山东省滨州市邹平县2020年初三学业水平模拟考试数学试题含答案 (1)
2020年滨州市初中学业水平测试初中数学
2020年滨州市初中学业水平测试初中数学第一卷本卷须知:1.本试题分第一卷和第二卷两部分,共8页.第一卷(1~2页)为选择题,共30分;第一卷(3~8页)为非选择题,共70分.试题总分值100分,考试时刻90分钟.2.答题前,请将密封线内的各项目填写清晰.选择题选出答案后,一律将其字母标号填写在第一卷上的第一卷答案栏内,不能答在第一卷上.第一卷(选择题共30分)一、选择题:本大题共10小题,每题3分,共30分.在每题所给的四个选项中,只有一项为哪一项符合题目要求的.1.︱-4︱等于(A) -4 (B)4 (C) 41 (D )﹣41 2.如图,数轴上A 、B 两点所表示的两个数的(A)和为正数 (B)和为负数 (C)积为正数 (D)积为负数3.假设()0122=-+-y x ,那么x-y 的值为(A)-1 (B)5 (C)1 (D)-54.以下运算中正确的选项是( )(A)236x x x =÷ (B)()623a a a -=-• (C)()3632b a b a = (D)5322a a a =+ 5.在同一直角坐标系中,函数y =x +l 与xy 1-=的图像大致为6.在一次男子马拉松长跑竞赛中,抽得7名选手的成绩如下(单位:分):136 145 129 180 124 154 145这组样本数据的中位数和众数分不是 (A) 145 136 (B)145 145 (C)136 145 (D)154 1367.以下讲法正确的选项是(A)过一点有且只有一条直线与直线平行(B)同位角相等(C)位似的两个图形一定相似 (D)三个点确定一个圆8.两个圆的半径分不为3和4,圆心距为7,那么这两个圆的位置关系是(A)内切 (B)外切 (C)外离 (D)相交9.如图,在△ABC 中,P 是AB 边上的一点,连接CP ,以下条件中,不能判定△ACP ∽△ABC 的是(A )∠ACP=∠B(B) ∠APC=∠ACB(C)AB AP AC 2•= (D)BC AB CP AC = 10.〝圆柱与球的组合体〞如下图,那么它的三视图是第二卷(非选择题共70分)本卷须知:1.第一卷共6页,用钢笔或圆珠笔直截了当答在试卷上. 2.答题前,请将密封线内的各项目填写清晰.二、填空题:本大题共8小题,每题4分,共32分.把答案填在题中横线上.11.()()=+-0200721_____________12.一元二次方程0322=--x x 的根是___________13.如图,PA 为⊙O 切线,A 为切点,PO 交⊙O 于点B ,PA=8,OA=4,那么tan ∠APO 的值为_______.14.在一个不透亮的袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同.假设随机从袋子中摸出一球,那么摸到黑球的概率是______________.15.如图,在等腰梯形ABCD 中,AD ∥BC ,∠B=︒60,DE ∥AB ,那么△DEC 是_______三角形.(填:〝不等边〞、〝等腰〞或〝等边〞之一)16.如图,分不连接第1个等边三角形三边的中点得到第2个图形,再分不连接第2个图形中的中间小三角形三边的中点得到第3个图形,按此方法连续下去.第1个图形中三角形的面积为S ,那么第5个图形中中间最小的三角形的面积为______________.(第16题图)17.如图,把等腰R t △ABC 沿AC 方向平移到等腰Rt △A′ B′C′的位置时,它们重叠部分的面积是Rt △ABC 面积的41.假设cm 2AB =,那么它移动的距离AA ′=___________ Cm .18.如图,正比例函数和反比例函数的图像相交于A 、B 两点,分不以A 、B 两点为圆心,画与y 轴相切的两个圆.假设点A 的坐标为(1,2),那么图中两个阴影部分的面积的和是__________.三、解答题:本大题共5小题,总分值38分.解承诺写出文字讲明、证明过程或推演步骤.19.(本小题总分值5分)有如此一道题:〝运算a a a 1a 1a 1a 2a 222-+-÷-+-的值,其中a=2007〞,甲同学把〝a=2007〞错抄成了〝a=2070〞,但他的运算结果也是正确的,你能讲明这是什么缘故吗?20.(本小题总分值7分)为了关心贫困失学儿童,团市委发起〝爱心储蓄〞活动,鼓舞学生将自己的压岁钞票和零花钞票存入银行,定期一年,到期后可取回本金,而把利息捐给贫困失学儿童.某中学共有学生1200人,图甲是该校各年级学生人数比例分布的扇形统计图,图乙是该校学生人均存款情形的条形统计图.(1)九年级学生人均存款多少元;(2)该校学生人均存款多少元;(3)银行一年期定期存款的年利率是2.79%(〝爱心储蓄〞免收利息税),且每403元能提供给一位失学儿童一学年的差不多费用,那么该校一学年能关心多少贫困失学的儿童?21.(本小题总分值8分)〝五.一〞黄金周期间,甲、乙两商店以同样价格出售同样的商品,但推出不同的优待方案:在甲店累计购买100元商品后,再购买的部分按原价的90%收费;在乙店累计购买200元商品后,再购买的部分按原价的80%收费.假设小明累计购物超过200元.(1)请分不写出小明在甲、乙两商店实际付费y 元与累计购物x 元之间的函数关系式;(2)选择在哪家商店购物,小明能获得更多的优待?22.(本小题总分值8分)如图,矩形A8CD 的对角线相交于点O ,DE ∥AC ,CE ∥BD 。
2020届初中学业水平 第一模拟考试 数学试题(含答案)
解不等式组 得-4≤x<2.5, -------------------------7 分 则该不等式组的整数解为-4,-3,-2,-1,0,1,2, ∵x≠±1 且 x≠±2,x≠0, ∴x=-4 或 x=-3,
当 x=-4 时,原式=- = ;
当 x=-3 时,原式=- = . -------------------------10 分 22、(12 分)解: 设每只 A 型口罩销售利润为 a 元,每只 B 型口罩销售利润为 b 元,根据题意得
(2)连接 OC,设⊙O 的半径为 r, ∵AH=3、CH=4, ∴OH=r﹣3,OC=r,
则(r﹣3)2+42=r2,
解得:r= , ∵GM∥AC, ∴∠CAH=∠M, ∵∠OEM=∠AHC, ∴△AHC∽△MEO,
∴ = ,即 = ,-------------------------13 分
解得:EM= . 25.【13 分】解:(1)∵线段 OB 的长是方程 x2﹣2x﹣8=0 的解,
13、-b(3a-2)2 ,11;14、 ﹣1,a≥-3 且 a≠±1;15、
16、 17、(2,2)) 18、 -6<a≤-5
19、
20、
三、解答题:本大题共 6 个小题,满分 74 分.解答时请写出必要的演推过程.
21、(10 分)解:原式=
-·
=
-
=
-
= =- ,
-------------------------5 分
即药店购进 A 型口罩 500 只、B 型口罩 1500 只,才能使销售总利润最大;
设 B 型口罩降价的幅度是 x,根据题意得
,
解得
.
答:B 型口罩降价的幅度 23、(12 分)
山东省滨州市2020年初中学业水平考试数学试题
试卷类型:A滨州市二〇二〇年初中学业水平考试数学试题一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分.1.下列各式正确的是A. |5|5B. (5)5C. |5|5D. (5)5--=--=--=---=2.如图,AB //CD ,点P 为CD 上一点,PF 是∠EPC 的平分线,若∠1=55°,则∠EPD 的大小为A . 60°B . 70°C .80°D . 100°3.冠状病毒的直径约为80~120纳米,1纳米=91.010-=⨯米,若用科学记数法表示110纳米,则正确的结果是A .91.110-⨯米B .81.110-⨯米C .71.110-⨯米D .61.110-⨯米4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为A. (4,5)B. (5,4)C. (4,5)D. (5,4)---- 5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为A . 1B . 2C .3D .46.如图,点A 在双曲线4y x =上,点B 在双曲线12y x=上,且AB //x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为A .4В. 6C .8D . 127.下列命题是假命题的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直且平分的四边形是正方形8.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为A .1B .2C .3D .49.在O 中,直径AB =15,弦DE ⊥AB 于点C .若OC :OB =3 :5,则DE 的长为A . 6B . 9C .12D . 1510.对于任意实数k ,关于x 的方程221(5)22502x k x k k -++++=的根的情况为A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定11.对称轴为直线x =1的抛物线2y ax bx c =++(a 、b 、c 为常数,(且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b 2>4ac ,③4a +2b +c >0,④3a +c >0,⑤a +b ≤m (am +b )(m 为任意实数), ⑥当x <-1时,y 随x的增大而增大,其中结论正确的个数为A . 3B . 4C . 5D . 612.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ;把纸片展平后再次折叠,使点A 落在EF 上的点A ’处,得到折痕BM ,BM 与FF 相交于点N .若直线B A ’交直线CD 于点O ,BC =5,EN =1,则OD 的长为 11 A. 3 B. 32311 C. 3 D. 345 第Ⅱ卷(非选择题共114分)二、填空题:本大题共8个小题,每小题5分,满分40分13.若二次根式5x -在实数范围内有意义,则x 的取值范围为________14.在等腰△ABC 中,AB =AC ,∠B =50°,则∠A 的大小为________15.若正比例函数2y x =的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________16.如图,O 是正方形ABCD 的内切圆,切点分别为E 、F ,G ,H ,ED 与O 相交于点M ,则sin ∠MFG 的值为________17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________18.若关于x 的不等式102420x a x ⎧->⎪⎨⎪-≥⎩,无解,则a 的取值范围为________.19.观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).20.如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别 为232,4、则正方形ABCD 的面积为________ 三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21. (本小题满分10分))先化筒,再求值:22221244y x x y x y x xy y ---÷+++ 其中11cos3012,(3)()3x y π︒︒-=⨯=-- 22. (本小题满分12分)如图,在平面直角坐标系中,直线112y x =--与直线22y x =-+相交于点P ,并分别与x 轴相交于点A 、B .(1)求交点P 的坐标;(2)求△PAB 的面积;(3)请把图象中直线22y x =-+在直线112y x =--上方的部分描黑加粗,并写出此时自变量x 的取值范围.23. (木小题满分12分)如图,过□ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、B C .CD 、DA 于点P 、M 、Q 、N .(1)求证:△PBE ≌QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.24. (本小题满分13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每下克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.(本小题满分13分)如图,AB是O的直径,AM和BN是它的两条切线,过O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是O的切线;(2)求证:2OA DE CE=⋅26.(本小题满分14分)如图,抛物线的顶点为A(h,-1),与y轴交于点B1(0,)2-,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.。
2020年山东省滨州市中考数学试卷(解析版)
2020年滨州市初中学业水平考试试题数学参考答案一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【分析】直接利用点的坐标特点进而分析得出答案.解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念求解.解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【分析】利用正方形的判定依次判断,可求解.解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=.【分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG 的值为.【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.【分析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.18.若关于x的不等式组无解,则a的取值范围为a≥1.【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).【分析】观察分母的变化为3、5、7,…,2n+1次幂;分子的变化为:奇数项为n2+1;偶数项为n2﹣1;依此即可求解.解:由分析可得a n=.故答案为:.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD 的面积为14+4.【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CNB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.22.如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.23.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.【分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN 是平行四边形,由对角线PQ⊥MN,即可得出结论.【解答】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x 的关系式,有二次函数的性质可求解.解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE﹣DE,进而根据勾股定理得结论.解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.26.如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l 的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ 周长的最小值及点Q的坐标.【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B 坐标代入求出a即可.(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)。
山东省滨州市五校联考2020年初中学生学业水平模拟考试数学试题(含答案)
山东省滨州市2020年初中学生学业水平模拟考试数学试题(本试卷满分150分,考试时间:120分钟)第I 卷(选择题 共36分)一、单选题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .2.23-的倒数是( ) A .23- B .32-C .23D .323.下列计算正确的是( ) A .a 2•a 3=a 5B .(a 3)2=a 5C .(3a )2=6a 2D .2841a a a÷=4.某种冠状病毒的直径是120纳米,1纳米=10-9米,将这种冠状病毒的直径(单位是米)用科学记数法表示为( ) A .120×10-9B .1.2×10-11C .1.2×10-7D .0.12×10-125.某兴趣小组为了解滨州市气温变化情况,记录了今年1月份连续天的最低气温(单位:℃):.关于这组数据,下列结论不正确的是( ) A .平均数是B .中位数是C .众数是D .方差是6.关于x 的一元二次方程()2a 1x 2x 30--+=有实数根,则整数a 的最大值是 A .2B .1C .0D .-17.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是( )A .360480140x x =- B .360480140x x =-C .360480140x x+=D .360480140x x-=8.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.49.如图,直线AB是⊙O的切线,点C为切点,OD∥AB交⊙O于点D,点E在⊙O 上,连接OC,EC,ED,则∠CED的度数为( )A.30°B.35°C.40°D.45°10.如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.11.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=kx(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.52B.154C.3 D.512.如图,已知二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ②4a+2b+c >0 ③4ac ﹣b 2<8a ④13<a <23⑤b >c .其中含所有正确结论的选项是( )A .①③B .①③④C .②④⑤D .①③④⑤第II 卷(非选择题 共114分)二、填空题(本大题共8小题,每小题5分,共40分。
山东省2020年滨州市中考数学模拟试题 (含答案)
山东省2020年滨州市中考数学模拟试题含答案一、选择题(每小题3分,共36分)1.下列四个实数中,绝对值最小的数是( )A .-5B .- 2C .1D .42.据某省旅游局统计显示,2019年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将27 700 000用科学记数法表示为( )A .0.277×107B .0.277×108C .2.77×107D .2.77×1083.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论正确的是( )A .a>bB .|a|>|b|C .-a<bD .a +b<04.下列运算正确的是( )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b)(a -b)=a 2-b 2D .(a +b)2=a 2+b 25.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( A )A .3B .-3C .1D .-16.方程3x +2(1-x)=4的解是( )A .x =25B .x =65C .x =2D .x =1 7.二元一次方程组⎩⎪⎨⎪⎧x -y =-3,2x +y =0的解是( ) A.⎩⎪⎨⎪⎧x =-1y =2 B.⎩⎪⎨⎪⎧x =1y =-2 C.⎩⎪⎨⎪⎧x =-1y =-2 D.⎩⎪⎨⎪⎧x =-2y =1 8.一元一次不等式2(x +2)≥6的解在数轴上表示为( )9.下列方程有两个相等的实数根的是( )A .x 2+x +1=0B .4x 2+x +1=0C .x 2+12x +36=0D .x 2+x -2=010.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .1011.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-2312.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( )A.2 700x -20=4 500xB.2 700x =4 500x -20C.2 700x +20=4 500xD.2 700x =4 500x +20二、填空题(每小题4分,共24分)13.分解因式:2a 2-4a +2=_______.14.若a +b =3,ab =2,则(a -b)2=_____.15.代数式x -1x -1中x 的取值范围是________. 16.满足不等式2(x +1)>1-x 的最小整数解是________.17.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为__________.18.如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为____________. 三、解答题(共60分)19.(1)(6分)计算:(2 017)0×8-(12)-1-|-32|+2cos45°.(2)(6分)计算:(3+2-1)(3-2+1).20.(1)(6分)解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.②(2).(6分)解方程:1x -3=1-x 3-x-2.21.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解在数轴上表示出来.17.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.22.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x,其中x 满足x 2-4x +3=0.23.(12分)某物流公司承接A、B两种货物的运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨.该物流公司6月份承接的A种货物和B种货物数量与5月份相同,6月份共收取运费13 000元.问:(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费?答 案一、选择题(每小题3分,共36分)1.下列四个实数中,绝对值最小的数是( C ) A .-5 B .- 2 C .1 D .42.据某省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将27 700 000用科学记数法表示为( C )A .0.277×107B .0.277×108C .2.77×107D .2.77×1083.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论正确的是( C )A .a>bB .|a|>|b|C .-a<bD .a +b<04.下列运算正确的是( C )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b)(a -b)=a 2-b 2D .(a +b)2=a 2+b 25.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( A )A .3B .-3C .1D .-16.方程3x +2(1-x)=4的解是( C )A .x =25B .x =65C .x =2D .x =1 7.二元一次方程组⎩⎪⎨⎪⎧x -y =-3,2x +y =0的解是( A ) A.⎩⎪⎨⎪⎧x =-1y =2 B.⎩⎪⎨⎪⎧x =1y =-2 C.⎩⎪⎨⎪⎧x =-1y =-2 D.⎩⎪⎨⎪⎧x =-2y =1 8.一元一次不等式2(x +2)≥6的解在数轴上表示为( A )9.下列方程有两个相等的实数根的是( C )A .x 2+x +1=0B .4x 2+x +1=0C .x 2+12x +36=0D .x 2+x -2=010.已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( B )A .5B .7C .5或7D .1011.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( C ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-2312.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2 700元购买A 型陶笛与用4 500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( D )A.2 700x -20=4 500xB.2 700x =4 500x -20C.2 700x +20=4 500xD.2 700x =4 500x +20二、填空题(每小题4分,共24分)13.分解因式:2a 2-4a +2=2(a -1)2.14.若a +b =3,ab =2,则(a -b)2=1.15.代数式x -1x -1中x 的取值范围是x>1. 16.满足不等式2(x +1)>1-x 的最小整数解是0.17.若方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为3.18.如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为-54. 三、解答题(共60分)19.(1)(6分)计算:(2 017)0×8-(12)-1-|-32|+2cos45°. 解:原式=1×22-2-32+2×22=22-2-32+ 2=-2.(2)(6分)计算:(3+2-1)(3-2+1).. 解:原式=[3+(2-1)][3-(2-1)]=3-(2-1)2=3-3+2 2=2 2.20.(1)(6分)解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.② 解:由①,得y =3-2x.③把③代入②,得3x -5(3-2x)=11.解得x =2.将x =2代入③,得y =-1.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1. (2).(6分)解方程:1x -3=1-x 3-x-2. 解:方程两边同乘(x -3),得1=x -1-2(x -3).解得x =4.检验:当x =4时,x -3≠0,∴x =4是原分式方程的解.21.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解在数轴上表示出来. 解:由1+x >-2,得x >-3.由2x -13≤1,得x ≤2. ∴不等式组的解集为-3<x ≤2.解集在数轴上表示如下:22.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y2的值. 解:原式=(x -y )2(x -y )(x +y )=x -y x +y. 当x =3+1,y =3-1时,x -y =2,x +y =2 3.∴原式=223=33. 23.(8分)先化简,再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x,其中x 满足x 2-4x +3=0. 解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x=x +2x -1·1-x (x +2)2 =-1x +2. 解方程x 2-4x +3=0,得(x -1)(x -3)=0,∴x 1=1,x 2=3.当x =1时,原分式无意义;当x =3时,原式=-13+2=-15.24.(12分)某物流公司承接A 、B 两种货物的运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨.该物流公司6月份承接的A 种货物和B 种货物数量与5月份相同,6月份共收取运费13 000元.问:(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A 货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费? 解:(1)设该物流公司5月份运输A 、B 两种货物各x 吨、y 吨,依题意,得⎩⎪⎨⎪⎧50x +30y =9 500,70x +40y =13 000.解得⎩⎪⎨⎪⎧x =100,y =150. 答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨.(2)设物流公司7月份运输A 种货物a 吨,收取w 元运输费,则依题意,有 a ≤2(330-a).则a ≤220.∴a 最大为220.w =70a +40(330-a)=30a +13 200.∵k =30>0,w 随a 的增大而增大.∴当a =220时,w 最大=30×220+13 200=19 800(元).答:该物流公司7月份最多将收取运输费19 800元.。
山东省滨州市2020年中考数学模拟试卷解析版
中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为( )A. 12.3×105B. 1.23×105C. 0.12×106D. 1.23×1062.如图,AB∥CD,∠B=85°,∠E=27°,则∠D的度数为( )A. 45°B. 48°C. 50°D. 58°3.下列计算错误的是( )A. (a3b)•(ab2)=a4b3B. xy2-xy2=xy2C. a5÷a2=a3D. (-mn3)2=m2n54.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )A. 最高分B. 中位数C. 方差D. 平均数5.函数y=和一次函数y=-ax+1(a≠0)在同一平面直角坐标系中的图象可能是( )A. B.C. D.6.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A. 2B. 3C. 4D. 57.如图,⊙O中,AB=AC,∠ACB=75°,BC=1,则阴影部分的面积是( )A. 1+πB. +πC. +πD. 1+π8.下列图形中,可以看作是轴对称图形的是( )A. B.C. D.9.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是( )A. 48°B. 42°C. 34°D. 24°10.抛物线y=(x-2)2-3的顶点坐标是( )A. (2,3)B. (2,-3)C. (-2,3)D. (-2,-3)11.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b+2)12.如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AB=6cm;②直线NH的解析式为y=-5t+90;③△QBP不可能与△ABE相似;④当∠PBQ=30°时,t=13秒.其中正确的结论个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共40.0分)13.因式分解:a3-9ab2=______.14.不等式组的解集为______.15.如图,一次函数y1=-x-1与反比例函数y2=-的图象交于点A(-2,1),B(1,-2),则使y1>y2的x的取值范围是______.16.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,-6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为______.17.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交于点D,连接BD,当BD⊥x轴时,k的值是______.18.数学家们在研究15、12、10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称之为调和数,如6、3、2也是一组调和数.现有一组调和数:x、5、3(x>5),则x的值是______.19.已知关于x,y的二元一次方程组的解为,那么关于m,n的二元一次方程组的解为______ .20.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD是平行四边形;其中正确结论的是______.三、计算题(本大题共2小题,共22.0分)21.先化简,再求值:(-)÷,其中a=2cos30°+()-1-(π-3)022.小王电子产品专柜以20元/副的价格批发了某新款耳机,在试销的60天内整理出了销售数据如下销售数据(第x天)售价(元)日销售量(副)1≤x<35x+30100-2x35≤x≤6070100-2x(1)若试销阶段每天的利润为W元,求出W与x的函数关系式;(2)请同在试销阶段的哪一天销售利润W可以达到最大值?最大值为多少?四、解答题(本大题共4小题,共52.0分)23.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.24.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.25.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5千米的C处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.26.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6(a≠0)交x轴于A(-4,0),B(2,0),在y轴上有一点E(0,-2),连接AE.(1)求二次函数的表达式;(2)点D是第二象限内的抛物线上一动点.①求△ADE面积最大值并写出此时点D的坐标;②若tan∠AED=,求此时点D坐标.答案和解析1.【答案】D【解析】解:将1230000用科学记数法表示为1.23×106.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:∵AB∥CD,∴∠1=85°,∵∠E=27°,∴∠D=85°-27°=58°,故选:D.根据平行线的性质解答即可.此题考查平行线的性质,根据两直线平行,同位角相等解答.3.【答案】D【解析】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,原计算正确,故此选项不符合题意;选项B,合并同类项,xy2-xy2=xy2-xy2=xy2,原计算正确,故此选项不符合题意;选项C,同底数幂的除法,a5÷a2=a5-2=a3,原计算正确,故此选项不符合题意;选项D,积的乘方,(-mn3)2=m2n6,原计算错误,故此选项符合题意;故选:D.选项A为单项式×单项式;选项B为合并同类项;选项C为同底数幂的除法;选项D为积的乘方,根据相应的法则进行计算即可.本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.4.【答案】B【解析】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.根据中位数的意义分析.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.【答案】C【解析】解:∵函数y=和一次函数y=-ax+1(a≠0),∴当a>0时,函数y=在第一、三象限,一次函数y=-ax+1经过一、二、四象限,故选项A、B错误,选项C正确;当a<0时,函数y=在第二、四象限,一次函数y=-ax+1经过一、二、三象限,故选项D错误;故选:C.根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的方法解答.6.【答案】B【解析】【分析】此题考查了相似三角形的判定与性质、正方形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.由在正方形ABCD中,∠GEF=90°,易证得△AGE∽△BEF,又由E为AB的中点,AG=1,BF=2,根据相似三角形的对应边成比例,易求得AE与BE 的长,然后由勾股定理求得答案.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∵∠GEF=90°,∴∠AEG+∠BEF=90°,∴∠AGE=∠BEF,∴△AGE∽△BEF,∴,∵E为AB的中点,∴AE=BE,∵AG=1,BF=2,∴,解得:BE=AE=,在Rt△AEG中,GE2=AG2+AE2=3,在Rt△BEF中,EF2=BE2+BF2=6,∴在Rt△GEF中,GF==3.故选B.7.【答案】B【解析】解:作OD⊥BC,则BD=CD,连接OA,OB,OC,∴OD是BC的垂直平分线∴,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=1,∵AD⊥BC,AB=AC,∴BD=CD,∴OD=OB=,∴AD=1+,∴S△ABC=BC•AD=,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC-S△BOC=+-=,故选:B.连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长1,利用三角形和扇形的面积公式即可求解;本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S△ABC+S扇形-S△BOC是解题的关键.BOC8.【答案】A【解析】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不符合题意;故选:A.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.【答案】B【解析】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°-48°=42°,故选:B.根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.本题考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC 的度数,题目比较好,难度适中.10.【答案】B【解析】【分析】此题考查了二次函数顶点式的性质:抛物线y=a(x-h)2+k的顶点坐标为(h,k),已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,-3).故选B.11.【答案】D【解析】解:根据题意,点A、A′关于点C对称,设点A′的坐标是(x,y),则=0,=1,解得x=-a,y=-b+2,∴点A′的坐标是(-a,-b+2).故选:D.设点A′的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C 成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方.12.【答案】C【解析】解:①根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=10cm,S△BCE=BC•AB=30,∴AB=6cm,故①正确;②根据10-12秒面积不变,可得ED=2,当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=18,故点H的坐标为(18,0),设直线NH的解析式为y=kx+b,将点H(18,0),点N(12,30)代入可得:,解得:.故直线NH的解析式为:y=-5t+90,故②错误;③当△ABE与△QBP相似时,点P在DC上,由勾股定理,得AE=8,如图2所示:∵tan∠BPQ=tan∠ABE==,∴=,即=,解得:t=,故③正确;④如图2所示,tan∠PBQ===,解得t=,故④错误;综上可得①②③正确.故答案为:①②③.据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.13.【答案】a(a-3b)(a+3b)【解析】【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键.【解答】解:a3-9ab2=a(a2-9b2)=a(a-3b)(a+3b).故答案为:a(a-3b)(a+3b).14.【答案】-1<x≤4【解析】解:解不等式3x+1>-2,得:x>-1,解不等式12-3x≥0,得:x≤4,则不等式组的解集为-1<x≤4,故答案为:-1<x≤4.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【答案】x<-2或0<x<1【解析】解:使y1>y2的x的取值范围是点A左侧和点B的左侧到y轴之间部分,所以x<-2或0<x<1.故答案为:x<-2或0<x<1.根据反比例函数的图象性质正比例函数的图象性质求出自变量x的取值范围.主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.(1)反比例函数y=kx的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.(2)一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.16.【答案】或【解析】【分析】本题考查位似变换,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【解答】解:如图,在Rt△AOB中,OB==10,①当△A′OB′在第四象限时,MM′=.②当△A″OB″在第二象限时,MM′=,故答案为或.17.【答案】-12【解析】解:延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC∥OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,而顶点C的坐标为(m,3),∴OE=3,∴CE=OE=3,∴OC=2CE=6,∵四边形ABOC为菱形,∴OB=OC=6,∠BOA=30°,在Rt△BDO中,∵BD=OB=2,∴D点坐标为(-6,2),∵反比例函数y=的图象经过点D,∴k=-6×2=-12.故答案为-12.延长AC交y轴于E,如图,根据菱形的性质得AC∥OB,则AE⊥y轴,再由∠BOC=60°得到∠COE=30°,则根据含30度的直角三角形三边的关系得到CE=OE=3,OC=2CE=6,接着根据菱形的性质得OB=OC=6,∠BOA=30°,于是在Rt△BDO中可计算出BD=OB=2,所以D点坐标为(-6,2),然后利用反比例函数图象上点的坐标特征可求出k的值.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了含30度的直角三角形三边的关系.18.【答案】15【解析】解:∵x>5∴x相当于已知调和数15,代入得,-=-,解得,x=15.经检验得出:x=15是原方程的解.故答案为:15.根据题意,利用已知规律求未知数,从x>5判断,x相当于已知规律中的15.此题主要考查了分式方程的应用,解决本题的关键是通过观察分析,未知调和数利用已知调和数来解得..19.【答案】【解析】解:∵关于x,y的二元一次方程组的解为,∴,∴,解得,故答案为:.把代入可得,进而可得,再解即可.此题主要考查了二元一次方程组的解,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.20.【答案】①②④【解析】解:∵DE=BF,∴DF=BE,在Rt△DCF和Rt△BAE中,,∴Rt△DCF≌Rt△BAE(HL),∴CF=AE,故①正确;∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC,∵CF=AE,∴四边形CFAE是平行四边形,∴OE=OF,故②正确;∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE,∴CD∥AB,∵CD=AB,∴四边形ABCD是平行四边形,故④正确;由以上可得出:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE,△DOA≌△COB等,故③错误;∴正确的有3个,故答案为:①②④.根据平行四边形的性质与判定以及全等三角形的判定与性质分别分析得出即可.本题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识;得出Rt△DCF≌Rt△BAE是解题关键.21.【答案】解:原式=[-]•(a+1)=•(a+1)=,当a=2cos30°+()-1-(π-3)0=2×+2-1=+1时,原式===.【解析】先根据分式的混合运算顺序和运算法则化简原式,再利用特殊锐角的三角函数值、负整数指数幂与零指数幂得到a的值,继而将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及特殊锐角的三角函数值、负整数指数幂与零指数幂.22.【答案】解:(1)①当1≤x<35时,W1=(x+30-20)(100-2x)即W1=-2(x-20)2+1800;②当35≤2x≤26时,W2=(70-20)(100-2x)即W2=-100x+5000;故W与x之间的函数关系式为W=;(2)∵W1=-2(x-20)2+1800(1≤x<35),∴在试销的第一阶段,在第20天时,利润最大为1800元,∵W2=-100x+5000(35≤x≤60),∴在试销的第二阶段,在第35天时,销售利润最大为1500元,综上可知,在试销阶段的第20天时W最大,最大值为1800元.【解析】(1)利用总利润=单件利润×销量写出函数关系式即可;(2)配方后确定两个最值,取最大的即可.本题考查了二次函数的应用的知识,解题的关键是能够根据题意确定二次函数的解析式,难度不大.23.【答案】(1)100;108°;(2)喜欢用短信的人数为:100×5%=5人,喜欢用微信的人数为:100-20-5-30-5=40,补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%,∴该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人,(4)列出树状图,如图所示:所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,甲、乙两名同学恰好选中同一种沟通方式的概率为:=.【解析】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人喜欢用QQ沟通所占比例为:=,∴QQ”的扇形圆心角的度数为:360°×=108°,故答案为:100;108°;(2)见答案;(3)见答案.(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ的百分比即可求出QQ的扇形圆心角度数.(2)计算出短信与微信的人数即可补全统计图.(3)用样本中喜欢用微信进行沟通的百分比来估计1500名学生中喜欢用微信进行沟通的人数即可求出答案;(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率本题考查统计与概率,解题的关键是熟练运用统计与概率的相关公式,本题属于中等题型.24.【答案】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.【解析】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.(1)连接OE,证明∠OEA=90°即可;(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH的长,进而求出CE的长.25.【答案】解:(1)由题意,得∠BAC=90°,∴BC==10,∴飞机航行的速度为:10×60=600(km/h);(2)能;作CE⊥l于点E,设直线BC交l于点F.在Rt△ABC中,AC=5,BC=10,∴∠ABC=30°,即∠BCA=60°,又∵∠CAE=30°,∠ACE=∠FCE=60°,∴CE=AC•sin∠CAE=,AE=AC•cos∠CAE=.则AF=2AE=15(km),∴AN=AM+MN=14.5+1=15.5km,∵AM<AF<AN,∴飞机不改变航向继续航行,可以落在跑道MN之间.【解析】(1)先求出∠BAC=90°,然后利用勾股定理列式求解即可得到BC,再求解即可;(2)作CE⊥l于E,设直线BC交l于F,然后求出CE、AE,然后求出AF的长,再进行判断即可.本题考查了解直角三角形的应用,方向角的定义,勾股定理,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.26.【答案】解:(1)将A(-4,0),B(2,0)代入y=ax2+bx+6(a≠0),可得,,∴;(2)①∵A(-4,0),E(0,-2),∴,AE的直线解析式.设,过点D作DK⊥y轴交于点K;K(0,-m2-m+6),S△ADE=S梯形DKOA+S△AOE-S△KED=×(KD+AO)•OK+AO•OE-KD•KE=(-m+4)×(-m2-m+6)+×4×2-×(-m)×(2-m2-m+6)=-(m+)2+,当m=-时,S△ADE的面积最大,最大值为,此时D点坐标为(-,);②如图2,过点A作AN⊥DE,DE与x轴交于点F,∵,∴,,Rt△AFN∽Rt△EFO,∴.∵EF2=OF2+4,∴.∴.∴OF=2.∴F(-2,0).∴EF直线解析式为y=-x-2.∴当时,,∴.【解析】(1)将A(-4,0),B(2,0)代入y=ax2+bx+6(a≠0),求得系数的值即可;(2)①由已知可求:AE=2,AE的直线解析式y=-x-2,设D(m,-m2-m+6),过点D作DK⊥y轴交于点K;K(0,-m2-m+6),S△ADE=S梯形DKOA+S△AOE-S△KED;②过点A作AN⊥DE,DE与x中交于点F,由tan∠AED=,可求AN=,NE=3,根据△AFN∽△EFO的对应边成比例和勾股定理得到:F(-2,0),得到EF直线解析式为y=-x-2,直线与抛物线的交点为D点.本题是二次函数的综合问题,主要考查二次函数的性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.。
2020年山东省滨州市中考数学模拟试卷(附详解)
2020年山东省滨州市中考数学模拟试卷一、选择题(本大题共12小题,共36.0分)1.实数√9的平方根为().A. 3B. −3C. ±3D. ±√32.下列说法错误的有()①最大的负整数是−1;②绝对值是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤在数轴上7与9之间的有理数是8.A. 1个B. 2个C. 3个D. 4个3.式子√a+1有意义,则实数a的取值范围是()a−2A. a≥−1B. a≠2C. a≥−1且a≠2D. a>2=0有实数根,则实数k的取值范围是()4.若关于x的方程kx2−3x−94A. k=0B. k≥−1且k≠0C. k≥−1D. k>−15.在同一平面直角坐标系中,函数y=ax+b与y=ax2−bx的图象可能是()A. B.C. D.6.如图,四边形ABCD内接于⊙O,F是CD⏜上一点,且DF⏜=BC⏜,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A. 45°B. 50°C. 55°D. 60°7. 某事件发生的概率为14,则下列说法不正确的是( )A. 无数次实验后,该事件发生的频率逐渐稳定在14左右 B. 无数次实验中,该事件平均每4次出现1次 C. 每做4次实验,该事件就发生1次D. 逐渐增加实验次数,该事件发生的频率就和14逐渐接近8. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A. {x +y =3518x +24y =750 B. {x +y =3524x +18y =750 C. {x −y =3524x −18y =750D. {x −y =3518x −24y =7509. 如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin∠BFD 的值为( )A. 13B. 2√23C. √24D. 3510. 如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=k 1x(x >0)及y 2=k 2x(x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1−k 2的值为( )A. 2B. 3C. 4D. −411. 已知关于不等式2<(1−a)x 的解集为x <21−a ,则a 的取值范围是( )A. a >1B. a >0C. a <0D. a <112. 如图,已知CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,得出以下结论:①AC =FG ;②S △FAB :S 四边形CBFG =1:2;③∠ABC =∠ABF ;④AD 2=FQ ⋅AC.其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共40.0分) 13. 若x m =2,x n =3,则x m+2n 的值为______. 14. 对于任意实数,规定的意义是∣∣∣ab cd ∣∣∣|abcd|=ad −bc.则当x 2−3x +1=0时,∣∣∣x +13x x −2x −1∣∣∣=______.15. 在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为______.16. 如图所示,正方形ABCD 的边长为4,E 是边BC 上的一点,且BE =1,P 是对角线AC 上的一动点,连接PB 、PE ,当点P 在AC 上运动时,△PBE 周长的最小值是 .17. 如图,在△ABC 中,M 、N 分别为AC ,BC 的中点.若S △CMN =1,则S 四边形ABNM =______.18. 如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是______.19. 如图,矩形ABCD 中,BC =4,CD =2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为______.(结果保留π)20.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是______.三、解答题(本大题共6小题,共74.0分)21.先化简,再求值:(x2−2x+1x2−x +x2−4x2+2x)÷1x,且x为满足−3<x<2的整数.22.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是______人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是______,“其他方式”所在扇形的圆心角度数是______;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.23.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.24.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.25.某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?26.如图,抛物线y=ax2+bx+c的图象与x轴交于A(−1.0),B(3,0)两点,与y轴交于点C(0,−3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.答案和解析1.【答案】D【解析】【分析】本题考查平方根与算术平方根的概念,属基础题,掌握整数的平方根和算术平方根的概念是解决此类问题的关键,注意正数a的平方根有两个,是±√a,据此进行解答即可.【解答】解:∵√9是9的算术平方根,∴√9=3,∵3的平方根是±√3,∴√9的平方根是±√3.故选D.2.【答案】D【解析】【分析】本题考查了有理数,理解概念是解题关键.根据负整数的意义,可判断①;根据绝对值的意义,可判断②;根据有理数的分类,可判断③;根据负数的意义,可判断④;根据有理数的意义,可判断⑤.【解答】解:①最大的负整数是−1,故①正确;②绝对值是它本身的数是非负数,故②错误;③有理数分为正有理数、0、负有理数,故③错误;④a<0时,−a在原点的右边,故④错误;⑤在数轴上7与9之间的有理数有无数个,故⑤错误;故选D.3.【答案】C【解析】【分析】此题主要考查了二次根式和分式有意义的条件,正确把握定义是解题关键.利用二次根式的定义与分式有意义的条件分别列出不等式,解不等式即可得出答案.【解答】解:式子√a+1a−2有意义,则a+1≥0,且a−2≠0,解得:a≥−1且a≠2.故选C.4.【答案】C【解析】【分析】本题主要考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.讨论:当k=0时,方程化为−3x−94=0,方程有一个实数解;当k≠0时,Δ=(−3)2−4k⋅(−94)≥0,然后求出两种情况下的k 的所有取值范围.【解答】解:当k=0时,方程化为−3x−94=0,解得x=−34;当k≠0时,Δ=(−3)2−4k⋅(−94)≥0,解得k≥−1,综上可得,k的取值范围为k≥−1.故选C.5.【答案】C【解析】【分析】此题主要考查了一次函数、二次函数图象的性质及其应用,属于中档题.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx来说,对称轴x=b2a>0,应在y轴的右侧,故不合题意,图形错误;B.对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2−bx<0,应在y轴的左侧,故不合题意,图形错误;来说,对称轴x=b2aC.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx>0,应在y轴的右侧,故符合题意;来说,图象开口向上,对称轴x=b2aD.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而图中的抛物线y=ax2−bx图象开口向下,a<0,产生矛盾,所以图形错误;故选C.6.【答案】B【解析】【分析】本题考查的是圆内接四边形的性质,三角形的外角性质,圆周角定理,熟知圆内接四边形的对角互补是解答此题的关键.先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°−∠ABC=180°−105°=75°.∵DF⏜=BC⏜,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC−∠DCE=75°−25°=50°.故选B.7.【答案】C【解析】【分析】,不一定试验4本题考查了利用频率估计概率.解题的关键是了解某事件发生的概率为14次就一定有一次发生,分别判断后即可得出答案.【解答】左右,故A正确,不符合题意;解:A.无数次实验后,该事件发生的频率逐渐稳定在14B.无数次实验中,该事件平均每4次出现1次,故B正确,不符合题意;C.每做4次试验,该事件可能发生一次,也可能发生两次,也有可能不发生,故C错误,D .逐渐增加实验次数,该事件发生的频率就和14逐渐接近,故D 正确,不符合题意。
山东省滨州市邹平县2020年中考数学模拟试卷及参考答案
13. 函数 有意义,则自变量 x 的取值范围是________. 14. 分解因式:a4 -16 =________ 15. 矩形ABCD中,E,F,M分别为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM则BF的长为______ __.
16. 如图,扇形AOB中,半径OA=2,∠AOB=120°,C是 的中点,连接AC、BC , 则中阴影部分面积是________
A . 120° B . 180° C . 240°
D . 300°
10. 下列命题:①方程x2=x的解是x=1 ② 的算术平方根是
③有两边和一角相等的两个三角形全等
④连接任意四边形各边中点的四边形是平行四边形
其中真命题有:( )
A . 4个 B . 3个 C . 2个 D . 1个 11. 如图,小半圆的直径与大半圆的直径AB重合,圆心重合,弦CD与小半圆相切,CD=10,则阴影部分面积为( )
22. (1) 作图:作∠MON的平分线OE,在OE上任取一点A,过A作AB∥OM,AC∥ON,连接BC交OA于D.(只保留作
图痕迹)
(2) BC与OA的位置关系是什么?请加以证明。 (3) 若OA=8,AC=5,则BD是多少? 23. 如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.
(3) 在x轴的下方的抛物线上是否存在一点P使得△PAC的面积为3,若存在求出P点的坐标,不存在说明理由。 参考答案
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
20.
21. 22.
23. 24.
25.
A . 100π B . 50π C . 25π D . 12.5π
山东省滨州市七校联考2020届九年级初中学生学业水平模拟考试数学试题(含答案)
2020年初中学生学业水平模拟考试数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列各对数中,数值相等的数是( )A. 与B. 与C. 与D. 与2.以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A. B. C. D.3.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为( )A. B. C. D.4.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是( )A. B.C. D.5.实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A. B. C. D.6.下列计算错误的是( )A. B.C. D.7.如果代数式有意义,那么,直角坐标系中点的位置在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.多项式,,,;分解因式后,结果含有相同因式的是( )A. B. C. D.9.若不等式组无解,则m的取值范围为( )A. B. C. D.10.如图,中,,,,则阴影部分的面积是( )A. B. C. D.第10题图第11题图第12题图11.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,于E,于F,则EF的最小值为( )A. B. C. 2 D. 112.如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足,当点A运动时,点C始终在函数的图象上运动,若,则k的值为( )A. B. C. D.第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.已知,则______.14.如图,点P是等边三角形ABC内一点,且,,,若将绕着点B逆时针旋转后得到,则的度数______.第14题图第15题图15.如图,矩形ABCD中,,,E为AD中点,F为AB上一点,将沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是______.16.如图,小强和小华共同站在路灯下,小强的身高,小华的身高,他们的影子恰巧等于自己的身高,即,,且两人相距,则路灯AD的高度是______ .第16题图第17题图第20题图17.如图,在中,,,DE为的中位线,延长BC至F,使,连接FE并延长交AB于点若,则的周长为______.18.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为 2,3,类比实数有加法运算,集合也可以“相加”定义:集合A与集合B 中的所有元素组成的集合称为集合A与集合B的和,记为若 0,1,5,,0,1,3,,则 ______ .19.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处,按照这样的规律继续跳动到点,,,,n是整数处,那么线段的长度为______n是整数.20.如图,抛物线过点,且对称轴为直线,有下列结论:;;抛物线经过点与点,则;无论a,b,c取何值,抛物线都经过同一个点;,其中所有正确的结论是______.三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程.21.(本小题满分10分)先化简,再求值:,其中m=tan60°-.22.(本小题满分12分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“______”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.23.(本小题满分12分)为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?24. (本小题满分13分)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.第24题图25.(本小题满分13分)如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE 于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2.①求值;②求∠FAB 的度数.第25题图26.(本小题满分14分)如图,在平面直角坐标系中,抛物线经过点、,点P 是直线AB上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t . 分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.2020年初中学生学业水平模拟考试数学试题参考答案及评分标准一、选择题:本大题共12个小题,每小题3分,满分36分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DDDBCDCAABBB二、填空题:本大题共8个小题,每小题5分,满分40分. 13.-21; 14.150。
2020年山东省滨州市中考数学模拟试卷
中考数学模拟试卷一、选择题(本大题共12小题,共36.0分)1.下列各数中:-、12π、、0.010010001、、0是无理数的有()A. 1个B. 2个C. 3个D. 4个2.关于x的方程-2x2+4x+1=0的两个根分别是x1、x2,则x12+x22是()A. 2B. -2C. 3D. 53.点P在平面直角坐标系中,位于x轴上方,距离x轴3个单位长度,距离y轴4个单位长度,则点P关于x轴对称的点的坐标是()A. (3,4)、(-3,4)B. (4,-3)、(-4,-3)C. (3,-4)、(-3,-4)D. (4,3)、(-4,3)4.如图,在四边形ABCD中,点E在线段DC的延长线上,能使直线AD∥BC的条件有()(1)∠D=∠BCE,(2)∠B=∠BCE,(3)∠A+∠B=180°,(4)∠A+∠D=180°,(5)∠B=∠DA. 1个B. 2个C. 3个D. 4个5.等腰三角形两边长分别是2cm和5cm,则这个三角形周长是()A. 9cmB. 12cmC. 9cm或12cmD. 14cm6.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A. 6cm2B. 24cm2C. 2cm2D. 6cm27.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?()A. 6名,38个B. 4名,28个C. 5名,30个D. 7名,40个8.如图,二次函数y=ax2+bx+c的图象如图所示,直线m是图象的对称轴,则下列各式的取值正确的是:a>0,b<0,c>0,b2-4ac<0,2a+b>0,a+b+c>0()A. 1个B. 2个C. 3个D. 4个9.x的值适合不等式且x是正整数,则x的值是()A. 0,1B. 0,1,2C. 1,2D. 110.如图,某下水道的横截面是圆形的,水面CD的宽度为2m,F是线段CD的中点,EF经过圆心O交⊙O与点E,EF=3m,则⊙O直径的长是()A. mB. mC. mD. m11.如图,等腰△ABC中,∠BAC=120°,点D在边BC上,等腰△ADE绕点A顺时针旋转30°后,点D落在边AB上,点E落在边AC上,若AE=2cm,则四边形ABDE的面积是多少()A. 4cmB. cmC. 2cmD. 4cm12.如图,在正方形ABCD中,对角线相交于点O,BN平分∠CBD,交边CD于点N,交对角线AC于点M,若OM=1,则线段DN的长是多少()A. 1.5B. 2C.D. 2二、填空题(本大题共8小题,共40.0分)13.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1--6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是______.14.反比例函数y=图象的两个分支与一次函数y=x+b的图象相交于点A(1,y)、B,BD垂直于y轴,垂足为D,△OBD的面积为1,则b的值是______.15.一组数据a、b、c、d、e的方差是3,则新数据2a+4、2b+4、2c+4、2d+4、2e+4的方差是______.16.若x2-4x+3=0,则分式的值是______.17.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的N点处,同时得到折痕BM,BM与EF交与点H,连接线段BN,则EH与HN的比值是______.18.如图,有四块如图(1)这样的小正方体摆在一起,其主视图如图(2),则左视图有______种画法.19.如图,菱形ABCD的边长为8cm,∠ADC=30°,以CD为直径作半圆与边AD相交,则阴影部分的面积是______cm.20.观察算式:(1)=======10,(2)======100=102.发现什么规律?用你发现的规律直接写出下题的结果:=______.三、计算题(本大题共1小题,共10.0分)21.解分式方程:+=1四、解答题(本大题共5小题,共64.0分)22.为了更好的促进学生进行“阳光体育”运动,某校对全体学生进行了各项体育检测,下面是根据七年级(1)班50名学生的综合成绩,整理并制作了如下表格和一幅不完整的条形统计图:说明:各分数段包括前面的分数,不包括后面的分数.分以下为一般,~分为良好,80~100分为优秀.根据上述信息,解答下列问题:(1)计算x、y、z的值:x=______,y=______,z=______.(2)请补全空气质量天数条形统计图;根据条形统计图直接写出体育成绩这组数据的中位数在那个小组内______;(3)根据已完成的扇形统计图,写出体育成绩等级为优秀的学生所占的百分比______;它所对应扇形统计图中的圆心角度数是______.(4)估计班级的平均分是______.23.如图,BC是⊙O的直径,AB是⊙O的弦,OE⊥AB,E是垂足,弦CD经过点E,连接AD,OE=2,∠D=30°.(1)求证:AE2=CE•DE;(2)求DE的长.24.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?25.如图,直角边长为6的等腰Rt△ABC中,点D、E分别在直角边AC、BC上,DE∥AB,EC=4.(1)如图1,将△DEC沿射线AC方向平移,得到△D1E1C1,边D1E1与BC的交点为M,连接BE1,当CC1多大时,△BME1是等腰直角三角形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D1E1C,连接AD1、BE1、边D1E1的中点为F.①在旋转过程中,AD1和BE1有怎样的数量关系?并说明理由;②连接BF,当BF最大时,求AD1的值.(结果保留根号)26.如图,菱形ABCD在平面直角坐标系中,边AB在x轴的负半轴上,点C在y轴的正半轴上,AB=10,tan∠DAB=,抛物线经过点B、C、D.(1)求抛物线的解析式;(2)直线EF与BC平行,与抛物线只有一个交点,求直线EF解析式;(3)抛物线对称轴上是否存在点P,使△PBC是以BC为腰的等腰三角形?若存在直接写出P点坐标,若不存在说明理由.答案和解析1.【答案】B【解析】解:在实数:-、12π、、0.010010001、、0中,属于无理数的有12π、共两个.故选:B.根据无理数的定义(无理数是指无限不循环小数)判断即可.本题考查了对无理数的定义的应用,注意:无理数包括:①开方开不尽的根式,②含π的,③一些有规律的数,无理数是指无限不循环小数.2.【答案】D【解析】解:根据题意得x1+x2=2,x1•x2=-,x12+x22=(x1+x2)2-2x1•x2=22-2×(-)=5.故选:D.根据根与系数的关系得到x1+x2=2,x1•x2=-,再变形x12+x22得(x1+x2)2-2x1•x2,然后利用整体思想进行计算即可.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1•x2=.3.【答案】B【解析】解:∵点P在平面直角坐标系中,位于x轴上方,距离x轴3个单位长度,距离y轴4个单位长度,∴点P的坐标是:(4,3)(-4,3),则点P关于x轴对称的点的坐标是:(4,-3),(-4,-3).故选:B.直接利用平面内点的坐标特点得出P点坐标,再利用关于x轴对称点的性质得出答案.此题主要考查了点的坐标以及关于x轴对称点的性质,正确得出掌握点的坐标性质是解题关键.4.【答案】B【解析】解:∵∠D=∠BCE,∴AD∥BC,故(1)能判定;∵∠B=∠BCE,∴AB∥DC,故(2)不能判定AD∥BC;∵∠A+∠B=180°,∴AD∥BC,故(3)能判定;∵∠A+∠D=180°,∴AB∥CD,故(4)不能判定;∵∠B=∠D,不能判定AD∥BC,故选:B.根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.【答案】B【解析】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm;故选:B.题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键6.【答案】D【解析】解:在Rt△ACB中,∵∠C=90°,AB=8cm,∴sin A==,∴BC=6(cm),∴AC===2(cm),∴S△ABC=•BC•AC=×6×2=6(cm2).故选:D.在Rt△ABC中,求出BC,AC即可解决问题.本题考查解直角三角形的应用,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】A【解析】解:设有x名同学,5x+8=7x-4,解得,x=6,∴5x+8=38,即有6名同学,38个水果,故选:A.根据每人5个,多8个,每人7个,差4个可以列出相应的方程,从而可以解答本题.本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.8.【答案】C【解析】解:∵二次函数图象开口向上,∴a>0,∵对称轴直线x=->1,∴-b>2a,∴b<0,2a+b<0,∵与y轴交于正半轴,∴c>0,∵二次函数图象与x轴有两个交点,∴b2-4ac>0,∵当x=1时,y<0,∴a+b+c<0,综上所述:正确的有a>0,b<0,c>0共3个.故选:C.由二次函数图象的开口、对称轴及与y轴交点的位置,即可得出a>0,b<0,c>0,由二次函数图象与x轴有两个交点,可得出b2-4ac>0,由->1,可得出2a+b<0,由当x=1时y<0,可得出a+b+c<0.本题考查了二次函数图象与系数的关系,观察函数图象,逐一分析正误是解题的关键.9.【答案】C【解析】解:,3(x-2)+6≤2(x+1)3x-6+6≤2x+2,3x-2x≤2,x≤2,∵x是正整数,∴x的值是1,2.故选:C.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.10.【答案】D【解析】解:如图,连接OC,∵F是弦CD的中点,EF过圆心O,∴EF⊥CD.∴CF=FD.∵CD=2,∴CF=1,设OC=x,则OF=3-x,在Rt△COM中,根据勾股定理,得12+(3-x)2=x2.解得x=,∴⊙O的直径为.故选:D.根据垂径定理得出EF⊥CD,则CF=DF=1,在Rt△COF中,有OC2=CF2+OF2,进而可求得半径OC.此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形.11.【答案】C【解析】解:如图,作AH⊥BC于H.由题意:∠EAD=∠BAC=120°,∠EAC=∠C=30°,∴AE∥BC,∵∠ADH=∠B+∠BAD,∠B=∠BAD=30°,∴∠ADH=60°,BD=AD=AE=2cm,∴AH=(cm),∵BD=AE,BD∥AE,∴四边形ABDE是平行四边形,∴S平行四边形ABCD=BD•AH=2(cm2),故选:C.如图,作AH⊥BC于H.证明四边形ABDE是平行四边形即可解决问题.本题考查旋转变换,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.12.【答案】B【解析】解:作NE⊥BD于E,如图所示:∵四边形ABCD是正方形,∴AC⊥BD,∠ADC=∠BCD=90°,∠ODC=45°,OB=OD,BC=DC,∴△DEN是等腰直角三角形,∴DE=NE,DN=NE,∵BN平分∠CBD,∴NE=NC,∴NE=NC=DE,设NE=NC=DE=x,则DN=x,∴DC=x+x,∴BD=DC=2x+x,BE=BD-DE=x+x,∴OB=BD=x+x,∵NE⊥BD,∴NE∥AC,∴△BOM∽△BEN,∴=,即=,解得:x=,∴DN=x=2;故选:B.作NE⊥BD于E,由正方形的性质得出AC⊥BD,∠ADC=∠BCD=90°,∠ODC=45°,OB=OD,BC=DC,得出△DEN是等腰直角三角形,的DE=NE,DN=NE,由角平分线的性质得出NE=NC,得出NE=NC=DE,设NE=NC=DE=x,则DN=x,∴DC=x+x,得出BD=DC=2x+x,BE=BD-DE=x+x,OB=BD=x+x,证明△BOM∽△BEN,得出=,解得:x=,即可得出答案.本题考查了正方形的性质、等腰三角形的判定与性质、相似三角形的判定与性质;熟练掌握正方形的性质,证明三角形相似是解题的关键.13.【答案】【解析】解:画树状图为:共有36种等可能的结果数,其中小红两次都抽到3号跑道的结果数为1,所以小红两次都抽到3号跑道的概率=.故答案为.画树状图展示所有36种等可能的结果数,找出小红两次都抽到3号跑道的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.【答案】1【解析】解:∵反比例函数y=图象的两个分支与一次函数y=x+b的图象相交于点A(1,y)、B,∴反比例函数的图象在一、三象限,∵△OBD的面积为1,∴k=1,∴k=2,∴反比例函数为y=,∵反比例函数y=图象经过点A(1,y),∴y==2,∴A(1,2),代入y=x+b得,2=1+b,∴b=1,故答案为1.根据题意反比例函数的图象在一、三象限,根据反比例函数系数k的几何意义求得反比例函数的解析式,代入A(1,y),求得y的值,然后根据待定系数法即可求得b的值.本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,根据反比例函数系数k的几何意义求得反比例函数的解析式是解题的关键.15.【答案】12【解析】解:∵数据a、b、c、d、e的方差是3,∴数据2a+4、2b+4、2c+4、2d+4、2e+4的方差是22×3=12;故答案为:12.根据方差的变化规律即可得出答案,即当数据都加上一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.16.【答案】2【解析】解:x2-4x+3=0,解得x1=3,x2=1,由分式有意义的条件可得x=1,则=+-2=2.故答案为:2.解方程求得x2-4x+3=0的解,再根据分式有意义的条件可得x=1,代入分式计算即可求解,考查了分式的化简求值,解题的关键是熟练掌握一元二次方程的解法,由分式有意义的条件可得x=1.17.【答案】1:2【解析】解:由折叠的性质可得:AB=BN,AE=BE=AB,∠ABM=∠MBN,EF⊥AB∵sin∠BNE=∴∠BNE=30°∴∠ABN=60°,且∠ABM=∠MBN∴∠ABM=∠MBN=30°=∠BNE∴BH=2EH,BH=HN,∴HN=2EH,∴EH与HN的比值是1:2故答案为:1:2由折叠的性质可得AB=BN,AE=BE=AB,∠ABM=∠MBN,EF⊥AB,由锐角三角函数可求∠BNE=30°,由直角三角形的性质可求HN=2EH,即可求EH与HN的比值.本题考查了翻折变换,矩形的性质,直角三角形的性质,熟练运用锐角三角函数求∠BNE 的度数是本题的关键.18.【答案】3【解析】解:左视图可能为:即:3种,故答案为:3.根据题意作出可能的组合体的三视图即可确定正确的答案.考查了由三视图判断几何体的知识,解题的关键是有足够的空间感,难度不大.19.【答案】32-4-【解析】解:设半圆的圆心为O,与AD交于E,连接OE,∵∠ADC=30°,∴∠COE=60°,OE=OD=OC=4,∴S△ODE=×1,S扇形EOC==,过A作AH⊥CD于H,∴AH=4,∴阴影部分的面积=8×4-4-=32-4-,故答案为:32-4-.设半圆的圆心为O,与AD交于E,连接OE,根据已知条件得到∠COE=60°,OE=OD=OC=4,根据三角形和扇形的面积公式即可得到结论.本题考查了扇形的面积的计算,菱形的性质,解直角三角形,正确的作出辅助线是解题的关键.20.【答案】10n【解析】解:∵=======10,======100=102.∴=10n.故答案为:10n根据他们给出的材料解答即可.本题主要考查了算术平方根的概念,根据题目给出的材料找到规律是解题的关键.21.【答案】解:+=1,去分母,得:2x+(x-3)(x-1)=x(x-3),去括号,得:2x+x2-x-3x+3=x2-3x,移项合并同类项,得:x=-3,检验:当x=-3时,x(x-3)≠0,所以:x=-3是原分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】3 11 9 良好42% 151.2°75分【解析】解:(1)根据题意,得x=9-6=3,y=50-9-21-9=11,z=21-12=9,故答案为3,11,9;(2)良好人数:50-9-21=20(名)补全条形统计图如下:因为七年级(1)班共50名学生所以体育成绩这组数据的中位数落在“良好”故答案为:良好;(3)体育成绩等级为优秀的学生所占的百分比,它所对应扇形统计图中的圆心角度数是360°×42%=151.2°,故答案为:42%,151.2°;(4)估计班级的平均分是:×(45×3+55×6+65×9+75×11+85×12+95×9)=75(分),故答案为75分.(1)根据题意,得x=9-6=3,y=50-9-21-9=11,z=21-12=9;(2)良好人数:50-9-21=20(名),据此补全条形统计图;因为七年级(1)班共50名学生所以体育成绩这组数据的中位数落在“良好”;(3)体育成绩等级为优秀的学生所占的百分比,它所对应扇形统计图中的圆心角度数是360°×42%=151.2°;(4)估计班级的平均分是:×(45×3+55×6+65×9+75×11+85×12+95×9)=75(分).本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【答案】(1)证明:∵∠D=∠B,∠A=∠C,∴△ADE∽△CBE,∴=.∵OE⊥AB,OE过圆心,∴AE=BE,∠OEB=90°,∴=,∴AE2=CE•DE;(2)解:∵∠D=30°,∠OEB=90°,∴OE=OB.∵OE=2,∴OB=4,∴AE=BE==2.过点E作EF⊥BC于点F,如图所示.∴EF=BE•sin B=2×=,BF=BE•cos B=2×=3.∵BC=2OB=8,∴CF=8-3=5,∴CE==2.∵=,∴DE===.【解析】(1)由圆周角定理可得出∠D=∠B,∠A=∠C,进而可得出△ADE∽△CBE,利用相似三角形的性质可得出=,由垂径定理可得出AE=BE,结合=可证出AE2=CE•DE;(2)通过解直角三角形可求出OB,BE的长,过点E作EF⊥BC于点F,通过解直角三角形可求出EF,BF的长,由CF=BC-BF可求出CF的长,利用勾股定理可求出CE的长,再由=可求出DE的长.本题考查了圆周角定理、相似三角形的判定与性质、垂径定理、解直角三角形以及勾股定理,解题的关键是:(1)利用相似三角形的性质结合垂径定理,证出AE2=CE•DE;(2)通过解直角三角形及勾股定理,求出AE,CE的长.24.【答案】解:(1)设AB=x,则BC=50-2x,长方形面积为y得:y=x(50-2x)=-2x2+50x,当x=时,y最大值=,BC=50-2×=25,答:当AB=米,BC=25米时,面积最大是平方米;(2)若墙体长度是20米,则BC≤20,AB≥15,在函数y=-2x2+50x中,a=-2<0,当x>时,y随x的增大而减小,所以当x=15时,y最大值=300,答:面积最大为300平方米.【解析】(1)直接利用矩形面积求法得出函数关系式,进而求出最值;(2)利用二次函数增减性得出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.25.【答案】解:(1)如图1中,连接EE1,当CC1=2时,△BME1是等腰直角三角形.理由:∵△DEC沿射线AC方向平移,得到△D1E1C1,∴EE1∥AC,EE1⊥BC,∴EE1=CC1=2,∠EE1M=∠MD1C,∵DE∥AB,∴△ABC∽△DCE,∴=,∠EE1M=∠MD1C=45°,∵AC=BC=6,∴CD=CE=4,∴BE=EE1=2,∴∠BE1E=45°,∴∠BE1M=90°,∴∠BE1E=∠ME1E=45°,∵∠BEE1=∠MEE1=90°,EE1=EE1,∴△BE1E≌△ME1E(ASA),∴BE1=ME1,∴△BME1是等腰直角三角形.(2)①AD1和BE1相等理由:如图2中,∵∠ABC=∠D1CE1=90°,∴∠BCE1=∠ACD1,又∵AC=BC,CE1=CD1,∴△BE1C≌△AD1C(SAS),∴AD1=BE1.②当点F在BC的延长线上时,BF最大.在Rt△D1CE1中,E1C=D1C=4∴D1E1=4,∵F是中点,∴CF=D1E1=2,∴BF=6+2.【解析】(1)如图1中,连接EE1,当CC1=2时,△BME1是等腰直角三角形.利用平移不变性解决问题即可.(2)①AD1和BE1相等.证明△BE1C≌△AD1C,即可解决问题.②当点F在BC的延长线上时,BF最大.本题属于几何变换综合题,考查了平移变换,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.【答案】解:(1)∵四边形ABCD是菱形,∴AD∥BC,BC=AB=10,∴∠DAB=∠CBO,∴tan∠DAB=tan∠CBO==,∵BC=10,∴CO=8,BO=6,∴B(-6,0),C(0,8),D(-10,8).设抛物线的解析式为y=ax2+bx+c,∵抛物线经过点B、C、D,∴,解得:,∴抛物线的解析式为y=x2+x+8;(2)设直线BC的解析式为y=mx+n,代入B、C点,解得:,∴y=x+8.∵EF∥BC,∴设直线EF解析式为y=x+t,又∵直线EF与抛物线只有一个交点,∴x2+x+8=x+t只有一个解,△=0,解得:t=5,∴直线EF解析式为x+5;(3)∵y=x2+x+8=(x+5)2-,∴对称轴为直线x=-5.设抛物线的对称轴上存在点P(-5,y),使△PBC是以BC为腰的等腰三角形.B(-6,0),C(0,8),BC=10.分两种情况:①如果CP=CB,那么52+(y-8)2=100,解得y=8±5;②如果BP=BC时,那么(-5+6)2+(y-0)2=100,解得y=±3.故抛物线对称轴上存在点P,使△PBC是以BC为腰的等腰三角形,此时P点坐标为(-5,8+5)或(-5,8-5)或(-5,3)或(-5,-3).【解析】(1)由菱形的性质可得AD∥BC,BC=AB=10,那么∠DAB=∠CBO,根据tan∠DAB=tan∠CBO==,求出B、C、D三点的坐标,利用待定系数法求出抛物线的解析式;(2)利用待定系数法求出直线BC的解析式为y=x+8.根据EF∥BC,可设直线EF解析式为y=x+t,根据直线EF与抛物线只有一个交点,得出方程x2+x+8=x+t只有一个解,即△=0,求出t的值,得到直线EF的解析式;(3)分别利用当CP=CB时,△PCB为等腰三角形;当BP=BC时,△PCB为等腰三角形,利用勾股定理列方程即可.本题是二次函数综合题,涉及到利用待定系数法求函数的解析式,菱形的性质,正切函数定义,一次函数图象与几何变换,直线与抛物线的交点,等腰三角形的判定,勾股定理等知识,综合性较强,难度适中.利用方程思想与分类讨论是解题的关键.。
2020年滨州市中考数学模拟试题(附答案)
2020年滨州市中考数学模拟试题(附答案)一、选择题1.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmmC.林茂从体育场出发到文具店的平均速度是50minmD.林茂从文具店回家的平均速度是60min2.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差4.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.45.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°6.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧; ④不等式4a+2b+c>0一定成立. A .①②B .①③C .①④D .③④7.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x ﹣12x 2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:28.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .9.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .10.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .11.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .12.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数24531A .众数是100B .中位数是30C .极差是20D .平均数是30二、填空题13.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则1232014a a a a ++++=L L __________. 14.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 15.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 16.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .18.分解因式:2x2﹣18=_____.19.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).23.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .(1)证明:ADP CDP △≌△; (2)判断CEP △的形状,并说明理由.(3)如图2,把菱形ABCD 改为正方形ABCD ,其他条件不变,直接..写出线段AP 与线段CE 的数量关系.25.如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D . (1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度. 【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==, 所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C . 【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.2.A解析:A 【解析】 【分析】运用矩形的判定定理,即可快速确定答案. 【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B 四条边都相等的四边形是菱形,故B 错误;C 有一组邻边相等的平行四边形是菱形,故C 错误;对角线相等且相互平分的四边形是矩形,则D 错误;因此答案为A. 【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.6.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2ba,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确. 故选:C.7.A解析:A 【解析】分析:求出当y=7.5时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C ,根据直线解析式和坡度的定义判断D . 详解:当y=7.5时,7.5=4x ﹣12x 2, 整理得x 2﹣8x+15=0, 解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意; y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩,则小球落地点距O 点水平距离为7米,C 正确,不符合题意; ∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意; 故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.9.D解析:D 【解析】 【分析】根据从上边看得到的图形是俯视图,可得答案. 【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形. 故选:D . 【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.10.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.11.D解析:D 【解析】 【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解. 【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢; 故选D. 【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.12.B解析:B 【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A 不正确; 该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B 正确; 该组数据的极差是100-10=90,故极差是90不是20,所以选项C 不正确; 该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D 不正确. 故选B .点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.二、填空题13.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】 【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题. 【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.14.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠- 【解析】 分析:解方程3x n22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 15.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106. 【解析】 【分析】 【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.16.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22+=.125考点:1.轴对称-最短路线问题;2.正方形的性质.17.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.18.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.22.(1)280名;(2)补图见解析;108°;(3)0.1.【解析】【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.23.(1)12,32;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)CE =.【解析】 【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答; 【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠, 在ADP ∆和CDP ∆AD CDADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩, ∴()ADP CDP SAS ∆≅∆. (2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =, ∵PA PE =,∴DAP DEP ∠=∠, ∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠, 即60CPF EDF ∠=∠=︒, 又∵PA PE =,AP CP =; ∴PE PC =, ∴CEP ∆是等边三角形.(3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°, 在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,, ∴△PDA ≌△PDC , ∴PA=PC ,∠3=∠1, ∵PA=PE , ∴∠2=∠3, ∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC , ∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形. ∴2PC 2AP . 【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(1)BC 与⊙O 相切,理由见解析;(2)①⊙O 的半径为2.②S 阴影=2233π. 【解析】 【分析】(1)根据题意得:连接OD ,先根据角平分线的性质,求得∠BAD =∠CAD ,进而证得OD ∥AC ,然后证明OD ⊥BC 即可;(2)设⊙O 的半径为r .则在Rt △OBD 中,利用勾股定理列出关于r 的方程,通过解方程即可求得r 的值;然后根据扇形面积公式和三角形面积的计算可以求得结果. 【详解】 (1)相切. 理由如下:如图,连接OD.∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠ODA=∠BAD,∴∠ODA=∠CAD,∴OD∥AC.又∠C=90°,∴OD⊥BC,∴BC与⊙O相切(2)①在Rt△ACB和Rt△ODB中,∵AC=3,∠B=30°,∴AB=6,OB=2OD.又OA=OD=r,∴OB=2r,∴2r+r=6,解得r=2,即⊙O的半径是2②由①得OD=2,则OB=4,BD=3S阴影=S△BDO-S扇形ODE=12×3×2-2602360π⨯=3-23π。
2020年山东省滨州中考数学试卷真卷含答案-答案在前
2020年山东省滨州市初中学业水平考试数学答案解析一、1.【答案】D【解析】根据绝对值的性质和相反数的定义对各选项分析判断即可.解:A .55--=-∵,∴选项A 不符合题意;B .()55--=∵,∴选项B 不符合题意;C .55-=∵,∴选项C 不符合题意;D .()55--=∵,∴选项D 符合题意.故选:D .2.【答案】B【解析】根据平行线和角平分线的定义即可得到结论.解:AB CD ∵∥,°155CPF ∠=∠=∴,PF ∵是EPC ∠的平分线,°2110CPE CPF ∠=∠=∴,°°°18011070EPD ∠=-=∴,故选:B .3.【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 解:110纳米911010-=⨯米71.110-=⨯米.故选:C .4.【答案】D【解析】直接利用点的坐标特点进而分析得出答案.解:∵在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,∴点M 的纵坐标为:4-,横坐标为:5,即点M 的坐标为:()54-,.故选:D .5.【答案】B【解析】根据轴对称图形与中心对称图形的概念求解.解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B .6.【答案】C【解析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S 的关系S k =即可判断.解:过A 点作AE y ⊥轴,垂足为E ,∵点A 在双曲线4y x=上, ∴四边形AEOD 的面积为4,∵点B 在双曲线线12y x=上,且AB x ∥轴, ∴四边形BEOC 的面积为12,∴矩形ABCD 的面积为1248-=.故选:C .7.【答案】D【解析】利用正方形的判定依次判断,可求解.解:A .对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A 不合题意;B .对角线互相垂直的矩形是正方形是真命题,故选项B 不合题意;C .对角线相等的菱形是正方形是真命题,故选项C 不合题意;D .对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D 符合题意;故选:D .8.【答案】D【解析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断. 解:数据由小到大排列为3,4,4,5,9, 它的平均数为3445955++++=, 数据的中位数为4,众数为4, 数据的方差()()()()()2222213545455595 4.45⎡⎤=-+-+-+-+-=⎣⎦. 所以A .B .C .D 都正确.故选:D .9.【答案】C【解析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.解:如下图所示:∵直径15AB =,7.5BO =∴,:3:5OC OB =∵,4.5CO =∴,6DC ==∴,212DE DC ==∴.故选:C .10.【答案】B【解析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可. 解:()221522502x k x k k -++++=,()()()22221542256253162k k k k k k =-+-⨯⨯++=-+-=---⎡⎤⎣⎦△, 不论k 为何值,()230k --≤,即()23160k =---△<,所以方程没有实数根,故选:B .11.【答案】A【解析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:00a c >,<, 12b a-=∵, 20b a =-∴<,0abc ∴<,故①错误;②∵抛物线与x 轴有两个交点,240b ac -∴>,24b ac ∴>,故②正确;③当2x =时,420y a b c =++<,故③错误;④当1x =-时,0y a b c =-+>,30a c +∴>,故④正确;⑤当1x =时,y 的值最小,此时,y a b c =++,而当x m =时,2y am bm c =++,所以2a b c am bm c ++++≤,故2a b am bm ++≤,即()a b m am b ++≤,故⑤正确,⑥当1x -<时,y 随x 的增大而减小,故⑥错误,故选:A .12.【答案】B【解析】根据中位线定理可得2AM =,根据折叠的性质和等腰三角形的性质可得2A M A N ''==,过M 点作MG EF ⊥于G ,可求A G ',根据勾股定理可求MG ,进一步得到BE ,再根据平行线分线段成比例可求OF ,从而得到OD .解:1EN =∵,∴由中位线定理得2AM =,由折叠的性质可得2A M '=,AD EF ∵∥,AMB A NM '∠=∠∴,AMB A MB '∠=∠∵,A NM A MB ''∠=∠∴,2A N '=∴,32A E A F ''==∴,过M 点作MG EF ⊥于G ,1NG EN ==∴,1A G '=∴,由勾股定理得MG =BE OF MG ===∴:2:3OF BE =∴,解得OF =,OD ==∴ 故选:B .二、13.【答案】5x ≥【解析】根据二次根式有意义的条件得出50x -≥,求出即可.50x -≥,解得:5x ≥,故答案为:5x ≥.14.【答案】80°【解析】根据等腰三角形两底角相等可求∠C ,再根据三角形内角和为180°列式进行计算即可得解. 解:°50AB AC B =∠=∵,,°50C B ∠=∠=∴,°°°18025080A ∠=-⨯=∴.故答案为:80°.15.【答案】2y x= 【解析】当2y =时,即22y x ==,解得:1x =,故该点的坐标为()12,,将()12,代入反比例函数表达式k y x=,即可求解. 解:当2y =时,即22y x ==,解得:1x =,故该点的坐标为()12,,将()12,代入反比例函数表达式k y x=并解得:2k =, 故答案为:2y x=.16. 【解析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题. 解:O ∵⊙是正方形ABCD 的内切圆,12AE AB EG BC ==∴,; 根据圆周角的性质可得:MFG MEG ∠=∠.sin sin DG MFG MEG DE ∠=∠==∵,sin MFG ∠=∴..17.【答案】25【解析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率42105==. 故答案为25. 18.【答案】1a ≥【解析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案. 解:解不等式102x a ->,得:2x a >, 解不等式420x -≥,得:2x ≤,∵不等式组无解,22a ∴≥,解得1a ≥,故答案为:1a ≥.19.【答案】()()22121121n n n n n n ⎧+⎪⎪+⎨-⎪⎪+⎩为奇数为偶数 【解析】观察分母的变化为3、5、7,…,21n +次幂;分子的变化为:奇数项为21n +;偶数项为21n -;依此即可求解. 解:由分析可得()()22121121n n n n a n n n ⎧+⎪⎪+=⎨-⎪⎪+⎩为奇数为偶数. 故答案为:()()22121121n n n n n n ⎧+⎪⎪+⎨-⎪⎪+⎩为奇数为偶数. 20.【答案】14+【解析】如图,将ABP △绕点B 顺时针旋转90°得到CBM △,连接PM ,过点B 作BH PM ⊥于H .首先证明°90PMC ∠=,推出°135CMB APB ∠=∠=,推出A P M ,,共线,利用勾股定理求出2AB 即可. 解:如图,将ABP △绕点B 顺时针旋转90°得到CBM △,连接PM ,过点B 作BH PM ⊥于H .°90BP BM PBM ==∠=∵,2PM ==∴,4PC PA CM ===∵,,222PC CM PM =+∴,°90PMC ∠=∴,°45BPM BMP ∠=∠=∵,°135CMB APB ∠=∠=∴,°180APB BPM ∠+∠=∴,A P M ∴,,共线,BH PM ⊥∵,PH HM =∴,1BH PH HM ===∴,1AH =∴,()222221114AB AH BH =+=+=+∴∴正方形ABCD 的面积为14+故答案为14+.三、21.【答案】解:原式()()()2122x y x y y x x y x y +--=-÷++ ()()()2212x y x y x yx y x y +-=+++- 21x y x y +=++2x y x y x y+++=+ 23x y x y+=+,()10°1cos 3031323x y π-⎛⎫==--=-=- ⎪⎝⎭∵,, ∴原式()2332==032⨯+⨯--. 【解析】直接利用分式的混合运算法则化简,再计算x y ,的值,进而代入得出答案. 具体解体过程可参考答案.22.【答案】解:(1)由11222y x y x ⎧=--⎪⎨⎪=-+⎩解得22x y =⎧⎨=-⎩, ()22P -∴,;(2)直线112y x =--与直线22y x =-+中,令0y =,则1102x --=与220x -+=, 解得2x =-与1x =, ()()2010A B -∴,,,,3AB =∴,1132322PAB P S AB y ==⨯⨯=△∴; (3)如图所示:自变量x 的取值范围是2x <.【解析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A B 、的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.具体解题过程可参考答案.23.【答案】(1)证明:∵四边形ABCD 是平行四边形,EB ED AB CD =∴,∥,EBP EDQ ∠=∠∴,在PBE △和QDE △中,EBP EDQ EB ED BEP DEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PBE QDE ASA ∴△≌△;(2)证明:如图所示:PBE QDE ∵△≌△,EP EQ =∴,同理:()BME DNE ASA △≌△,EM EN =∴,∴四边形PMQN 是平行四边形,PQ MN ⊥∵,∴四边形PMQN 是菱形.【解析】(1)由ASA 证PBE QDE △≌△即可;(2)由全等三角形的性质得出EP EQ =,同理()BME DNE ASA △≌△,得出EM EN =,证出四边形PMQN 是平行四边形,由对角线PQ MN ⊥,即可得出结论.具体解题过程可参考答案.24.【答案】解:(1)当售价为55元/千克时,每月销售水果()500105550450=-⨯-=千克;(2)设每千克水果售价为x 元,由题意可得:()()8750405001050x x =---⎡⎤⎣⎦,解得:126575x x ==,,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m 元,获得的月利润为y 元,由题意可得:()()()240500105010709000y m m m =---=--+⎡⎤⎣⎦, ∴当70m =时,y 有最大值为9 000元,答:当每千克水果售价为70元时,获得的月利润最大值为9 000元.【解析】(1)由月销售量500=-(销售单价50-)10⨯,可求解;(2)设每千克水果售价为x 元,由利润=每千克的利润⨯销售的数量,可列方程,即可求解;(3)设每千克水果售价为m 元,获得的月利润为y 元,由利润=每千克的利润×销售的数量,可得y 与x 的关系式,有二次函数的性质可求解. 具体解题过程可参考答案.25.【答案】解:(1)连接OD OE ,,如图1, 在OAD △和OED △中,OA OE AD ED OD OD =⎧⎪=⎨⎪=⎩, ()OAD OED SSS ∴△≌△, OAD OED ∠=∠∴,AM ∵是O ⊙的切线,°90OAD ∠=∴, °90OED ∠=∴,∴直线CD 是O ⊙的切线;(2)过D 作DF BC ⊥于点F ,如图2,则°90DFB RFC ∠=∠=,AM BN ∵、都是O ⊙的切线,°90ABF BAD ∠=∠=∴,∴四边形ABFD 是矩形, 2DF AB OA AD BF ===∴,, CD ∵是O ⊙的切线, DE DA CE CB ==∴,, CF CB BF CE DE =-==∴,222DE CD CF =-∵,()()2224OA CE DE CE DE =+--∴,即244OA DE CE =,2OA DE CE =∴.【解析】(1)连接OD OE ,,证明OAD OED △≌△,得°90OAD OED ∠=∠=,进而得CD 是切线; (2)过D 作DF BC ⊥于点F ,得四边形ABFD 为矩形,得20DF A =,再证明CF CE DE =-,进而根据勾股定理得结论. 具体解题过程可参考答案.26.【答案】(1)解:由题意抛物线的顶点()21A -,,可以假设抛物线的解析式为()221y a x =--,∵抛物线经过102B ⎛⎫- ⎪⎝⎭,, 1412a -=-∴, 18a =∴, ∴抛物线的解析式为()21218y x =--. (2)证明:()P m n ∵,,()221111218822n m m m =--=--∴, 2111822P m m m ⎛⎫-- ⎪⎝⎭∴,,()221111153=822822d m m m m =-----+∴,()21F ∵,,PF ==∴24322432117525117525648824648824d m m m m PF m m m m =-+-+=-+-+∵,, 22d PF =∴, PF d =∴.(3)如图,过点Q 作QH ⊥直线l 于H ,过点D 作DN ⊥直线l 于N .DFQ ∵△的周长DF DQ FQ DF =++,是定值==DQ QF +∴的值最小时,DFQ △的周长最小, QF QH =∵,DQ DF DQ QH +=+∴,根据垂线段最短可知,当D Q H ,,共线时,DQ QH +的值最小,此时点H 与N 重合,点Q 在线段DN 上,DQ QH +∴的最小值为3,DFQ ∴△的周长的最小值为3,此时142Q ⎛⎫- ⎪⎝⎭,【解析】(1)由题意抛物线的顶点()21A -,,可以假设抛物线的解析式为()221y a x =--,把点B 坐标代入求出a 即可.(2)由题意2111822P m m m ⎛⎫-- ⎪⎝⎭,,求出22d PF ,(用m 表示)即可解决问题.(3)如图,过点Q 作QH ⊥直线l 于H ,过点D 作DN ⊥直线l 于N .因为DFQ △的周长DF DQ FQ =++,DF 是定值==DQ QF +的值最小时,DFQ △的周长最小,再根据垂线段最短解决问题即可.具体解题过程可参考答案.数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前2020年山东省滨州市初中学业水平考试数 学一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是( )A .55--=B .()55--=-C .55-=-D .()55--=2.(3分)如下图,AB CD ∥,点P 为CD 上一点,PF 是EPC ∠的平分线,若°155∠=,则EPD ∠的大小为( )A .60°B .70°C .80°D .100°3.(3分)冠状病毒的直径约为80120~纳米,1纳米91.010-=⨯米,若用科学记数法表示110纳米,则正确的结果是( )A .91.110-⨯米B .81.110-⨯米C .71.110-⨯米D .61.110-⨯米4.(3分)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( )A .()45-,B .()54-,C .()45-,D .()54-,5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .46.(3分)如下图,点A 在双曲线4y x=上,点B 在双曲线12y x =上,且AB x ∥轴,点C D 、在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A .4B .6C .8D .12 7.(3分)下列命题是假命题的是( )A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直且平分的四边形是正方形8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述: ①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为 ( )A .1B .2C .3D .49.(3分)在O ⊙中,直径15AB =,弦DE AB ⊥于点C ,若:3:5OC OB =,则DE 的长为( )A .6B .9C .12D .1510.(3分)对于任意实数k ,关于x 的方程()221522502x k x k k -++++=的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共6页) 数学试卷 第4页(共6页)11.(3分)对称轴为直线1x =的抛物线2y ax bx c =++(a b c 、、为常数,且0a ≠)如下图所示,小明同学得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b ++≤(m 为任意实数),⑥当1x -<时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .612.(3分)如下图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A '处,得到折痕BM BM ,与EF 相交于点N .若直线BA '交直线CD 于点51O BC EN ==,,,则OD 的长为 ( )ABCD二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5x 的取值范围为________. 14.(5分)在等腰ABC △中,°50AB AC B =∠=,,则A ∠的大小为________. 15.(5分)若正比例函数2y x =的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________.16.(5分)如图,O ⊙是正方形ABCD 的内切圆,切点分别为E F G H ED 、、、,与O⊙相交于点M ,则sin MFG ∠的值为________.17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.18.(5分)若关于x 的不等式组12420x a x ⎧-⎪⎨⎪-⎩>≥无解,则a 的取值范围为________.19.(5分)观察下列各式:1234523101526357911a a a a a =====,,,,,…,根据其中的规律可得n a =________(用含n 的式子表示).20.(5分)如下图,点P 是正方形ABCD 内一点,且点P 到点A B C 、、的距离分别为4,则正方形ABCD 的面积为________.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:22221244y x x y x y x xy y---÷+++;其中°cos 30x =,()1133y π-⎛⎫=-- ⎪⎝⎭.22.(12分)如下图,在平面直角坐标系中,直线112y x =--与直线22y x =-+相交于点P ,并分别与x 轴相交于点A B 、. (1)求交点P 的坐标; (2)求PAB △的面积;(3)请把图象中直线22y x =-+在直线112y x =--上方的部分描黑加粗,并写出此时自变量x 的取值范围.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(12分)如下图,过ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB BC CD DA 、、、于点P M Q N 、、、. (1)求证:PBE QDE △≌△;(2)顺次连接点P M Q N 、、、,求证:四边形PMQN 是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克? (2)当月利润为8 750元时,每千克水果售价为多少元? (3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如下图,AB 是O ⊙的直径,AM 和BN 是它的两条切线,过O ⊙上一点E 作直线DC ,分别交AM BN 、于点D C 、,且DA DE =. (1)求证:直线CD 是O ⊙的切线; (2)求证:2OA DE CE =.26.(14分)如下图,抛物线的顶点为()1A h -,,与y 轴交于点102B ⎛⎫- ⎪⎝⎭,,点()21F ,为其对称轴上的一个定点. (1)求这条抛物线的函数解析式;(2)已知直线l 是过点()03C -,且垂直于y 轴的定直线,若抛物线上的任意一点()P m n ,到直线l 的距离为d ,求证:PF d =;(3)已知坐标平面内的点()43D ,,请在抛物线上找一点Q ,使DFQ △的周长最小,并求此时DFQ △周长的最小值及点Q 的坐标.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------。
2020年山东省中考数学模拟测试卷一含答案
中考模拟测试卷一(120分钟,150分)一、选择题(本大题共12小题,满分48分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.计算|√2-1|+(√2)0的结果是()A.1B.√2C.2-√2D.2√2-12.下列运算正确的是()A.a3+a3=2a6B.a6÷a-3=a3C.a3·a2=a6D.(-2a2)3=-8a63.一周有604800秒,604800用科学记数法表示为()A.6048×102B.6.048×105C.6.048×106D.0.6048×1064.下列倡导节约的图案中,是轴对称图形的是()A B C D5.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°6.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄 12 13 14 15 16 人数12231则这些学生年龄的众数和中位数分别是( ) A.15,14 B.15,13 C.14,14 D.13,147.在一个不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A.13B.14C.15D.168.若关于x 的不等式组{x -a ≤0,5-2x <1的整数解只有1个,则a 的取值范围是( )A.2<a<3B.3≤a<4C.2<a ≤3D.3<a ≤49.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A,B,C,D,E 在同一平面内).斜坡CD 的坡度(或坡比)i=1∶2.4,那么建筑物AB 的高度约为( )(参考数据sin 27°≈0.45,cos 27°≈0.89,tan 27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米10.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+c 和反比例函数y=bx 在同一平面直角坐标系中的图象大致是( )A B C D11.如图,正方形ABCD 内接于☉O,AB=2√2,则AB ⏜的长是( ) A.π B.32π C.2π D.π2第11题图第12题图12.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB=3,则光盘表示的圆的直径是( ) A.3 B . 3√3 C.6 D.6√3二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.已知一元二次方程3x 2+4x-k=0有两个不相等的实数根,则k 的取值范围是 .14.下面3个天平左盘中的“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.15.如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,⏜上.若OD=8,OE=6,则阴影以OD,OE为邻边的▱ODCE的顶点C在AB部分图形的面积是(结果保留π).第15题图第16题图16.如图,在直角坐标系中放入一个矩形纸片ABCO,OC=9.将纸片翻折.则点B'后,点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB'C=34的坐标为.17.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a的值为.18.如图,在△ABC 和△ACD 中,∠B=∠D,tanB=12,BC=5,CD=3,∠BCA=90°-12∠BCD,则AD= .三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤) 19.(8分)先化简,再求值:(a -1+2a+1)÷(a 2+1),其中a=√20.(8分)为响应市政府关于“垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有1 000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有 名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(11分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元;(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?22.(12分)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC,DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.23.(12分)如图,已知A(3,m),B(-2,-3)是直线AB和某反比例函数图象的两个交点.(1)求直线AB和反比例函数的表达式;(2)观察图象,直接写出当x在什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.24.(13分)如图1,在平面直角坐标系xOy中,直线l:y=3x+m与x轴、y4x2+bx+c经过点B,且与直线l 轴分别交于点A和点B(0,-1),抛物线y=12的另一个交点为C(4,n).(1)求n的值和抛物线的表达式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M逆时针方向旋转90°后,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.25.(14分)如图1,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图2,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图2的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图3写出证明过程;若变化,请说明理由.图1图2图3中考模拟测试卷一一、选择题1.B2.D3.B4.C5.B6.A7.A8.B9.B 10.D 11.A 12.D 二、填空题 13.答案 k>-4314.答案 10解析 设“△”的质量为x,“□”的质量为y,由题意得{x +y =6,x +2y =8,解得{x =4,y =2.∴第三个天平右盘中砝码的质量为2x+y=2×4+2=10.15.答案 25π-48解析 连接OC,∵∠AOB=90°,四边形ODCE 是平行四边形,∴▱ODCE 是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90°·π×102360°-8×6=25π-48.16.答案 (12,0)解析 在Rt △OB'C 中,tan ∠OB'C=34,则OC OB'=34,即9OB'=34,解得OB'=12,则点B'的坐标为(12,0). 17.答案 75解析 观察每个图形最上边正方形中数字的规律为1,3,5,7,9,11.左下角数字变化规律为2,22,23,24,25,26,所以b=26.观察数字关系可以发现,右下角数字等于同图形中最上边数字与左下角数字之和,所以a=26+11=75.18.答案 2√5解析 如图,延长DC 至点Q,使CQ=BC=5,连接AQ,过点A 作AH ⊥DQ 于点H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCD=180°,∠BCA=90°-12∠BCD,设∠BCD=x°,则∠BCA=90°-12x°,∴∠ACQ=180°-x°-(90°-12x °)=90°-12x°=∠BCA,又∵AC=AC,∴△BCA ≌△QCA(SAS),∴∠B=∠Q=∠D,∴AD=AQ, ∵AH ⊥DQ,∴DH=QH=12DQ=4,tan ∠B=tan ∠Q=AH QH=AH 4=12,∴AH=2,∴AQ=AD=2√5. 三、解答题 19.解析 原式=(a+1)(a -1)+2a+1·1a 2+1=a 2+1a+1·1a 2+1=1a+1,当a=√2-1时,原式=√22.20.解析 (1)由题意得,被调查的学生人数为4÷8%=50,则C 选项的人数为50×30%=15,D 选项的人数为50-(4+21+15)=10,则B 选项所占百分比为2150×100%=42%,D 选项所占百分比为1050×100%=20%.补全统计图如下:(2)500.(3)画树状图如下:共有12种等可能的结果,其中满足条件的结果有6种,∴P(抽到一男一女)=12.21.解析 (1)设该商店3月份这种商品的售价为x 元.根据题意,得2 400x=2 400+8400.9x-30,解得x=40.经检验,x=40是所列方程的解,且符合题意.答:该商店3月份这种商品的售价为40元. (2)设该商品的进价为a 元.根据题意,得(40-a)×2 40040=900,解得a=25.4月份的售价为40×0.9=36(元),4月份的销售数量为2 400+84036=90(件).4月份的利润为(36-25)×90=990(元).答:该商店4月份销售这种商品的利润是990元. 22.解析 (1)证明:在△ABC 和△DCB 中,∵{AB =DC,AC =DB,BC =CB,∴△ABC ≌△DCB(SSS).(2)四边形BNCM 是菱形.证明如下:∵BN ∥AC,CN ∥BD,∴四边形BNCM 为平行四边形,∵△ABC ≌△DCB,∴∠DBC=∠ACB, ∴MB=MC,∴平行四边形BNCM 为菱形.23.解析 (1)设反比例函数表达式为y=kx (k ≠0),把B(-2,-3)代入,可得k=-2×(-3)=6,∴反比例函数表达式为y=6x.把A(3,m)代入y=6x,可得m=2,∴A(3,2),设直线AB 的表达式为y=ax+b(a ≠0),把A(3,2),B(-2,-3)代入,可得{2=3a +b,-3=-2a +b,解得{a =1,b =-1,∴直线AB 的表达式为y=x-1.(2)当x<-2或0<x<3时,直线AB 在双曲线的下方.(3)存在点C,使得△OBC 的面积等于△OAB 的面积.①延长AO 交双曲线于点C 1,∵点A 与点C 1关于原点对称,∴AO=C 1O,∴△OBC 1的面积等于△OAB 的面积,此时,点C 1的坐标为(-3,-2);②过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积,由B(-2,-3)可得OB 的表达式为y=32x,可设直线C 1C 2的表达式为y=32x+b',把C 1(-3,-2)代入,可得-2=32×(-3)+b',解得b'=52,∴直线C 1C 2的表达式为y=32x+52,解方程组{y =6x,y =32x +52,可得C 2(43,92);③过点A 作OB 的平行线,交反比例函数图象于点C 3,则△OBC 3的面积等于△OAB 的面积,设直线AC 3的表达式为y=32x+b″,把A(3,2)代入,可得2=32×3+b″,解得b″=-52,∴直线AC 3的表达式为y=32x-52,解方程组{y =6x,y =32x -52,可得C 3(-43,-92),综上所述,点C 的坐标为(-3,-2)或(43,92)或(-43,-92) . 24.解析 (1)∵直线l:y=34x+m 经过点B(0,-1),∴m=-1,∴直线l 的表达式为y=34x-1.∵直线l:y=34x-1经过点C(4,n),∴n=34×4-1=2,∵抛物线y=12x 2+bx+c 经过点C(4,2)和点B(0,-1),∴{12×42+4b +c =2,c =-1,解得{b =-54,c =-1,∴抛物线的表达式为y=12x 2-54x-1.(2)令y=0,则34x-1=0,解得x=43,∴点A 的坐标为(43,0),∴OA=43.在Rt △OAB中,OB=1,OA=43,∴AB=√OA 2+OB 2=√(43)+12=53,∵DE ∥y 轴,∴∠ABO=∠DEF,在矩形DFEG 中, EF=DE ·cos ∠DEF=DE ·OB AB =35DE,DF=DE ·sin∠DEF=DE ·OA AB =45DE,∴p=2(DF+EF)=2×(45+35)DE=145DE,∵点D 的横坐标为t(0<t<4), ∴D (t,12t 2-54t -1),E (t,34t -1),∴DE=(34t -1)-(12t 2-54t -1)=-12t 2+2t,∴p=145×(-12t 2+2t)=-75t 2+285t,∵p=-75(t-2)2+285,且-75<0,∴当t=2时,p 有最大值285.(3)点A 1的横坐标为34或-712.∵△AOB 绕点M 沿逆时针方向旋转90°,∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x,①如图1,点O 1,B 1在抛物线上时,点O 1的横坐标为x,点B 1的横坐标为x+1,∴12x 2-54x-1=12(x+1)2-54(x+1)-1,解得x=34;②如图2,点A 1,B 1在抛物线上时,点B 1的横坐标为x+1,点A 1的纵坐标比点B 1的纵坐标大43,∴12x 2-54x-1=12(x+1)2-54(x+1)-1+43,解得x=-712,综上所述,点A 1的横坐标为34或-712.图1 图225.解析 (1)AF=√2AE.理由:∵四边形ABFD 是平行四边形, ∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AF=√2AE.故答案为AF=√2AE.(2)结论:AF=√2AE.理由:如图2中,连接EF,DF 交BC 于点K.∵四边形ABFD 是平行四边形,∴AB ∥DF,∴∠DKE=∠ABC=45°, ∴∠EKF=180°-∠DKE=135°,EK=ED, ∵∠ADE=180°-∠EDC=180°-45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF 和△EDA 中,{EK =ED,∠EKF =∠ADE,KF =AD,∴△EKF ≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°, ∴△AEF 是等腰直角三角形,∴AF=√2AE.图2图3(3)结论不变,AF=√2AE.理由:如图3中,连接EF,延长FD 交AC 于点K.∵四边形ABFD 是平行四边形,∴AB ∥DF,∴∠CKF=∠CAB=90°.∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,∠ACE=(90°-∠KDC)+∠D CE=135°-∠KDC,∴∠EDF=∠ECA,∵DF=AB,AB=AC,∴DF=AC.在△EDF 和△ECA 中,{DF =AC,∠EDF =∠ECA,DE =CE,∴△EDF ≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF 是等腰直角三角形,∴AF=√2AE.。
山东省邹平县实验中学2019-2020学年中考数学模拟学业水平测试试题
山东省邹平县实验中学2019-2020学年中考数学模拟学业水平测试试题一、选择题1.如图,平行于x轴的直线与函数y1=ax(a>0,x>0),y2=bx(b>0.x>0)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣32.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.C.D.3.计算的值等于()A.1B.C.D.4.抛物线y=x2向下平移一个单位,向左平移两个单位,得到的抛物线关系式为()A.y=x2+4x+3 B.y=x2+2x﹣1 C.y=x2+2x D.y=x2﹣4x+35.实数a、b、c在数轴上的对应点的位置如图所示,如果a+b=0,那么下列结论错误的是A.|a|=|b| B.a+c>0 C.ab=–1 D.abc>06.方程组x y33x8y14-=⎧-=⎨⎩的解为()A.{x1y2=-=B.{x1y2==-C.{x2y1=-=D.{x2y1==-7.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()A.1B.2C.3D.48.实数a,b,c,d在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为()A.a B.b C.c D.d9.如图,在△ABC中,D、E分别是AB、AC边上的点,DE∥BC,∠ADE=35°,∠C=120°,则∠A为()A.60°B.45°C.35°D.25°10.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=,则CD的长为()A.B.12﹣C.12﹣D.11.如果方程x2﹣8x+15=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为()A.34B.35C.45D.34或3512.如图,菱形ABCD的边长为4,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为()A B.C.D.二、填空题13.折纸飞机是我们儿时快乐的回忆,现有一张长为290mm,宽为200mm的白纸,如图所示,以下面几个步骤折出纸飞机:(说明:第一步:白纸沿着EF折叠,AB边的对应边A′B′与边CD平行,将它们的距离记为x;第二步:将EM,MF分别沿着MH,MG折叠,使EM与MF重合,从而获得边HG与A′B′的距离也为x),则PD=______mm.14.已知|x|=3,y2=16,且x+y的值是负数,则x﹣y的值为____.15.已知在△ABC中,AB=AC.(1)若∠A=36º,在△ABC中画一条线段,能得到2个等腰三角形(不包..括.△ABC),这2个等腰三角形的顶角的度数分别是_____;(2)若∠A≠36º,当∠A=_____时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括...△ABC).(写出两个答案即可)16.已知a+b=3,ab=1,则a2+b2=____________.17.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.18.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.000002米,将数字0.000002用科学记数法表示_____.三、解答题19.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求该二次函数的解析式;(2)设点D是在x轴上方的二次函数图象上的点,且△DAB的面积为5,求出所有满足条件的点D的坐标;(3)能否在抛物线上找点P,使∠APB=90°?若能,请直接写出所有满足条件的点P;若不能,请说明理由.20.如图,在菱形ABCD中,AC,BD相交于点O,BC=2OC,E为AB边上一点.(1)若CE=6,∠ACE=15°,求BC的长;(2)若F为BO上一点,且BF=EF,G为CE中点,连接FG,AG,求证:AG21.如图,大楼AC的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B处测得坡面底部E处的俯角为33°,在楼顶A处测得坡面D处的俯角为30°.已知坡面DE=20m,CE=30m,点C,D,E在同一平面内,求A,B两点之间的距离.(结果精确到1mcos33°≈0.84,tan33°≈0.65)22.如图,一次函数y=kx+b与反比例函数ykx'=(x>0)的图象交于点A(a,3)和B(3,1).(1)求一次函数的解析式.(2)观察图象,写出反比例函数值小于一次函数值时x的取值范围.(3)点P是线段AB上一点,过点P作PD⊥x轴于点D,交反比例函数图象于点Q,连接OP、OQ,若△POQ的面积为12,求P点的坐标。
山东滨州2020中考数学综合模拟测试卷(解析版)
【文库独家】一、选择题:本大题共12个小题,在每小题给出的的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分1.﹣12等于()A.1 B.﹣1 C.2 D.﹣2【答案】B.【解析】试题分析:根据乘方的意义可得﹣12=﹣1,故选:B.考点:乘方的意义.2.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME 【答案】D.考点:平行线的性质.3.把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【答案】B.【解析】试题分析:根据多项式乘以多项式的法则可得(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3,对比系数可以得到a=﹣2,b=﹣3.故答案选B.考点:整式的乘法.4.下列分式中,最简分式是()【答案】A.【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.5.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,15【答案】D.考点:条形统计图;算术平均数;中位数.6.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【答案】D.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.7.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)【答案】C.【解析】试题分析:已知点A坐标为(0,a),可知点A在该平面直角坐标系的y轴上,又因点C、D的坐标为(b,m),(c,m),可判定点C、D关于y轴对称,再由正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,即可得点B、E也关于y轴对称,已知点B的坐标为(﹣3,2),所以点E的坐标为(3,2).故答案选C.考点:坐标与图形性质.8.对于不等式组下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是﹣3,﹣2,﹣1D .此不等式组的解集是﹣25<x≤2 【答案】B.【解析】试题分析:分别解两个不等式得到x ≤4和x >﹣2.5,即可确定不等式组的解集为﹣2.5<x ≤4,,可得不等式组的整数解为﹣2,﹣1,0,1,2,3,4.由此可得只有选项B 正确,故答案选B .考点:一元一次不等式组的整数解;解一元一次不等式组.9.如图是由4个大小相同的正方体组合而成的几何体,其主视图是( )【答案】C.考点:简单组合体的三视图10.抛物线y=2x 2﹣2x+1与坐标轴的交点个数是( ) A .0 B .1 C .2 D .3【答案】C.【解析】试题分析:已知抛物线y=2x 2﹣2x+1,令x=0,得到y=1,即抛物线与y 轴交点为(0,1);令y=0,得到2x 2﹣2x+1=0,即(x ﹣1)2=0,解得:x 1=x 2=,即抛物线与x 轴交点为(,0),则抛物线与坐标轴的交点个数是2,故答案选C考点:抛物线与坐标轴的交点.11.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x 2+5x+6,则原抛物线的解析式是( )A .y=﹣(x ﹣25)2﹣411 B .y=﹣(x+25)2﹣411 C .y=﹣(x ﹣25)2﹣41 D .y=﹣(x+25)2+41 【答案】A.【解析】试题分析:已知抛物线的解析式为y=x 2+5x+6,它绕原点旋转180°后变为y=﹣x 2+5x ﹣6,即y=﹣(x ﹣25)2+,再向下平移3个单位长度的解析式为y=﹣(x ﹣25)2+41﹣3=﹣(x ﹣25)2﹣411.故答案选A . 考点:二次函数图象与几何变换.12.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC=∠AEC ;③CB 平分∠ABD ;④AF=DF ;⑤BD=2OF ;⑥△CEF ≌△BED ,其中一定成立的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤【答案】D.考点:圆的综合题.二、填空题:本大题共6个小题,每小题4分满分24分13.有5张看上去无差别的卡片,上面分别写着0,π,91,2,1.333.随机抽取1张,则取出的数是无理数的概率是 . 【答案】52. 【解析】试题分析:所有的数有5个,无理数有π,2共2个,所以抽到写有无理数的卡片的概率是2÷5=52. 考点:概率公式;无理数.14.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做 个零件.【答案】9.【解析】试题分析:设甲每小时做x 个零件,乙每小时做(x-3)个零件,根据题意得32030-=x x ,解得x=9,经检验,x=9是原方程的解.考点:分式方程的应用.15.如图,矩形ABCD 中,AB=,BC=,点E 在对角线BD 上,且BE=1.8,连接AE 并延长交DC 于点F ,则CFCD = .【答案】31.考点:相似三角形的判定与性质;矩形的性质.16.如图,△ABC 是等边三角形,AB=2,分别以A ,B ,C 为圆心,以2为半径作弧,则图中阴影部分的面积是 .【答案】2π﹣33.考点:扇形面积;等边三角形的性质.17.如图,已知点A 、C 在反比例函数y=的图象上,点B ,D 在反比例函数y=的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=,CD=,AB 与CD 间的距离为6,则a ﹣b 的值是 .【答案】3.【解析】试题分析:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标为A(,y1),点B(,y1),点C(,y2),点D(,y2).根据线段AB、CD的长度结合AB与CD间的距离,可得|y1|=2|y2|,再由|y1|+|y2|=6,可得y1=4,y2=﹣2.连接OA、OB,延长AB交y轴于点E,所以S△OAB=S△OAE﹣S△OBE=(a﹣b)=AB•OE=××4=,即a﹣b=2S△OAB=3.考点:反比例函数的性质.18.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为.【答案】(32016﹣2)×32016+1=(32016﹣1)2.考点:规律探究题.三、解答题:(本大题共6个小题,满分60分,解答时请写出必要的演推过程) 19.先化简,再求值:÷(﹣),其中a=.【答案】原式=(a ﹣2)2,当a=2,原式=(2﹣2)2=6﹣42【解析】试题分析:先把括号内通分化简后把乘除化为乘法,再进行约分,化为最简分式后代入计算即可.试题解析:原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∴原式=(﹣2)2=6﹣4 考点:分式的化简求值.20.某运动员在一场篮球比赛中的技术统计如表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.【答案】2分球16个,3分球6个.考点:二元一次方程组的应用.21.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.4.【答案】(1)详见解析;(2)5【解析】试题分析:(1)根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,∴OP∥CD,∴∠PFD=∠OPF,∵OP=OF,∴∠OPF=∠OFP,∴∠OFP=∠PFD,∴PF平分∠BFD;(2)连接EF,∵∠C=90°,∴BF是⊙O的直径,∴∠BEF=90°,∴四边形BCFE是矩形,∴EF=BC,∵AB∥OP∥CD,BO=FO,∴OP=AD=CD,∵PD2=DF•CD,即()2=•CD,∴CD=4,∴EF=BC=4.考点:切线的性质;正方形的性质;圆周角定理;切割线定理.22.星期天,李玉刚同学随爸爸妈妈会老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km/h.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x (h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.【答案】(1)y1=20x (0≤x≤2),y2=40(x﹣1)(1≤x≤2);(2)详见解析;(3)同时到达老家.【解析】试题分析:(1)根据速度×时间=路程,即可得函数关系式;(2)根据描点法,即可画出函数图象;(3)观察图象,即可得答案.试题解析:解;(1)由题意,得y1=20x (0≤x≤2)y2=40(x﹣1)(1≤x≤2);(2)由题意得;(3)由图象可得,同时到达老家.考点:一次函数的应用.23.(10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.【答案】(1)四边形EBGD是菱形,理由见解析;(2)10.【解析】试题分析:(1)四边形EBGD是菱形,根据已知条件易证△EFD≌△GFB,可得ED=BG,所以BE=ED=DG=GB,即可判定四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC 交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.试题解析:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM ∥DN ,EM=DN=,MN=DE=2,在RT △DNC 中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT △EMC 中,∵∠EMC=90°,EM=.MC=3,∴EC===10. ∵HG+HC=EH+HC=EC ,∴HG+HC 的最小值为10.考点:平行四边形的判定和性质;菱形的判定和性质;角平分线的性质;垂直平分线的性质;勾股定理.24.(14分)如图,已知抛物线y=﹣x 2﹣21x+2与x 轴交于A 、B 两点,与y 轴交于点C (1)求点A ,B ,C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A ,B ,E ,F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得△ACM 是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)点A 坐标(2,0),点B 坐标(﹣4,0),点C 坐标(0,2);(2)227281或;(3)M 坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【解析】试题分析:(1)分别令y=0,x=0,解方程后即可得点A ,B ,C 的坐标;(2)分AB 为平行四边形的边和对角线两种情况求解决可;(3)分A 、C 、M 为顶点三种情形讨论,分别求解即可解决问题.试题解析:(1)令y=0得﹣x 2﹣x+2=0,当AB 为平行四边形的对角线时,点F 为抛物线的顶点,即F (-1,49),所以点E 的坐标为(-1,-49), ∴以A ,B ,E ,F 为顶点的平行四边形的面积=22729621=⨯⨯. (3)如图所示,①当C 为顶点时,CM 1=CA ,CM 2=CA ,作M 1N ⊥OC 于N ,考点:二次函数综合题.。
山东省滨州市中考数学模拟试卷(Word版,含解析)
2020年山东省滨州市中考数学模拟试卷一、选择题:此题共12个小题,每题的四个选项中只有一个是正确的,请把正确的选项选出来用2B铅笔把答题卡上对应题目的答案标号涂黑每题涂对得3分,满分36分.1.如图是由八个同样小正方体组合而成的几何体,则其俯视图是()A.B.C.D.2.舌尖上的浪费让人担惊受怕,据统计中国每年浪费的食品总量折合粮食约亿千克,这个数用科学记数法应表示为()A.×1011B.×1 0101110 C.×10D.×103.将一副三角板(∠A=30°)按以以以下图方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°4.在线段、等边三角形、平行四边形、圆、正六边形这五类图形中,既是轴对称图形又是中心对称图形的有()A.2类B.3类C.4类D.5类5.以下运算正确的选项是()A.2a3?3a2=6a6B.(﹣x3)4=x12C a+b 3a33D3n x2n x n.()=+b x÷(﹣)=﹣.(﹣)6.有31位学生参加学校举行的“最兴盛脑”智力游戏竞赛,竞赛结束后依据每个学生的最后得分计算出中位数、均匀数、众数和方差,假如去掉一个最高分和一个最低分,则必定不发生变化的是()A.中位数B.均匀数C.众数D.方差7.化简÷的结果是()A .B .C .D .8.不解方程,鉴别方程2x 2﹣3x =3的根的情况()A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根9.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同向来线上,则AB 两点的距离是()A .200米B .200米C .220米D .米10.已知二次函数y =ax 2+bx+c (a ≠0)的图象如图,则以下结论中正确的选项是()A .abc >0B .b 2﹣4ac < 0C .9a+3b+c >0D .c+8a <011.如图,已知点A (﹣8,0),B (2,0),点C 在直线y =﹣上,则使△ABC 是直角三角形的点C 的个数为()A .1B .2C .3D .412.如图,矩形ABCD中,AB =8,AD =3.点E 从D 向C以每秒1个单位的速度运动,以AE为一边在AE 的右下方作正方形AEFG .同时垂直于CD的直线MN也从C 向 D以每秒2个单位的速度运动,当经过多少秒时.直线MN和正方形AEFG开始有公共点?()A.B.C.D.二、填空题:本大题共8个小题,每题5分,满分40分.322=.13.因式分解:3x﹣6xy+3xy14.计算:=.15.分式方程+=1的解为.16.半径为2的圆中,60°的圆心角所对的弧的弧长为.17.100件某种产品中有五件次品,从中随意取一件,恰巧抽到次品的概率是.18.小刚同学家里要用1500W的空调,已知家里保险丝经过的最大电流是10A,额定电压为220V,那么他家最多还可以有只50W的灯泡与空调同时使用.19.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x 轴于D.连接OB,与AD订交于点C,若AC=2CD,则k的值为.20.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实质距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实质距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜爱的交通工具.设A,B两个小区的坐标分别为A(3,1),B(5,﹣3),若点M(6,m)表示单车停放点,且满足M到A,B的“实质距离”相等,则m=.三、解答题:本大题共6个小题,满分74分.解答时请写出必需的演推过程.21.某工厂要加工甲、乙、丙三种型号机械配件共120个,安排20个工人恰巧一天加工完成,每人只加工一种配件,设加工甲种配件的人数为x,加工乙种配件的人数为y,依据下表供给的信息,解答以下问题:配件种类甲乙丙每人每日加工配件的数目(个)865每个配件盈余(元)151481)求y与x之间的关系.2)若这些机械配件共盈余1420元,央求出加工甲、乙、丙三种型号配件的人数分别是多少人?22.如图,平行四边形ABCD的对角线AC、BD订交于点O,AF=CE.1)求证:△BAE≌△DCF;2)若BD⊥EF,连接DE、BF,判断四边形EBFD的形状,并说明原由.23.“端午节”所示我国的传统佳节,民间向来有吃“粽子”的民俗,我市某食品厂为认识市民对昨年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口胃粽子的喜爱情况,在节前对某居民区进行了抽样检查,并将检查情况绘制成以下两幅统计图(尚不圆满).请依据以上信息回答:( 1)本次参加抽样检查的居民有多少人? ( 2)将两幅不圆满的图增补圆满; ( 3)若居民区有8000人,请预计爱吃D 粽的人数;( 4)如有外型圆满同样的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰巧吃到的是C 粽的概率.24.如图,AB 是⊙O的直径,弦CD ⊥AB ,垂足为H ,连接AC ,过上一点 E 作 EG ∥AC交CD的延伸线于点 G ,连接AE 交CD于点F ,且EG =FG ,连接CE .1)求证:EG 是⊙O 的切线;2)延伸AB 交GE 的延伸线于点M ,若AH =3,CH =4,求EM 的值.25.已知点A 在x 轴负半轴上,点 B 在y 轴正半轴上,线段 OB 的长是方程 x 2﹣2x ﹣8=0的解,tanBAO =.( 1)求点A 的坐标;( 2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S △DOE =16.若反比率函数y =的图象经过点C ,求k 的值;(3)在(2)条件下,点 M 是DO 中点,点四边形MNPQ 是矩形?若存在,请直接写出点N ,P ,Q 在直线BD 或y 轴上,能否存在点P 的坐标;若不存在,请说明原由.P ,使26.如图①已知抛物线y =ax 2﹣3ax ﹣4a (a <0)的图象与 x 轴交于A 、B 两点(A 在B 的左边),与y 的正半轴交于点C ,连接BC ,二次函数的对称轴与x 轴的交点E .(1)抛物线的对称轴与x 轴的交点E 坐标为 ,点A 的坐标为;(2)若以E为圆心的圆与y轴和直线B C都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连接CN,将△CMN沿CN翻折,M的对应点为M′.在图②中研究:能否存在点Q,使得M′恰巧落在y轴上?若存在,央求出Q的坐标;若不存在,请说明原由.2020年山东省滨州市中考数学模拟试卷(3月份)参照答案与试题解析一、选择题:此题共12个小题,每题的四个选项中只有一个是正确的,请把正确的选项选出来用2B铅笔把答题卡上对应题目的答案标号涂黑每题涂对得3分,满分36分.1.如图是由八个同样小正方体组合而成的几何体,则其俯视图是()A.B.C.D.【解析】俯视图是从图形的上边看所获得的图形,依据小正方体的摆放方法,画出图形即可.【解答】解:俯视图有3列,从左往右分别有2,1,2个小正方形,其俯视图是.应选:A.【谈论】此题主要观察了简单几何体的三视图,重点是掌俯视图是从物体的上边看获得的视图.2.舌尖上的浪费让人担惊受怕,据统计中国每年浪费的食品总量折合粮食约亿千克,这个数用科学记数法应表示为()A.×1011B.×1010C.×1011D.×1010【解析】科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数.确立n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将亿用科学记数法表示为:×1010.应选:D.【谈论】此题观察了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数,表示时重点要正确确立a的值以及n的值.3.将一副三角板(∠A=30°)按以以以下图方式摆放,使AB∥EF,则∠1等于()得A.75°B.90°C.105°D.115°【解析】依据AB∥EF,即可得∠BDE=∠E=45°,再依据∠A=30°,可得∠B=60°,利用三角形外角性质,即可获得∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,应选:C.【谈论】此题主要观察了平行线的性质,解题时注意:两直线平行,内错角相等.4.在线段、等边三角形、平行四边形、圆、正六边形这五类图形中,既是轴对称图形又是中心对称图形的有()A.2类B.3类C.4类【解析】依据轴对称图形与中心对称图形的看法求解.【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;正六边形是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有3类.应选:B.D.5类【谈论】此题主要观察了中心对称图形与轴对称图形的看法.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.5.以下运算正确的选项是()A.2a 3?3a2=6a6B.(﹣x3)4=x12C.(a+b)3=a3+b3D.(﹣x)3n÷(﹣x)2n=﹣xn【解析】直接利用积的乘方运算法规以及单项式乘以单项式和单项式除法运算法规计算得出答 案. 【解答】解:A 、2a 3?3a 2=6a 5,故此选项错误; B 、(﹣x 3)4=x 12,故此选项正确; C 、(a+b )3=a 3+b 3+3a 2b+3ab 2,故此选项错误; D 、(﹣x )3n ÷(﹣x )2n =(﹣x )n,故此选项错误; 应选:B .【谈论】此题主要观察了积的乘方运算以及单项式乘以单项式和单项式除法运算,正确掌握运算法规是解题重点.6.有31位学生参加学校举行的“最兴盛脑”智力游戏竞赛,竞赛结束后依据每个学生的最后得分 计算出中位数、均匀数、众数和方差,假如去掉一个最高分和一个最低分,则必定不发生变化的是( )A .中位数B .均匀数C .众数D .方差【解析】依据中位数的定义:位于中间地点或中间两数的均匀数可以获得去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响, 应选:A .【谈论】此题观察了统计量的选择,解题的重点是认识中位数的定义,难度不大.7.化简÷的结果是()A .B .C .D .【解析】依据分式的运算法规即可求出答案.【解答】解:原式= ?=应选:D .【谈论】此题观察分式的运算法规, 解题的重点是娴熟运用分式的运算法规,此题属于基础题型.8.不解方程,鉴别方程2x 2﹣3x =3的根的情况()A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根【解析】先把方程化为一般式获得 2x 2﹣3 x ﹣3=0,再计算△=(﹣ 3 )2﹣4×2×(﹣3) 18+24>0,此后依据△的意义判断方程根的情况.【解答】解:方程整理得2x 2﹣3x ﹣3=0, ∵△=(﹣3 )2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根. 应选:B .【谈论】此题观察了一元二次方程 ax 2+bx+c =0(a ≠0)的根的鉴别式△= b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同向来线上,则AB 两点的距离是()A .200米B .200米C .220米D .米【解析】在热气球C 处测得地面B 点的俯角分别为45°,BD =CD =100米,再在Rt △ACD中求出AD的长,据此即可求出AB 的长.【解答】解:∵在热气球C 处测得地面B 点的俯角分别为45°,BD =CD =100米, ∵在热气球 C 处测得地面 A 点的俯角分别为 30°,AC =2×100=200米,∴AD ==100 米,AB =AD+BD =100+100=100(1+)米,应选:D .【谈论】此题观察认识直角三角形的应用﹣﹣仰角、俯角问题,要修业生能借助仰角构造直角三角形并解直角三角形.10.已知二次函数2)y =ax+bx+c (a ≠0)的图象如图,则以下结论中正确的选项是(A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <0【解析】依据二次函数的图象求出 a <0,c >0,依据抛物线的对称轴求出b =﹣2a >0,即可得 出abc <0;依据图象与x 轴有两个交点,推出b 2﹣4ac >0;对称轴是直线x =1,与x 轴一个交点是(﹣1,0),求出与x 轴另一个交点的坐标是(3,0 ),把x =3代入二次函数得出y =9a+3b+c=0;把x =4代入得出y =16a ﹣8a+c =8a+c ,依据图象得出 8a+c <0.【解答】解:A 、∵二次函数的图象张口向下,图象与y 轴交于y 轴的正半轴上,a <0,c >0,∵抛物线的对称轴是直线x =1,∴﹣=1,b =﹣2a >0,abc <0,故本选项错误;B 、∵图象与x 轴有两个交点,2C 、∵对称轴是直线x =1,与x 轴一个交点是(﹣1,0),∴与x 轴另一个交点的坐标是(3,0), 把x =3代入二次函数 y =ax 2+bx+c (a ≠0)得:y =9a+3b+c =0,故本选项错误; D 、∵当x =3时,y =0, b =﹣2a ,y =ax 2﹣2ax+c ,把x =4代入得:y =16a ﹣8a+c =8a+c <0,应选:D .【谈论】此题观察了二次函数的图象、性质,二次函数图象与系数的关系,主要观察学生的观察图形的能力和辨析能力,题目比较好,但是一道比较简单犯错的题目.11.如图,已知点A (﹣8,0),B (2,0),点C 在直线y =﹣上,则使△ABC是直角三角形的点C 的个数为()A.1B.2C.3D.4【解析】依据∠A为直角,∠B为直角与∠C为直角三种情况进行解析.【解答】解:如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),②当∠B为直角时,过点B作垂线与直线的交点S(2,),③若∠C为直角则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心、5为半径的圆与直线y=﹣的交点上.在直线y=﹣中,当x=0时y=4,即Q(0,4),当y=0时x=,即点P(,0),则PQ==,过AB中点E(﹣3,0),作EF⊥直线l于点F,则∠EFP=∠QOP=90°,∵∠EPF=∠QPO,∴△EFP∽△QOP,∴=,即=,解得:EF=5,∴以线段因此直线AB为直径、y=﹣E(﹣3,0)为圆心的圆与直线上有一点C满足∠C=90°.y=﹣恰巧有一个交点.综上所述,使△ ABC是直角三角形的点C的个数为3,应选:C.【谈论】此题观察的是一次函数综合题,在解答此题时要分三种情况进行谈论,重点是依据圆周角定理判断∠C为直角的情况能否存在.12.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG.同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过多少秒时.直线MN和正方形AEFG开始有公共点?()A.B.C.D.【解析】第一过点F作FQ⊥CD于点Q,证明△ADE≌△EQF,从而得出AD=EQ,得出当直线MN和正方形AEFG开始有公共点时:DQ+CM≥8从而求出即可.【解答】解:过点F作FQ⊥CD于点Q,∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠1+∠2=90°,∵∠DAE+∠1=90°,∴∠DAE=∠2,在△ADE和△EQF中,∴,∴∴∴△ADE≌△EQF(AAS),∴AD=EQ=3,∴当直线MN和正方形A EFG开始有公共点时:DQ+CM≥8,∴t+3+2t≥8,解得:t ≥ ,故当经过 秒时.直线 MN 和正方形 AEFG 开始有公共点.应选:A .【谈论】此题主要观察了四边形综合应用以及全等三角形的判断与性质等知识,依据已知得出 DQ+CM ≥8是解题重点. 二、填空题:本大题共 8个小题,每题 5分,满分 40分.13.因式分解:3x 3﹣6x 2y+3xy 2= 3x (x ﹣y )2. 【解析】第一提取公因式 3x ,再利用公式法分解因式即可.【解答】解:3x 3﹣6x 2y+3xy 2=3x (x 2﹣2xy+y 2) 3x (x ﹣y )2.故答案为:3x (x ﹣y )2.【谈论】此题主要观察了提取公因式法以及公式法分解因式,正确应用公式是解题重点.14.计算:= ﹣1 .【解析】直接利用负指数幂的性质以及零指数幂的性质和特别角的三角函数值分别化简得出答 案.【解答】解:原式=1+3﹣4×﹣21+3﹣2﹣2 ﹣1.故答案为:﹣1.【谈论】此题主要观察了实数运算,正确化简各数是解题重点.15.分式方程 +=1的解为 x =1 .【解析】依据解分式方程的步骤,即可解答. 【解答】解:方程两边都乘以 x ﹣2,得:3﹣2x ﹣2=x ﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,因此分式方程的解为x=1,故答案为:x=1.【谈论】此题观察认识分式方程,(1)解分式方程的基本思想是“转变思想”,把分式方程转化为整式方程求解.(2)解分式方程必定注意要验根.16.半径为2的圆中,60°的圆心角所对的弧的弧长为π.【解析】将n=60,r=2代入弧长公式l=进行计算即可.【解答】解:l===π.故答案为π.【谈论】此题观察了弧长的计算.熟记弧长公式l=(弧长为l,圆心角度数为n,圆的半径为r)是解题的重点.注意在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.17.100件某种产品中有五件次品,从中随意取一件,恰巧抽到次品的概率是.【解析】依据概率的求法,找准两点:①所有情况的总数;②切合条件的情况数目;两者的比值就是其发生的概率.【解答】解:100件某种产品中有五件次品,从中随意取一件,恰巧抽到次品的概率是=.故答案为.【谈论】此题观察概率的求法:假如一个事件有n种可能,并且这些事件的可能性同样,此中事件A出现m种结果,那么事件A的概率P(A)=.18.小刚同学家里要用1500W的空调,已知家里保险丝经过的最大电流是10A,额定电压为220V,那么他家最多还可以有24只50W的灯泡与空调同时使用.【解析】依据物理学知识I=,即可求解.【解答】解:经过空调的电流为I===,设:需要x个50W的灯泡,则:(10﹣)=x,解得:x=24,故:答案为24.【谈论】此题观察的是反比率函数的应用,主要利用物理学知识:P=UI,弄清变量间意义即可求解.19.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x 轴于D.连接OB,与AD订交于点C,若AC=2CD,则k的值为12.【解析】依据题意可以设出点A的坐标,从而可以表示出点可解答此题.【解答】解:设点A的坐标为(a,),则点B的坐标为(∵AB∥x轴,AC=2CD,∴∠BDA=∠ODC,∵∠ACB=∠DCO,B的坐标,此后依据三角形的相像即,),∴△ACB∽△BCA,∴,∴,OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=,解得,k=12,故答案为:12.【谈论】此题观察反比率函数图象上点的坐标特色,解答此题的重点是明确题意,利用反比率函数的性质和三角形相像的知识解答.20.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实质距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实质距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜爱的交通工具.设A,B两个小区的坐标分别为A(3,1),B(5,﹣3),若点M(6,m)表示单车停放点,且满足M到A,B的“实质距离”相等,则m=0.【解析】依据两点间的距离公式可求m的值【解答】解:依题意有(2222,6﹣3)+(m﹣1)=(6﹣5)+(m+3)解得m=0,故答案为:0.【谈论】此题主要观察了坐标确立地点,正确理解实质距离的定义是解题重点.三、解答题:本大题共6个小题,满分74分.解答时请写出必需的演推过程.21.某工厂要加工甲、乙、丙三种型号机械配件共120个,安排20个工人恰巧一天加工完成,每人只加工一种配件,设加工甲种配件的人数为x,加工乙种配件的人数为y,依据下表供给的信息,解答以下问题:配件种类甲乙丙每人每日加工配件的数目(个)865每个配件盈余(元)151481)求y与x之间的关系.2)若这些机械配件共盈余1420元,央求出加工甲、乙、丙三种型号配件的人数分别是多少人?【解析】(1)依据题意和表格中的数据可以写出y与x的函数关系式;2)依据(1)中的结果和表格中的数据可以分别求得加工甲、乙、丙三种型号配件的人数分别是多少人.【解答】解:(1)由题意可得,8x+6y+5(20﹣x﹣y)=120,化简,得y=20﹣3x,即y与x的函数关系式为y=20﹣3x;(2)由题意可得,15×8x+14×6(20﹣3x)+8×[120﹣8x﹣6(20﹣3x)]=1420,解得,x=5,∴y=20﹣3×5=5,20﹣x﹣y=10,答:加工甲、乙、丙三种型号配件的人数分别是5人、5人、10人.【谈论】此题观察一次函数的应用,解答此题的重点是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22.如图,平行四边形ABCD的对角线AC、BD订交于点O,AF=CE.1)求证:△BAE≌△DCF;2)若BD⊥EF,连接DE、BF,判断四边形EBFD的形状,并说明原由.【解析】(1)只需证明AE=CF,∠BAE=∠DCF,AB=CD即可依据SAS证明;2)依据对角线垂直的平行四边形是菱形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠DCF,∵AF=CE,∴AE=CF∴△BAE≌△DCF.2)解:四边形EBFD是菱形.原由以下:连接BF、DE.∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CFOE=OF,∴四边形BEDF是平行四边形,BD⊥EF,∴四边形BEDF是菱形.【谈论】此题观察平行四边形的性质、全等三角形的判断和性质等知识,解题的重点是娴熟掌握基本知识,灵巧运用所学知识解决问题,属于中考常考题型.23.“端午节”所示我国的传统佳节,民间向来有吃“粽子”的民俗,我市某食品厂为认识市民对昨年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口胃粽子的喜爱情况,在节前对某居民区进行了抽样检查,并将检查情况绘制成以下两幅统计图(尚不圆满).请依据以上信息回答:1)本次参加抽样检查的居民有多少人?2)将两幅不圆满的图增补圆满;3)若居民区有8000人,请预计爱吃D粽的人数;4)如有外型圆满同样的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰巧吃到的是C粽的概率.【解析】(1)利用频数÷百分比=总数,求得总人数;2)依据条形统计图先求得C种类的人数,此后依据百分比=频数÷总数,求得百分比,从而可补全统计图;3)用居民区的总人数×40%即可;(4)第一画出树状图,此后求得所有的情况以及他第二个恰巧吃到的是C粽的情况,此后利用概率公式计算即可.【解答】解:(1)60÷10%=600(人)答:本次参加抽样检查的居民由600人;2)600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图以以以下图:3)8000×40%=3200(人)答:该居民区有8000人,预计爱吃D粽的人有3200人.(4)如图:P(C粽)=.【谈论】此题主要观察的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的重点.24.如图,AB是⊙O的直径,弦的延伸线于点G,连接AE交CD⊥AB,垂足为H,连接AC,过CD于点F,且EG=FG,连接CE.上一点E作EG∥AC交CD1)求证:EG是⊙O的切线;2)延伸AB交GE的延伸线于点M,若AH=3,CH=4,求EM的值.【解析】(1)连接OE,由FG=EG得∠GEF=∠GFE=∠AFH,由OA=OE知∠OAE=∠OEA,依据CD⊥AB得∠AFH+∠FAH=90°,从而得出∠GEF+∠AEO=90°,即可得证;(2)连接OC ,设OA =OC =r ,再Rt △OHC 中利用勾股定理求得r = ,再证△AHC ∽△MEO得= ,据此求解可得.【解答】解:(1)如图,连接 OE ,FG =EG ,∴∠GEF =∠GFE =∠AFH , OA =OE ,∴∠OAE =∠OEA , CD ⊥AB ,∴∠AFH+∠FAH =90°, ∴∠GEF+∠AEO =90°, ∴∠GEO =90°, GE ⊥OE ,EG 是⊙O 的切线;2)连接OC ,设⊙O 的半径为r ,∵AH =3、CH =4, OH =r ﹣3,OC =r ,则(r ﹣3)2+42=r 2,解得:r =,GM ∥AC , ∴∠CAH =∠M ,∵∠OEM =∠AHC ,∴△AHC ∽△MEO ,∴= ,即 =,解得:EM =.【谈论】此题主要观察切线的判断与性质,解题的重点是掌握等腰三角形的性质、切线的判断与性质、勾股定理及相像三角形的判断与性质.25.已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段 OB 的长是方程 x 2﹣2x ﹣8=0的解,tan∠BAO =(1)求点.A 的坐标;(2)点E 在 y 轴负半轴上,直线EC ⊥AB ,交线段AB于点 C ,交x 轴于点D ,S △DOE =16.若反比率函数(3)在(y = 的图象经过点2)条件下,点 M 是C ,求k 的值;DO 中点,点 N ,P ,Q在直线BD或y 轴上,能否存在点P ,使四边形MNPQ是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明原由.【解析】(1)解方程求出OB 的长,解直角三角形求出OA即可解决问题;(2)求出直线DE 、AB 的解析式,成立方程组求出点(3)分四种情况分别求解即可解决问题;C 坐标即可;【解答】解:(1)∵线段 OB 的长是方程 x 2﹣2x ﹣8=0的解, OB =4,在Rt △AOB 中,tan ∠BAO == ,OA =8,A (﹣8,0).2)∵EC ⊥AB ,∴∠ACD =∠AOB =∠DOE =90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴=,OE:OD=OA:OB=2,设OD=m,则OE=2m,∵?m?2m=16,m=4或﹣4(舍弃),D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,A(﹣8,0),B(0,4),∴直线AB的解析式为y=x+4,由,解得,∴C(﹣,),∵若反比率函数y=的图象经过点C,∴k=﹣.3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点 N与原点重合),易证△DMQ是等腰直角三角形,OPMQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设 PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设 PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【谈论】此题观察反比率函数综合题、一次函数的应用、矩形的判断和性质、相像三角形的判断和性质等知识,解题的重点是灵巧运用所学知识解决问题,学会用分类谈论的思想思虑问题,属于中考压轴题.26.如图①已知抛物线y=ax 2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A在B的左边),与y的正半轴交于点C,连接BC,二次函数的对称轴与x轴的交点E.(1)抛物线的对称轴与x轴的交点E坐标为(,0),点A的坐标为(﹣1,0);(2)若以E为圆心的圆与y轴和直线B C都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连接CN,将△CMN沿CN翻折,M的对应点为M′.在图②中研究:能否存在点Q,使得M′恰巧落在y轴上?若存在,央求出Q的坐标;若不存在,请说明原由.【解析】(1)依据对称轴公式可以求出点E坐标,设y=0,解方程即可求出点A坐标.(2)如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,由tan∠OBC==列出方程即可解决.(3)分两种情况①当N在直线BC上方,②当N在直线BC下方,分别列出方程即可解决.,【解答】解:(1)∵对称轴x =﹣ = ,∴点E 坐标( ,0),令y =0,则有ax 2﹣3ax ﹣4a =0, ∴x =﹣1或4,∴点A 坐标(﹣1,0).故答案分别为(,0),(﹣1,0).(2)如图①中,设⊙E 与直线BC 相切于点D ,连接DE ,则DE ⊥BC ,∵DE =OE =,EB =,OC =﹣4a ,∴DB == =2,∵tan ∠OBC = =,∴= ,∴a =﹣,∴抛物线解析式为y =﹣x 2+ x+3.3)如图②中,由题意∠M ′CN =∠NCB ,∵MN ∥OM ′, ∴∠M ′CN =∠CNM , ∴MN =CM ,∵直线BC 解析式为y =﹣x+3,∴M (m ,﹣m+3),N (m ,﹣ m 2+ m+3),作MF ⊥OC 于F ,∵sin ∠BCO = =,∴= ,CM =m ,①当N 在直线BC 上方时,﹣x 2+ x+3﹣(﹣x+3)= m ,解得:m = 或0(舍弃),∴Q1(,0).②当N在直线BC下方时,(﹣m+3)﹣(﹣m 2+m+3)=m,解得m=或0(舍弃),∴Q2(,0),综上所述:点Q坐标为(,0)或(,0).【谈论】此题观察二次函数综合题、圆、翻折变换、三角函数、一次函数等知识,解题的重点是经过三角函数成立方程,把问题转变为方程解决,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邹平县2020年初中学生学业水平模拟考试数学试题一、选择题(本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,填写在答题栏内.每小题选对得3分,选错、不选或选出的答案超过一个均记0分,满分36分.)1. 下列数中,倒数最小的是()A -2B 0.5C -3D 12.下列实数中,是无理数的是()A 4B ︒60cos C 3.14π- D7223. 在下列几何体中,主视图、左视图、俯视图都相同的几何体是 ( )4.2020年,新冠状病毒肆虐,截止4月21日,海外累计确诊2403141例,请用科学计数法表示确诊人数()A 2.403141×106B 24.03141×106C 2.403141 ×107D 0.2403141 ×107 5.下列图形中,既不是轴对称图形,又不是中心对称图形的是()6.一组数据由五个整数组成,其中位数是4,如果这组数据的唯一众数是3,那么这5个数可能的最小的和是()A 20B 21C 22D 237.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A 4和1B 1和4C 3和2D 2和38.下列计算正确的是( ).A.2a+3a=5a2B.(3a)2=3a2C.(a+b)2= a2+b2D.3a×2b=6ab9.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则么的度数为( )A 120°B 180°C 240°D 300°10.下列命题:①方程x2=x的解是x=1 ②4的算术平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形21∠+∠ABDCE第7题图60°12A B C DA 4个B 3个C 2个D 1个 11.如图,小半圆的直径与大半圆的直径AB 重合,圆心重合, 弦CD 与小半圆相切,CD=10,则阴影部分面积为( ) A π100 B π50 C π50 D π5.12 12.如图,抛物线y =ax 2+bx +c 的对称轴是x = 1 3,小亮通过 观察得出了下面四条信息:①042>b ac -,②0<abc ,③024>c b a ++,④032=+b a . 你认为其中正确的有_________________。
A ①② B ②④ C ①③ D ③④二、填空题(本大题共6个小题,每小题填对最后结果得4分,满分24分。
) 13.函数11xy x -=+有意义,则自变量x 的取值范围是 14.分解因式:a 4-16=15.矩形ABCD 中,E,F,M 分别为AB,BC,CD 边上的点,且AB=6,BC=7,AE=3,DM=2,EF ⊥FM 则BF 的长为 .16.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是的中点,连接AC 、BC ,则中阴影部分面积是( ) 17.蜜蜂采蜜时,如果蜜源很远它就会跳起“8字舞”,告诉同伴 蜜源的方向。
如图所示,两个全等菱形的边长为1厘米,一只蜜 蜂由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,飞 行2015厘米后停下,则这只蜜蜂停在 点。
18.如图,两个反比例函数x y 1=和xy 2-=的图像 分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,交2l 于点A 。
PD ⊥x 轴,交2l 与点B ,则△PAB 的面积 。
三、解答题:本大题共题6个小题,满分60分,解答时写出必要的演算过程。
PC AD B O2l x1l y第18题图CABD 第11题图 21 -1 O xy第12题图第15题19.(本题满分6分,请在下列小题中,任选一个完成即可)(1)计算:()202 3.142sin 6012133.3π-︒⎛⎫+---+- ⎪⎝⎭(2)解方程:09102=+-x x20.(本小题满分7分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或画树状图表示出(x ,y )的所有可能出现的结果; (2)求小明、小华各取一次小球所确定的点(x ,y )落在函数4y x=的图象上的概率.21.(本小题满分7分)为维护我国海洋权益,强化管辖海域的实际控制,国家海洋局决定实施常态化的海洋维权巡航执法,开展多种形式的海洋维权行动:外国船只除特许外,不得进入我国海洋100海里以内的区域。
如图,设A 、B 是我们的观察站,A 和B 之间的距离为160海里,海岸线是过A 、B 的一条直线。
一外国船只在C 点,在A 点测得∠BAC=45°,同时在B 点测得∠ABC=60°,问此时是否要向外国船只发出警告,令其退出我国海域。
A CB22.(本小题满分8分)⑴作图:作∠MON 的平分线OE ,在OE 上任取一点A ,过A 作AB ∥OM ,AC ∥ON ,连接BC 交OA 于D.(只保留作图痕迹)⑵BC 与OA 的位置关系是什么?请加以证明。
⑶若OA=8,AC=5,则BD 是多少?23.(本小题满分10分)如图,以△ABC 的边AB 为直径作⊙O ,交BC 于点D ,且∠DAC=∠B . (1)求证:AC 是⊙O 的切线;(2)若点E 是的中点,连接AE 交BC 于点F ,当BD=5,CD=4时,求AF 的值.24.(本小题满分10分)滨州市某无公害蔬菜基地有甲、乙两种植户,他们种植了A 、B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等. ⑴ 求A 、B两类蔬菜每亩平均收入各是多少元?⑵ 某种植户准备租20亩地用来种植A 、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租种方案. 种植户种植A 类蔬菜面积 (单位:亩) 种植B 类蔬菜面积 (单位:亩) 总收入 (单位:元) 甲 3 1 12500 乙 2 3 16500 第23题图OMN25.(本题满分12分)如图抛物线c ax ax y ++=2(a ≠0)与x 轴的交点为A 、B (A 在B 的左边)且AB=3,与y 轴交于C(1)求A 、B 两点的坐标。
(2)若抛物线过点E (-1,2),求抛物线的解析式。
(3)在x 轴的下方的抛物线上是否存在一点P 使得△PAC 的面积为3,若存在求出P 点的坐标,不存在说明理由。
2020年初中学生学业水平模拟考试数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分)13. x ≤1且 x ≠-1 14. (a 2+4)( a+2)(a-2) 15 .3或416. 34π-23 17. G 点 18. 29三、解答题19(本大题共2小题,任选其一完成,每小题满分6分,共6分) (1)原式=49+1-2×23-23+33-1=49+1-3-23+33-1=49(2)9,121==x x (方法不限,过程及结果正确即得满分6分) 20.解:(1) 列表 OABCEyx1 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)…………………… 4分 (2) 由表可知“点(x ,y )在双曲线xy 4=上”的概率为:316P =………… 7分21.(本小题满分7分)解:过点C 做CD ⊥AB 于D则△ACD 、△ABD 为直角三角形 ∠A=450∠ACD=900-450=450AD=CD 设AD=x 则CD=x BD=160-x 又∠B=600tan600=x x-160x x -=1603 .............3分解得 380240-=x ...........5分 检验:当380240-=x 时 160-x ≠0所以380240-=x 是原方程的解 ...............6分380240-=x >100所以不需要向外国船只提出警告。
.............7分22.(本小题满分8分) (1)、作图如下................2分A CBDC(2)、证明∵ AC ⁄⁄OB AB ⁄⁄OC∴ 四边形ABOC 为平行四边形 ...............3分 ∵ AC ⁄⁄OB∴ ∠CAO=∠BOA OE 平分∠MON ∴ ∠COA=∠BOA ∴ ∠COA=∠CAO ∴ AC=OC∴ 四边形 ABOC 为菱形 ....................5分 ∴ BC ⊥OA 且互相平分 ..................6分(3)、∵四边形ABOC 为菱形∴ AC=OB=5 BC ⊥OA OD=AD=AO=4 ∴ OB 2=OD 2+BD 2 即25=16+BD 2∴ BD 2=9∴ BD=3 .................8分23. 解:(1)∵AB 是∵O 的直径,∵∵ADB=∵ADC=90°.……………………1分∵∠B=∠CAD,∠C=∠C,∴△ADC∽△BAC .……………………3分∴∠BAC=∠ADC=90° ∴BA⊥AC ∴AC 是⊙O 的切线.……………………4分 (2)∵△ADC∽△BAC(已证),∴=,即AC 2=BC×CD=36.解得:AC=6.………6分在Rt△ACD 中,AD==2.……………………7分∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,∴CA=CF=6,∴DF=CA﹣CD=2…………9分 在Rt△AFD 中,AF ==2.……………………10分24. 解:(1)设A 、B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意得: ……………………2分解得:………………………………4分答:A 、B 两类蔬菜每亩平均收入分别是3000元,3500元. …………5分(2)设用来种植A 类蔬菜的面积a 亩,则用来种植B 类蔬菜的面积为(20-a )亩. 由题意得:⎧⎨⎩30003500(20)6300020a a a a+-≥>- …………6分解得:10<a ≤14. …………7分 ∵ a 取整数为:11,12,13,14. ……………………8分3125002316500x y x y +=⎧⎨+=⎩30003500x y =⎧⎨=⎩∴ 租种方案如表…………10分24. (本题共12分)25. 解:⑴由解析式得 抛物线对称轴为21-=x ,交x 轴于D......2分又∵ AB=3 ∴ AD=BD=23 ∴ AO=2 BO=1∴ A(-2,0) B(1,0) ............4分(2)、把 B(1,0) E (-1,2)代入解析式得 2=a-a+c0=a+a+c ..............6分 解得 a=-1 c=2 解析式为22+--=x x y .....................7分(3)由题意知,△ABC 的面积为3,过B 作BM ⁄⁄AC ,交y 轴于M ,交抛物线于点P ,则△PAC 面积为3 ..........8分 由△AOC ∽△BOD 可得OD=1 即D (0,1) ..........9分 直线BD 解析式为y=x-1 联立构成方程组得 y=x-1y=-x 2-x+2 .............10分 解得 x 1=1 x 2=-3 y 1=0 y 2=-4∴ 存在点P (-3,-4) 使PAC 面积为3 .....12分类别种植面积 单位:(亩) A 11 12 13 14 B9876。