2 BASIC EQUATIONS基本方程

合集下载

matlab公式总结

matlab公式总结

一matlab常用函数1、特殊变量与常数ans 计算结果的变量名computer 确定运行的计算机eps 浮点相对精度Inf 无穷大I 虚数单位inputname 输入参数名NaN 非数nargin 输入参数个数nargout 输出参数的数目pi 圆周率nargoutchk 有效的输出参数数目realmax 最大正浮点数realmin 最小正浮点数varargin 实际输入的参量varargout 实际返回的参量操作符与特殊字符+ 加- 减* 矩阵乘法 .* 数组乘(对应元素相乘)^ 矩阵幂 .^ 数组幂(各个元素求幂)\ 左除或反斜杠/ 右除或斜面杠./ 数组除(对应元素除)kron Kronecker张量积: 冒号() 圆括[] 方括 . 小数点 .. 父目录 ... 继续, 逗号(分割多条命令); 分号(禁止结果显示)% 注释! 感叹号' 转置或引用= 赋值== 相等<> 不等于& 逻辑与| 逻辑或~ 逻辑非xor 逻辑异或2、基本数学函数abs 绝对值和复数模长acos,acodh 反余弦,反双曲余弦acot,acoth 反余切,反双曲余切acsc,acsch 反余割,反双曲余割angle 相角asec,asech 反正割,反双曲正割secant 正切asin,asinh 反正弦,反双曲正弦atan,atanh 反正切,双曲正切tangent 正切atan2 四象限反正切ceil 向着无穷大舍入complex 建立一个复数conj 复数配对cos,cosh 余弦,双曲余弦csc,csch 余切,双曲余切cot,coth 余切,双曲余切exp 指数fix 朝0方向取整floor 朝负无穷取整*** 最大公因数imag 复数值的虚部lcm 最小公倍数log 自然对数log2 以2为底的对数log10 常用对数mod 有符号的求余nchoosek 二项式系数和全部组合数real 复数的实部rem 相除后求余round 取整为最近的整数sec,sech 正割,双曲正割sign 符号数sin,sinh 正弦,双曲正弦sqrt 平方根tan,tanh 正切,双曲正切3、基本矩阵和矩阵操作blkding 从输入参量建立块对角矩阵eye 单位矩阵linespace 产生线性间隔的向量logspace 产生对数间隔的向量numel 元素个数ones 产生全为1的数组rand 均匀颁随机数和数组randn 正态分布随机数和数组zeros 建立一个全0矩阵colon) 等间隔向量cat 连接数组diag 对角矩阵和矩阵对角线fliplr 从左自右翻转矩阵flipud 从上到下翻转矩阵repmat 复制一个数组reshape 改造矩阵roy90 矩阵翻转90度tril 矩阵的下三角triu 矩阵的上三角dot 向量点集cross 向量叉集ismember 检测一个集合的元素intersect 向量的交集setxor 向量异或集setdiff 向是的差集union 向量的并集数值分析和傅立叶变换cumprod 累积cumsum 累加cumtrapz 累计梯形法计算数值微分factor 质因子inpolygon 删除多边形区域内的点max 最大值mean 数组的均值mediam 中值min 最小值perms 所有可能的转换polyarea 多边形区域primes 生成质数列表prod 数组元素的乘积rectint 矩形交集区域sort 按升序排列矩阵元素sortrows 按升序排列行std 标准偏差sum 求和trapz 梯形数值积分var 方差del2 离散拉普拉斯diff 差值和微分估计gradient 数值梯度cov 协方差矩阵corrcoef 相关系数conv2 二维卷积conv 卷积和多项式乘法filter IIR或FIR滤波器deconv 反卷积和多项式除法filter2 二维数字滤波器cplxpair 将复数值分类为共轭对fft 一维的快速傅立叶变换fft2 二维快速傅立叶变换fftshift 将FFT的DC分量移到频谱中心ifft 一维快速反傅立叶变换ifft2 二维傅立叶反变换ifftn 多维快速傅立叶变换ifftshift 反FFT偏移nextpow2 最靠近的2的幂次unwrap 校正相位角多项式与插值conv 卷积和多项式乘法roots 多项式的根poly 具有设定根的多项式polyder 多项式微分polyeig 多项式的特征根polyfit 多项式拟合polyint 解析多项式积分polyval 多项式求值polyvalm 矩阵变量多项式求值residue 部分分式展开interp1 一维插值interp2 二维插值interp3 三维插值interpft 使用FFT的一维插值interpn 多维插值meshgrid 为3维点生成x和y的网格ndgrid 生成多维函数和插值的数组pchip 分段3次Hermite插值多项式ppval 分段多项式的值spline 3次样条数据插值绘图函数bar 竖直条图barh 水平条图hist 直方图histc 直方图计数hold 保持当前图形loglog x,y对数坐标图pie 饼状图plot 绘二维图polar 极坐标图semilogy y轴对数坐标图semilogx x轴对数坐标subplot 绘制子图bar3 数值3D竖条图bar3h 水平3D条形图comet3 3D慧星图cylinder 圆柱体fill3 填充的3D多边形plot3 3维空间绘图quiver3 3D震动(速度)图slice 体积薄片图sphere 球stem3 绘制离散表面数据wate***ll 绘制瀑布trisurf 三角表面clabel 增加轮廓标签到等高线图中datetick 数据格式标记grid 加网格线gtext 用鼠标将文本放在2D图中legend 图注plotyy 左右边都绘Y轴title 标题xlabel X轴标签ylabel Y轴标签zlabel Z轴标签contour 等高线图contourc 等高线计算contourf 填充的等高线图hidden 网格线消影meshc 连接网格/等高线mesh 具有参考轴的3D网格peaks 具有两个变量的采样函数surf 3D阴影表面图su***ce 建立表面低层对象surfc 海浪和等高线的结合surfl 具有光照的3D阴影表面trimesh 三角网格图二Matlab常用指令1、通用信息查询(General information)demo 演示程序help 在线帮助指令helpbrowser 超文本文档帮助信息helpdesk 超文本文档帮助信息helpwin 打开在线帮助窗info MATLAB和MathWorks 公司的信息subscribe MATLAB 用户注册ver MATLAB 和TOOLBOX 的版本信息version MATLAB 版本whatsnew 显示版本新特征2、工作空间管理(Managing the workspace)clear 从内存中清除变量和函数exit 关闭MATLAB load 从磁盘中调入数据变量pack 合并工作内存中的碎块quit 退出MATLAB save 把内存变量存入磁盘who 列出工作内存中的变量名whos 列出工作内存中的变量细节workspace 工作内存浏览器3 、管理指令和函数(Managing commands and functions)edit 矩阵编辑器edit 打开M 文件inmem 查看内存中的P 码文件mex 创建MEX 文件open 打开文件pcode 生成P 码文件type 显示文件内容what 列出当前目录上的M、MAT、MEX 文件which 确定指定函数和文件的位置4 、搜索路径的管理(Managing the seach patli)addpath 添加搜索路径rmpath 从搜索路径中删除目录path 控制MATLAB 的搜索路径pathtool 修改搜索路径5、指令窗控制(Controlling the command window)beep 产生beep 声echo 显示命令文件指令的切换开关diary 储存MATLAB 指令窗操作内容format 设置数据输出格式more 命令窗口分页输出的控制开关6、操作系统指令(Operating system commands)cd 改变当前工作目录computer 计算机类型copyfile 文件拷贝delete 删除文件dir 列出的文件dos 执行dos 指令并返还结果getenv 给出环境值ispc MATLAB 为PC(Windows)版本则为真isunix MATLAB 为Unix 版本则为真mkdir 创建目录pwd 改变当前工作目录unix 执行unix 指令并返还结果vms 执行vms dcl 指令并返还结果web 打开web 浏览器! 执行外部应用程序三Matlab运算符和特殊算符1、算术运算符(Arithmetic operators)+ 加- 减* 矩阵乘.* 数组乘^ 矩阵乘方 .^ 数组乘方\ 反斜杠或左除/ 斜杠或右除 ./或.\ 数组除张量积[注]本表第三栏括号中的字符供在线救助时help 指令引述用2、关系运算符(Relational operators)= = 等号~= 不等号< 小于> 大于<= 小于或等于>= 大于或等于3、逻辑操作(Logical operators)& 逻辑与| 逻辑或~ 逻辑非xor 异或any 有非零元则为真all 所有元素均非零则为真4、特殊算符(Special characters):冒号( ) 圆括号[ ] 方括号{ } 花括号@ 创建函数句柄 . 小数点 . 构架域的关节点 .. 父目录? 续行号, 逗号; 分号% 注释号! 调用操作系统命令= 赋值符号ˊ引号ˊ复数转置号 .ˊ转置号[,]水平串接[;] 垂直串接( ),{ },. 下标赋值( ),{ },. 下标标识subsindex 下标标识四Matlab编程语言结构控制语句(Control flow)break 终止最内循环case 同switch 一起使用catch 同try 一起使用continue 将控制转交给外层的for 或while 循环else 同if 一起使用elseif 同if 一起使用end 结束for,while,if 语句for 按规定次数重复执行语句if 条件执行语句otherwise 可同switch 一起使用return 返回switch 多个条件分支try try-cathch 结构while 不确定次数重复执行语句2、计算运行(Evaluation and execution)assignin 跨空间赋值builtin 执行内建的函数eval 字符串宏指令evalc 执行MATLAB 字符串evalin 跨空间计算串表达式的值feval 函数宏指令run 执行脚本文件3、脚本文件、函数及变量(Scripts,function,and variables)exist 检查变量或函数是否被定义function 函数文件头global 定义全局变量isglobal 若是全局变量则为真iskeyword 若是关键字则为真mfilename 正在执行的M 文件的名字persistent 定义永久变量script MATLAB 命令文件4、宗量处理(Augument handling)inputname 实际调用变量名nargchk 输入变量个数检查nargin 函数输入宗量的个数nargout 函数输出宗量的个数nargoutchk 输出变量个数检查varagin 输入宗量varagout 输出宗量5、信息显示(Message display)disp 显示矩阵和文字内容display 显示矩阵和文字内容的重载函数error 显示错误信息fprintf 把格式化数据写到文件或屏幕lasterr 最后一个错误信息lastwarn 最后一个警告信息sprintf 按格式把数字转换为串warning 显示警告信息6 、交互式输入(Interactive input) input 提示键盘输入keyboard 激活键盘做为命令文件pause 暂停uicontrol 创建用户界面控制uimenu 创建用户界面菜单五Matlab基本矩阵函数和操作1、基本矩阵(Elementary matrices)eye 单位阵linspace 线性等分向量logspace 对数等分向量meshgrid 用于三维曲面的分格线坐标ones 全1 矩阵rand 均匀分布随机阵randn 正态分布随机阵repmat 铺放模块数组zeros 全零矩阵: 矩阵的援引和重排2、矩阵基本信息(Basic array information)disp 显示矩阵和文字内容isempty 若是空矩阵则为真isequal 若对应元素相等则为1 islogical 尤其是逻辑数则为真isnumeric 若是数值则为真length 确定向量的长度logical 将数值转化为逻辑值ndims 数组A 的维数size 确定矩阵的维数3、矩阵操作(Matrix manipulateion)blkdiag 块对角阵串接diag 创建对角阵,抽取对角向量end 数组的长度,即最大下标find 找出非零元素1 的下标fliplr 矩阵的左右翻转flipud 矩阵的上下翻转flipdim 交换对称位置上的元素ind2sub 据单下标换算出全下标reshape 矩阵变维rot90 矩阵逆时针90°旋转sub2idn 据全下标换算出单下标tril 抽取下三角阵triu 抽取上三角阵4、特殊变量和常数(Special variables and constants)ans 最新表达式的运算结果eps 浮点相对误差i,j 虚数单位inf 或Inf 无穷大isfinite 若是有限数则为真isinf 若是无穷大则为真isnan 若为非数则为真NaN 或nan 非数pi 3.1415926535897?. realmax 最大浮点数realmin 最小正浮点数why 一般问题的简明答案5、特殊矩阵(Specialized matrices)compan 伴随矩阵gallery 一些小测试矩阵hadamard Hadamard 矩阵hankel Hankel 矩阵hilb Hilbert 矩阵invhilb 逆Hilbert 矩阵magic 魔方阵pascal Pascal 矩阵rosser 典型对称特征值实验问题toeplitz Toeplitz 矩阵vander Vandermonde 矩阵wilkinson Wilkinson's 对称特征值实验矩阵六Matlab基本数学函数1、三角函数(Trigonometric)acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割asec 反正割asech 反双曲正割asin 反正弦asinh 反双曲正弦atan 反正切atanh 反双曲正切atan2 四象限反正切cos 余弦cosh 双曲余弦cot 余切coth 双曲余切csc 余割csch 双曲余割sec 正割sech 双曲正割sin 正弦sinh 双曲正弦tan 正切tanh 双曲正切2、指数函数(Exponential)exp 指数log 自然对数log10 常用对数log2 以2 为底的对数nestpow2 最近邻的2 的幂pow2 2 的幂sqrt 平方根3、复数函数(Complex)abs 绝对值angle 相角complex 将实部和虚部构成复数conj 复数共轭cplxpair 复数阵成共轭对形式排列imag 复数虚部isreal 若是实数矩阵则为真real 复数实部unwrap 相位角360°线调整4、圆整和求余函数(Rounding and remainder)ceil 朝正无穷大方向取整fix 朝零方向取整floor 朝负无穷大方向取整mod 模数求余rem 求余数round 四舍五入取整sign 符号函数 6 特殊函数(Specialized math functions) cart2pol 直角坐标变为柱(或极)坐标cart2sph 直角坐标变为球坐标cross 向量叉积dot 向量内积isprime 若是质数则为真pol2cart 柱(或极)坐标变为直角坐标sph2cart 球坐标变为直角坐标七Matlab矩阵函数和数值线性代数1、矩阵分析(Matrix analysis)det 行列式的值norm 矩阵或向量范数normest 估计2 范数null 零空间orth 值空间rank 秩rref 转换为行阶梯形trace 迹subspace 子空间的角度2、线性方程(Linear equations)chol Cholesky 分解cholinc 不完全Cholesky 分解cond 矩阵条件数condest 估计1-范数条件数inv 矩阵的逆lu LU 分解luinc 不完全LU 分解lscov 已知协方差的最小二乘积nnls 非负二乘解pinv 伪逆qr QR 分解rcond LINPACK 逆条件数\、/ 解线性方程3、特性值与奇异值(Eigenvalues and singular values)condeig 矩阵各特征值的条件数eig 矩阵特征值和特征向量eigs 多个特征值gsvd 归一化奇异值分解hess Hessenberg 矩阵poly 特征多项式polyeig 多项式特征值问题qz 广义特征值schur Schur 分解svd 奇异值分解svds 多个奇异值4、矩阵函数(Matrix functions)expm 矩阵指数expm1 矩阵指数的Pade 逼近expm2 用泰勒级数求矩阵指数expm3 通过特征值和特征向量求矩阵指数funm 计算一般矩阵函数logm 矩阵对数sqrtm 矩阵平方根5、因式分解(Factorization utility)cdf2rdf 复数对角型转换到实块对角型balance 改善特征值精度的平衡刻度rsf2csf 实块对角型转换到复数对角型八数据分析和傅里叶变换1、基本运算(Basic operations)cumprod 元素累计积cumsum 元素累计和cumtrapz 累计积分hist 统计频数直方图histc 直方图统计max 最大值mean 平均值median 中值min 最小值prod 元素积sort 由小到大排序sortrows 由小到大按行排序std 标准差sum 元素和trapz 梯形数值积分var 求方差2、有限差分(Finite differentces)del2 五点离散Laplacian diff 差分和近似微分gradient 梯度3、相关(Correlation)corrcoef 相关系数cov 协方差矩阵subspace 子空间之间的角度4、滤波和卷积(Filtering and convoluteion)conv 卷积和多项式相乘conv2 二维卷积convn N 维卷积detrend 去除线性分量deconv 解卷和多项式相除filter 一维数字滤波器fliter2 二维数字滤波器5、傅里叶变换(Fourier transforms)fft 快速离散傅里叶变换fft2 二维离散傅里叶变换fftn N 维离散傅里叶变换fftshift 重排fft 和fft2 的输出ifft 离散傅里叶反变换ifft2 二维离散傅城叶反变换ifftn N 维离散傅里叶反变换ifftshift 反fftshift九音频支持1、音频硬件驱动(Audio hardware drivers)sound 播放向量soundsc 自动标刻并播放waveplay 利用系统音频输出设配播放waverecor 利用系统音频输入设配录音2、音频文件输入输出(Audio file import and export)auread 读取音频文件(.au) auwrite 创建音频文件(.au) wavread 读取音频文件(.wav) wavwrite 创建音频文件(.wav)3、工具(Utilities)lin2mu 将线性信号转换为μ一律编码的信号mu2lin 将μ一律编码信号转换为线性信号十插补多项式函数1、数据插补(Data Interpolation)griddata 分格点数据griddata3 三维分格点数据griddatan 多维分格点数据interpft 利用FFT 方法一维插补interp1 一维插补interp1q 快速一维插补interp2 二维插补interp3 三维插补intern N 维插补pchip hermite 插补2 、样条插补(Spline Interpolation)ppval 计算分段多项式spline 三次样条插补3 、多项式(Polynomials)conv 多项式相乘deconv 多项式相除poly 由根创建多项式polyder 多项式微分polyfit 多项式拟合polyint 积分多项式分析polyval 求多项式的值polyvalm 求矩阵多项式的值residue 求部分分式表达roots 求多项式的根十一数值泛函函数和ODE 解算器1、优化和寻根(Optimization and root finding)fminbnd 非线性函数在某区间中极小值fminsearch 单纯形法求多元函数极值点指令fzero 单变量函数的零点2、优化选项处理(Optimization Option handling)optimget 从OPTIONS 构架中取得优化参数optimset 创建或修改OPTIONS 构架3、数值积分(Numerical intergration)dblquad 二重(闭型)数值积分指令quad 低阶法数值积分quadl 高阶法数值积分4、绘图(Plotting)ezcontour 画等位线ezcontourf 画填色等位线ezmesh 绘制网格图ezmeshc 绘制含等高线的网格图ezplot 绘制曲线ezplot3 绘制3 维曲线ezpolar 采用极坐标绘图ezsurf 画曲面图ezsurfc 画带等位线的曲面图fplot 画函数曲线图5、内联函数对象(Inline function object)argnames 给出函数的输入宗量char 创建字符传输组或者将其他类型变量转化为字符串数组formula 函数公式inline 创建内联函数6、差微分函数解算器(Differential equation solvers)ode113 变阶法解方程ode15s 变阶法解刚性方程ode23 低阶法解微分方程ode23s 低阶法解刚性微分方程ode23t 解适度刚性微分方程odet23tb 低阶法解刚性微分方程ode45 高阶法解微分方程十二二维图形函数1、基本平面图形(Elementary X-Y graphs)loglog 双对数刻度曲线plot 直角坐标下线性刻度曲线plotyy 双纵坐标图polar 极坐标曲线图semilogx X 轴半对数刻度曲线semilogy Y 轴半对数刻度曲线2 、轴控制(Axis control)axes 创建轴axis 轴的刻度和表现box 坐标形式在封闭式和开启词式之间切换grid 画坐标网格线hold 图形的保持subplot 创建子图zoom 二维图形的变焦放大3、图形注释(Graph annotation)gtext 用鼠标在图上标注文字legend 图例说明plotedit 图形编辑工具text 在图上标注文字texlabel 将字符串转换为Tex 格式title 图形标题xlabel X 轴名标注ylabel Y 轴名标注4、硬拷贝(Hardcopy and printing)orient 设置走纸方向print 打印图形或把图存入文件printopt 打印机设置十三三维图形函数1、基本三维图形(Elementary 3-D plots) fill3 三维曲面多边形填色mesh 三维网线图plot3 三维直角坐标曲线图surf 三维表面图2 、色彩控制(Color control)alpha 透明色控制brighten 控制色彩的明暗caxis (伪)颜色轴刻度colordef 用色风格colormap 设置色图graymon 设置缺省图形窗口为单色显示屏hidden 消隐shading 图形渲染模式whitebg 设置图形窗口为白底3、光照模式(Lighting)diffuse 漫反射表面系数light 灯光控制lighting 设置照明模式material 使用预定义反射模式specular 漫反射surfnorm 表面图的法线surfl 带光照的三维表面图4 、色图(Color maps)autumn 红、黄浓淡色bone 蓝色调灰度图colorcube 三浓淡多彩交错色cool 青和品红浓淡色图copper 线性变化纯铜色调图flag 红-白-蓝黑交错色图gray 线性灰度hot 黑-红-黄-白交错色图hsv 饱和色彩图jet 变异HSV 色图lines 采用plot 绘线色pink 淡粉红色图prism 光谱色图spring 青、黄浓淡色summer 绿、黄浓淡色vga 16 色white 全白色winter 蓝、绿浓淡色5、轴的控制(Axis control)axes 创建轴axis 轴的刻度和表现box 坐标形式在封闭式和开启式之间切换daspect 轴的DataAspectRatio 属性grid 画坐标网格线hold 图形的保持pbaspect 画坐标框的PlotBoxAspectRatio 属性subplot 创建子图xlim X 轴范围ylim Y 轴范围zlim Z 轴范围zoom 二维图形的变焦放大6、视角控制(Viewpoint control)rotate3d 旋动三维图形view 设定3-D 图形观测点viewmtx 观测点转换矩阵7、图形注释(Graph annotation)colorbar 显示色条gtext 用鼠标在图上标注文字plotedit 图形编辑工具text 在图上标注文字title 图形标题xlabel X 轴名标注ylabel Y 轴名标注zlabel Z 轴名标注8 、硬拷贝(Hardcopy and printing)orient 设置走纸方向print 打印图形或把图存入文件printopt 打印机设置verml 将图形保存为VRML2.0 文件十四特殊图形1、特殊平面图形(Specialized 2-D graphs)area 面域图bar 直方图barh 水平直方图comet 彗星状轨迹图compass 从原点出发的复数向量图errorbar 误差棒棒图ezplot 画二维曲线ezpolar 画极坐标曲线feather 从X 轴出发的复数向量图fill 多边填色图fplot 函数曲线图hist 统计频数直方图pareto Pareto 图pie 饼形统计图plotmatrix 散点图阵列scatter 散点图stairs 阶梯形曲线图stem 火柴杆图2 、等高线及二维半图形(Contour and 2-1/2D graphs)clabel 给等高线加标注contour 等高线图contourf 等高线图contour3 三维等高线ezcontour 画等位线ezcontourf 画填色等位线pcolor 用颜色反映数据的伪色图voronoi Voronoi 图3、特殊三维图形(Specialized 3-D graphs)bar3 三维直方图bar3h 三维水平直方图comet3 三维彗星动态轨迹线图ezgraph3 通用指令ezmesh 画网线图ezmeshc 画等位线的网线图ezplot3 画三维曲线ezsurf 画曲面图ezsurfc 画带等位线的曲面图meshc 带等高线的三维网线图meshz 带零基准面的三维网线图pie3 三维饼图ribbon 以三维形式绘制二维曲线scatter3 三维散点图stem3 三维离散杆图surfc 带等高线的三维表面图trimesh 三角剖分网线图trisurf 三角剖分曲面图waterfall 瀑布水线图4、内剖及向量视图(Volume and vector visualization)coneplot 锥体图contourslice 切片等位线图quiver 矢量场图quiver3 三维方向箭头图slice 切片图5、图像显示及文件处理(Image display and file I/O)brighten 控制色彩的明暗colorbar 色彩条状图colormap 设置色图contrast 提高图像对比度的灰色图gray 线性灰度image 显示图像imagesc 显示亮度图像imfinfo 获取图像文件的特征数据imread 从文件读取图像的数据阵(和伴随色图))imwrite 把强度图像或真彩图像写入文件6、影片和动画(Movies and animation)capture 当前图的屏捕捉frame2im 将影片动画转换为编址图像getframe 获得影片动画图像的帧im2frame 将编址图像转换为影片动画movie 播放影片动画moviein 影片动画内存初始化rotate 旋转指令7、颜色相关函数(Color related function)spinmap 颜色周期性变化操纵8、三维模型函数(Solid modeling)cylinder 圆柱面patch 创建块sphere 球面Surf2patch 将曲面数据转换为块数据十五句柄图形1、图形窗的产生和控制(Figure window creation and control)clf 清除当前图close 关闭图形figure 打开或创建图形窗口gcf 获得当前图的柄openfig 打开图形refresh 刷新图形shg 显示图形窗2、轴的产生和控制(Axis creation and control)axes 在任意位置创建轴axis 轴的控制box 坐标形式在封闭式和开启式之间切换caxis 控制色轴的刻度cla 清除当前轴gca 获得当前轴的柄hold 图形的保持ishold 若图形处保持状态则为真subplot 创建子图3、句柄图形对象(Handle Graphics objects)axex 在任意位置创建轴figure 创建图形窗口image 创建图像light 创建光line 创建线patch 创建块rectangle 创建方surface 创建面text 创建图形中文本uicontextmenu 创建现场菜单对象uicontrol 用户使用界面控制uimenu 用户使用菜单控制4、句柄图形处理(Handle Graphics operations)copyobj 拷贝图形对象及其子对象delete 删除对象及文件drawnow 屏幕刷新findobj 用规定的特性找寻对象gcbf "正执行回调操作"的图形的柄gcbo "正执行回调操作"的控件图柄指令gco 获得当前对象的柄get 获得对象特性getappdat 获得应用程序定义数据isappdata 检验是否应用程序定义数据reset 重设对象特性rmappdata 删除应用程序定义数据set 建立对象特性setappdata 建立应用程序定义数据5 、工具函数(Utilities)closereq 关闭图形窗请求函数ishandle 若是图柄代号侧为真newplot 下一个新图十六图形用户界面工具align 对齐用户控件和轴cbedit 编辑回调函数ginput 从鼠标得到图形点坐标guide 设计GUI menu 创建菜单menuedit 菜单编辑propedit 属性编辑uicontrol 创建用户界面控制uimenu 创建用户界面菜单十七字符串1 、通用字符串函数(General)blanks 空格符号cellstr 通过字符串数组构建字符串的元胞数组char 创建字符传输组或者将其他类型变量转化为字符串数组deblank 删除最后的空格double 把字符串变成ASCII 码值eval 执行串形式的MATLAB 表达式2、字符串查询(String tests)iscellstr 若是字符串组成的元胞数组则为真ischar 若是字符串则为真isletter 串中是字母则为真isspace 串中是空格则为真isstr 若是字符串则为真3、字符串操作(String operations)base2dec X-进制串转换为十进制整数bin2dec 二进制串转换为十进制整数dec2base 十进制整数转换为X 进制串dec2bin 十进制整数转换为二进制串dec2hex 十进制整数转换为16 进制串findstr 在一个串中寻找一个子串hex2dec 16-进制串转换为十进制整数hex2num 16-进制串转换为浮点数int2str 将整数转换为字符串lower 把字符串变成小写mat2str 将数组转换为字符串num2str 把数值转换为字符串strcat 把多个串连接成长串strcmp 比较字符串strcmpi 比较字符串(忽略大小写)strings MATLAB 中的字符串strjust 字符串的对齐方式strmatch 逐行搜索串strnomp 比较字符串的前N 个字符strncmpi 比较字符串的前N 个字符(忽略大小写)strrep 用另一个串代替一个串中的子串strtok 删除串中的指定子串strvcat 创建字符串数组str2mat 将字符串转换为含有空格的数组str2num 将字符串转换为数值upper 把字符串变成大写十八文件输入/输出clc 清除指令窗口disp 显示矩阵和文字内容fprintf 把格式化数据写到文件或屏幕home 光标返回行首input 提示键盘输入load 从磁盘中调入数据变量pause 暂停sprintf 写格式数据到串sscanf 在格式控制下读串十九时间和日期clock 时钟cputme MATLAB 战用CPU 时间date 日期etime 用CLOCK 计算的时间now 当前时钟和日期pause 暂停tic 秒表启动toc 秒表终止和显示二十数据类型1、数据类型(Data types)cell 创建元胞变量char 创建字符传输组或者将其他类型变量转化为字符串数组double 转化为16 位相对精度的浮点数值对象function handle 函数句柄inline 创建内联函数JavaArray 构建Java 数组JavaMethod 调用某个Java 方法JavaObject 调用Java 对象的构造函数single 转变为单精度数值sparse 创建稀疏矩阵struct 创建构架变量uint8(unit16、unit32) 转换为8(16、32)位无符号整型数int8(nit16、nit32) 转换为8(16、32)位符号整型数2、多维数组函数(Multi-dimensional array functions)cat 把若干数组串接成高维数组ndims 数组A 的维数ndgrid 为N-D 函数和插补创建数组ipermute 广义反转置permute 广义非共轭转置shiftdim 维数转换squeeze 使数组降维3、元胞数组函数(Cell array functions)cell 创建元胞变量celldisp 显示元胞数组内容cellfun 元胞数组函数cellplot 图示元胞数组的内容cell2struct 把元胞数组转换为构架数组deal 把输入分配给输出is cell 若是元胞则为真num2 cell 把数值数组转换为元胞数组struct2 cell 把构架数组转换为元胞数组4、构架函数(Structure functions)fieldnames 获取构架的域名getfield 获取域的内容isfield 若为给定构架的域名则为真isstruct 若是构架则为真rmfield 删除构架的域setfield 指定构架域的内容struct 创建构架变量5、函数句柄函数(Function handle functions)@ 创建函数句柄functions 列举函数句柄对应的函数func2str 将函数句柄数组转换为字符串str2func 将字符串转换为函数句柄6、面向对象编程(Object oriented programming functions)dlass 查明变量的类型isa 若是指定的数据类型则为真inferiorto 级别较低isjava 若是java 对象则为真isobject 若是对象则为真methods 显示类的方法名substruct 创建构架总量superiorto 级别较高二一示例demo 演示程序flow 无限大水体中水下射流速度数据intro 幻灯演示指令peaks 产生peaks 图形数据二二符号工具包1、微积分(Calculus)diff 求导数limit 求极限int 计算积分jacobian Jacobian 矩阵symsum 符号序列的求和trylor Trylor 级数2、线性代数(Linear Algebra)det 行列式的值diag 创建对角阵,抽取对角向量eig 矩阵特征值和特征向量expm 矩阵指数inv 矩阵的逆jordan Jordan 分解null 零空间poly 特征多项式rank 秩rref 转换为行阶梯形svd 奇异值分解tril 抽取下三角阵triu 抽取上三角阵3、化简(Simplification)collect 合并同类项expand 对指定项展开factor 进行因式或因子分解horner 转换成嵌套形式numden 提取公因式simple 运用各种指令化简符号表达式simplify 恒等式简化subexpr 运用符号变量置换子表达式subs 通用置换指令4、方程求解(Solution of Equation)compose 求复函数dsolve 求解符号常微分方程finverse 求反函数fminunc 拟牛顿法求多元函数极值点fsolve 解非线性方程组lsqnonlin 解非线性最小二乘问题solve 求解方程组5、变量精度(Variable Precision Arithmetic)digits 设置今后数值计算以n 位相对精度进行vpa 给出数值型符号结果6、积分变换(Integral Transforms)fourier Fourier 变换ifourier Fourier 反变换ilaplace Ilaplace 反变换iztrans Z 反变换laplace Ilaplace 变换ztrans Z 变换7、转换(Conversions)char 把符号对象转化为字符串数组double 把符号常数转化为16 位相对精度的浮点数值对象poly2sym 将多项式转换为符号多项式sym2poly 将符号多项式转换为系数向量8、基本操作(Basic Operation)ccode 符号表达式的 C 码表达式findsym 确认表达式中符号"变量" fortran 符号表达式的fortran 表达式latex 符号表达式的LaTex 表示pretty 习惯方式显示sym 定义基本符号对象syms 定义基本符号对象。

02a Basic equations one substrate

02a Basic equations one substrate

• The assumption of rapid equilibrium in the derivation of the HenriMichaelis-Menten equation requires that the rate of dissociation of the ES complex (k-1) far exceed the rate of conversion of the ES complex into E + P (kcat). This assumption is invalid for many (if not most) enzymes and cannot be verified experimentally in an easy way. We will not talk about this situation later.
The assay of an enzyme under initial velocity conditions is, therefore, an important consideration in the practical design of enzyme assays.
Enzyme kinetics
combined with structural data.
• Kinetics cannot prove a mechanism, though they can eliminate models that are inconsistent with the data.
Advanced kinetic tools, such as irreversible inhibition, pH rate profiles or kinetic isotope effects can strongly support a particular mechanism and can help identify key catalytic residues.

数学公式的英文表达

数学公式的英文表达

1.Logic∃there ex ist∀for allp⇒q p implies q / if p, then qp⇔q p if and onl y if q /p is equivalent to q / p and q are equi v alent 2.Setsx∈A x bel ongs to A / x is an element (or a member) of Ax∉A x does not bel ong to A / x is not an element (or a member) of A A⊂B A is c ontained in B / A is a subset of BA⊃B A c ontains B / B is a subs et of AA∩B A cap B / A meet B / A i ntersec tion BA∪B A c up B / A join B / A union BA\B A minus B / the diference between A and BA×B A cross B / the cartesi an product of A and B3. Real numbersx+1 x plus onex-1 x minus onex±1 x plus or minus onexy xy / x multiplied by y(x - y)(x + y) x minus y, x plus yx y x ov er y= the equals signx = 5 x equals 5 / x is equal to 5x≠5 x (is) not equal t o 5x≡y x is equi valent to (or identical with) yx ≡ y x is not equi v al ent to (or i dentical with) yx > y x is greater than yx≥y x is greater than or equal to yx < y x is l ess than yx≤y x is less than or equal to y0 < x < 1 z ero is less than x is l ess than 10≤x≤1 zero is less than or equal to x is less than or equal to 1| x | mod x / modulus xx 2 x squared / x (raised) to the power 2x 3 x cubedx 4 x to the fourth / x to the power fourx n x to the nth / x to the power nx −n x to the (power) minus nx(square) root x / the squar e root of xx 3 cube root (of) xx 4 fourth r oot (of) xx n nth root (of) x( x+y ) 2 x plus y all squared( x y ) 2 x over y all squaredn! n factorialx ^ x hatx ¯x barx ˜x tildex i x i / x subscript i / x suffix i / x s ub i∑ i=1 n a i the sum from i equals one to n a i / the sum as i runs from 1 to n of the a i 4. Li near algebra‖x‖the nor m (or modulus) of xOA → OA / vector OAOA ¯OA / the length of the s egment OAA T A transpose / the tr anspose of AA −1 A i nv erse / the inverse of A5. Functionsf( x ) fx / f of x / the func tion f of xf:S→T a function f from S to Tx→y x maps to y / x is sent (or mapped) to yf'( x ) f pri me x / f das h x / the (first) deri v ati ve of f with respect to xf''( x ) f doubl e-prime x / f doubl e-das h x / the sec ond derivati v e of f with res pect to x f'''( x ) triple-prime x / f triple-dash x / the third deri v ati ve of f with respect to xf (4) ( x ) f four x / the fourth deri v ati ve of f with respect to x∂f ∂ x 1 the partial (deri v ati ve) of f with res pec t to x1∂ 2 f ∂ x 1 2 the s econd par tial (derivati v e) of f with respect to x1∫ 0 ∞ the integral from zero to infinitylim⁡ x→0 the li mit as x approaches zerolim⁡ x→ 0 + the li mit as x approaches zero from abovelim⁡ x→ 0 − the li mit as x approach es zero from belowlog e y log y to the base e / log to the base e of y / natural l og (of) yln⁡y log y to the base e / l og to the bas e e of y / natural log (of) y一般词汇数学mathematics, maths(BrE), math(AmE)公理ax i om定理theorem计算calculation运算operation证明prov e假设hypothesis, hypothes es(pl.)命题propositi on算术arithmetic加plus(prep.), add(v.), additi on(n.)被加数augend, s ummand加数addend和sum减minus(pr ep.), s ubtract(v.), subtracti on(n.) 被减数minuend减数subtrahend差remainder乘times(prep.), multipl y(v.), multi plication(n.) 被乘数multiplicand, faci end乘数multiplicator积produc t除div ided by(prep.), div i de(v.), di v ision(n.)被除数div idend除数div isor商quotient等于equals, is equal to, is equi valent to大于is greater than小于is lesser than大于等于is equal or greater than小于等于is equal or less er than运算符operator数字digit数number自然数natural number整数integer小数decimal小数点decimal point分数fraction分子numerator分母denomi nator比ratio正positi v e负negati v e零null, zero, nought, nil十进制decimal s y stem二进制binar y s y stem十六进制hex adeci mal s y stem权weight, significance进位carry截尾truncati on四舍五入round下舍入round down上舍入round up有效数字significant digit无效数字insignificant digit代数algebra公式formul a, formulae(pl.)单项式monomial多项式pol y nomi al, multinomial系数coefficient未知数unk nown, x-factor, y-factor, z-factor 等式,方程式equation一次方程simple equati on二次方程quadratic equation三次方程cubic equation四次方程quartic equati on不等式inequati on阶乘factorial对数logarithm指数,幂exponent乘方power二次方,平方square三次方,立方cube四次方the power of four, the fourth power n次方the power of n, the nth power开方evoluti on, ex trac tion二次方根,平方根square root三次方根,立方根cube root四次方根the root of four, the fourth rootn次方根the root of n, the nth root集合aggregate元素element空集v oi d子集subset交集intersection并集union补集complement映射mapping函数functi on定义域domain, field of definition值域range常量constant变量v ariable单调性monotonicity奇偶性parity周期性periodicity图象image数列,级数series微积分calculus微分differential极限limit无穷大infinite(a.) i nfinity(n.)无穷小infinitesi mal积分integral定积分definite integral不定积分indefi nite i ntegral有理数rational number无理数irrational number实数real number虚数imaginar y number复数complex number矩阵matri x行列式determinant几何geometry点point线line面plane体solid线段segment射线radial平行parallel相交intersect角angle角度degree弧度radian锐角acute angle直角right angle钝角obtuse angle平角straight angle周角perigon底base边side高height三角形triangle锐角三角形acute triangle直角三角形right triangle直角边leg斜边hypotenuse勾股定理Pythagor ean theorem 钝角三角形obtuse triangle不等边三角形scalene triangle 等腰三角形isosceles triangle 等边三角形equilateral triangle平行四边形parallelogram 矩形rectangle长length宽width。

偏微分方程的基本分类与解法

偏微分方程的基本分类与解法

偏微分方程的基本分类与解法偏微分方程(Partial Differential Equations)是数学领域中研究函数及其偏导数的方程。

它在物理、工程和金融等多个领域中具有广泛的应用。

本文将对偏微分方程的基本分类和解法进行介绍。

一、基本分类偏微分方程可以根据方程中未知函数的阶数、方程中未知函数及其偏导数的最高阶数、方程中出现的独立变量的个数等因素进行分类。

下面将介绍几种常见的偏微分方程类型:1. 线性偏微分方程(Linear PDEs):线性偏微分方程的未知函数及其偏导数在方程中以线性的方式出现,即未知函数及其偏导数之间没有乘积或除法的项。

典型的线性偏微分方程包括波动方程、热传导方程和拉普拉斯方程等。

2. 非线性偏微分方程(Nonlinear PDEs):非线性偏微分方程的未知函数及其偏导数在方程中以非线性的方式出现。

非线性偏微分方程的研究更加复杂和困难,因为它们通常没有简单的通解,需要依赖于数值方法或近似解法。

3. 偏微分方程的阶数(Order):偏微分方程的阶数指的是未知函数及其偏导数的最高阶数。

常见的偏微分方程阶数包括一阶、二阶和高阶偏微分方程等。

4. 线性度(Degree of Linearity):线性度是指方程中未知函数和它的偏导数的最高次数。

线性偏微分方程的线性度为一,非线性偏微分方程的线性度大于一。

二、解法解偏微分方程的方法有很多,下面将介绍几种常见的解法:1. 分离变量法(Separation of Variables):分离变量法适用于可以将偏微分方程的未知函数表示为各个独立变量的乘积形式的情况。

通过将未知函数表示为各个独立变量的乘积形式,并将方程中的偏导数转化为普通导数,从而将原方程转化为一系列的常微分方程。

通过求解这些常微分方程,并将解合并起来,即可得到原偏微分方程的解。

2. 特征线方法(Method of Characteristics):特征线方法是用于解一阶偏微分方程的一种常用方法。

方程的英语知识点总结

方程的英语知识点总结

方程的英语知识点总结Key Concepts of Equations:1. Definition of an Equation: An equation is a mathematical statement that asserts the equality of two expressions, typically denoted as LHS = RHS, where LHS (left-hand side) and RHS (right-hand side) are mathematical expressions containing variables and constants.2. Variables and Constants: In an equation, variables are symbols that represent unknown quantities, while constants are fixed numerical values. Equations allow us to solve for the value of the variable by manipulating the given information and applying various mathematical operations.3. Solutions of an Equation: The solution of an equation is the value or set of values for the variable that make the equation true. A solution to an equation satisfies the equality relationship between the LHS and RHS.4. Solving Equations: The process of finding the solutions to an equation involves using algebraic techniques to manipulate the given expressions and isolate the variable. Common methods for solving equations include combining like terms, applying inverse operations, and factoring.5. Equivalent Equations: Two equations are said to be equivalent if they have the same solution set. Algebraic manipulations such as adding or subtracting the same quantity from both sides, multiplying or dividing both sides by the same non-zero number, and applying the properties of exponents can be used to derive equivalent equations.6. Applications of Equations: Equations are used to model various real-world scenarios, such as calculating the trajectory of a projectile, determining the growth of populations, analyzing the behavior of electrical circuits, and predicting the spread of infectious diseases. Types of Equations:1. Linear Equations: A linear equation is an equation of the form ax + b = c, where x is the variable, a and b are constants, and c is a constant term. The graph of a linear equation is a straight line, and the solutions to a linear equation form a single point, a line, or no points (in the case of parallel lines).2. Quadratic Equations: A quadratic equation is an equation of the form ax^2 + bx + c = 0, where x is the variable, and a, b, and c are constants with a ≠ 0. Quadratic equations have solutions that can be found using the quadratic formula, factoring, or completing the square. The graph of a quadratic equation is a parabola.3. Exponential Equations: An exponential equation is an equation in which the unknown variable appears as an exponent. Exponential equations arise in situations involving exponential growth or decay, such as population growth, radioactive decay, and compound interest problems.4. Trigonometric Equations: Trigonometric equations involve trigonometric functions such as sine, cosine, and tangent. These equations often arise in problems related to periodic phenomena, wave functions, and harmonic motion.Properties of Equations:1. Reflexive Property: For any real number a, a = a.2. Symmetric Property: If a = b, then b = a.3. Transitive Property: If a = b and b = c, then a = c.4. Addition Property of Equality: If a = b, then a + c = b + c.5. Subtraction Property of Equality: If a = b, then a - c = b - c.6. Multiplication Property of Equality: If a = b, then ac = bc.7. Division Property of Equality: If a = b and c ≠ 0, then a/c = b/c.8. Multiplicative Property of Zero: For any real number a, a × 0 = 0.9. Multiplicative Property of One: For any real number a, a × 1 = a.10. Distributive Property: For any real numbers a, b, and c, a(b + c) = ab + ac.In conclusion, equations are a vital aspect of mathematics and are used to express and solve a wide range of problems in various fields. Understanding the key concepts, types, and properties of equations is essential for mastering algebra and applying mathematical principles to real-world situations. By studying equations and their properties, one can develop problem-solving skills and analytical thinking, which are invaluable in academic, professional, and everyday life.。

1-2 流体流动基本方程

1-2 流体流动基本方程

面达到最高时,h为零,R亦为零。
(2)远距离液位测量装置
管道中充满氮气,其密 度较小,近似认为
p A pB
pA pa gh
pB pa 0 gR
A
B
所以
0 h R
3、液封高度的计算
液封作用:
确保设备安全:当设备
内压力超过规定值时,气
体从液封管排出; 防止气柜内气体泄漏。 液封高度: h p
二、静力学方程的讨论
p = p0 + ρgh
①传递定律: p0 有变化时,流体内部其他各点上的 压强也发生变化; ②等压面的概念:在静止的同一连续流体内,处于 同一水平面上各点的压强都相等; ③压强可以用一定高度的流体柱来表示 p p0 h g 但必须说明液体的种类。
④ 静力学方程的能量形式:
液A和C;
扩大室内径与 U 管内径之比应 大于10 。
p1 p2 Rg( A C )
[分析]同压差下,两种指示液密度越接近,高度 差越大。
2、液位的测量 (1)近距离液位测量装置
压差计读数R反映出容器 内的液面高度。
0 h R
ρ
ρo
液面越高,h越小,压差计读数 R越小;当液
作业:
P54
1-5;1-8
§ 1.2 管内流体流动的基本方程 ( Basic equations of fluid flow )
一、流量与流速
1. 体积流量 (volumetric flow rate) 单位时间内流经管道任意截面的流体体积 , qV, 单位为m3/s。 2. 质量流量(mass flow rate) 单位时间内流经管道任意截面的流体质量, qm, 单位为 kg/s。 二者关系:

流体流动 Fluid Flow

流体流动 Fluid Flow
有微压差p 存在时,尽管两扩大室液 面高差很小以致可忽略不计,但U型管内却 可得到一个较大的 R 读数。
02
a b
p1
p2
p1 p2 R 01 02 g
( 1-8)
01
对一定的压差 p,R 值的大小与所用的指示剂密 度有关,密度差越小,R 值就越大,读数精度也越高。
绝对压强,表压强, 真空度之间的关系见图1-2。
图1-2压强的基准和量度
熟悉压力的各种计量单位与基准及换算关系,对于以后的学习和 实际工程计算是十分重要的。
1.2.1.2 流体压强的特性
流体压强具有以下两个重要特性: ①流体压力处处与它的作用面垂直,并且总是指 向流体的作用面; ②流体中任一点压力的大小与所选定的作用面在 空间的方位无关。
位面积上的表面力称之为应力。
①垂直于表面的力p,称为压力(法向力)。 单位面积上所受的压力称为压强p。 ② 平行于表面的力F,称为剪力(切力)。 单位面积上所受的剪力称为应力τ。
1.2.流体静力学基本方程( Basic equations of fluid
statics )

* 本节主要内容 流体的密度和压强的概念、单位及换算等; 在重力场中的静止流体内部压强的变化规律及其 工程应用。 * 本节的重点 重点掌握流体静力学基本方程式的适用条件 及工程应用实例。 * 本节的难点 本节点无难点。
z
o
图1-3流体静力学 基本方程推导
1.2.3.1方程式推导

(1)向上作用于薄层下底的总压力,PA (2)向下作用于薄层上底的总压力,(P+dp)A (3)向下作用的重力, 由于流体处于静止,其 gAdz 垂直方向所受到的各力代数 和应等于零,简化可得:

二阶椭圆型方程课

二阶椭圆型方程课
5.二阶拟线性椭圆型方程古典解的存在性(6学时)
6.有界可测系数的非散度型椭圆型方程解的Harnack不等式和H?lder估计(Krylov-Safanov估计)(9学时)
课堂讲授,课后作业,期末闭卷考试
期末闭卷考试占80%,平时作业20%
教学评估
周蜀林:
3.Lp theory of second order linear elliptic partial differential equations,
4.Harnack inequality and H?lder estimates of solutions for elliptic equations of divergence
of Mathematical Sciences. In this course, the fundamental theories of the boundary problems of
second order linear and quasilinear elliptic partial differential equations will be systematically
6.Harnack inequality and H?lder estimates of solutions for elliptic equations of nondivergence
form with bounded and measurable coefficients (Krylov-Safanov estimates).
6.有界可测系数的非散度型椭圆型方程解的Harnack不等式和H?lder估计(Krylov-Safanov估计)。
英文简介
This course is a selective course for the graduate students and senior undergraduates in School

常微分方程(第三版)课件第一章

常微分方程(第三版)课件第一章
2u 2u 2u 8. 2 2 4 xy y
§1.1 Sketch of ODE n阶隐式方程 n阶显式方程 方程组
偏微分方程 偏微分方程 不是微分方程
9. f 2 ( x) sin x
§1.1 Sketch of ODE
微分方程模型举例/Modeling of ODE/
CH.1 Introduction
本章要求/Requirements/
能快速判断微分方程的类型;
掌握高阶微分方程及其初值问题的一般形式;
理解微分方程解的意义。
§1.1 Sketch of ODE
§ 1.1 微分方程概述/ Sketch of ODE/
微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。
§ 1.2 基本概念/Basic Conception/
1. 常微分方程和偏微分方程 2. 一阶与高阶微分方程 3. 线性和非线性微分方程 4. 解和隐式解 5. 通解和特解 6. 积分曲线和积分曲线族 7. 微分方程的几何解释-----方向场
§1.2 Basic Conception
常微分方程与偏微分方程/ODE and PDE/
电子课件
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等解法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
常微分方程的解的表达式中,可能包含一个或者几个常

化工原理英文教材流体流动的基本方程Basic equations of fluid flow

化工原理英文教材流体流动的基本方程Basic equations of fluid flow
S o, S S, p p 0
F Mb Ma
The momentum flow rate M of a fluid tream having a mass flow rate m and all moving at a velocity u equals mu
F mub ua
It is true if the velocity u is an average velocity at the cross section.
Ma a
Mb b
Assuming that the flow is steady and flows in the x direction.
The sum of forces acting in the x direction equals the difference between the momentum leaving with the fluid per unit time and that brought in per unit time by the fluid or
If u varies from point to point in the cross section of stream, however, the total momentum flow does not equal the product of mass flow rate and average velocity
the component of the gravity in the direction of flow
Fg cos A 0
From this equation, noting that A=bL and Fg=ρrLbg
So

二元二次不定方程佩尔方程

二元二次不定方程佩尔方程

二元二次不定方程佩尔方程1. 引言二元二次不定方程,也称为佩尔方程(Pell’s equation),是数论中一个经典的问题。

它的一般形式为:x2−Dy2=1其中,x和y是整数,D是一个给定的正整数。

这个方程最早由英国数学家约翰·克利斯托夫·佩尔(John Christopher Pell)于17世纪提出,因此得名。

佩尔方程在数论和代数领域有着广泛的应用,并且与连分数、平方根及近似分数等概念密切相关。

本文将详细介绍佩尔方程的性质、解法及其应用。

2. 性质与解法2.1 基本性质对于给定的正整数D,二元二次不定方程x2−Dy2=1存在无穷多个整数解(x,y)。

2.2 基本解和通解对于特定的正整数D,可以通过求解最小正整数解(x0,y0)来得到该方程的一组基本解。

根据基本解(x0,y0),可以构造出该方程的通解。

2.3 连分数展开通过将D的平方根展开为连分数形式,可以得到佩尔方程的通解。

连分数展开是一种将实数表示为无限循环分数的方法,它在求解佩尔方程中具有重要作用。

2.4 Pell数列佩尔方程的解构成了一个特殊的整数序列,称为Pell数列。

Pell数列具有许多有趣的性质和应用。

3. 解法示例3.1 求解D=2的佩尔方程对于D=2,我们可以得到最小正整数解(x0,y0)=(3,2)。

根据连分数展开的方法,我们可以得到该方程的通解:x n+y n√2=(3+2√2)n其中,n为非负整数。

通过迭代计算,我们可以得到一系列解(x n,y n):n x_n y_n0 1 01 3 22 17 12………3.2 求解D=5的佩尔方程对于D=5,我们可以得到最小正整数解(x0,y0)=(9,4)。

同样地,根据连分数展开的方法,我们可以得到该方程的通解:x n+y n√5=(9+4√5)n通过迭代计算,我们可以得到一系列解(x n,y n):n x_n y_n0 1 01 9 42 161 72………4. 应用4.1 近似平方根佩尔方程可以用来近似求解平方根。

吉布斯方程

吉布斯方程

吉布斯方程
爱因斯坦-罗森伯格-吉布斯方程(Einstein-Rosen-Gibbs equation)是一个
重要的物理学方程,它是由爱因斯坦和罗森伯格在1935年提出的,后来由吉布斯
在1937年进行了改进。

它是一个非常重要的物理学方程,它描述了重力场的变化,并且可以用来解释宇宙的膨胀和收缩。

这个方程的公式是:Rμν-1/2Rgμν=8πTμν,其中Rμν是曲率张量,
Rgμν是曲率张量的拉格朗日表示,Tμν是能量-动量张量。

这个方程表明,重
力场的变化受到能量-动量张量的影响,而能量-动量张量又受到重力场的影响。

这个方程的重要性在于它可以用来解释宇宙的膨胀和收缩。

它表明,宇宙的膨
胀和收缩是由能量-动量张量的变化引起的,而能量-动量张量又受到重力场的影响。

因此,宇宙的膨胀和收缩受到重力场的影响。

爱因斯坦-罗森伯格-吉布斯方程是一个非常重要的物理学方程,它可以用来解
释宇宙的膨胀和收缩,并且可以用来研究重力场的变化。

它的重要性在于它可以帮助我们更好地理解宇宙的运行机制,从而更好地探索宇宙的奥秘。

二阶微分方程的解法及应用【开题报告】

二阶微分方程的解法及应用【开题报告】

毕业论文开题报告数学与应用数学二阶微分方程的解法及应用一、选题的背景、意义两千多年以前的古希腊时代,地中海沿岸的奴隶们在繁重的生产劳动中,早就认识到搬运重东西时利用滚动要比滑动省力因而在运输中广泛应用装有圆轮和圆轴的车子。

为了精密地制造这些工具,就需要对圆形有精确的认识,在深入地研究圆形的过程中,出现了“无限细分,无限求和”的微积分思想的萌芽。

到了16世纪前后,社会生产实践活动进入了一个新的时期。

在这段时间中,笛卡尔引进了变数的概念,有了变数,微分和积分也就立刻产生了!17世纪上半叶,随着函数观念的建立和对机械运动规律的探求,许多实际问题摆到了数学家的面前,几乎所有的科学大师都把自己的注意力集中到寻求解决这些难题的新的数学工具上来,他们在解决问题的过程中,逐步形成了微积分学的一些基本方法。

17世纪,当牛顿和莱布尼茨创立了微积分以后,数学家们便开始谋求用微积分这一有力的工具去解决越来越多的物理问题,但他们很快发现不得不去对付一类新的更复杂的问题,这类问题不能通过简单的积分解决,要解决这类问题需要专门的技术,这样,微分方程这门学科就应运而生了。

它和天文学、力学、物理学等许多学科有广泛的联系,在数学领域,它和其它一些分支学科相互渗透,关系密切,为理工科院校数学专业重要的基础课程,理工科其它专业的高等数学课程也将会有越来越多的常微分方程内容。

17世纪到18世纪是常微分方程发展的经典理论阶段,以求通解为主要研究内容;从18世纪下半叶到19世纪,此阶段为常微分方程发展的适定性理论阶段,人们从求通解的热潮转向研究常微分方程问题的适定性理论;19世纪为常微分方程发展的解析理论阶段,这一阶段的主要成果是微分方程的解析理论,运用幂级数和广义幂级数解法,求出一些重要的二阶线性方程的幂级数解,并得到极其重要的一些特殊函数;19世纪至20世纪是常微分方程的定性理论阶段,以定性与稳定性理论为研究内容。

二、研究的基本内容与拟解决的主要问题研究的基本内容:本文着重讨论求解各种二阶微分方程的方法。

第2章 经典板理论的基本方程(Q)

第2章  经典板理论的基本方程(Q)
边界反作用剪力表达式为
(z2.10)
(z2.11)
(z2.12) (z2.13)
M r 1 M r Vr Qr , V Q r r
板的应变能为
D 2 w 1 w 1 2 w 2 U ( 2 2 ) 2 A 2 r r r r
* Q : 2.33能否写成W ( x, y) X m ( x) sin y X m ( x) cos y

k2 2
?时,方程(2.34)的解为
第1章 板的基本方程
2 2 2 2 Y A sin k y B cos k y m1 m m 2 2 2 2 Y C sinh k y D cosh k y m m m2
第2章 经典板理论的基本方程
1.1 极坐标系 1.1.1 经典方程 1.1.2 方程的解 1.2 椭圆坐标系 1.2.1 经典方程 1.2.2 方程的解 1.3 直角坐标系 1.3.1 经典方程 2.3.2 方程的解 1.4 斜交坐标系 1.4.1 经典方程 1.4.2 方程的解
参考文献
Q:为什么要在不同坐标系下建立板的 经典方程?


(z2.33)
(2.33)代入(2.7),得关于Ym(x, y)的两个微分方程
d 2Ym1 2 2 ( k )Ym1 0 d y2 Q:为什么值得到两个微分方程?如何得到的? (z2.34) 2 Q;a 为什么等于 mp /a ? d Ym 2 (k 2 2 )Y 0 m2 2 d y 2 ?z = mp /a 4 关于?的两个微分方程与以上方程类似。其中 k D
关于的两个微分方程与以上方程完全相同

代数方程algebraicequation

代数方程algebraicequation

代数方程(algebraic equation )代数方程指多项式方程,其一般形式为a n x n +a n -1xn -1+…+a 1x +a 0=0,是代数学中最基本的研究对象之一.在20世纪以前,解方程一直是代数学的一个中心问题.二次方程的求解问题历史久远.在巴比伦泥板中(公元前18世纪)就载有二次方程的问题.古希腊人也解出了某些二次方程.中国古代数学家赵爽(公元3世纪)在求解一个有关面积的问题时,相当于给出二次方程-x 2+kx =A 的一个根)4(212A k k x --=.7世纪印度数学家婆罗摩笈多给出方程x 2+px -q =0的一个求根的公式)4(212p p p x -+=.一元二次方程的一般解法是9世纪阿拉伯数学家花拉子米建立的.对三次方程自古以来也有很多研究.在巴比伦泥板中,就有相当于三次方程的问题.阿基米德也曾讨论过方程x 3+a =cx 2的几何解法.11世纪波斯数学家奥马·海亚姆创立了用圆锥曲线解三次方程的几何方法,他的工作可以看作是代数与几何相结合的最早尝试.但是三次、四次方程的一般解法(即给出求根公式),直到15世纪末也还没有被发现.意大利数学家帕乔利在1494年出版的著作中还说:“x 3+mx =n ,x 3+n =mx (m ,n 为正数)现在之不可解,正像化圆为方问题一样.”但到16世纪上半叶,三次方程的一般解法就由意大利数学家费罗、塔尔塔利亚和卡尔达诺等得到.三次方程的求根公式最早出现在卡尔达诺的《大术》(1545)之中;四次方程的求根公式由卡尔达诺的学生费拉里首先得到,也记载于卡尔达诺的《大术》中.在16世纪末到17世纪上半叶,数学家们还探讨如何判定方程的正根、负根和复根的个数.卡尔达诺曾指出一个实系数方程的复根是成对出现的,牛顿在他的《广义算术》中证明了这一事实.笛卡儿在他的《几何学》中给出了正负号法则(通称笛卡儿法则),即多项式方程f (x )=0的正根的最多数目等于系数变号的次数,而负根的最多数目等于两个正号和两个负号连续出现的次数.但笛卡儿本人没有给出证明,这个法则是18世纪的几个数学家证明的.牛顿在《广义算术》中给出确定正负根数目上限的另一法则,并由此推出至少能有多少个复数根.研究代数方程的根与系数之间的关系,也是这一时期代数学的重要课题.卡尔达诺发现方程所有根的和等于x n -1的系数取负值,每两个根的乘积之和等于x n -2的系数,等等.韦达和牛顿也都在他们的著作中分别叙述了方程的根与系数之间的关系,现在称这个结果为韦达定理.这些工作在18世纪发展为关于根的对称函数的研究.另一个重要课题是今天所谓的因子定理.笛卡儿在他的《几何学》中指出:f(x)能为(x-a)整除,当且仅当a是f(x)=0的一个根.由此及其他结果,笛卡儿建立了求多项式方程有理根的现代方法.他通过简单的代换,把方程的首项系数化为1,并使所有系数都变为整数,这时他判断,原方程的各有理根必定是新方程常数项的整数因子.牛顿还发现了方程的根与其判别式之间的关系,他在《广义算术》中还给出了确定方程根的上界的一些定理.此外,数学归纳法也在18世纪末开始明确地用于代数学中.18世纪以后,数学家们的注意力开始转向寻求五次以上方程的根式解.经过两个多世纪的努力,在欧拉、旺德蒙德、拉格朗日、鲁菲尼等人工作的基础上,19世纪上半叶,阿贝尔和伽罗瓦几乎同时证明了五次以上的方程不能用公式求解.他们的工作开创了用群论的方法来研究代数方程的解的理论,为抽象代数学的建立开辟了道路(见置换群和伽罗瓦理论).代数方程理论的另一个问题是“一个方程能有多少个根”.中世纪阿拉伯和印度的数学家们都已认识到二次方程有两个根.到了16世纪,意大利数学家卡尔达诺引入了复数根,并认识到一个三次方程有3个根,一个四次方程有4个根,等等.荷兰数学家吉拉尔在1629年曾推测并断言:任意一个n次方程,如果把复根算在内并且是重根算作k个根的话,那么它就有n个根,这就是代数基本定理.这个定理在18世纪被许多著名的数学家认识到并试图证明之,直到1799年高斯才给出第一个实质性的证明.对代数方程理论的研究,使数学家们引进了在近世代数中具有头等重要意义的新概念,这些新概念很快被发展成为广泛应用的代数理论.。

谱方法和边界值法求解二维薛定谔方程硕士学位论文 精品推荐

谱方法和边界值法求解二维薛定谔方程硕士学位论文 精品推荐

摘要薛定谔方程是物理系统中量子力学的基础方程,它可以清楚地说明量子在系统中随时间变化的规律。

通过求解微观系统所对应的薛定谔方程,我们能够得到其波函数以及对应的能量,从而计算粒子的分布概率,进一步来了解其性质。

在化学和物理等诸多科学研究领域当中,薛定谔方程求解的结果都与实际很相符。

近年来,很多学者通过各种方法研究具有复杂势函数的薛定谔方程,解释了很多重要的物理现象,因此对薛定谔方程的求解具有相当重要的意义。

本文主要是用Galerkin-Chebyshev谱方法和边界值法求解二维薛定谔方程。

首先运用Galerkin-Chebyshev谱方法来对空间导数进行近似,离散二维薛定谔方程,从而将原问题转化为复数域上的线性常微分方程组。

然后用边界值法求解该方程组,所求得的数值解即为原问题的解,之后进行误差分析。

最后利用Matlab进行数值模拟,给出数值解的图像以及误差曲面图像,结果显示此方法精度高且具有很好的稳定性。

关键词:薛定谔方程;Galerkin-Chebyshev谱方法;边界值法;数值解;精度高;稳定AbstractThe Schrödinger equation is the basic equations of quantum mechanics in the physical system. It can clearly describe the regular of the quantum evolves over time. By solving the Schrödinger equation which the micro system correspond, we can get the wave function and energy, and thus calculate the probability distribution of the particles, further understand the nature of it.In chemistry, physics and other fields of scientific research, the results of solving the Schrodinger equation are basically consistent with the actual.In recent years, many researchers used a variety of methods to investigate the Schrödinger equation with complex potential function, and explained a lot of important phenomena.Thus solving the Schrödinger equation has very important significance.The main purpose of this paper is to solve the two dimensional Schrödinger equation through the Galerkin-Chebyshev spectral method and the boundary value method. First we use the spectral method to approximate the spatial derivation, discretize the two dimensional Schrödinger equation,and transform the original problem into a set of linear ordinary differential equations in the complex number field.Then by using the boundary value method to solve the equations, that the numerical solutions is the solutions of the original problem, and then analyze the error. Finally we use Matlab to conduct the numerical simulation, and give the images of the numerical solutions and errors, which show that the methods have high precision and good stability.Keywords: Schrödinger equation, Galerkin-Chebyshev spectral method, boundary value method, numerical solutions, high precision, stability目录摘要 (I)Abstract (II)第1章绪论 (4)1.1课题研究的背景和意义 (4)1.2国内外研究现状 (5)1.3本文的主要研究内容 (5)第2章预备知识 (7)2.1克罗内克积的简介 (7)2.2Chebyshev多项式介绍及其性质 (8)2.3Chebyshev正交逼近的性质 (9)2.4投影算子的性质 (10)2.5本章小结 (11)第3章Galerkin-Chebyshev谱方法和边界值法 (12)3.1用Galerkin-Chebyshev谱方法求解椭圆型方程 (12)3.2用边界值法求解常微分方程 (13)3.3本章小结 (17)第4章求解二维薛定谔方程 (18)4.1区域和边界条件的处理 (18)4.1.1 区域的处理 (18)4.1.2 边界条件的处理 (20)4.2二维薛定谔方程的求解 (23)4.3误差分析 (24)4.4本章小结 (29)第5章数值模拟 (30)结论 (35)参考文献 (36)哈尔滨工业大学学位论文原创性声明及使用授权说明 .....错误!未定义书签。

热力学基本方程和平衡条件

热力学基本方程和平衡条件

p , ni
T
G As
As
G T
S As
T , p,ni
2.界面相的热力学基本方程(fundamental equations for interfacial phases)
1. 界面层不能独立存在,界面性质由平衡的两个 主体相性质决定,界面层难以严格界定。
2. 界面层非均匀,存在压力、浓度梯度。
Gibbs模型小结
界面层的位置和厚度很难严格界定,而界面层 的广延性质又依赖界面的位置和厚度,界面层非均 匀,存在压力梯度和浓度梯度,难以描述。
1. Gibbs模型取界面厚度为零,可以将界面广延 性质转而用界面过剩量表示;
2. Gibbs模型取溶剂界面过剩量为零,其实质等 价于确定了界面位置,这与1一起将界面层完 全确立,也使界面过剩性质的定义完备;
与平坦界面的
Gibbs认为多数情
张力近似相等
况下此项可忽略
每个主体相的热力学能变化:
dU (a ) TdS(a ) p(a )dV (a )
dn K
(a )
i1 i i
dU (b ) TdS(b ) p(b )dV (b )
dn K
(b )
i1 i i
得弯曲界面的热力学能微分式,与平坦界面相同:
T (a ) T (b ) T ( ) T
p(a ) p(b ) (dAs / dV (a ) )
平面dAs / dV (a ) 0 p(a ) p(b ) p
(a ) i
(b ) i
( ) i
i
B
B
B
0
了解一下:有界面相时的平衡条件的推导
出发点:平衡判据中的熵判据
δSU,V ,W0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RADIOSS THEORY Version 11.0 CONTENTSCONTENTS2.1 MATERIAL AND SPATIAL COORDINATES 32.2 MESH DESCRIPTION 42.3 VICINITY TRANSFORMATION 42.4 KINEMATIC DESCRIPTION 52.4.1V ELOCITY STRAIN OR RATE OF DEFORMATION52.4.2G REEN STRAIN TENSOR72.5 KINETIC DESCRIPTION 82.6 STRESS RATES 92.7 STRESSES IN SOLIDS 92.7.1P RINCIPAL STRESSES92.7.2S TRESS INVARIANTS92.7.3I NVARIANT SPACE 102.7.4D EVIATORIC STRESSES 102.8 UPDATED, TOTAL LAGRANGIAN AND COROTATIONAL FORMULATIONS 112.9 EQUATIONS OF EQUILIBRIUM 122.10 PRINCIPLE OF VIRTUAL POWER 132.11 PHYSICAL NAMES OF VIRTUAL POWER TERMS 142.12 SMALL STRAIN FORMULATION 142.12.1S MALL STRAIN OPTION 152.12.2L ARGE STRAIN OPTION 162.12.3S TRESS AND STRAIN DEFINITION 17Chapter BASIC EQUATIONS2.0 BASIC EQUATIONSThe continuum mechanics summarized here is based on Refs [35], [36] and [37]. Three basic choices need to be made in the development of a large deformation semi discretization scheme:• the mesh description,• the kinematic description, i.e. how the deformation is measured, • the kinetic description, i.e. how the stresses are measured.Usually, the kinematic description implies the kinetic description as kinetic and kinematic measures should be energetically conjugated.To go further in to the theory, two sets of coordinates are introducted:• the spatial or Eulerian coordinates, • the material or Lagrangian coordinates.2.1 Material and Spatial CoordinatesIn a Cartesian coordinates system, the coordinates of a material point in a reference or initial configuration are denoted by X. The coordinates of the same point in the deformed or final configuration are denoted by x. The motion or deformation of a body can thus be described by a function ()t X ,ϕ where the material coordinates X and the time t are considered as independent variables:()t X x ,ϕ=EQ. 2.1.0.1 The function ϕ gives the spatial positions of material points as a function of time.The displacement of a material point is the difference between its original and final positions:()()X t X t X u −=,,ϕEQ. 2.1.0.2 It is possible to consider displacements and, as a consequence final coordinates x, as functions of initialcoordinates X . The initial configuration is assumed to be perfectly known and each coordinate X identifies a specific material point. For this reason, the initial coordinates are called the material coordinates.On the other hand, the final coordinates x identify a point of space which can be occupied by different material points according to the different analyzed configurations. For these reasons, the x is called spatial coordinates. In solid mechanics, material coordinates are usually called Lagrangian coordinates. In their general definition, they are given by the values of the integration constants of the differential equations of particle trajectories. A particular definition consists in using the coordinates X of the particle in the initial configuration. This point of view corresponds to the definition of material coordinates in solid mechanics.Use of material coordinates is well suited for solid mechanics as we seek to analyze the evolution of a set of points for which we search the final configuration and properties. Integration can be performed in the initial configuration for which geometric properties are usually simple.In fluid mechanics however, the engineer is more interested in the evolution of a situation in a region defined by fixed boundaries in space. Boundaries are eventually crossed by fluid particles. It is the spatial configuration which is important while the set of particles may vary. This is the reason why fluid mechanics is usually developed using spatial or Eulerian coordinates.In solid mechanics, the Eulerian formulation consists in considering displacements and initial coordinates as function of spatial coordinates x . A problem for using Eulerian coordinates in solids mechanics is the difficulty of formulating constitutive equations, such as the relationship between stresses and strains that can take into account change of orientation. For this reason solid mechanics are principally developed using the Lagrangian point of view.The reason for using the Lagrangian form for solids is primarily due to the need for accurate boundary modeling.2.2 Mesh DescriptionIn Lagrangian meshes , mesh points remain coincident with material points and the elements deform with the material. Since element accuracy and time step degrade with element distortion, the magnitude of deformation that can be simulated with Lagrangian meshes is limited.In Eulerian meshes , the coordinates of the element nodes are fixed. This means that the nodes remain coincident with spatial points. Since elements are not changed by the deformation of the material, no degradation in accuracy occurs because of material deformation. On the other hand, in Eulerian meshes, boundary nodes do not always remain coincident with the boundaries of the domain. Boundary conditions must be applied at points which are not nodes. This leads to severe complications in multi-dimensional problems.A third type of mesh is an Arbitrary Lagrangian Eulerian mesh (ALE). In this case, nodes are programmed to move arbitrarily. Usually, nodes on the boundaries are moved to remain on boundaries. Interior nodes are moved to minimize element distortion.The selection of an appropriate mesh description, whether a Lagrangian, Eulerian or ALE mesh is very important, especially in the solution of the large deformation problems encountered in process simulation or fluid-structure interaction.A by-product of the choice of mesh description is the establishment of the independent variables. For a Lagrangian mesh, the independent variable is X . At a quadrature point used to evaluate the internal forces, the coordinate X remains invariant regardless of the deformation of the structure. Therefore, the stress has to be defined as a function of the material coordinate X . This is natural in a solid since the stress in a path-dependent material depends on the history observed by a material point. On the other hand, for an Eulerian mesh, the stress will be treated as a function of x , which means that the history of the point will need to be convected throughout the computation.2.3 Vicinity TransformationCentral to the computation of stresses and strains is the Jacobian matrix which relates the initial and deformed configuration:j ij j i j j jii dX F dX x D dX X x dx ==∂∂=EQ. 2.3.0.1 jj X D ∂∂=EQ. 2.3.0.2 The transformation is fully described by the elements of the Jacobian matrix F :i j ij x D F ≡ EQ. 2.3.0.3So that EQ. 2.3.0.1 can be written in matrix notation:dx = FdXEQ. 2.3.0.4The Jacobian, or determinant of the Jacobian matrix, measures the relation between the initial volume Ωd and the volume in the initial configuration containing the same points:0Ω=Ωd F d EQ. 2.3.0.5Physically, the value of the Jacobian cannot take the zero value without cancelling the volume of a set of material points. So the Jacobian must not become negative whatever the final configuration. This property ensures the existence and uniqueness of the inverse transformation:dx F dX 1−= EQ. 2.3.0.6At a regular point whereby definition of the field u ()X is differentiable, the vicinity transformation is defined by:)(()i j ij i i j i j ij u D t X u X D x D F +=+==δ, EQ. 2.3.0.7 or in matrix form:F = 1 + AEQ. 2.3.0.8So, the Jacobian matrix F can be obtained from the matrix of gradients of displacements:i j u D A ≡ EQ.2.3.0.9 2.4 Kinematic DescriptionFor geometrically non-linear problems, i.e. problems in which rigid body rotations and deformation are large, alarge number of measures of deformation are possible but most theoretical work and computer software employ the following three measures:•the velocity strain (or rate of deformation)⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂=i j j i ij x v x v D 21 EQ. 2.4.0.1 •the Green strain tensor (Lagrangian strain tensor) measured with respect to initial configuration⎟⎟⎠⎞⎜⎜⎝⎛∂∂∂∂+∂∂+∂∂=j k i k i j j i ij X u X u X u X u E 21 EQ. 2.4.0.2 •the Almansi strain tensor (Eulerian strain tensor) measured with respect to deformed configuration⎟⎟⎠⎞⎜⎜⎝⎛∂∂∂∂−∂∂+∂∂=j k i k i j j i ij A x u x u x u x u E 21 EQ. 2.4.0.3 All three measures of strains can be related to each other and can be used with any type of mesh.2.4.1 Velocity strain or rate of deformationThe strain rate is derived from the spatial velocity derivative:⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂===i j j i ij ijij x v x v D dt d 21εε& EQ. 2.4.1.1or in matrix form:()T L L D +==21ε&EQ. 2.4.1.2 where:jiij x v L ∂∂=EQ. 2.4.1.3 is the velocity gradient in the current configuration.The velocity of a material particle is:tx v ii ∂∂=EQ. 2.4.1.4 where the partial differentiation with respect to time t means the rate of change of the spatial position x of a given particle. The velocity difference between two particles in the current configuration is given by:k jk ij j ij j jii dX F L dx L dx x v dv ==∂∂=EQ. 2.4.1.5 In matrix form:dv = Ldx = LFdXEQ. 2.4.1.6On the other hand, it is possible to write the velocity difference directly as:()dX F FdX tdv &=∂∂=EQ. 2.4.1.7 where:tF F∂∂=& EQ. 2.4.1.8 One has as a result:1−=F F L & EQ. 2.4.1.9Now, L is composed of a rate of deformation and a rate of rotation or spin:Ω+=D L EQ. 2.4.1.10Since these are rate quantities, the spin can be treated as a vector. It is thus possible to decompose L into asymmetric strain rate matrix and an anti symmetric rotation rate matrix just as in the small motion theory the infinitesimal displacement gradient is decomposed into an infinitesimal strain and an infinitesimal rotation. The symmetric part of the decomposition is the strain rate or the rate of deformation and is:()T T FF F F D &&&−−+==121εEQ. 2.4.1.11 The anti symmetric part of the decomposition is the spin matrix:()T T F F F F &&−−−=Ω121 EQ. 2.4.1.12The velocity-strain measures the current rate of deformation, but it gives no information about the total deformation of the continuum. In general, EQ. 2.4.1.10 is not integral analytically; except in the unidimensional case, where one obtains the true strain:()L l In /=ε EQ. 2.4.1.13l and L are respectively the dimensions in the deformed and initial configurations. Furthermore, the integral in time for a material point does not yield a well-defined, path-independent tensor so that information about phenomena such as total stretching is not available in an algorithm that employs only the strain velocity. Therefore, to obtain a measure of total deformation, the strain velocity has to be transformed to some other strain rate.The volumetric strain is calculated from density. For one dimensional deformation:ll δδρρμ−=ΩΩ−=−=10 EQ. 2.4.1.142.4.2 Green strain tensorThe square of the distance which separates two points in the final configuration is given in matrix form by:FdX F dX dx dx T T T = EQ. 2.4.2.1Subtracting the square or the initial distance, we have:()dX EdX dX F F dX dX dX dx dx T T T T T 21=−=− EQ. 2.4.2.2 ()121−=F F E TEQ. 2.4.2.3 F F C T = and T FF B = are called respectively right and left Cauchy-Green tensor.Using EQ. 2.3.0.8:()A A A A E T T ++=21EQ. 2.4.2.4 ⎟⎟⎠⎞⎜⎜⎝⎛∂∂∂∂+∂∂+∂∂=j k i k i j j i ij X u X u X u X u E 21 EQ. 2.4.2.5 In the unidimensional case, the value of the strain is:()()2222/L L l E −= EQ. 2.4.2.6where l and L are respectively the dimensions in the deformed and initial configurations.It can be shown that any motion F can always be represented as a pure rigid body rotation followed by a pure stretch of three orthogonal directions:F = RU = R(I + H)EQ. 2.4.2.7with the rotation matrix R satisfying the orthogonality condition:I R R T = EQ. 2.4.2.8and H symmetric.The polar decomposition theorem is important because it will enable to distinguish the straining part of the motion from the rigid body rotation. One has from EQS. 2.4.2.3 and 2.4.2.7:()I F F H H E T−=+=2122 EQ. 2.4.2.9()1−+=H I F R EQ. 2.4.2.10EQ. 2.4.2.9 allows the computation of H , and EQ. 2.4.2.10. of R .As the decomposition of the Jacobian matrix F exists and is unique, H is a new measure of strain which issometimes called the Jaumann strain. Jaumann strain requires the calculation of principal directions. If rotations are small,Ω+=I R EQ. 2.4.2.11 ()()Ω+Ω+=I I R R TT EQ. 2.4.2.120=Ω+ΩT EQ. 2.4.2.13if second order terms are neglected.As a result, one has for the Jacobian matrix:()()H I I A I F +Ω+=+=EQ. 2.4.2.14 leading, if the second order terms are neglected, to the classical linear relationships:H A +Ω=EQ. 2.4.2.15 ()A A H T+=21EQ. 2.4.2.16 ()T A A −=Ω21EQ. 2.4.2.17 So for EQ. 2.4.2.15 and EQ. 2.4.2.16, when rigid body rotations are large, the linear strain tensor becomes non-zero even in the absence of deformation.The preceding developments show that the linear strain measure is appropriate if rotations can be neglected; that means if they are of the same magnitude as the strains and if these are of the order of 10-2 or less. It is also worth noticing that linear strains can be used for moderately large strains of the order of 10-1 provided that the rotations are small. On the other hand, for slender structures which are quite in extensible, non-linear kinematics must be used even when the rotations are order of 10-2 because, if we are interested in strains of 10-3 – 10-4, using linear strain the error due to the rotations would be greater than the error due to the strains.Large deformation problems in which non-linear kinematics is necessary, are those in which rigid body rotation and deformation are large.2.5 Kinetic DescriptionThe virtual power principle in Section 2.10 will state equilibrium in terms of Cauchy true stresses and the conjugate virtual strain rate, the rate of deformation. It is worth noticing that, from the engineer's point of view, the Cauchy true stress is probably the only measure of practical interest because it is a direct measure of the traction being carried per unit area of any internal surface in the body under study. This is the reason why RADIOSS reports the stress as the Cauchy stress. The second Piola-Kirchhoff stress is, however, introduced here because it is frequently mentioned in standard textbooks.The relationship between the Piola-Kirchhoff stress and the Cauchy stress is obtained as follows. Starting from the definition of Green's strain (EQ. 2.4.2.3),()I F F E T−=21 EQ. 2.5.0.1 the strain rate is given by:()F F F F E T T &&&+=21 EQ. 2.5.0.2The power per unit reference volume is:S EP &= EQ. 2.5.0.3 where S represents the tensor of second Piola-Kirchhoff stresses. On the other hand for Cauchy stresses:F P σε&= EQ. 2.5.0.4 ()()F F F F F S F F F FT T T Tσ&&&−−+=+1 EQ. 2.5.0.5One has immediately:F FSF T σ= EQ. 2.5.0.6Second Piola-Kirchhoff stresses have a simple physical interpretation. They correspond to a decomposition of forces in the frame coordinate systems convected by the deformation of the body. However, the stress measure is still performed with respect to the initial surface.2.6 Stress RatesIn practice, the true stress (or Cauchy stress) for any time interval will be computed using the stress rate in an explicit time integration:()()t t t t ij ij ij δσσδσ&+=+ EQ. 2.6.0.1ij σ& is not simply the time derivative of the Cauchy stress tensor as Cauchy stress components are associated with spatial directions in the current configuration. So, the derivatives will be nonzero in the case of a pure rigidbody rotation, even if from the constitutive point of view the material is unchanged. The stress rate is a function of element average rigid body rotation and of strain rate.For this reason, it is necessary to separate ij σ& into two parts; one related to the rigid body motion and the remainder associated with the rate form of the stress-strain law. Objective stress rate is used, meaning that thestress tensor follows the rigid body rotation of the material [14].A stress law will be objective if it is independent of the space frame. To each definition of the rigid body rotation, corresponds a definition of the objective stress rate. The Jaumann objective stress tensor derivative will be associated with the rigid body rotation defined in EQ. 2.4.1.11:ij r ij ij v σσσ&&&−= EQ. 2.6.0.2 where:ij v σ& is the Jaumann objective stress tensor derivative, ij r σ& is the stress rate due to the rigid body rotational velocity. The correction for stress rotation is given by:ki jk kj ik ij r Ω+Ω=σσσ& EQ. 2.6.0.3and kj Ωdefined in EQ. 2.4.1.11 (see Section 5.1.10.1).2.7 Stresses in Solids2.7.1 Principal stressesSince the stress tensor is symmetric, we can always find a proper orthogonal matrix, i.e. a coordinate system that diagonalizes it:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321000000σσσσR R TEQ. 2.7.1.1 The diagonal components are called the principal stresses and allow a 3D representation of the state of stress at apoint.2.7.2 Stress invariantsMany of the constitutive models in RADIOSS are formulated in terms of invariants of the stress tensor. The most important are the first and second invariants:3zzyy xx p σσσ++−= EQ. 2.7.2.1()()()()xz zy xy zz yy xx vm p p p 22222222223σσσσσσσ++++++++=EQ. 2.7.2.2 called pressure and von Mises stress after Richard von Mises.The values of these functions remain invariant under transformation by a proper orthogonal matrix. If,R R t 0σσ=,then:0p p =0vm vm σσ=2.7.3 Invariant spaceIt is useful to plot the state of stress as a point in a diagram of pressure and von Mises stress:The horizontal axis corresponds to the hydrostatic loading, the vertical axes to pure shear. The line with tangent 1/3 is uniaxial compression. The line with tangent -1/3 is uniaxial tension.2.7.4 Deviatoric stressesThe pressure or first invariant is related to the change in volume of the solid. The deviation from a hydrostatic state of stress is linked to the change in shape. The stress deviator is defined as: pI S+=σThe second invariant becomes, in terms of the deviators:()xz yz xy zz yy xx vm s s s s s s 22222222223+++++=σ EQ. 2.7.4.1 A surface of constant von Mises stress in deviatoric space or principal deviatoric space is a sphere (in stress space it is a cylinder).2.8 Updated, Total Lagrangian and Corotational FormulationsFinite element discretizations with Lagrangian meshes are commonly classified as either an updated Lagrangian formulation or a total Lagrangian formulation. Both formulations use a Lagrangian description. That means thatthe dependent variables are functions of the material (Lagrangian) coordinates and time. In the geometrically nonlinear structural analysis the configuration of the structure must be tracked in time. This tracking process necessary involves a kinematic description with respect to a reference state. Three choices called “kinematic descriptions” have been extensively used:Total Lagrangian description (TL): The FEM equations are formulated with respect to a fixed reference configuration which is not changed throughout the analysis. The initial configuration is often used; but in special cases the reference could be an artificial base configuration.Updated Lagrangian description (UL): The reference is the last known (accepted) solution. It is kept fixed overa step and updated at the end of each step.Corotational description (CR): The FEM equations of each element are referred to two systems. A fixed or base configuration is used as in TL to compute the rigid body motion of the element. Then the deformed current stateis referred to the corotated configuration obtained by the rigid body motion of the initial reference.The updated Lagrangian and corotational formulations are the approaches used in RADIOSS. These two approaches are schematically presented in Figure 2.8.1.Figure 2.8.1 Updated Lagrangian and Corotational descriptionsBy default, RADIOSS uses a large strain, large displacement formulation with explicit time integration. The large displacement formulation is obtained by computing the derivative of the shape functions at each cycle. The large strain formulation is derived from the incremental strain computation. Hence, stress and strains are true stresses and true strains.In the updated Lagrangian formulation, the Lagrangian coordinates are considered instantaneously coincident with the Eulerian spatial x coordinates. This leads to the following simplifications:ij i jj i x X X x δ=∂∂=∂∂ EQ. 2.8.0.1 0Ω=Ωd d EQ. 2.8.0.2The derivatives are with respect to the spatial (Eulerian) coordinates. The weak form involves integrals over the deformed or current configuration. In the total Lagrangian formulation, the weak form involves integrals over the initial (reference) configuration and derivatives are taken with respect to the material coordinates.The corotational kinematic description is the most recent of the formulations in geometrically nonlinear structural analysis. It decouples small strain material nonlinearities from geometric nonlinearities and handles naturally the question of frame indifference of anisotropic behavior due to fabrication or material nonlinearities. Several important works outline the various versions of CR formulation [7], [50], [51], [52], and [53].Some new generation of RADIOSS elements are based on this approach. Please refer to the “Element Library” chapter for more details.REMARK:A similar approach to CR description using convected-coordinates is used in some branches of fluid mechanics and rheology. However, the CR description maintains orthogonality of the moving frames. This will allow achieving an exact decomposition of rigid body motion and deformational modes. On the other hand, convected coordinates form a curvilinear system that fits the change of metric as the body deforms. The difference tends to disappear as the mesh becomes finer. However, in general case the CR approach is more convenient in structural mechanics.2.9 Equations of EquilibriumLet Ω be a volume occupied by a part of the body in the current configuration, and Γ the boundary of the body. In the Lagrangian formulation, Ω is the volume of space occupied by the material at the current time, which is different from the Eulerian approach where we examine a volume of space through which the material passes. τ is the traction surface on Γ and b are the body forces. Force equilibrium for the volume is then:∫∫∫ΩΓΩΩ∂∂=Ω+Γd tv d b d ii i ρρτ EQ. 2.9.0.1 with ρ the material density.The Cauchy true stress matrix at a point of Γ is defined by:ji j i n στ= EQ. 2.9.0.2Where, n is the outward normal to Γ at that point. Using this definition, EQ. 2.9.0.1 is written:∫∫∫ΩΩΓΩ∂∂=Ω+Γd tv d b d n ii ji j ρρσ EQ. 2.9.0.3Gauss' theorem allows the rewrite of the surface integral as a volume integral so that:∫∫ΩΓΩ∂∂=Γd x d n jij ji j σσEQ. 2.9.0.4 As the volume is arbitrary, the expression can be applied at any point in the body providing the differentialequation of translation equilibrium:tv b x ii jij ∂∂=+∂∂ρρσ EQ. 2.9.0.5 Use of Gauss' theorem with this equation leads to the result that the true Cauchy stress matrix must be symmetric:T σσ=EQ. 2.9.0.6 so that at each point there are only six independent components of stress. As a result, moment equilibriumequations are automatically satisfied, thus only the translational equations of equilibrium need to be considered.2.10 Principle of Virtual PowerThe basis for the development of a displacement finite element model is the introduction of some locally based spatial approximation to parts of the solution. The first step to develop such an approximation is to replace the equilibrium equations by an equivalent weak form. This is obtained by multiplying the local differential equation by an arbitrary vector valued test function defined with suitable continuity over the entire volume and integrating over the current configuration:0=Ω⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−+∂∂∫Ωd v b x v i i j ji i &ρρσδ EQ. 2.10.0.1 The first term in EQ. 2.10.0.1 is then expanded:()()()Ω⎥⎥⎦⎤⎢⎢⎣⎡∂∂−∂∂=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂∫∫ΩΩd x v v x d x v ji j i ji i j j ji i σδσδσδ EQ. 2.10.0.2 Using Gauss's theorem gives:()()()[]∫∫ΩΓΓ=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂d n v d v x ji j i ji i j σσδσδ EQ. 2.10.0.3 taking into account that stresses vanish on the complement of the traction boundaries. Replacing EQ. 2.10.0.3 in EQ. 2.10.0.2 gives:()()∫∫∫ΩΓΩΩ∂∂−Γ=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂d x v d v d x v ji j i i i j ji i σδτδσδ EQ. 2.10.0.4 If this last equation is then substituted in EQ. 2.10.0.1, one obtains:()()∫∫∫∫ΩΩΓΩ=Ω+Γ−Ω−Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂0d v v d v d b v d x v i i i i i i jij i &ρδτδρδσδ EQ. 2.10.0.5The preceding expression is the weak form for the equilibrium equations, traction boundary conditions andinterior continuity conditions. It is known as the principle of virtual power.2.11 Physical Names of Virtual Power TermsIt is possible to give a physical name to each of the terms in the virtual power equation. This will be useful in the development of finite element equations. The nodal forces in the finite element equations will be identified according to the same physical names. The first term can be successively written:()()()ji ij ji ij ij ji ij ji ji D W D L x v σδσδδσδσδ=+==∂∂ EQ. 2.11.0.1 One has used the decomposition of the velocity gradient L into its symmetric and skew symmetric parts and that 0=ji ij W σδ since ij W δ is skew symmetric and ji σ is symmetric.The latter relation suggests that ji ij D σδ can be interpreted as the rate of internal virtual work or virtual internal power per unit volume. The total internal power intPδ is defined by the integral of ji ij D σδ:()∫∫∫ΩΩΩΩ≡Ω∂=Ω=d L d x v d D P ji ij ji j i ji ij σδσδδσδδint EQ. 2.11.0.2 The second and third terms in EQ. 2.10.0.5 are the virtual external power:()∫∫ΩΓΓ+Ω=στδρδδd v d b v P iii i extEQ. 2.11.0.3 The last term is the virtual inertial power:∫Ω=d v v P i i inert &ρδδ EQ. 2.11.0.4Inserting EQS 2.11.0.2, 2.11.0.3 and 2.11.0.4 into EQ. 2.11.0.5, the principle of virtual power can be written as:inert ext P P P P δδδδ+−=int EQ. 2.11.0.5 for all i v δ admissible.We can show that virtual power principle implies strong equations of equilibrium. So it is possible to use thevirtual power principle with a suitable test function as a statement of equilibrium.The virtual power principle has a simple physical interpretation. The rate of work done by the external forces subjected to any virtual velocity field is equal to the rate of work done by the equilibrating stresses on the rate of deformation of the same virtual velocity field. The principle is the weak form of the equilibrium equations and is used as the basic equilibrium statement for the finite element formulation. Its advantage in this regard is that it can be stated in the form of an integral over the volume of the body. It is possible to introduce approximations by choosing test functions for the virtual velocity field whose variation is restricted to a few nodal values.2.12 Small Strain FormulationRADIOSS uses two different methods to calculate stress and strain. The method used depends on the type of simulation. The two types are:• Large strain •Small strainThe large strain formulation has been discussed before and is used by default. Small strain analysis is best used when the deformation is known to be small, for example, linear elastic problems.Large strain is better suited to non-linear, elastoplastic behavior where large deformation is known to occur. However, large mesh deformation and distortion can create problems with the time step. If an element is deformed excessively, the time step will decrease too much, increasing the CPU time. If the element reaches a。

相关文档
最新文档