数列的通项公式与求和的常见方法

合集下载

(完整word版)数列的通项公式与求和的常见方法

(完整word版)数列的通项公式与求和的常见方法

常见数列通项公式的求法类型一:公式法1(或定义法)1()n n a a p p +-=为常数1()n na q q a +=为非零常数 例1. 已知数列{}n a 满足11a =,12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。

例2.已知数列{}n a 满足12a =,13n na a += *()n N ∈,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。

2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。

3. 已知数列{}n a 满足11a =,212=a ,11112n n na a a -++=(2)n ≥,求数列{}n a 的通项公式。

4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。

类型二:(累加法))(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解例:已知数列{}n a 满足121n n a a n +=++*()n N ∈,11a =,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足211=a ,n a a n n 21+=+,*()n N ∈求数列{}n a 的通项公式。

2.已知数列{}n a 满足11a =,11(1)n n a a n n -=+-,(2)n ≥,求数列{}n a 的通项公式。

3.已知数列{}n a 满足1231nn n a a +=+⨯+, *()n N ∈,13a =,求数列{}n a 的通项公式。

4.已知数列{}n a 中,12a =,11ln(1)n n a a n+=++,求数列{}n a 的通项公式。

数列求和及求通项方法总结

数列求和及求通项方法总结

数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。

例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。

二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。

数列求和及数列通项公式的基本方法和技巧

数列求和及数列通项公式的基本方法和技巧

数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n nna a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。

错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

[例] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。

数列的通项公式与求和的常用方法

数列的通项公式与求和的常用方法
∴an=a1+(n-1)d=2+4(n-1),即通项公式为an=4n-2
解法三
由已知得,(n∈N*) ①, 所以有 ②, 由②式得, 整理得Sn+1-2·+2-Sn=0, 解得, 由于数列{an}为正项数列,而, 因而, 即{Sn}是以为首项,以为公差的等差数列
所以= +(n-1) =n,Sn=2n2, 故an=即an=4n-2(n∈N*)
对任意正整数n都成立,其中m为常数,且m<-1
(1)求证 {an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足 b1=a1,bn=f(bn-1)(n≥2,n∈N*) 试问当m为何值时,成立?
6 已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145
(1)求数列{bn}的通项bn; (2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的 前n项和,试比较Sn与logabn+1的大小,并证明你的结论
②假设当n=k时,结论成立,即有ak=4k-2,由题意,有,将ak=4k -2
代入上式,解得2k=,得Sk=2k2, 由题意,有,Sk+1=Sk+ak+1, 将Sk=2k2代入得()2=2(ak+1+2k2), 整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k, 所以ak+1=2+4k=4(k+1)-2, 即当n=k+1时,上述结论成立
(1)求数列{an}的通项公式; (2)设Sn=|a1|+|a2|+…+|an|,求Sn; (3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m, 使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说 明理由

数列的通项与求和计算方法总结

数列的通项与求和计算方法总结

数列的通项与求和计算方法总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列的通项与求和计算方法总结第一章 数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。

评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。

数列的通项公式是指能够表示数列中任意一项的公式。

数列的求和是指将数列中所有项相加的过程。

在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。

下面将介绍一些常见的方法。

一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。

通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。

1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。

设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。

通过该递推关系,可以求解等差数列的通项公式和求和。

1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。

设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。

通过该递推关系,可以求解等比数列的通项公式和求和。

1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。

设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。

二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。

例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。

2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。

通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。

2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。

该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。

三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。

对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。

高中数学-数列求和及数列通项公式的基本方法和技巧

高中数学-数列求和及数列通项公式的基本方法和技巧

数列求和通项分式法 错位相减法 反序相加法 分组法 分组法 合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a an S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn自然数方幂和公式:3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。

二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

数列求通项公式及求和的方法

数列求通项公式及求和的方法

数列求通项公式及求和的方法数列是指按照一定规律排列的一组数。

解决数列问题,首先需要找到数列的通项公式,然后可以利用通项公式求出数列的各项,再利用求和公式求出数列的和。

找到数列的通项公式的方法有多种,常见的方法包括等差数列的通项公式和等比数列的通项公式。

一、等差数列的通项公式及求和方法等差数列是指数列中的每一项与它前一项的差值相等的数列。

我们可以通过数列中的两项之间的关系来求出等差数列的通项公式。

设等差数列的第一项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为:aₙ=a₁+(n-1)d。

求等差数列的和,我们可以利用求和公式。

设等差数列的第一项为a₁,公差为d,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=n/2*(a₁+aₙ)。

二、等比数列的通项公式及求和方法等比数列是指数列中的每一项与它前一项的比值相等的数列。

我们可以通过数列中的两项之间的关系来求出等比数列的通项公式。

设等比数列的第一项为a₁,公比为q,第n项为aₙ,则等比数列的通项公式为:aₙ=a₁*q^(n-1)。

求等比数列的和,我们可以利用求和公式。

设等比数列的第一项为a₁,公比为q,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=a₁(q^n-1)/(q-1)。

除了等差数列和等比数列之外,还有其他种类的数列,如等差数列与等比数列交替出现的数列、斐波那契数列等。

这些数列有着特定的规律,可以通过观察数列中的数字之间的关系来确定其通项公式和求和公式。

在实际应用中,数列的求通项公式和求和公式可以帮助我们计算数列的任意项和总和,进而解决与数列相关的问题。

在数学、物理、经济等领域中,数列经常被运用到,掌握数列的通项公式和求和公式对于解决实际问题非常重要。

总结起来,数列问题的解决方法主要包括找到数列的通项公式和求和公式。

通过运用这些公式,我们可以计算数列的任意项和总和,进而解决与数列相关的问题。

而在确定通项公式和求和公式时,我们可以通过观察数列中的数字之间的关系来推导,常见的数列类型包括等差数列、等比数列等。

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

数列求和及数列通项公式的基本方法和技巧

数列求和及数列通项公式的基本方法和技巧

数列求和及数列通项公式的基本方法和技巧导语:数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和及数列的通项公式是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学来谈谈数列求和及数列通项公式的基本方法和技巧.(一)数列求和一、利用常用求和公式求和.利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、)1(211+==∑=n n k S nk n4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S n k n【例1】求和:)0(1422242≠++⋯+++++x x x x x n n 【解】∵x≠0∴该数列是首项为1,公比为x 2的等比数列,而且有n+3项 当x 2=1,即x =±1时,和为n+3.当12≠x ,即1±≠x 时,和为262232111)(1x x x x n n --=--++.评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 二、错位相减法求和.错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.【例2】求和:)1()12(7531132≠-+⋅⋅⋅++++=-x x n x x x S n n ………………………① 【解】由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积.设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设置错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+ 评注:(1)要考虑当公比x 为值1时为特殊情况; (2)错位相减时要注意末项;(3)此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘.三、反序相加法求和.这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.【例3】求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 【证明】设n n n n n n C n C C C S )12(53210++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得n nn n n n nn n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加) ∴n n n S 2)1(⋅+=四、分组法求和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法.【例4】求数列Λ1614813412211,,,的前n 项和;分析:数列的通项公式为n n n a 21+=,而数列{}⎭⎬⎫⎩⎨⎧n n 21,分别是等差数列、等比数列,求和时一般用分组结合法;【解】因为nn n a 21+=,所以 )21()813()412()211(n n n s ++++++++=Λ)21814121()321(n n +++++++++=ΛΛ(分组)前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此1212211)211(212)1(2+-+=--++=n n n n n n五、裂项法求和.这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=;(2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+;(3)111)1(1+-=+=n n n n a n ;(4))121121(211)12)(12()2(2+--+=+-=n n n n n a n ; (5)])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n .【例5】求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.【解】设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:余下的项具有如下的特点 1余下的项前后的位置前后是对称的. 2余下的项前后的正负性是相反的.六、合并法求和.针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .【例6】在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 【解】设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项) 和对数的运算性质N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10(二)求数列通项公式一、构造等差或等比数列法【例7】已知数列{}n a 满足:1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式. 【解】1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+ 则113222n n n n a a ++-= 故数列{}2n na 是以122211==a 为首项,以23为公差的等差数列. 由等差数列的通项公式,得31(1)22n n a n =+-. 所以数列{}n a 的通项公式为31()222n n a n =-.评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式.二、累加法.【例8】已知数列{}n a 满足:11211n n a a n a +=++=,,求数列{}n a 的通项公式. 【解】由121n n a a n +=++得121n n a a n +-=+ 则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以,数列{}n a 的通项公式为2n a n =. 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式.【例9】已知数列{}n a 满足:112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+.则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.n n a n =+- 评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231n n n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式.【例10】已知数列{}n a 满足:1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+, 故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++L L L因此,11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:本题解题的关键是把递推关系式13231n n n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232*********()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+L ,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式.三、累乘法.【例11】已知数列{}n a 满足:112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 【解】因为112(1)53n n n a n a a +=+⨯=,. 所以,0n a ≠. 则12(1)5n n na n a +=+, 故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯L L L L 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅L ,即得数列{}n a 的通项公式. 【例12】已知数列{}n a 满足:11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式.【解】因为123123(1)(2)n n a a a a n a n -=++++-≥L ①所以1123123(1)n n n a a a a n a na +-=++++-+L ②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=L L ③由123123(1)(2)n n a a a a n a n -=++++-≥L ,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=L . 所以,{}n a 的通项公式为!.2n n a = 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式. 四、待定系数法.【例13】已知数列{}n a 满足:112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式. 【解】设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n n n n a x a x ++⨯+⨯=+⨯, 等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅, 两边除以5n ,得352,1,x x x +==-则 代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50n n a -≠.则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列. 则152n n n a --=. 故125n n n a -=+. 评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列{}n a 的通项公式.【例14】已知数列{}n a 满足:1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】设1123(2)n n n n a x y a x y +++⨯+=+⨯+ ⑥将13524n n n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323n n x y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-.评注:本题解题的关键是把递推关系式13524n n n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}n n a +⨯+的通项公式,最后再求数列{}n a 的通项公式.【例15】已知数列{}n a 满足:21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式. 【解】设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.评注:本题解题的关键是把递推关系式212345n n a a n n +=+++转化为2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列2{31018}n a n n +++是等比数列,进而求出数列2{31018}n a n n +++的通项公式,最后再求出数列{}n a 的通项公式.五、对数变换法.【例16】已知数列{}n a 满足:5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式. 【解】因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++ ○11 将⑩式代入○11式,得5lg lg 3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg 34lg 3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入○11式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++○12 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及○12式, 得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++, 因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式.六、迭代法.【例17】已知数列{}n a 满足:3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.【解】因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 2(2)(1)32(2)(1)3(3)(2)(1)112(3)(2)(1)(1)123(1)223(2)23(1)233(2)(1)23323(2)(1)213!21[]n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n aa a a a -+---+--+-+--+++-+-+----⋅⋅--⋅-⋅⋅---⋅-⋅⋅-⋅-⋅⋅⋅⋅======L L L L L又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n na --⋅⋅=.评注:本题还可综合利用累乘法和对数变换法求数列的通项公式.即先将等式3(1)21nn n n a a ++=两边取常用对数得1lg 3(1)2lg n n n a n a +=+⨯⨯,即1lg 3(1)2lg n n na n a +=+,再由累乘法可推知(1)123!213211221lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --⋅⋅---=⋅⋅⋅⋅⋅=L ,从而1(1)3!225n n n n n a --⋅⋅=.七、数学归纳法.【例18】已知数列{}n a 满足:11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.【解】由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯ 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论.(1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时,1228(1)(21)(23)k k k a a k k ++=+++222222222222222222222(21)18(1)(21)(21)(23)[(21)1](23)8(1)(21)(23)(21)(23)(23)8(1)(21)(23)(21)(23)(21)(21)(23)(23)1(23)[2(1)1]1[2(1)1]k k k k k k k k k k k k k k k k k k k k k k k k k +-+=+++++-+++=++++-+++=++++-+=+++-=+++-=++2由此可知,当1n k =+时等式也成立.根据(1),(2)可知,等式对任何*n N ∈都成立. 评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.八、换元法.【例19】已知数列{}n a满足:111(14116n n a a a +=+=,,求数列{}n a 的通项公式.【解】令n b =21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=++得 221111(1)[14(1)]241624n n n b b b +-=+-+ 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -==为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+21()32n -=+,得2111()()3423n n n a =++.评注:本题解题的关键是通过将n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式.九、不动点法.【例20】已知数列{}n a 满足:112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.【解】令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+. 所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是以112422343a a --==--为首项,以913为公比的等比数列, 故12132()39n n n a a --=-,则113132()19n n a -=+-.评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程212441x x x -=+的两个根1223x x ==,,进而可推出112213393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭为等比数列,再求出数列23n n a a ⎧⎫-⎨⎬-⎩⎭的通项公式,最后求出数列{}n a 的通项公式.【例21】已知数列{}n a 满足:1172223n n n a a a a +-==+,,求数列{}n a 的通项公式. 【解】令7223x x x -=+,得22420x x -+=, 则1x =是函数31()47x f x x -=+的不动点. 因为17255112323n n n n n a a a a a +---=-=++,所以2111()()3423n n n a =++.。

数列求和与求通项公式方法总结(已打)

数列求和与求通项公式方法总结(已打)
11、已知等比数列 中,各项都是正数,且 , 成等差数列,则
12、已知 为等比数列, , ,则 。
13、已知 得三边长成公比为 的等比数列,则其最大角的余弦值为_________.
14、已知等比数列 为递增数列,且 ,则数列的通项公式 _____.
15、等比数列{ }的前n项和为Sn,若S3+3S2=0,则公比 =_______
(Ⅰ)求 的值;(Ⅱ)求数列 的通项公式.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 。
数列练习题(近三年各地高考题选编)
一、填空题
1、在等差数列 中, ,则 的前5项和 =。
2、等差数列 中, ,则数列 的公差为。
3、在等差数列 中,已知 =16,则 。
4、如果等差数列 中, + + =12,那么 + +•••…+ =。
5、 为等差数列, 为其前 项和.若 , ,则 ________.
(1)求数列 、 的通项公式;
(2)设 ,数列 的前 项和为 ,问 > 的最小正整数 是多少
2、(2012广州一模)已知等差数列 的公差 ,它的前 项和为 ,若 ,且 , , 成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,求证: .
3、(2012惠州三模)已知函数 ,且数列 是首项为 ,公差为2的等差数列.
6、{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
7、已知 是等差数列,其前 项和为 , 是等比数列,且 .
(I)求数列 与 的通项公式;

数列求通项公式及求和的方法

数列求通项公式及求和的方法

数列求通项公式及求和的方法数列专题-数列求通项公式及求和的方法考点1:求通项公式1、公式法:已知数列{an}为等差或等比数列,可根据通项公式an=a1+(n-1)d或an=a1qn-1进行求解。

例1:已知{an}是一个等差数列,且a2=1,a5=-5,求{an}的通项公式。

变式:已知等差数列{an}中,a10=28,S6=51,求{an}的通项公式。

2、前n项和法:已知数列{an}的前n项和Sn的解析式,可求出an。

例2:已知数列{an}的前n项和Sn=2n-1,求通项an。

变式:已知下列数列{an}的前n项和Sn的公式为Sn=3n2-2n(n∈N*),求{an}的通项公式。

3、Sn与an的关系式法:已知数列{an}的前n项和Sn与通项an的关系式,可求出an。

例3:已知数列{an}的前n项和Sn满足an+1=Sn,其中a1=1,求an。

变式:已知{an}中,an+1=nan,且a1=2,求{an}的通项公式。

4、累加法:当数列{an}中有an-an-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,可用这种方法。

例4:a1=0,an+1=an+2(n-1),求通项an。

变式:已知数列{an}的首项a1=1,且an=an-1+3(n≥2),求通项an。

5、累乘法:当数列{an}中有an/an-1=f(n),即第n项与第n-1项的商是个有“规律”的数时,可用这种方法。

例5:a1=1,an=an-1(n),求通项an。

6、构造法:1)配常数法:在数列{an}中有an=kan-1+b(k、b均为常数且k≠),从表面形式上来看an是关于an-1的“一次函数”的形式,可用下面的方法:一般化方法:设an+m=k(an-1+m),则{an+m}成等比数列。

例6:已知a1=1,an=2an-1+1(n2),求通项an。

2)配一次函数法:在数列{an}中有an=kan-1+bn+c(k、b、c均为常数且k≠),可用下面的方法:一般化方法:设an+tn+u=k(an-1+t(n-1)+u),则{an+tn+u}成等比数列。

求数列通项公式与求和的基本方法

求数列通项公式与求和的基本方法

求数列通项公式与求和的基本方法数列通项公式是指能够用一个公式来表示数列中每一项的方法。

而数列的求和是指将数列中所有项相加的过程。

在数学中,两者都是非常重要且常用的技巧。

一、数列通项公式的求解方法通常情况下,我们可以根据规律和已知条件来推导数列的通项公式。

下面列举了一些常见的数列类型及其求解方法。

1.1等差数列等差数列是一种常见的数列类型,其每一项之间的差等于一个常数d。

求解等差数列通项公式的方法有两种:直接法和差法。

直接法:假设等差数列的首项为a_1,公差为d,则通项公式可以表示为a_n=a_1+(n-1)d,其中n代表数列的第n项。

差法:设等差数列第k项与第k+1项之差为d,首项为a_1,则通项公式可以表示为a_n=a_1+(n-1)(a_2-a_1)/d。

1.2等比数列等比数列是一种数列,其每一项与前一项之比等于一个常数q。

求解等比数列通项公式的方法有两种:乘法法和差法。

乘法法:假设等比数列的首项为a_1,公比为q,则通项公式可以表示为a_n=a_1*q^(n-1),其中n代表数列的第n项。

差法:设等比数列第k项与第k+1项之比为q,首项为a_1,则通项公式可以表示为a_n=a_1*(a_2/a_1)^(n-1)。

1.3斐波那契数列斐波那契数列是一种特殊的数列,其前两项都为1,从第三项开始,每一项都等于前两项之和。

斐波那契数列的通项公式可以通过递推公式求解,即Fn=Fn-1+Fn-2,其中F1=1,F2=1其他类型的数列通项公式的求解方法也可以通过观察数列的规律和已知条件来进行推导。

数列求和是指将数列中所有项相加的过程。

根据不同的数列类型和已知条件,可以采用不同的求和方法。

2.1等差数列求和设等差数列的首项为a_1,末项为a_n,数列共有n项,公差为d。

则等差数列的和可以用求和公式Sn=(n/2)(a_1+a_n)来表示。

2.2等比数列求和设等比数列的首项为a_1,末项为a_n,数列共有n项,公比为q。

数列通项公式及其求和公式

数列通项公式及其求和公式

2n12,依此类推有b n 1 b n 2、b n 2 b n 3b 2 1b 1-、数列通项公式的求法(1) 已知数列的前n 项和S n ,求通项a n ; (2) 数学归纳法:先猜后证;(3) 叠加法(迭加法):a n (a n a ni ) (a n 1 a n 2) L (a ? ai) ai ;【叠加法主要应用于数列{a n }满足a n 1 a n f (n),其中f (n)是等差数列或等比数列的条件下,可 把这个式子变成a n 1 a nf(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出a n ,从而求出S n 】(4)构造法(待定系数法):形如a n ka n 1 b 、a * ka * 1 b n ( k, b 为常数)的递推数列;【用构造法求数列的通项或前 n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列 的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前 n 项和.】(5)涉及递推公式的问题,常借助于“迭代法”解决 .【根据递推公式求通项公式的常见类型】①c 1=a,a n +1 a n f(n)型,其中f(n)是 可以和 数列,a f(n 1)f(n 2 ……f(2) f(1) a类型 1: a n 1 a n f (n)类型 2: a n 1 pa n f(n)那么问题就可以转化为类型一进行求解了 例题: 已知 a 1 2 , a n 1 4a n 2n 1,求 a n叠乘法(迭乘法):a na n a n 1 an 2a 3 a 2 an 1 a n 2 an 3a : a 1用累加法求通项公式,即思路 (叠加法)a n a n 1 f(n 1),依次类推有:a n 1 a n 2f (n 2)、0.2 q 3 f(n 3)、…、a 2 a 1 f(1), 将各式叠加并整理得n 1a n a 1f(n)'即 a . i 1n 1a 1f(n)i 1例题 1 :已知a 1 1,a n a n 1 n ,求a n解:T a n a n 1a n an 1n ,依次类推有:12 3n 2、…a 2 a 1•••将各式叠加并整理得 a na 1nn ,a ni 2n(n 1) 2思路(转化法)a n pq 1 f (n1),递推式两边同时除以a n npb n ,解:T a n 1 4a n 2• an 4an1 2n ,则2i•- a n 4nb类型 3: a n 1 f (n)a nf (n 2) f(n 1) a当p 1时,数列{a n }是等差数列;当 p 0,q0时,数列{a n }是等比数列;当p 0且p 1,q 0时,可以将递推关系转化为 a n1pq Q ,则数列 a n —⑴ 是以p 1 p 1p 1a 1 —匚为首项,p 为公比的等比数列.p 1•••各式叠加得 b n bl,即 b n bia n f(n) ② 6=4 4+1a n f(n 1) f(n 2) 型 苴 …f(2)f(1Rf (n )是可 求积数 求通项思路(叠乘法):旦a nf (n 1),依次类推有: 邑f(n an 22)、3nan 3f(n3)、…、a2a 1f(1),将各式叠乘并整理得 a n f(1)f(2) f(3)…f(n2) f(n 1),a n f(1)f(2) f(3)…例题:已知 a 1 1, n 1,求 an .解:T a nn 1 1a na n ,依次类推有:a n 1 a n 2 a 3 a n 1a na na 2a2a 1•将各式叠乘并整理得a na n2 1 43 n(n2 1)③ a 1=a, a n+1pa n q 型(其中 p q 是常数) ,可以采用待定系数法、换元法求通项公式,p(a n冷,设6 a n 壮则b n 1 pb n .利用②的方法求出b n 进而求出a n3思路 (构造法):设a n 1 p a n,即p 1 q 得—,数列a n 是以a 1为p 1首项、 p 为公比的等比数列,则 a nqp 1qn 1 a 1p p 1即 qn 1q,即 a na 1pp 11 p例题: 已知数列 a n 满足a n 2a n 13且a 1 1,求数列 a n 的通项公式解:设a n 1 2 a n ,即 3• ai即化为③.•••数列a n 3是以3i3 4为首项、 2为公比的等比数列④ ai=a,a n+i3 4 2n 12n 1,即 a n 2pa n q n 型,其中p q 是常数且q 0,q 1 导丄设* b n ,则b n 1qb n类型5: 思路(构造法):Oi pan rqa n 1n 1qrq1 ,从而解得例题:已知 a 1a n a n-为首项,q2n ,求解:•••设即2nan 1班2n是以1 6为首项,⑤ a n+1pa n -型, qp为公比的等比数列q1 2n 2n 1,解得1a —为公比的等比数列,即n22n其中p 、q 是常数且a n o ,可以采用等式两边取倒数2n a n1 思路(转化法):对递推式两边取倒数得—an 1 pa n dc a n an 1c an三,令bn丄,这样,a n问题就可以进行求解了例题:已知a1 4 , a n 12 a n 2a n解:•••对递推式左右两边取倒数得a n 1 2a n2a n an 1 a n1•••令b n 则b n 1a n 1bn1.设b n 1 ,即是以彳为首项、1-为公比的等比数列,则2b n 2 点’即bn2n 27~2* 1 ~ ,2* 1ana a n b类型7: a n 1----------- (c 0、ad bc 0)c a n d思路(特征根法):递推式对应的特征方程为心即cx2 (d a)xcx d b 0 .当特征方程有两个相等实根X1x2时,数列一a n11为等差数列,我们可设a da n2c1a d 2c a n1a d2c(为待定系数,可利用印、a2求得);当特征方程有两个不等实根花、X2时,数列X1a n a nX2是以引a1鱼为首项的等比数列,我们可设色x2 a nX1X2a1%a1x2n 1(为待定系数,可利用已知其值的项间接求得);当特征方程的根为虚根时数列a n 通项的讨论方法与上同理,此处暂不作讨论.例题:已知a112 a n 4an13 ( nan 122),求a n解:•••当n 2时,递推式对应的特征方程为2x 3 0,解得x11、x2 3数列旦」是以- 1为首项的等比数列a“ 3 a X2 2a X21 n 4.⑵等比数列求和公式: & a 1 (1 q n )(q 1):r (q 1)另外,还有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:n(n 1);nk 2k 1n (n 1)(2 n 1);6n k 3[0(1)]2k 12例1、 已知数列 f n 的前n 项和为S n ,且S nn 2 2n.若 a 1 a n,求数的前n 项和T列a n分析:根据数列的项和前 通项公式后,确定数列的特点,根据公式解决 解:T 当 n 2 时,f n S n S n 1 2n 1.当 n 1 时,f1 3, a n 1 2a n 1 nn 项和的关系入手求出 n ,再根据a n 1f a n ( nN )求出数列a n 的S 1 3,适合上式,即 a n 11 2(a n 1)f n 2n 1 n N , a 1•••数列a n 1是首项为4、公比为2的等比数列.•- a n 1a 1 1 2n 1 2n 1, a n 2n 1 1 nN ; T n【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合 性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题 变式训练1:已知log 3 xlog 2 3•求 x x 2 x 3x n 的前n 项和.二、数列求和的几种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素 材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数 列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种 方法进行系统探讨•1、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式 求和,或者利用前n 个正整数和的计算公式等直接求和 •运用公式求解的注意事项: 首先要注意公式的 应用范围,确定公式适用于这个数列之后,再计算 •特别地,注意数列是等比数列时需要讨论q 1和 q1的情况•⑴等差数列求和公式:S nn(a 1 a n )n(n 1)d2 2•••设生J a n3n1,由 a i3,即a n a n3n 1,从而a n3n1 3n 11a n1 2 3n ,n 13n ^l'n 21x1 2例2、已知函数F x3x 2 2x丄.求F2 2009F —2009F 20082009分析:由所求的和式的特点, 用倒序相加法求和• 易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否【解析】••• F x3x 2 2x31 x 2 21 x 13.•••设 S F —200920092008.①S 20092008 2009F 20072009F — 20092S1 2009 2008 20092 2009 2007 2009F 200820092008 【能力提升】倒序相加法来源于课本, 求和方法.当求一个数列的有限项和时, 3012例3 :已知f (x)解:•••由 f(x)•••原式 f(1)f(2)变式训练1:求si n 216024,所以S是等差数列前项和公司推导时所运用的方法,它是一种重要的 若是“与首末两端等距离” 的两项和都相等,即可用此法 ,则 f (1)1 x 2sin 2 2f(2) f(3)f(3) fsin 2 32x1 x 21 1 x 211sin 2 88 sin 289的值*S变式训练2:设s n 1 2… n(n N ),求f(n)-的最大值.(n 32) S n 12、倒序相加法2 3a n a n 1与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法 .我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”S nda 2 S na na n 1a n 1 a nn 1n则a ? a 〔如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一个常数,可采用把正着写 a n 1 2S na 1 a na 1 a n a 22 3a n a n 1a k a k da kn1 n1 1 1 1 1 k 1 3k 3k 1k 1d a ka k 1da 1例5 、 数列a n满 足23n22 2 2T n3 3 3 3a 〔a 2 a 2a 3 &a 4 a n a n 1丄丄 1” , • 1• •1 a 2a 2a 3a na n 11, a 25 5 2a 1,a n 2 a n 1 — a n 3 3 31丄 1d a 1a n 1分析:根据给出的递推式求出数列a n ,再根据的特点拆项解决变式训练2 :如已知函数f(x)对任意x € R 都有f(x) f(1 x) 1SSn2f (0)f(-) n23f(—) f ㈠+… n n-f(n 2) f(n 1)n n f(1), (n N *),求S n1 1f(1) f(2)f(2008) f(2)f(3)3、裂项相消法裂项相消法是将数列的各项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的 前n 项和• 一般地,我们把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求1 ak a kf (x)x 2 1 x 2f (i 2008得其和•适用于类似a n a n 1(其中a n 是各项不为0的等差数列,c 为常数)的数列,以及部分无理数列和含阶乘的数列等•用裂项法求需要掌握些常见的裂项方法(2n 1)(2 n 1) 2 2n 1 2n 1k)例 4:a n 是公差为 d 的等差数列,的等比数列,故a n 1 a n【能力提升】用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌 握一些常见的裂项技巧.变式训练 1: 在数列 {a n }中,a n1 2—,又 b n,求数列b n 的前n 项n 1 n 1n 1a nan 1的和•变式训练 :2 :求和: s 111L11 21 2 3 1 2 3 L n变式训练 3: 求和:11 11.2 1. 3 、2 4 3..n 1,n •4、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式•即若在(差比数列){a n b n }中,{a n }成等差数列, 减整理后即可以求出前 n 项和•解:•••由已知条件,得a n 2 a n 12 a n 1 a n3a n 122a n 是以a 2 a i为首项,一为公比33aana n aa 3{b n }成等比数列,在和式的两边同乘以公比,再与原式错位相 例题:S n 12x 3x 2 4x 3 n ..... nxx- S n x 2x 2 3x 3 4x 4…… ①一② 1 x S n 1 2 x x ............当x 1 时,S n1x n nxnx 1x1 x1n 1 x n 1①nnx②n 1 x n nx 当x 1时,S n 1 2 3n n 1n2【能力提升】错位相减法适用于数列a nb n ,其中a n 是等差数列, b n 是等比数列•若等比数列b n中公比q 未知,则需要对公比 q 分q 1和q1两种情况进行分类讨论例6、已知数列a n 是首项为a-i-,公比为q 丄的等比数列,设b n 4 42 3log 1 a n n4N ,数列C n 满足C n a n b n .求数列C n 的前n 项和S n .比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决5、(分组)拆项求和法(裂项重组法)所谓裂项重组法就是针对一些特殊的数列,既不是等差数列,也不是等比数列的数列,我们可以 通过拆分、合并、分组,将所求和转化为等差、等比数列求和例7、已知数列a n 的通项公式为a n 2n 3n 1,求数列a n 的前n 项和. 2n 与一个等差数列 3n 1组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和 【解析】S n a 1 a 2a n 21 2 22 5构成等差数列或等比数列,那么我们就可以用此方法求和例8、数列a n 的前n 项和是S n n N ,若数列a .的各项按如下规则排列:分析:根据等比数列的性质可以知道数列 b n 为等差数列,这样数列 C n 就是一个等差数列与一个等解:•••由题意知,a n3log ! a n 2,故 b n 3n2n N41 …G 3n 2- nN 42311 1 二 S n 14 7 L 3n 4441 C 1 1 1 S n 1 - 4 -7 -L 4 444233111•••两式相减,得3S n 1 3 1- 4 4 4451 n1 1 n 443n 2, n一n 111 3n 53n 244nn 1n 111113n 23n 24424S n2 3n 22 3变式训练1、求Sn 1 2x 3x 4xn 1nx变式训练2、若数列{a n }的通项a n (2n 1) 3n ,求此数列的前n 项和S n .变式训练3、2 4求数列亍豕623,2n ,歹前n 项的和.分析:该数列的通项是由一个等比数列 2n 3n 1=2122=22n2 53n 1 . 21 2nn 2 3n 1=1 22-n 2.2【能力提升】在求和时, 定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别若存在自然数k k N ,使S k 10, S k 1 10,则a k分析:数列的构成规律是分母为 2的一项,分母为 3的两项,分母为 4的三项,•…,故这个数列的和 可以并项求解.11 123 3 1 2 31 2 3 4解:S 1 S 3 —,S 63, S103 -52 23 22 451 2 3 4 5 15十 1 2 3 45 621S 15 5,而3,这样S 2110,而627215 1 2 3 4 5 15 15 15 55 + 5S2010,故 a k,故填272 7 2 277【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法 变式训练3:求数列{n(n 1)(2n1)}的前n 项和.一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数 列有关或具备某种方法适用特点的形式, 从而选择合适的方法求和•高考数学试题中所涉及的数列求和 问题往往具有一定的技巧性,需要考生具有很强的分析问题、解决问题的能力才能解决,但是基本的 求和方法就是上面介绍的这些 •希望广大考生熟练掌握,灵活适用 • 三、数列的综合应用⑴求解等差、等比数列的综合问题的基本途径是:应用等差数列和等比数列的基本量(首项、公差、 或公比、通项、前n 项和)表示数列中的项,适时地应用它们的基本性质求解 .此外,应该熟悉等差数列与等比数列的递推公式•⑵数列与函数、数列与不等式的综合问题主要是:由函数的解析式得到的数列递推公式,转化为等差 数列或等比数列进行求解.⑶数列的应用问题:一般地,涉及递增率通常用到等比数列;涉及依次增加或减少要用到等差数列; 复利和分期付款问题,用等比数列解决1 12 1 23 1 2 34 1—J — J — J — J — J — J — J — J — J — J —23344455556变式训练1:求和:2536+4 7+ ........ +n(n+3)变式训练2:求数列1,1+2,1+2+2 2 2 n 1,•- ,1+2+2 + …+2的前n 项和。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

精心整理数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、n S 是数列{}n a 的前n 项的和11(1)(2)n n n S n S S n -=⎧=⎨-≥⎩【方法】:“1n n S S --”代入消元消n a。

【注意】漏检验n 的值(如1n =【例1】.(1)已知正数数列{}na 正整数n 满足1n a =+(2)数列{}n a 中,1a 都有2123n a a a an ⋅⋅⋅⋅=,求数列{n a 【作业一】1-1.数列{}na 满足1133n n a a -++{}n a 的通项公式.1()n n a a f n --=,1()nn a f n a -= ),用累加法求通项公式(推导等差数列通【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅即1()(1)(2)na f n f n f a =⋅-⋅⋅,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】.(1)已知1a (2)已知数列{n a . 【例3】.(中,1111,(1n n a a a n +==++(三).待定系数法?1n n a ca p +=+(c,1n n +,即11)n n x +-,}1pc +-为等比数列 123n a =+,求数列{}n a 的通项公式。

1nn n a ca p +=+(,,k p c 为非零常数)【方法】两边取倒数,得111n n p ca k a k+=⋅+,转化为待定系数法求解 【例5】.已知数列{}n a 的首项为135a =,1321nn na a a +=+,1,2,n ,求{}n a的通项公式数列专题2:数列求和1.数列a1+2,…,a k+2k,…,a10+20共有十项,且其和为240,则a1+…+a k+…+a10之值为()A.31B.120 C.130D.185S n=,则项数nA) 练习A3.求和:S n=+++…+.练习3(2010.昌平模拟)设数列{a n}满足a1+3a2+32a3+ (3)-1a n=,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.。

数列的通项公式和求和公式

数列的通项公式和求和公式

数列的通项公式和求和公式数列是数学中常见的概念,它是由一系列按照一定规律排列的数字组成。

在数列的研究中,通项公式和求和公式是两个重要的概念。

本文将详细介绍数列的通项公式和求和公式,并探讨它们的应用。

一、数列的通项公式数列的通项公式是一个能够直接推算出数列的第n项的公式,通过这个公式我们可以快速计算数列的任意项。

常见的数列有等差数列和等比数列,它们的通项公式如下:1. 等差数列的通项公式等差数列的通项公式为:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1为首项,n为项数,d为公差。

2. 等比数列的通项公式等比数列的通项公式为:an = a1 * r^(n - 1)其中,an表示等比数列的第n项,a1为首项,n为项数,r为公比。

除了等差数列和等比数列,还有其他类型的数列,它们的通项公式根据数列的规律有所不同。

通过找出数列的规律并利用递推关系,我们可以得到数列的通项公式,从而方便计算数列的各项值。

二、数列的求和公式求和公式是用来计算数列前n项和的公式,它可以帮助我们快速求解数列的和。

常见的数列求和公式如下:1. 等差数列的求和公式等差数列的求和公式为:S = (n/2) * (a1 + an)其中,S表示等差数列的前n项和,n为项数,a1为首项,an为末项。

2. 等比数列的求和公式等比数列的求和公式为:S = a1 * (1 - r^n) / (1 - r)其中,S表示等比数列的前n项和,n为项数,a1为首项,r为公比。

对于其他类型的数列,其求和公式也有所不同。

我们可以通过找出数列的和与前一项之间的递推关系,从而得到数列的求和公式,从而快速求解数列的和。

三、数列公式的应用数列的通项公式和求和公式在数学中有着广泛的应用。

比如,在预测数值规律方面,我们可以利用通项公式来计算未知项的值,从而推断出数列的任意项。

在实际问题中,数列的通项公式和求和公式也经常被应用于求解具体的数值。

此外,数列的通项公式和求和公式也在数学的相关领域中起到重要的作用,比如在微积分中用于求解积分,或在概率论中用于计算概率等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的通项公式与求和的常见方法Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】常见数列通项公式的求法类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =,12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。

例2.已知数列{}n a 满足12a =,13n n aa +=*()n N ∈,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。

2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。

3. 已知数列{}n a 满足11a =,212=a ,11112n n na a a -++=(2)n ≥,求数列{}n a 的通项公式。

4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。

类型二:(累加法))(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解例:已知数列{}n a 满足121n n a a n +=++*()n N ∈,11a =,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足211=a ,n a a n n 21+=+,*()n N ∈求数列{}n a 的通项公式。

2.已知数列{}n a 满足11a =,11(1)n n a a n n -=+-,(2)n ≥,求数列{}n a 的通项公式。

3.已知数列{}n a 满足1231n n n a a +=+⨯+,*()n N ∈,13a =,求数列{}n a 的通项公式。

4.已知数列{}n a 中,12a =,11ln(1)n n a a n+=++,求数列{}n a 的通项公式。

类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+,(2)n ≥,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足321=a ,n n a n n a 11+=+,*()n N ∈,求数列{}n a 的通项公式。

2.已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求数列{}n a 的通项公式。

3.已知数列 {}n a 满足125n n n a a +=⨯*()n N ∈,13a =,求数列{}n a 的通项公式。

类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。

例. 已知数列{}n a 的前n 项和为n S ,12a =且12n n S a +=(2)n ≥.求数列{}n a 的通项公式。

1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。

2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。

3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。

类型五:待定系数法q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )解法:构造新数列{}n b ;p a a n n =+++λλ1解出λ,可得数列λ+=n n a b 为等比数列例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。

变式练习:1. 已知数列{}n a 满足13a =,121n n a a +=-*()n N ∈,求数列{}n a 的通项公式。

2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。

3.已知数列{}n a 的前n 项和为n S ,且232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。

类型六:交叉项问题解法:一般采用求倒数或除以交叉项得到一个新的等差数列。

例:已知数列{}n a 满足11a =,122nn n a a a +=+*()n N ∈,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足11a =,1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{}n a 的通项公式。

2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足11120n n n n n n a b a b b b +++-+=,令nn na cb =求数列{}n c 的通项公式。

类型七:(公式法2) (n n n p pa a ⨯+=+λ1)p>0;解法:将其变形为p p a p a n n n n λ=-++11,即数列⎭⎬⎫⎩⎨⎧n n p a 为以pλ为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

变式练习:1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式2.已知数列{}n a 满足n n n a a 3431⨯+=+,11=a ,求数列{}n a 的通项公式。

数列求和的常用方法类型一:公式法 例 .已知3log 1log 23=x ,求32x x x ++⋅⋅⋅++⋅⋅⋅+nx 的前n 项和. 变式练习1.数列}{n a 中,12+=n a n ,求n S .2.等比数列}{n a 的前n 项和12-=nn S ,求2232221na a a a ++++ . 类型二:分组求和法例. 求数列的前n 项和:2321,,721,421,1112-+⋅⋅⋅+++-n n ,…变式练习1.已知数列}{n a 中,n n n a 32+=,求n S .2.已知数列}{n a 中,nn n a 21)12(++=,求n S . 类型三:倒序相加法例.求88sin 3sin 2sin 1sin 2222+⋅⋅⋅+++89sin 2+的值.1.已知xx f +=11)(,求)3()2()1(f f f ++ 类型四:错位相减法:例.数列}{n a 中,12)12(-⋅-n n n a ,求n S . 变式练习 1.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 2.数列}{n a 的前n 项和为22n S n =,}{n b 为等比数列,且.)(,112211b a a b b a =-=(1)求数列}{n a 和}{n b 的通项公式;(2)设nn n b ac =,求数列}{n c 的前n 项和n T .类型五:裂项相消法 例.已知数列}{n a 中,)2(1+=n n a n ,求n S .1.求数列11,,321,211++⋅⋅⋅++n n 的前n 项和. 2.在数列}{n a 中,11211++⋅⋅⋅++++=n nn n a n , 又12+⋅=n n n a a b ,求数列}{n b 的前n 项的和.3.求和求数列的通项与求和作业1.已知数列}{n a 的首项11=a(1)若12n n a a +=+,则n a =__________; (2)若12n n a a +=,则n a =_________ (3)若11n n a a n +=++,则n a =__________; (4)若12n n n a a +=⋅,则n a =_______(5)若1)1(++=n n a n na ,则n a =__________; (6)若)2(231≥+=-n a a n n ,则n a =__________;(7)若11nn n a a a +=+,则n a =__________。

2. 3. 2 4.5. 等比数列 的前n 项和12-=n n S ,求6.求和:7. 求和:8. 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 9.已知数列}{n a 的前n 项和为n S ,且对任意正整数n 都有2(2)1n n S n a =+-.(1)求数列}{n a 的通项公式; (2)设13242111n n n T a a a a a a +=+++⋅⋅⋅,求n T .111{}:1,{}.31n n n n n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式{}n a 2232221na a a a ++++。

相关文档
最新文档