋风分离器设计标准

旋风分离器设计标准
旋风分离器是一种常用的气体固体分离设备,其设计标准通常包
括以下几个方面:
1. 设计流量:旋风分离器的设计流量应根据实际工艺需求合理
确定,通常以单位时间内通过旋风分离器的气体体积为基准。

2. 分离效率:分离效率是评价旋风分离器性能的重要指标,其
要求取决于固体粒径、分离效果等因素。

一般要求分离效率能够达到90%以上。

3. 净气损失:净气损失是指通过旋风分离器后所需继续处理的
气体量,通常要求尽量降低净气损失,以提高设备效率。

4. 设备尺寸和布置:旋风分离器的尺寸和布置应根据实际工艺
条件和现场空间限制进行设计,同时要考虑维护保养和操作的便利性。

5. 材料选择:旋风分离器经常接触各种气体和固体颗粒,因此
材料选择要考虑其耐腐蚀性、耐磨性等特性,通常选择不锈钢、玻璃
钢等耐腐蚀材料。

6. 安全措施:旋风分离器在设计过程中需要考虑安全性,采取
相应的安全措施,包括设置冲击波消声器、爆炸防护装置等,以防止
意外发生。

7. 安装维护:旋风分离器的设计还应考虑其安装和维护的便利性,方便操作人员进行日常维护和检修。

旋风分离器的设计标准应综合考虑流量、分离效率、尺寸布置、
材料选择、安全措施和安装维护等因素,以满足实际工艺需求并确保
设备的安全可靠运行。

旋风分离器结构及参数标定方案设计

旋风分离器结构及参数标定方案设计

(3) B’s/D 1.000 0.330 0.500 0.300 0.558 6.000 3.500 0.375
(4) L’s/D 1.000 0.583 0.375 0.200 0.860 6.000 3.500 0.688
❖ 3 计算旋风分离器质量 ❖ (1) 主体质量,计算各部分的用量,根据不同的
五 图纸要求
❖ 一号图纸1张 ❖ 完整表现旋风筒的结构及尺寸 ❖ 完整表现参数测定系统流程 ❖ 图面安排如下
10
图线框
标题栏
25
594Χ841
标题栏
济南大学 材料科学与工程学院
16
指导教师
项目
8
设计
班级
名称
8
成绩
比例
日期
图号
8
20
20
20
20 20
20
20 20
主要参考书
1 水泥厂工艺设计手册(下) ❖ 2 机械设计手册 ❖ 3 机械制图 ❖ 4 化学工程手册(5)
x T
fcx fix
7确定旋风筒的技术参数
❖ (1)处理风量 ❖ 可用列表的形式列出不同入口风速对应不同
的处理风量。 ❖ (2)根据经验公式计算和实验结果比较,得
出所设计的旋风筒的阻力系数 ❖ (3)部分分离效率。
四 设计说明书内容
❖ (1)封面 (教材科领设计专用稿纸) ❖ (2)设计任务书及设计要求 ❖ (3)正文:前言, 设计计算, 后记 ❖ (4)主要参考资料
❖ 二 设计要求 ❖ 1 每个同学选取一个处理风量, ❖ 进行设计计算。 ❖ 2确定旋风分离器的结构形式. ❖ 3 计算分离器各部分结构尺寸。 ❖ 4 计算分离器材料用量。 ❖ 5 计算分离器阻力系数 ❖ 6 计算分离器的部分分离效率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x T f ix
7确定旋风筒的技术参数
(1)处理风量
可用列表的形式列出不同入口风速对应不同
的处理风量。 (2)根据经验公式计算和实验结果比较,得 出所设计的旋风筒的阻力系数 (3)部分分离效率。
四 设计说明书内容
(1)封面
(教材科领设计专用稿纸) (2)设计任务书及设计要求 (3)正文:前言, 设计计算, 后记 (4)主要参考资料
7 设计一个测定旋风分离器参数的系统 (1)该系统的流程简图 (2)该系统中主要设备(风机、管道、喂料设备) (3)测点位置 (4)测试仪器(名称、测量原理) (5)测定方法 8 绘图 (1)旋风分离器结构图 (2)参数测定系统流程简图(在说明书中)

三 设计步骤
(2)分离效率测定
称取质量为M1的物料.均匀喂入设计的系统
中,形成一个气固两相流。 经一定时间后,停机。从旋风分离器的集灰 斗中取出从两相流中分离出的部分物料,并 称量,为M2。 总分离效率用下式计算。 ηT=M2/M1
分别对喂入物料和收下物料做粒度分析,
可用下式求得部分分离效率.
2 p
n 1 1 0.67 D
0.14
T 283
0.3
6 参数标定及数据处理
(1)压力损失
测定仪器:U型管或微压计,温度计.气压表. 测定方法:改变系统风量,即改变入口风速,
测得压力损失,得到Vi~ΔPi,用下公式计算 阻力系数
2p 2 f Vi
其它事项
绘图仪器及图板: 以班级为单位到学校借用 2 图纸:个人购买 3 设计说明书:到教材科领用 4 时间安排:两周 5 成绩评定
1
五 图纸要求
一号图纸1张
完整表现旋风筒的结构及尺寸 完整表现参数测定系统流程 图面安排如下
10
图线框
标题栏
25
594Χ841
标题栏
济南大学 材料科学与工程学院
指导教师
16 8
设计 成绩
20 20
班级
项目 名称
比例
20 20
日期
20 20
图号
20 20
8 8
主要参考书
1 水泥厂工艺设计手册(下) 2 机械设计手册 3 机械制图 4 化学工程手册(5)
质量分数 (%) 9 . 0 0 38.50 1 7 . 8 0 6 . 0 0 2 9 . 0 0

设计要求 1 每个同学选取一个处理风量, 进行设计计算。 2确定旋风分离器的结构形式. 3 计算分离器各部分结构尺寸。 4 计算分离器材料用量。 5 计算分离器阻力系数 6 计算分离器的部分分离效率
(4) L’s/D 1.000 0.583 0.375 0.200 0.860 6.000 3.500 0.688
计算旋风分离器质量 (1) 主体质量,计算各部分的用量,根据不同的 直径选取不同厚度的钢板(可在2---5之间选 取).可查阅有关机械设计手册. (2) 支承装置质量计算 (3) 集灰斗质量计算 (4) 总质量计算 4 计算旋风分离器的阻力系数
Dc
旋风筒几何尺寸比例关系
名称
D De a b s H h Dc
(1) S’s/D 1.000 0.500 0.500 0.200 0.500 4.000 1.500 0.375
(2) Z’s/D 1.000 0.540 0.540 0.230 0.675 4.000 1.490 0.340
(3) B’s/D 1.000 0.330 0.500 0.300 0.558 6.000 3.500 0.375
1
根据处理风量计算旋风分离器的规格
Q Fi Vi
其中:Fi为旋风分离器入口面积。 Fi=ab=c1c2D2, c1c2为常数.
Q 为处理风量
Vi 为入口风速, 可在14-22m/s之间选取.
2结构尺寸的计算,可根据不同的形式选取 各部分尺寸代号如图,比例关系见下表
De b a
h H
s D
旋风分离器设计
一 设计条件 1 处理风量 2000、2600、3500、4000、5000米3/小时 2 含尘气体性质 温度:小于80℃ 含尘浓度:20--60g/m3
粉尘密度:2100kg/m3
粉尘粒度分布
粒级(μ) < 3 . 0 3.~12 1 2 ~ 2 6 2 6 ~ 3 9 > 3 9
3
计算公式
(1) lapple
A 16 2 De
2
(2) cassal
ab 11.3 D 2 3.33 e
2
5 分离效率计算
(1 n)Qd p (2H1 H 2 )r2 x 1 exp[ ] 2 1 n 1 n n 2 2 18a (r2 r1 )r2 (r2 r1 )
相关文档
最新文档