新高考物理 100考点千题精练 专题9-12 组合场问题

合集下载

新高考物理考试易错题易错点21带点粒子在磁场、组合场和叠加场中的运动

新高考物理考试易错题易错点21带点粒子在磁场、组合场和叠加场中的运动

易错点21 带点粒子在磁场、组合场和叠加场中的运动易错总结一、带电粒子在匀强磁场中的运动1.若v∥B,带电粒子以速度v做匀速直线运动,其所受洛伦兹力F=0.2.若v⊥B,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小.(2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力.二、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.解题方法一、带电粒子在匀强磁场中的圆周运动1.圆心的确定圆心位置的确定通常有以下两种基本方法:(1)已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P为入射点,M为出射点).(2)已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连线入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P为入射点,M为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t=α360°T(或t=α2πT).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角.(2)当v一定时,粒子在匀强磁场中运动的时间t=lv,l为带电粒子通过的弧长.二、带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要正确进行受力分析,确定带电粒子的运动状态.(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动.(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键.特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.3.处理带电粒子在叠加场中的运动的基本思路(1)弄清叠加场的组成.(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)画出粒子运动轨迹,灵活选择不同的运动规律.○1当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.○2当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解.○3当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2020·全国高三课时练习)用洛伦兹力演示仪可以观察电子在磁场中的运动径迹.图(甲)是洛伦兹力演示仪的实物图,图(乙)是结构示意图.励磁线圈通电后可以产生垂直纸面的匀强磁场,励磁线圈中的电流越大,产生的磁场越强.图(乙)中电子经电子枪中的加速电场加速后水平向左垂直磁感线方向射入磁场.下列关于实验现象和分析正确的是()A.仅增大励磁线圈中的电流,电子束径迹的半径变小B.仅升高电子枪加速电场的电压,电子束径迹的半径变小C.仅升高电子枪加速电场的电压,电子做圆周运动的周期将变小D.要使电子形成如图(乙)中的运动径迹,励磁线圈应通以逆时针方向的电流2.(2020·墨江哈尼族自治县民族学校)如图所示,两个带电粒子M和N,以相同的速度经小孔S垂直进入同一匀强磁场,运行的半圆轨迹如图两种虚线所示,下列表述正确的是()A.M带负电,N带正电B.M的质量大于N的质量C.M的带电量小于N的带电量D.M的运行时间不可能等于N的运行时间3.(2020·全国高三专题练习)如图所示,在足够长的水平线上方有方向垂直纸面向里的范围足够大的匀强磁场区域,一带负电的粒子P 从a 点沿θ =45°方向以初速度v 垂直磁场方向射入磁场中,经时间t 从b 点射出磁场.不计粒子重力,下列说法不正确的是( )A.粒子射出磁场时与水平线的夹角为θB.若P 的初速度增大为2v,粒子射出磁场时与水平线的夹角为2θC.若P的初速度增大为2v,则射出磁场所需时间仍为tD.若磁场方向垂直纸面向外,粒子P 还是从a 点沿θ=45°方向以初速度v 垂直磁场方向射入磁场中,则射出磁场所需时间为3t4.(2021·辽宁高三专题练习)如图所示,正三角形abc区域内存在着方向垂直于纸面向外的匀强磁场,三角形的边长为4L.一个带电粒子(重力不计)从ab边的中点O以垂直于ab边的速度v进入磁场,粒子恰好从bc边的中点d飞出磁场,若将该粒子进入磁场的速度方向从图示位置逆时针旋转60°,同时改变速度的大小,发现粒子仍可以从d点飞出磁场.下列说法不正确...的是()vA.第二次粒子的速度大小应为2B.第二次粒子在磁场中运动时间是第一次的2倍C.两次粒子从d点飞出磁场时速度方向夹角为60D.粒子两次做圆周运动的圆心间距为3L5.(2020·全国高三专题练习)如图所示,带电小球沿竖直的光滑绝缘圆弧形轨道内侧来回往复运动,匀强磁场方向水平,它向左或向右运动通过最低点时,下列说法错误的是( )A.加速度大小相等B.速度大小相等C.所受洛伦兹力大小相等D.轨道对它的支持力大小相等6.(2019·浙江高三月考)带电粒子垂直进入匀强电场或匀强磁场中时粒子将发生偏转,称这种电场为偏转电场,这种磁场为偏转磁场.下列说法错误的是(重力不计)()A.欲把速度不同的同种带电粒子分开,既可采用偏转电场,也可采用偏转磁场B.欲把动能相同的质子和α粒子分开,只能采用偏转电场C.欲把由静止经同一电场加速的质子和α粒子分开,偏转电场和偏转磁场均可采用D.欲把初速度相同而比荷不同的带电粒子分开,偏转电场和偏转磁场均可采用7.(2020·全国)如图所示是磁流体发电机示意图,两块面积均为S的相同平行金属板M、N相距为L,板间匀强磁场的磁感应强度为B,等离子体(即高温下的电离气体,含有大量的正、负离子,且整体显中性)以速度v不断射入两平行金属极板间,两极板间存在着如图所示的匀强磁场。

2.11物体静态平衡(学生版) 2025年高考物理100考点千题精练(新高考通用)

2.11物体静态平衡(学生版) 2025年高考物理100考点千题精练(新高考通用)

2025高考复习100考点最新模拟题千题精练二、相互作用专题2.11 物体静态平衡1. (2024广东广州天河区二模)灯笼为春节增添了不少喜庆的气氛。

如图所示,重力为G 的灯笼用细绳悬挂,在水平风力F 的吹动下偏离竖直方向一定的角度,并保持静止,此时细绳对灯笼的拉力为T F ,则( )A. T F G=B. T F F=C. F 与T F 的合力与G 相同D. 若F 增大,灯笼重新平衡时,则T F 也增大。

A .F =G 4B .3. (2024广东佛山一模)“人体旗帜”指的是用手抓着支撑物,使身体与地面保持平行的高难度动作。

某同学重为G ,完成此动作时其受力情况如图所示,已知两手受力1F 、2F 方向与竖直方向夹角均为60°,则其中1F 大小为( )A. 12GB. C. G D. 2G4. (2024福建漳州第二次质检) 如图,斜面体M 放置在水平地面上,一物块m 恰好静止在斜面体上。

现对物块施加一水平向右的恒力F ,物块与斜面体相对地面仍处于静止状态,则( )A. 斜面体对物块摩擦力一定增大B. 斜面体对物块的支持力可能不变C. 地面对斜面体的支持力保持不变D. 地面对斜面体的摩擦力可能减小5. (2024深圳龙岗期末)如图(a ),在倾角为q 的固定斜面上,有一质量为m 的拖把头被水平力F 推着沿斜面向上做匀速直线运动,轻杆质量不计,拖把头与斜面的动摩擦因数为μ。

重力加速度取为g 。

有位同学对此作了受力分析如图(b ),并列写下列关系式,其中正确的是( )A. f N F F μ=B. N cos F mg q=的C. f sin F F mg q =+D. =6. (2024山西晋城期末)如图所示,轻弹簧b 一端固定在墙上,另一端拴一个质量为3m 的小球,小球用固定在墙上的水平轻弹簧a 支撑,静止时轻弹簧b 与竖直方向的夹角为53°,已知重力加速度为g ,cos53°=0.6,sin53°=0.8。

新高考,高中物理 复习试卷讲义 专题强化12 带电粒子在叠加场和组合场中的运动

新高考,高中物理 复习试卷讲义 专题强化12 带电粒子在叠加场和组合场中的运动

专题强化十二带电粒子在叠加场和组合场中的运动【专题解读】1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。

2.学习本专题,提高同学们的审题能力、推理能力和规范表达能力。

题型一带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电场、磁场交替出现。

2.带电粒子在组合场中运动的分析思路第1步:粒子按照时间顺序进入不同的区域可分成几个不同的阶段。

第2步:受力分析和运动分析,主要涉及两种典型运动,如图所示。

第3步:用规律角度1磁场与磁场的组合磁场与磁场的组合问题实质就是两个有界磁场中的圆周运动问题,带电粒子在两个磁场中的速度大小相同,但轨迹半径和运动周期往往不同。

解题时要充分利用两段圆弧轨迹的衔接点与两圆心共线的特点,进一步寻找边角关系。

【例1】(2021·广东韶关模拟)如图1所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于平面ADEC向外的匀强磁场,上部分区域的磁感应强度大小为B 0,OF 为上、下磁场的水平分界线。

质量为m 、带电荷量为+q 的粒子从AC 边界上与O 点相距为a 的P 点垂直于AC 边界射入上方磁场区域,经OF 上的Q 点第一次进入下方磁场区域,Q 点与O 点的距离为3a 。

不考虑粒子重力。

图1(1)求粒子射入时的速度大小;(2)要使粒子不从AC 边界飞出,求下方磁场区域的磁感应强度大小B 1应满足的条件;(3)若下方区域的磁感应强度B =3B 0,粒子最终垂直DE 边界飞出,求边界DE 与AC 间距离的可能值。

答案 (1)5aqB 0m (2)B 1≥8B 03 (3)4na (n =1,2,3,…)解析 (1)粒子在OF 上方的运动轨迹如图所示,设粒子做圆周运动的半径为R ,由几何关系可知R 2-(R -a )2=(3a )2,则R =5a由牛顿第二定律可知q v B 0=m v 2R解得v =5aqB 0m 。

带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。

2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。

针对性的专题训练,可以提高同学们解决难题、压轴题的信心。

3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。

物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。

带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。

解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。

其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。

涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。

问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。

二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。

9.高中物理带电粒子在叠加场中的运动专题精练含答案

9.高中物理带电粒子在叠加场中的运动专题精练含答案

课时作业32带电粒子在叠加场中的运动时间:45分钟1.某空间存在匀强磁场和匀强电场.一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动.下列因素与完成上述两类运动无关的是(C) A.磁场和电场的方向B.磁场和电场的强弱C.粒子的电性和电量D.粒子入射时的速度解析:由于带电粒子做匀速直线运动,对带电粒子进行受力分析知,电场力与磁场力平衡,qE=q v B,即v=EB,由此式可知,粒子入射时的速度、磁场和电场的强弱及方向有确定的关系,故A、B、D 错误,C正确.2.如图所示是实验室里用来测量磁场力的一种仪器——电流天平.某同学在实验室里用电流天平测算通电螺线管中的磁感应强度,若他测得CD段导线长度为4×10-2 m,天平(等臂)平衡时钩码重力为4×10-5 N,通过导线的电流I=0.5 A.由此,测得通电螺线管中的磁感应强度B为(A)A.2.0×10-3 T,方向水平向右B.5.0×10-3 T,方向水平向右C.2.0×10-3 T,方向水平向左D.5.0×10-3 T,方向水平向左解析:天平(等臂)平衡时,CD段导线所受的安培力大小与钩码重力大小相等,即F=mg,由F=BIL得B=FIL=mgIL=2.0×10-3 T;根据安培定则可以知道磁感应强度的方向水平向右,所以A正确,B、C、D错误.3.速度相同的一束粒子(不计重力)由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是( C )A .该束粒子带负电B .速度选择器的P 1极板带负电C .能通过狭缝S 0的粒子的速度等于E B 1D .粒子打在胶片上的位置越靠近狭缝S 0,则粒子的比荷越小解析:根据该束粒子进入匀强磁场B 2时向下偏转,由左手定则判断出该束粒子带正电,选项A 错误;粒子在速度选择器中做匀速直线运动,受到电场力和洛伦兹力作用,由左手定则知洛伦兹力方向竖直向上,则电场力方向竖直向下,因粒子带正电,故电场强度方向向下,速度选择器的P 1极板带正电,选项B 错误;粒子能通过狭缝,电场力与洛伦兹力平衡,有q v B 1=qE ,得v =E B 1,选项C 正确;粒子进入匀强磁场B 2中受到洛伦兹力做匀速圆周运动,根据洛伦兹力提供向心力,由牛顿第二定律有q v B 2=m v 2r ,得r =m v B 2q,可见v 、B 2一定时,半径r 越小,则q m 越大,选项D 错误.4.(多选)磁流体发电是一项新兴技术.如图所示,平行金属板之间有一个很强的磁场,将一束含有大量正、负带电粒子的等离子体,沿图中所示方向喷入磁场.图中虚线框部分相当于发电机,把两个极板与用电器相连,则( BD )A .用电器中的电流方向从B 到AB .用电器中的电流方向从A 到BC .若只减小磁感应强度,发电机的电动势增大D .若只增大喷入粒子的速度,发电机的电动势增大解析:首先对等离子体进行动态分析:开始时由左手定则判断正离子所受洛伦兹力方向向上,负离子所受洛伦兹力方向向下,则正离子向上板聚集,负离子向下板聚集,两板间产生了电势差,即金属板变为一电源,且上板为正极,下板为负极,所以通过用电器的电流方向从A 到B ,故B 正确,A 错误;此后的正离子除受到向上的洛伦兹力F 洛外,还受到向下的电场力F ,最终二力达到平衡,即最终等离子体将匀速通过磁场区域,由q v B =q E d ,解得E =Bd v ,所以电动势E 与喷入粒子的速度大小v 及磁感应强度大小B 成正比,故D 正确,C 错误.5.(多选)在一个很小的矩形半导体薄片上,制作四个电极E 、F 、M 、N ,做成了一个霍尔元件.在E 、F 间通入恒定电流I ,同时外加与薄片垂直的磁场B ,M 、N 间的电压为U H .已知半导体薄片中的载流子为正电荷,电流与磁场的方向如图所示,下列说法正确的有( AB )A.N端电势高于M端电势B.磁感应强度越大,MN间电势差越大C.将磁场方向变为与薄片的上、下表面平行,U H不变D.将磁场和电流分别反向,N端电势低于M端电势解析:根据左手定则可知载流子所受洛伦兹力的方向指向N端,载流子向N端偏转,则N端电势高,故A正确;设M、N间的距离为d,薄板的厚度为h,则U=Ed,Eq=q v B,则I=neS v=nedh v,代入解得U=BIneh,故B正确;将磁场方向变为与薄板的上、下表面平行,载流子不偏转,所以U H发生变化,C错误;将磁场和电流分别反向,N端的电势仍然高于M端电势,D错误.6.如图所示,两虚线之间的空间内存在着正交的匀强电场和匀强磁场,电场强度为E、方向与水平线成60°角,磁场的方向垂直纸面向里.一个带正电小球从电磁复合场上方高度为h处自由落下,并沿直线通过电磁复合场,重力加速度为g.求:(1)带电小球刚进入复合场时的速度;(2)磁场的磁感应强度及带电小球的比荷.解析:(1)小球自由下落h的过程中机械能守恒,有mgh=12m v2,解得v=2gh.(2)小球在复合场中运动时受力情况如图所示,水平方向:有F洛=F电cos60°,即q v B=Eq cos60°,得B=E22gh;竖直方向,有Eq sin60°=mg,解得qm=23g3E.答案:(1)2gh(2)E22gh 23g 3E7.(2019·湖南郴州一模)如图所示,甲是不带电的绝缘物块,乙是带正电的物块,甲、乙叠放在一起,置于粗糙的绝缘水平地面上,地面上方有水平方向的匀强磁场.现加一个水平向左的匀强电场,发现甲、乙无相对滑动并一同水平向左加速运动,在加速运动阶段(B)A.甲、乙两物块间的摩擦力不变B.甲、乙两物块做加速度减小的加速运动C.乙物块与地面之间的摩擦力不断减小D.甲、乙两物块可能做匀加速直线运动解析:以甲、乙整体为研究对象,分析受力如图甲所示,随着速度的增大,F洛增大,F N增大,则乙物块与地面之间的摩擦力f不断增大,故C错误;由于f增大,F电一定,根据牛顿第二定律得,加速度a减小,甲、乙两物块做加速度不断减小的加速运动,最后一起匀速运动,故B正确,D错误;对甲进行受力分析,如图乙所示,有F电-f′=m甲a,a减小,则f′增大,即甲、乙两物块间的摩擦力变大,故A错误.8.如图所示,两极板间存在互相垂直的匀强电场和匀强磁场,不计重力的氘核、氚核和氦核初速度为零,经相同的电压加速后,从两极板中间垂直射入电磁场区域,且氘核沿直线射出.不考虑粒子间的相互作用,则射出时(D)A .偏向正极板的是氚核B .偏向正极板的是氦核C .射入电磁场区域时,氚核的动能最大D .射入电磁场区域时,氦核的动量最大解析:氘核在复合场中沿直线通过,故有qE =q v B ,所以v =E B ;在加速电场中qU =12m v 2,v =2qU m ,氚核的比荷比氘核的小,进入磁场的速度比氘核小,洛伦兹力小于电场力,氚核向负极板偏转,选项A 错误;氦核的比荷等于氘核的,氦核进入复合场的速度与氘核一样,所以不发生偏转,选项B 错误;射入复合场区域时,带电粒子的动能等于qU ,氦核的电荷量最大,所以动能最大,选项C 错误;带电粒子的动量p =m v =2mqU ,氦核的电荷量和质量的乘积最大,动量最大,选项D 正确.9.(2019·福建泉州检测)如图所示,两块相同的金属板MN 、PQ 平行倾斜放置,与水平面的夹角为45°,两金属板间的电势差为U ,PQ 板电势高于MN 板,且MN 、PQ 之间分布有方向与纸面垂直的匀强磁场.一质量为m 、带电荷量为q 的小球从PQ 板的P 端以速度v 0竖直向上射入,恰好沿直线从MN 板的N 端射出,重力加速度为g .求:(1)磁感应强度的大小和方向;(2)小球在金属板之间的运动时间.解析:(1)小球在金属板之间做匀速直线运动,受重力G、电场力F电和洛伦兹力f,F电的方向与金属板垂直,由左手定则可知f的方向沿水平方向,三力合力为零,结合平衡条件可知小球带正电,金属板MN、PQ之间的磁场方向垂直纸面向外,且有q v0B=mg tan45°①得B=mg q v0②(2)解法1:设两金属板之间的距离为d,则板间电场强度E=U d③又qE=2mg④h=2d⑤小球在金属板之间的运动时间t=hv0⑥解得t=qU mg v0⑦解法2:由于f=q v0B不做功,W G=-mgh,W电=qU,由动能定理得qU-mgh=0h=v0t得t=qUmg v0答案:(1)mgq v0垂直纸面向外(2)qUmg v010.(2019·河南濮阳二模)如图所示,在xOy坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的电场强度大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m、电荷量为q的粒子在第二象限内的P(-L,L)点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x轴上的Q(L,0)点进入第一象限,重力加速度为g.求:(1)粒子从P点运动到坐标原点的时间;(2)匀强磁场的磁感应强度的大小和方向.解析:(1)粒子在第二象限内做直线运动,因此电场力和重力的合力方向沿PO方向,则粒子带正电.mg=qE1=qE2,2mg=ma;2L=12at2,解得t=2Lg(2)设粒子从O 点进入第四象限的速度大小为v ,由动能定理可得mgL +qEL =12m v 2,求得v =2gL ,方向与x 轴正方向成45°,由于粒子在第四象限内受到电场力与重力等大反向,因此粒子在洛伦兹力作用下做匀速圆周运动,由于粒子做匀速圆周运动后从x 轴上的Q (L,0)点进入第一象限,根据左手定则可以判断,磁场方向垂直于纸面向里.粒子做圆周运动的轨迹如图,由几何关系可知粒子做匀速圆周运动的轨迹半径为R =22L 由牛顿第二定律可得Bq v =m v 2R ,解得B =2m 2gL qL答案:(1)2L g (2)2m 2gL qL ,方向垂直纸面向里。

高考物理100考点最新模拟题千题精练专题3.21组合场问题(基础篇)(电磁部分)

高考物理100考点最新模拟题千题精练专题3.21组合场问题(基础篇)(电磁部分)

专题3.21 组合场问题(基础篇)一.选择题1.(2019黑龙江大庆三模)研究表明,蜜蜂是依靠蜂房、采蜜地点和太阳三个点来定位的,蜜蜂飞行时就是根据这三个位置关系呈8字型运动来告诉同伴蜜源的方位.某兴趣小组用带电粒子在如图所示的电场和磁场中模拟蜜蜂的8字形运动,即在y >0的空间中和y <0的空间内同时存在着大小相等,方向相反的匀强电场,上、下电场以x 轴为分界线,在y 轴左侧和图中竖直虚线MN 右侧均无电场,但有方向垂直纸面向里、和向外的匀强磁场,MN 与y 轴的距离为2d .一重力不计的负电荷从y 轴上的P (0,d )点以沿x 轴正方向的初速度v 0开始运动,经过一段时间后,电子又以相同的速度回到P 点,则下列说法正确的是( )A. 电场与磁场的比值为v 0.B. 电场与磁场的比值为2v 0.C. 带电粒子运动一个周期的时间为02d v +02d v π D. 带电粒子运动一个周期的时间为04d v +02d v π 【参考答案】BD【名师解析】粒子在电场中做类似平抛运动,根据类似平抛运动的分运动公式,有:d=v 0t 1,d=,粒子在磁场中做匀速圆周运动,有:R=结合几何关系,有:R=d ,联立解得:E/B =2v 0.选项A 错误,B 正确;带电粒子在电场中运动时间为:4t 1=;带电粒子在匀强磁场中做匀速圆周运动的轨迹是两个半圆,故运动时间:t 2=;带电粒子运动一个周期的时间为:t=4t 1+ t 2=04d v +02d v π,故选项C 错误,D 正确。

2.(2018广州一模)如图,正方形abcd 中△abd 区域内存在方向垂直纸面向里的匀强磁场,△bcd 区域内有方向平行bc 的匀强电场(图中未画出)。

一带电粒子从d 点沿da 方向射入磁场,随后经过bd 的中点e进入电场,接着从b 点射出电场。

不计粒子的重力。

则( )A .粒子带负电B .电场的方向是由b 指向cC .粒子在b 点和d 点的动能相等D .粒子在磁场、电场中运动的时间之比为p ∶2【参考答案】.ABD【名师解析】根据题述,带电粒子从d 点沿da 方向射入磁场,随后经过bd 的中点e 进入电场,由左手定则可判断出粒子带负电,选项A 正确;根据粒子经过bd 的中点e 进入电场,接着从b 点射出电场,可知粒子所受电场力方向为由c 指向b ,电场的方向是由b 指向c ,选项B 正确;带电粒子在匀强磁场中运动,洛伦兹力不做功,在匀强电场中运动,电场力做功,根据动能定理,粒子在b 点的动能大于在d 点的动能,选项C 错误;画出带电粒子在匀强磁场和匀强电场中的运动轨迹如图所示.。

高考物理 磁场精讲精练 组合场复合场叠加场典型习题

高考物理 磁场精讲精练 组合场复合场叠加场典型习题

组合场复合场叠加场典型习题1.如图所示,匀强电场方向水平向右,匀强磁场方向垂直纸面向里,将带正电的小球在场中静止释放,最后落到地面上.关于该过程,下述说法正确的是( )A.小球做匀变速曲线运动B.小球减少的电势能等于增加的动能C.电场力和重力做的功等于小球增加的动能D.若保持其他条件不变,只减小磁感应强度,小球着地时动能不变解析:选C.重力和电场力是恒力,但洛伦兹力是变力,因此合外力是变化的,由牛顿第二定律知其加速度也是变化的,选项A错误;由动能定理和功能关系知,选项B错误,选项C正确;磁感应强度减小时,小球落地时的水平位移会发生变化,则电场力所做的功也会随之发生变化,选项D错误.2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动解析:选C.带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确.3.(多选)质量为m、电荷量为q的微粒以速度v与水平方向成θ角从O点进入方向如图所示的正交的匀强电场和匀强磁场组成的混合场区,该微粒在电场力、洛伦兹力和重力的共同作用下,恰好沿直线运动到A,下列说法中正确的是( )A.该微粒一定带负电荷B .微粒从O 到A 的运动可能是匀变速运动C .该磁场的磁感应强度大小为mgqv cos θD .该电场的场强为Bv cos θ解析:选AC.若微粒带正电荷,它受竖直向下的重力mg 、水平向左的电场力qE 和斜向右下方的洛伦兹力qvB ,知微粒不能做直线运动,据此可知微粒应带负电荷,它受竖直向下的重力mg 、水平向右的电场力qE 和斜向左上方的洛伦兹力qvB ,又知微粒恰好沿着直线运动到A ,可知微粒应该做匀速直线运动,则选项A 正确,B 错误;由平衡条件有:qvB cos θ=mg ,qvB sin θ=qE ,得磁场的磁感应强度B =mgqv cos θ,电场的场强E =Bv sin θ,故选项C 正确,D 错误.4.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( )A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B2UEgC .小球做匀速圆周运动的周期为T =2πEBgD .若电压U 增大,则小球做匀速圆周运动的周期增加解析:选BC.小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,方向相反,则小球带负电,A 错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿第二定律和动能定理可得:Bqv =mv 2r ,Uq =12mv 2,联立两式可得:小球做匀速圆周运动的半径r =1B2UE g ,由T =2πr v 可以得出T =2πE Bg,与电压U 无关,所以B 、C 正确,D 错误.5.(多选)如图所示,在第二象限中有水平向右的匀强电场,在第一象限内存在垂直纸面向外的匀强磁场.有一重力不计的带电粒子(电荷量为q ,质量为m )以垂直于x 轴的速度v 0从x 轴上的P 点进入匀强电场,恰好与y 轴正方向成45°角射出电场,再经过一段时间又恰好垂直于x 轴进入第四象限.已知OP 之间的距离为d ,则( )3A .带电粒子通过y 轴时的坐标为(0,d )B .电场强度的大小为mv 202qdC .带电粒子在电场和磁场中运动的总时间为(3π+4)d2v 0D .磁感应强度的大小为2mv 04qd解析:选BC. 粒子在电场中做类平抛运动,因为进入磁场时速度方向与y 轴正方向成45°角,所以沿x 轴正方向的分速度v x =v 0,在x 轴正方向做匀加速运动,有d =0+v 02t ,沿y 轴正方向做匀速运动,有s =v 0t =2d ,故选项A 错误.沿x 轴正方向做匀加速运动,根据v x =v 0=Eq m ×2d v 0=2Eqd mv 0,解得E =mv 202qd,故选项B 正确.粒子进入磁场后做匀速圆周运动,轨迹如图所示,由图可知粒子在磁场中运动的半径R =22d ,圆心角θ=135°=34π,所以在磁场中的运动时间为t 1=2πR ×1353602v 0=3π×22d 42v 0=3πd2v 0;在电场中的运动时间为t 2=2d v 0,所以总时间为t =t 1+t 2=(3π+4)d 2v 0,故选项C 正确.由qvB =mv2R 可知,磁感应强度B =m ×2v 0q ×22d =mv 02qd,故选项D 错误.6.在某空间存在着水平向右的匀强电场E 和垂直于纸面向里的匀强磁场B ,如图所示,一段光滑且绝缘的圆弧轨道AC 固定在纸面内,其圆心为O 点,半径R =1.8 m ,OA 连线在竖直方向上,AC 弧对应的圆心角θ=37°.今有一质量m =3.6×10-4kg 、带电荷量q =+9.0×10-4C 的带电小球(可视为质点),以v 0=4.0 m/s 的初速度沿水平方向从A 点射入圆弧轨道内,一段时间后从C 点离开,小球离开C 点后做匀速直线运动.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)匀强电场的场强E ;(2)小球刚离开C 点时的速度大小;(3)小球刚射入圆弧轨道时,轨道对小球的瞬间支持力.解析:(1)当小球离开圆弧轨道后,对其受力分析如图甲所示,由平衡条件得F 电=qE=mg tan θ,代入数据解得E =3 N/C.(2)小球从进入圆弧轨道到离开圆弧轨道的过程中,由动能定理得F 电R sin θ-mgR (1-cos θ)=mv 22-mv 22,代入数据得v =5 m/s.(3)由(1)可知F 洛=qvB =mgcos θ, 解得B =1 T ,小球射入圆弧轨道瞬间竖直方向的受力情况如图乙所示,由牛顿第二定律得F N +Bqv 0-mg =mv 20R,代入数据得F N =3.2×10-3N.答案:(1)3 N/C (2)5 m/s (3)3.2×10-3N7. 如图所示,在直角坐标系xOy 平面内,虚线MN 平行于y 轴,N 点坐标为(-L,0),MN 与y 轴之间有沿y 轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的矩形有界匀强磁场(图中未画出).现有一质量为m 、电荷量为-e 的电子,从虚线MN 上的P 点,以平行于x 轴正方向的初速度v 0射入电场,并从y 轴上点A ()0,0.5L 射出电场,射出时速度方向与y 轴负方向成30°角,进入第四象限后,经过矩形磁场区域,电子过点Q ⎝⎛⎭⎪⎫36L ,-L ,不计电子重力,求:5(1)匀强电场的电场强度E 的大小;(2)匀强磁场的磁感应强度B 的大小和电子在磁场中运动的时间t ; (3)矩形有界匀强磁场区域的最小面积S min .解析:(1)设电子在电场中运动的加速度为a ,时间为t ,离开电场时,沿y 轴方向的速度大小为v y ,则L =v 0ta =eE mv y =at v y =v 0tan 30°解得:E =3mv 2eL(2) 设轨迹与x 轴的交点为D ,OD 距离为x D ,则x D =0.5L tan 30°=36L 所以,DQ 平行于y 轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ 上,电子运动轨迹如图所示.设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r ,则evB =m v 2rv =v 0sin 30°由几何关系有 r +r sin 30°=L ,即r =L3联立以上各式解得 B =6mv 0eL电子转过的圆心角为120°,则得 t =T3T =2πm eB ⎝⎛⎭⎪⎫或T =2πr v =πL 3v 0 得t =πL9v 0(3)以切点F 、Q 的连线长为矩形的一条边,与电子的运动轨迹相切的另一边作为其FQ 的对边,有界匀强磁场区域面积为最小.S min =3r ×r2得S min =3L218答案:(1)3mv 2eL (2)6mv 0eL πL 9v 0 (3)3L2188.如图所示,圆柱形区域的半径为R ,在区域内有垂直于纸面向里、磁感应强度大小为B 的匀强磁场;对称放置的三个相同的电容器,极板间距为d ,板间电压为U ,与磁场相切的极板,在切点处均有一小孔,一带电粒子,质量为m ,带电荷量为+q ,自某电容器极板上的M 点由静止释放,M 点在小孔a 的正上方,若经过一段时间后,带电粒子又恰好返回M 点,不计带电粒子所受重力.求:(1)带电粒子在磁场中运动的轨道半径; (2)U 与B 所满足的关系式;(3)带电粒子由静止释放到再次返回M 点所经历的时间. 解析:(1)由几何关系解得r =3R . (2)设粒子加速后获得的速度为v , 由动能定理得qU =12mv 2-0,由洛伦兹力提供向心力,得qvB =m v 2r,7联立解得B =1R2mU 3q. (3)根据运动电荷在磁场中做匀速圆周运动的周期T =2πmqB=2πR3m 2qU, 依题意分析可知粒子在磁场中运动一次所经历的时间为16T ,故粒子在磁场中运动的总时间t 1=3×16T =πR3m 2qU, 而粒子在匀强电场中所做运动类似竖直上抛运动,设每次上升或下降过程经历的时间为t 2,则有d =12at 22, a =qU md, 解得t 2=d2m qU,粒子在电场中运动的总时间为t 3=6t 2=6d2m qU.带电粒子由静止释放到再次返回M 点所经历的时间为t =t 1+t 3=πR3m2qU+6d 2mqU.答案:(1)3R (2)B =1R2mU 3q(3)πR3m2qU+6d 2mqU9.如图所示,在xOy 平面第一象限内有平行于y 轴的匀强电场和垂直于xOy 平面的匀强磁场,匀强电场电场强度为E .一带电荷量为+q 的小球从y 轴上离坐标原点距离为L 的A 点处,以沿x 正向的初速度进入第一象限,如果电场和磁场同时存在,小球将做匀速圆周运动,并从x 轴上距坐标原点L2的C 点离开磁场.如果只撤去磁场,并且将电场反向,带电小球以相同的初速度从A 点进入第一象限,仍然从x 轴上距坐标原点L2的C 点离开电场.求:(1)小球从A 点出发时的初速度大小; (2)磁感应强度B 的大小和方向.解析:(1)由带电小球做匀速圆周运动知mg =Eq 所以电场反向后竖直方向受力Eq +mg =ma 得a =2g小球做类平抛运动,有L 2=v 0t ,L =12at 2得v 0=12gL(2)带电小球做匀速圆周运动时,洛伦兹力提供向心力,有qv 0B =mv 20R 得B =mv 0qR由圆周运动轨迹分析得(L -R )2+⎝ ⎛⎭⎪⎫L 22=R 2R =5L 8代入得B =4E gL5gL由左手定则得,磁感应强度垂直于xOy 平面向外. 答案:(1)12gL (2)4E gL5gL,垂直于xOy 平面向外10.如图甲所示,建立Oxy 坐标系.两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极9板长度和板间距均为l .在第一、四象限有磁感应强度为B 的匀强磁场,方向垂直于Oxy 平面向里.位于极板左侧的粒子源沿x 轴向右连续发射质量为m 、电荷量为+q 、速度相同、重力不计的带电粒子.在0~3t 0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响).已知t =0时刻进入两板间的带电粒子恰好在t 0时刻经极板边缘射入磁场.上述m 、q 、l 、t 0、B 为已知量.(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U 0的大小;(2)求12t 0时刻进入两板间的带电粒子在磁场中做圆周运动的半径;(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.解析:(1)t =0时刻进入两板间的带电粒子在电场中做匀变速曲线运动,t 0时刻刚好从极板边缘射出,在y 轴负方向偏移的距离为12l ,则有E =U 0l ①qE =ma ②12l =12at 20③ 联立①②③式,解得两板间偏转电压为U 0=ml 2qt 20④(2)12t 0时刻进入两板间的带电粒子,前12t 0时间在电场中偏转,后12t 0时间两板间没有电场,带电粒子做匀速直线运动.带电粒子沿x 轴方向的分速度大小为v 0=l t 0⑤带电粒子离开电场时沿y 轴负方向的分速度大小为v y =a ·12t 0⑥带电粒子离开电场时的速度大小为v =v 20+v 2y ⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R ,则有qvB =m v 2R⑧联立③⑤⑥⑦⑧式解得R =5ml 2qBt 0⑨(3)2t 0时刻进入两板间的带电粒子在磁场中运动时间最短.带电粒子离开电场时沿y 轴正方向的分速度为v y ′=at 0⑩设带电粒子离开电场时速度方向与y 轴正方向夹角为α,则tan α=v 0v y ′⑪ 联立③⑤⑩⑪式解得α=π4⑫带电粒子在磁场中运动轨迹如图所示,圆弧所对的圆心角2α=π2,所求最短时间为t min =14T ⑬带电粒子在磁场中运动的周期为T =2πmqB⑭联立⑬⑭式得t min =πm2qB答案:(1)ml 2qt 20 (2)5ml 2qBt 0 (3)2t 0 πm2qB百度文库是百度发布的供网友在线分享文档的平台。

高考物理-电磁学-复合场专题练习(含答案)(一)

高考物理-电磁学-复合场专题练习(含答案)(一)

高考物理电磁学-复合场专题练习(含答案)(一)一、单选题1.如图所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,与两极板上边缘等高处有两个带负电小球A和B,它们均从两极板正中央由静止开始释放,两小球最终均打在极板上,(不考虑小球间的相互作用及对电场的影响)下列说法中正确的是()A.两小球在两板间运动的轨迹都是一条抛物线B.两板间电压越大,小球在板间运动的时间越短C.它们的运动时间一定相同D.若两者的比荷相同,它们的运动轨迹可能相同2.一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,在小球将(假设电场足够大)()A.做自由落体运动B.做曲线运动C.做匀加速直线运动D.做变加速直线运动3.质量为m,带电量为+q的小球,在匀强电场中由静止释放,小球沿着与竖直向下夹30°的方向作匀加速直线运动,当场强大小为E=mg/2 时、E所有可能的方向可以构成()A.一条线 B.一个平面 C.一个球面 D.一个圆锥面4.场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是()A.粒子带负电,且q=B.粒子顺时针方向转动C.粒子速度大小v=D.粒子的机械能守恒5.如图所示,一个质量为m、带正电荷量为q的小带电体处于可移动的匀强磁场中,磁场的方向垂直纸面向里,磁感应强度为B,为了使它对水平绝缘面刚好无压力,应该()A.使磁感应强度B的数值增大B.使磁场以速率v= 向上移动C.使磁场以速率v= 向右移动D.使磁场以速率v= 向左移动6.在赤道处,将一小球向东水平抛出,落地点为A;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在A点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的B点D.若小球带正电荷,小球会落在更远的B点7.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()A.微粒可能带负电,可能带正电B.微粒的机械能一定增加C.微粒的电势能一定增加D.微粒动能一定减小8.如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是()A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大9.如图所示为“滤速器”装置示意图.a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B,a、b板带上电量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直.一带电粒子以速度v0经小孔进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a板所带电量情况是()A.带正电,其电量为B.带正电,其电量为CBdv0C.带负电,其电量为D.带负电,其电量为10.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里.三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动.比较它们的质量应有()A.a油滴质量最大B.b油滴质量最大C.c油滴质量最大D.a、b、c的质量一样二、综合题11.竖直放置的两块足够长的带电平行金属板间有匀强电场,其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带正电小球,当丝线跟竖直方向成θ角小球与板距离为b时,小球恰好平衡,如图所示.(重力加速度为g)求:(1)小球带电量q是多少?(2)若剪断丝线,小球碰到金属板需多长时间?12.以竖直向上为轴正方向的平面直角系,如图所示,在第一、四象限内存在沿轴负方向的匀强电场,在第二、三象限内存在着沿轴正方向的匀强电场和垂直于平面向外的匀强磁场,现有一质量为、电荷量为的带正电小球从坐标原点O以初速度沿与轴正方向成角的方向射出,已知两电场的电场强度,磁场的磁感应强度为B,重力加速度为。

新高考物理复习专题九静电场练习含答案

新高考物理复习专题九静电场练习含答案

专题九静电场五年高考考点过关练考点一静电场中力的性质1.(2019课标Ⅰ,15,6分)如图,空间存在一方向水平向右的匀强电场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则()A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷D.P带负电荷,Q带正电荷答案D2.(2023全国甲,18,6分)在一些电子显示设备中,让阴极发射的电子束通过适当的非匀强电场,可以使发散的电子束聚集。

下列4幅图中带箭头的实线表示电场线,如果用虚线表示电子可能的运动轨迹,其中正确的是()答案A3.(2022湖北,4,4分)密立根油滴实验装置如图所示,两块水平放置的金属板分别与电源的正负极相接,板间产生匀强电场。

用一个喷雾器把密度相同的许多油滴从上板中间的小孔喷入电场,油滴从喷口喷出时由于摩擦而带电。

金属板间电势差为U时,电荷量为q、半径为r的球状油滴在板间保持静止。

若仅将金属板间电势差调整为2U,则在板间能保持静止的球状油滴所带电荷量和半径可以为()A.q,rB.2q,rC.2q,2rD.4q,2r答案D4.(2023湖南,5,4分)如图,真空中有三个点电荷固定在同一直线上,电荷量分别为Q1、Q2和Q3,P点和三个点电荷的连线与点电荷所在直线的夹角分别为90°、60°和30°。

若P 点处的电场强度为零,q>0,则三个点电荷的电荷量可能为()A.Q1=q,Q2=√2q,Q3=qq,Q3=-4qB.Q1=-q,Q2=-4√33C.Q1=-q,Q2=√2q,Q3=-qq,Q3=4qD.Q1=q,Q2=-4√33答案D5.(2023全国乙,24,12分)如图,等边三角形△ABC位于竖直平面内,AB边水平,顶点C 在AB边上方,3个点电荷分别固定在三角形的三个顶点上。

已知AB边中点M处的电场强度方向竖直向下,BC边中点N处的电场强度方向竖直向上,A点处点电荷的电荷量的绝对值为q,求(1)B点处点电荷的电荷量的绝对值并判断3个点电荷的正负;(2)C点处点电荷的电荷量。

湖北省2021-2023年新高考物理真题考点分布汇总

湖北省2021-2023年新高考物理真题考点分布汇总

2023年湖北新高考物理真题考点分布汇总2022年湖北新高考物理真题考点分布汇总卷别题号题型考点核心素养湖北卷1 选择题原子物理、核反应方程,能量守恒物理科技、考查物理概念及学科思维2 选择题万有引力与航天物理科技、考查综合分析能力及推理能力3 选择题热学、理想气体状态方程、p—V图像图像问题、考查数形结合能力及推理能力4 选择题密立根油滴实验、带电油滴在平行板电容器中的受力及运动考查考生对物理实验的理解能力、对物理模型的分析能力5 选择题胡克定律、简谐运动物理模型,考查综合分析能力及学科思维6 选择题匀变速直线运动的规律物理情景,考查基础知识、计算能力及推理能力与学科思维7 选择题曲线运动、冲量、动能定理物理模型,考查综合分析能力及学科思维8 选择题带电粒子在磁场中的运动物理模型,考查综合分析能力及学科思维9 选择题电磁感应、磁通量物理科技、考查计算能力及推理能力及综合学科探究10 选择题带电粒子在组合场中的运动物理图像、综合分析能力及学科素养11 选择题电磁导轨物理模型、综合分析能力及学科素养12 实验题验证机械能守恒定律考查实验能力、分析综合能力、图像分析能力及学科思维13 实验题多用电表的工作原理考查实验能力及图像分析能力、学科思维14 计算题平抛运动、光的折射物理情景、考查基础知识、数形结合及学科探究素养15 计算题电磁感应、线框切割磁感线问题物理模型、综合分析能力及学科素养16 计算题动量、能量守恒、机械能守恒物理情景、考查计算能力、综合分析能力学科思维2021年湖北新高考物理真题考点分布汇总卷别题号题型考点核心素养湖北卷1 选择题原子物理,核反应方程,核聚变、核裂变物理科技与军事、考查物理概念及学科思维2 选择题匀变速直线运动的规律物理情景、考查分析物理过程、计算能力及推理能力3 选择题动量、动量定理物理科技与军事、考查计算能力及推理能力4 选择题斜面模型、动能定理、摩擦力的功物理模型、考查图像分析能力,对物理模型的分析能力5 选择题双缝干涉、光的折射物理实验,考查综合分析能力及学科思维6 选择题变压器的动态分析、电功率物理情景,考查基础知识、计算能力及学科思维7 选择题万有引力与航天物理科技、考查综合分析能力及推理能力8 选择题电场、电场线、等势面物理概念,考查基本概念的分析能力及学科思维9 选择题带电粒子在磁场中的运动物理模型、考查计算能力及推理能力及综合学科探究10 选择题波的传播、波的图像物理图像、综合分析能力及学科素养11 选择题带电小球在电场中的平衡问题物理模型、综合分析能力及学科素养12 实验题测量重力加速度考查实验能力、物理仪器的使用、实验数据分析能力及学科思维13 实验题闭合电路欧姆定律、测电源电动势考查实验能力及图像分析能力、实验数据分析能力及学科思维14 计算题理想气体状态方程、气体等压变化物理实验、考查物理状态分析、计算能力及学科探究素养15 计算题碰撞、功率、曲线运动、功能关系物理模型、综合分析能力及学科素养16 计算题导体棒切割磁感线,电磁感应、等效电路物理模型、考查计算能力、综合分析能力学科思维。

高考物理二轮复习100考点千题精练第十二章物理实验专题12.4验证牛顿运动定律(2021学年)

高考物理二轮复习100考点千题精练第十二章物理实验专题12.4验证牛顿运动定律(2021学年)

2018年高考物理二轮复习100考点千题精练第十二章物理实验专题12.4验证牛顿运动定律编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考物理二轮复习 100考点千题精练第十二章物理实验专题12.4 验证牛顿运动定律)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考物理二轮复习 100考点千题精练第十二章物理实验专题12.4 验证牛顿运动定律的全部内容。

专题12。

4 验证牛顿运动定律1.(2018中原名校联盟质检)某实验小组在做“验证牛顿第二定律"实验中.(1)在闭合开关之前,甲同学将实验器材组装成如图甲所示.请指出该装置中的错误或不妥之处(只要答出其中两点即可):_________________;________________________.(2)乙同学将上述装置调整正确后进行实验,在实验中得到如图乙所示的一条纸带,图中相邻两计数点之间还有四个点没有画出,且打点计时器每0.02 s打一个点,由图中的数据可计算出小车加速度为_____________m/s2.(保留两位有效数字)(3)丙同学在利用上述调整好的装置进行实验中,保持沙和沙桶的总质量不变,小车自身的质量为M且保持不变,改变小车中砝码的质量m,并测出小车中放不同质量砝码时所对应的加速度a,以m为横坐标,1a 为纵坐标,在坐标纸上作出如图丙所示的1a-m关系图线,图中纵轴上的截距为b,则小车受到的拉力大小为_____________.【参考答案】(1)①用的是直流电源②木板的右端没有垫高(或小车离打点计时器太远)(2)0.50(或 0。

原创广东新高考2021届高二期末复习专题十二-组合场

原创广东新高考2021届高二期末复习专题十二-组合场
1)粒子的速度v 【教学步骤】
10.写月亮升起后,对游人依依眷恋,脉脉含情,实则是游人对明月的喜爱的句子: 宁溘死以流亡兮,余不忍为此态也。
2)速度选择器的电压U 【教学方法】诵读——鉴赏——分析
236.入.表秦现行诗刺人的坚第持二真件理准、备献工身作理,想求的徐诗夫句人:的亦匕余首2心。之所善兮,虽九死其犹未悔。
5.苏轼在《赤壁赋》中慨叹“人生短促,人很渺小”的句子是:寄蜉蝣于天地,渺沧海之一粟。
匀速圆周运动,求: 10.《离骚》中表明作者在黑暗混乱社会中烦闷失意,走投无路的两句:
13.描绘秋江的爽朗和澄清,也恰好体现作者怡然自得的心境的句子:清风徐来,水波不兴。 13.表明文中女子热情、温柔的句子:既见复关,载笑载言。
带电粒子在组合场中的运动
受力和初速度
确定运动类型
画出运动轨迹
合适规律求解
4.如图所示为质谱仪的原理图,A为粒子加速器,电压为;B为速度选择器,磁场与电
场正交,磁感应强度为B1,板间距离为d;C为偏转分离器,磁感应强度为今有一质量
4.用为高超m的、手法电描写量动人为的音q乐的: 正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R的
选修3-1
期末复习专题 带电粒子在组合场中的运动
带电粒子在组合场中的运动
组合场:电场与磁场各位于一定区域内,并不重叠
受力和初速度
确定运动类型
x
画出运动轨迹
s
v0 a
匀变速直线运动
v = v0 + at
s = v0 + v t 2
s
=
v0 t
+
1 2
at
2
v2 - v02 = 2as
v0 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高考物理 100考点千题精练专题9-12 组合场问题
一.选择题
1.(2018·东北三校联考)如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离D随着U1和U2的变化情况为(不计重力,不考虑边缘效应)( )
A.D随U1变化,D与U2无关
B.D与U1无关,D随U2变化
C.D随U1变化,D随U2变化
D.D与U1无关,D与U2无关
【参考答案】A
2.(2018广州一模)如图,正方形abcd中△abd区域内存在方向垂直纸面向里的匀强磁场,△bcd区域内有方向平行bc的匀强电场(图中未画出)。

一带电粒子从d点沿da方向射入磁场,随后经过bd的中点e进入电场,接着从b点射出电场。

不计粒子的重力。


A.粒子带负电
B.电场的方向是由b指向c
C.粒子在b点和d点的动能相等
D.粒子在磁场、电场中运动的时间之比为∶2
【参考答案】ABD
3.(2018广东韶关质检)如图 4 所示,一个静止的质量为 m、带电荷量为 q 的粒子(不计重力),经电压 U 加速后垂直进人磁感应强度为 B 的匀强磁场,粒子在磁场中转半个圆周后打在 P 点,设 OP=x,能够正确反应 x 与 U 之
间的函数关系的是
【参考答案】B
4.如图所示,在x轴的上方有沿y轴负方向的匀强电场,电场强度为E,在x 轴的下方等腰三角形CDy区域内有垂直于xOy平面由内向外的匀强磁场,磁感应强度为B,其中C,D在x轴上,它们到原点O的距离均为a,。

现将一质量为m,带电量为q的带正电粒子,从y轴上的P点由静止释放,设P点到O点的距离为h,不计重力作用与空气阻力的影响。

,下列说法正确的是()
A. 若,则粒子垂直Cy射出磁场
B. 若,则粒子平行于x轴射出磁场
C. 若,则粒子垂直Cy射出磁场
D. 若,则粒子平行于x轴射出磁场
【参考答案】AD
点睛:带电粒子先经过电场加速,再进入磁场做匀速圆周运动,由动能定理求出加速获得的速度,由牛顿第二定律求出在磁场中圆周运动的轨迹半径,可结合几何知识判断粒子射出磁场的方向.
二.计算题
1. (16分) (2018江苏扬州期末)在如图所示的坐标系内,PQ是垂直于x轴的分界线,PQ左侧的等腰直角三角形区域内分布着匀强磁场,磁感应强度为B,方向垂直纸面向里,AC边有一挡板可吸收电子,AC长为d.PQ右侧为偏转电场,两极板长度为d,间距为d.电场右侧的x轴上有足够长的荧光屏.现有速率不同的电子在纸面内从坐标原点O沿y轴正方向射入磁场,电子能打在荧光屏上的最远处为M点,M到下极板右端的距离为d,电子电荷量为e,质量为m,不考虑电子间的相互作用以及偏转电场边缘效应,求:
(1) 电子通过磁场区域的时间t;
(2) 偏转电场的电压U;
(3) 电子至少以多大速率从O点射出时才能打到荧光屏上.
【名师解析】 (1) 电子在磁场区域运动周期为
T=(2分)
通过磁场区域的时间为t1=T=. (2分)
(2) 由几何知识得r=d,又r=mv
eB
解得v=(2分)
代入数据解得U=.(2分)
(3) 电子恰好打在下极板右边缘
磁场中r′=mv′
eB
电场中水平方向d=v′t
竖直方向r′=t2
由上述三式代入数据解得v′=.(4分)
2.(2017北京海淀二模)(16分)如图所示,真空玻璃管内,加热的阴极K发出的电子(初速度可忽略不计)经阳极A与阴极K之间的电压U1形成的加速电场加速后,从阳极A的小孔射出,由水平放置的平行正对偏转极板M、N的左端中点以平行于极板的方向射入两极板之间的区域。

若M、N两极板间无电压,电子将沿水平直线打在荧光屏上的O点;若在M、N两极板间加电压U2,形成平行纸面的偏转电场,则电子将打在荧光屏上的P点;若在M、N极板间加电压U2的同时,再加方向垂直纸面的匀强磁场,则电子将能重新打在荧光屏上的O点。

已知电子质量为m,电荷量为e,M、N两极板长均为L1、两极板间距离为d,极板右端到荧光屏的距离为L2。

(1)忽略电子所受重力及它们之间的相互作用力,求:
①电子从阳极A小孔射出时速度v0的大小;
②电子重新打在荧光屏上O点时,所加匀强磁场的磁感应强度B的大小。

(2)在解决一些实际问题时,为了简化问题,常忽略一些影响相对较小的量,这对最终的计算结果并没有太大的影响,因此这种处理是合理的。

如在计算电子打在荧光屏上的位置时,对于电子离开M 、N 板间的偏转电场后运动到荧光屏的过程,可以忽略电子所受的重力。

请利用下列数据分析说明为什么这样处理是合理的。

已知U2=2.0×102V,d=4.0×10-2m ,m=9.1×10-31kg ,e=1.6×10-19C ,L1=5.0×10-2m ,L2=0.10m ,重力加速度g=10m/s2。

② 加磁场后,电子沿水平方向以v0做匀速直线运动,所受合力为零………………(2分)
即eU2/d=ev0B ………………………(2分)
解得 B=……………………………(2分)1
2
2eU m d U 若考虑到重力的作用,则电子离开偏转电场到荧光屏的过程中,沿垂直偏转极板方向的位移
y2=vyt2+gt22=+g…(1分)2120212dm v L L eU 2120
2
2v L 由于重力影响,电子离开偏转电场到荧光屏的过程中,沿垂直偏转极板方向位移
增加量为 Δy=y2-y1=g 2120
2
2v L 由于重力的影响,电子离开偏转电场到荧光屏的过程中,沿垂直偏转极板方向位移的增加量与忽略电子所受重力时的位移的比值
1
2212L eU dm gL y y =∆≈10-14…………………………………(1分) 即重力对电子打在荧光屏上的位置影响非常小,所以计算电子偏转量时可以忽略电子所受的重力。

…………………………………………………
3.(2017年5月广西五市模拟)如图所示,虚线MN 为匀强电场和匀强磁场的分
界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。

现将一质量为m 、电荷量为q 的带正电粒子从P 处由静止释放(不计粒子所受重力,电场和磁场范围足够大)。

求:
(1)粒子第一次进入磁场时的速度大小;
(2)粒子第一次出磁场处到第二次进磁场处的距离;
(3)若粒子第一次进入磁场后的某时刻,磁感应强度大小突然变为,但方向不变,此后粒子恰好被束缚在该磁场中,则的最小值为多少?'B 'B
【参考答案】(1)v=
(2)xCA=4d (3)B ’
由几何知识可得x=y ,解得:两点间的距离为:xCA=vt
代入数据可得:xCA=4d
设此后粒子做圆周运动的轨迹半径为r ,则有几何关系可知r=R 。

24
又因为r=,
'mv qB 所以B’=,mv qr 代入数据可得:B ’
4.如图所示,等边三角形AQC 的边长为2L , P 、D 分别为AQ 、AC 的中点.水平线QC 以下是向左的匀强电场,区域Ⅰ(梯形PQCD )内有垂直纸面向里的匀强磁场,磁感应强度大小为B0;区域Ⅱ(三角形APD )内的磁场方向垂直纸面向里,区域III (虚线PD 之上、三角形APD 以外)的磁场与区域Ⅱ内大小相等、方向相反.带正电的粒子从Q 点正下方、距离Q 点为L 的O 点以某一速度射入电场,在电场作用下以速度v0垂直QC 到达该边中点N ,经区域再从P 点垂直AQ 射入区域(粒子重力忽略不计)
(1)求该粒子的比荷q/m ;
(2)求该粒子从O 点运动到N 点的时间t1和匀强电场的电场强度E ;
(3)若区域Ⅱ和区域Ⅲ内磁场的磁感应强度大小为3B0,则粒子经过一系列运动后会返回至O 点,求粒子从N 点出发再回到N 点的运动过程所需的时间t .
【名师解析】(1)由题意可知,粒子在区域Ⅰ内做匀速圆周运动,轨道半径为:r1=L
由牛顿第二定律和洛伦兹力表达式得到:qv0B0=m 20v r
解得:q/m=00v B L
(3)带电粒子在区域Ⅱ和区域Ⅲ内做匀速圆周运动,同理由牛顿第二定律和洛伦
兹力表达式可得: qv0·3B0=m 20v r
解得:r2=L/3
粒子从N 点出发再回到N 点的运动轨迹如图所示
在区域Ⅰ中做匀速圆周运动一段圆弧所对的圆心角α1=π/3, 在区域Ⅰ中运动的时间:t2=2×=10L v α023L
v π
在区域Ⅱ中做匀速圆周运动一段圆弧所对的圆心角α2=π/3, 在区域Ⅱ中运动的时间:t2==103L v α09L
v π
在区域Ⅲ中匀速圆周运动一段圆弧所对的圆心角α3=π, 在区域Ⅲ中运动时间:t3=2×= 303L v α023L
v π
粒子从N 点出发再回到N 点的运动过程所需的时间t=t3+ t2+t3=++=023L v π09L v π023L v π0
139L v π。

相关文档
最新文档