2019-2020学年海南省高三阶段性测试(二模)数学(文)模拟试题有答案

合集下载

2019-2020年高三二模试卷文科数学含答案

2019-2020年高三二模试卷文科数学含答案

2019-2020年高三二模试卷文科数学含答案数 学(文科) xx.5一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合,集合,则( ) (A ) (B )(C )(D )2.在复平面内,复数对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.直线为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线的离心率是( ) (A )(B )(C )(D )4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) ,且 (B ),且 (C ) ,且 (D ),且5.设平面向量,,均为非零向量,则“”是“”的( ) (A )充分而不必要条件(B )必要而不充分条件正(主)视图俯视图侧(左)视图(C)充分必要条件(D)既不充分也不必要条件6.在△ABC中,若,,,则()(A)(B)(C)(D)7. 设函数若函数在区间上单调递增,则实数的取值范围是()(A)(B)(C)(D)8.设为平面直角坐标系中的点集,从中的任意一点作轴、轴的垂线,垂足分别为,,记点的横坐标的最大值与最小值之差为,点的纵坐标的最大值与最小值之差为.如果是边长为1的正方形,那么的取值范围是()(A)(B)(C)(D)第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.在等差数列中,,,则公差_____;____.10.设抛物线的焦点为,为抛物线上一点,且点的横坐标为2,则 .11.执行如图所示的程序框图,输出的a值为______.12.在平面直角坐标系中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是,不等式组所表示的平面区域是. 从区域中随机取一点,则P 为区域内的点的概率是_____.13.已知正方形ABCD ,AB =2,若将沿正方形的对角线BD 所在的直线进行翻折,则在翻折的过程中,四面体的体积的最大值是____.14.已知f 是有序数对集合**{(,)|,}Mx y x y N N 上的一个映射,正整数数对在映射f下的象为实数z ,记作. 对于任意的正整数,映射由下表给出:则__________,使不等式成立的x 的集合是_____________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos (sin cos )1f x x x x =-+.(Ⅰ)求函数的最小正周期;(Ⅱ)当时,求函数的最大值和最小值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好? (Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明) (Ⅲ)根据数据推断A 班全班40名学生中有几名学生的视力大于4.6?17.(本小题满分14分)如图,在正方体中,,为的中点,为的中点. (Ⅰ)求证:平面平面; (Ⅱ)求证:平面;(Ⅲ)设为正方体棱上一点,给出满足条件的点的 个数,并说明理由.18.(本小题满分13分)已知函数,其中.(Ⅰ)若,求函数的定义域和极值;(Ⅱ)当时,试确定函数的零点个数,并证明.19.(本小题满分14分)设分别为椭圆的左、右焦点,斜率为的直线经过右焦点,且与椭圆W 相交于两点. (Ⅰ)求的周长;(Ⅱ)如果为直角三角形,求直线的斜率.20.(本小题满分13分)在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为.(Ⅰ)设数列为1,3,5,7,,写出,,的值; (Ⅱ)若为等比数列,且,求的值;1(Ⅲ)若为等差数列,求出所有可能的数列.北京市西城区xx 高三二模试卷参考答案及评分标准高三数学(文科) xx.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D 5.B 6.A 7.D 8.B 二、填空题:本大题共6小题,每小题5分,共30分. 9. 10. 11. 12. 13. 14. 注:第9,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:2()sin cos cos 1f x x x x =-+……………… 4分, ……………… 6分所以函数的最小正周期为. ……………… 7分 (Ⅱ)解:由 ,得.所以 , ……………… 9分所以1π1)2242x-+≤≤1,即 . ………11分当,即时,函数取到最小值;…12分当,即时,函数取到最大值. …………13分16.(本小题满分13分)(Ⅰ)解:A班5名学生的视力平均数为A4.3+5.1+4.6+4.1 4.9==4.65x +,…………2分B班5名学生的视力平均数为B5.1+4.9+4.0+4.0 4.5==4.55x +. ……………3分从数据结果来看A班学生的视力较好. ………………4分(Ⅱ)解:B班5名学生视力的方差较大. ………………8分(Ⅲ)解:在A班抽取的5名学生中,视力大于4.6的有2名,所以这5名学生视力大于4.6的频率为.………………11分所以全班40名学生中视力大于4.6的大约有名,则根据数据可推断A班有16名学生视力大于4.6.………………13分17.(本小题满分14分)(Ⅰ)证明:在正方体中,因为平面,平面,所以平面平面. ……………… 4分(Ⅱ)证明:连接,,设,连接.因为为正方体,所以,且,且是的中点,又因为是的中点,所以,且,所以,且,即四边形是平行四边形,所以,1又因为 平面,平面,所以 平面. ……………… 9分 (Ⅲ)解:满足条件的点P 有12个. ……………… 12分理由如下: 因为 为正方体,, 所以 .所以 . ……………… 13分 在正方体中, 因为 平面,平面, 所以 , 又因为 ,所以 , 则点到棱的距离为,所以在棱上有且只有一个点(即中点)到点的距离等于, 同理,正方体每条棱的中点到点的距离都等于, 所以在正方体棱上使得的点有12个. ……… 14分18.(本小题满分13分)(Ⅰ)解:函数的定义域为,且. ……………… 1分22e (1)e e ()(1)(1)x x x x xf x x x +-'==++. ……………… 3分 令,得,当变化时,和的变化情况如下:……………… 4分故的单调减区间为,;单调增区间为.所以当时,函数有极小值. ……………… 5分 (Ⅱ)解:结论:函数存在两个零点.证明过程如下: 由题意,函数,因为 22131()024x x x ++=++>, 所以函数的定义域为. ……………… 6分求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++, ………………7分令,得,,当变化时,和的变化情况如下:故函数的单调减区间为;单调增区间为,. 当时,函数有极大值;当时,函数有极小值. ……………… 9分 因为函数在单调递增,且,所以对于任意,. ……………… 10分 因为函数在单调递减,且,所以对于任意,. ……………… 11分 因为函数在单调递增,且,,所以函数在上仅存在一个,使得函数, ………… 12分故函数存在两个零点(即和). ……………… 13分19.(本小题满分14分)(Ⅰ)解:椭圆的长半轴长,左焦点,右焦点, … ……… 2分 由椭圆的定义,得,,所以的周长为1212||||||||4AF AF BF BF a +++== ……………… 5分(Ⅱ)解:因为为直角三角形,所以,或,或, 当时,设直线的方程为,,, ……………… 6分由 221,2(1),x y y k x ⎧+=⎪⎨⎪=-⎩得 2222(12)4220k x k x k +-+-=, ……………… 7分所以 ,. ……………… 8分 由,得, ……………… 9分 因为,,所以11121212()1F A F B x x x x y y ⋅=++++2121212()1(1)(1)x x x x k x x =++++-- 2221212(1)(1)()1k x x k x x k =++-+++2222222224(1)(1)101212k k k k k k k-=+⨯+-⨯++=++, ……………10分 解得. ……………… 11分当(与相同)时,则点A 在以线段为直径的圆上,也在椭圆W 上,由22221,21,x y x y ⎧+=⎪⎨⎪+=⎩解得,或, ……………… 13分 根据两点间斜率公式,得,综上,直线的斜率,或时,为直角三角形. ……………14分20.(本小题满分13分)(Ⅰ)解:,,. ……………… 3分 (Ⅱ)解:因为为等比数列,,,所以, ……………… 4分 因为使得成立的的最大值为, 所以,,,, ,, ……………… 6分所以12350243b b b b ++++=. ……………… 8分(Ⅲ)解:由题意,得1231n a a a a =<<<<<,结合条件,得. ……………… 9分 又因为使得成立的的最大值为,使得成立的的最大值为,所以,. ……………… 10分 设,则.假设,即, 则当时,;当时,. 所以,.因为为等差数列, 所以公差, 所以,其中. 这与矛盾,所以. ……………… 11分 又因为123n a a a a <<<<<,所以,由为等差数列,得,其中. ……………… 12分 因为使得成立的的最大值为, 所以,由,得. ……………… 13分.。

2019-2020年高三二模文科数学试卷含解析

2019-2020年高三二模文科数学试卷含解析

2019-2020年高三二模文科数学试卷含解析本试卷第一部分共有8道试题。

一、单选题(共8小题)A.B.C.D.1. 复数=()【考点】复数乘除和乘方【试题解析】故答案为:D【答案】D2. 过点(2,0)且圆心为(1,0)的圆的方程是()A.B.C.D.【考点】圆的标准方程与一般方程【试题解析】由题知:所以圆的方程是:即。

故答案为:B【答案】B3. 在不等式组表示的平面区域内任取一个点,使得的概率为()A.B.C.D.【考点】几何概型【试题解析】作图:所以故答案为:C【答案】C4. 已知点在抛物线上,它到抛物线焦点的距离为5,那么点的坐标为()A.(4, 4),(4,-4)B.(-4,4),(-4,-4)C.(5,),(5,)D.(-5,),(-5,)【考点】抛物线【试题解析】抛物线中,准线方程为:x=-1.因为P它到抛物线焦点的距离为5,所以P到准线的距离为5,所以所以故答案为:A【答案】A5. 已知函数的定义域为,则“是奇函数”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】充分条件与必要条件【试题解析】若是奇函数,则有所以成立;反过来,不成立,对任意的x才是奇函数,只有一个,不能说明是奇函数。

故答案为:A【答案】A6. 将函数的图象向左平移个单位后与函数的图象重合,则函数为()A.B.C.D.【考点】三角函数图像变换【试题解析】将函数的图象向左平移个单位得到:故答案为:D【答案】D7. 已知,那么()A.B.C.D.【考点】对数与对数函数【试题解析】因为所以。

故答案为:C【答案】C8. 下表为某设备维修的工序明细表,其中“紧后工序”是指一个工序完成之后必须进行的下一个工序将这个设备维修的工序明细表绘制成工序网络图,如图,那么图中的1,2,3,4表示的工序代号依次为()A.E,F,G,G B.E,G,F,GC.G,E,F,F D.G,F,E,F【考点】函数模型及其应用【试题解析】由设备维修的工序明细表知:D后可以是E,G;因为G 后是H,所以4是G, 1是E。

海南省海口市2020届高三6月测试模拟(二模)数学试题答案

海南省海口市2020届高三6月测试模拟(二模)数学试题答案

则 an =1+ (n 1) 1 n …………4 分
(2)由(1)知 bn1 bn 2an 2n …………5 分 bn (bn bn1 ) (bn1 bn2 ) (b2 b1 ) b1 2n1 2n2 2n3 2 1 1 2n 2n 1 …………9 分 1 2
又由正弦定理 a b ,得 a 2 , 解得a 14 . …………7 分
sin A sin B
3 33
3
2 14
因为 A B C ,
所以,sin C sin(A B) sin Acos B+ cos Asin B 3 13 1 3 3 4 3 .…………8 分 2 14 2 14 7
2)
………………10

则 cos n1, n2
2 6
6 3
OE (1,1,1) , DB (4, 4, 0), SB (4, 0, 4)
OEDB 4 4 0, OESB 4 4 0,
4
OE DB,OE SB ………………4 分 OE DB,OE SB, SB, DB 面SDB, SB DB B
所以, OE 面SDB ………………6 分
bn bn 2
b2 n1
(2n
1)(2 n2
1) (2n1
1) 2
5 2n 4 2n 2n 0
所以, bn
bn2
b2 n1
…………12

19.解析: (1)法一
如图,在平面 SBC 内,过点 E 作 EM / /CB 交 SB 于点 M ,则有 SM 3MB ,连 OM ,取 SB 的 中点 F ,连接 DF . 因为SA 面ABCD, 所以,SA DB,又DB AC,SA AC A
a2 b2 c2 2bc cos A 4 c2 2 2 c 1 c2 2c 4 7 …………7 分 2

海南省海口市海南中学2023届高三二模数学试题

海南省海口市海南中学2023届高三二模数学试题

海南省海口市海南中学2023届高三二模数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.给出下列说法,其中正确的是( )A .若数据12,,n x x x L 的方差2s 为0,则此组数据的众数唯一B .已知一组数据3,4,7,9,10,11,11,13,则该组数据的第40百分位数为8三、填空题13.某校高三年级有女生520名,男生480名,若用分层随机抽样的方法从高三年级学生中抽取一个容量为200的样本,则男生应抽取___________名.14.甲、乙、丙、丁、戊5名学生进行某种劳动技能比赛,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”,从这个回答分析,5人的名次排列共可能有________种不同的情况.(用数字作答)15.已知函数()3ln f x x x =+的图像在点()()11,A f 处的切线为l ,若l 与函数()g x 的图像也相切,切点为()2,B m ,则()()22g g ¢+=___________.四、双空题16.已知数列{}na 满足()12335213n n a a a n a ++++-=L ,则3a =__________,若对任意的N n *Î,()1n na l ³-恒成立,则l 的取值范围为_____________.才计划”的具体情况如下表(不存在通过3项程序考核放弃签约的情况):【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算D ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.。

2019年高三二模数学(文科)(含答案)

2019年高三二模数学(文科)(含答案)

2019年高三二模数学(文科)(含答案)一、选择题(本大题共12小题,共60分)1.已知i为虚数单位,复数的共扼复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若集合A={x|x<2},B={x|x2-5x+6<0,x∈Z},则A∩B中元素的个数为()A. 0B. 1C. 2D. 33.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=()A. 49B. 42C. 35D. 284.函数y=的部分图象大致是()A. B.C. D.5.执行如图所示的程序框图,输出的S值为()A. 1B.C.D.6.已知某几何体的三视图如图,则该几何体的表面积是( )A.B.C.D.7.已知F是抛物线C:y2=4x(p>0)的焦点,抛物线C的准线与双曲线Γ:(a>0,b>0)的两条渐近线交于A,B两点,若△ABF为等边三角形,则Γ的离心率e=A. B. C. D.8.定义在R上的函数满足:且,若,则的值是A. B. 0 C. 1 D. 无法确定9.已知f(x)=sin x cosx+cos2x-,将f(x)的图象向右平移个单位,再向上平移1个单位,得到y=g(x)的图象.若对任意实数x,都有g(a-x)=g(a+x)成立,则=()A. B. 1 C. D. 010.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A. B. C. D.11.函数f(x)=的零点个数为()A. 3B. 2C. 1D. 012.设x,y满足约束条件且z=x+ay的最小值为7,则a=()A. B. 3 C. 或3 D. 5或二、填空题(本大题共4小题,共20分)13.若x,y满足约束条件,则z=x+2y的最小值为______.14.在平面直角坐标系xOy中,角θ的顶点在原点,始边与x轴的非负半轴重合,终边过点(),则cos(2θ+)=______.15.设数列{a n}的前n项和为S n,且a1=-1,a n+1=S n•S n+1,则数列{a n}的通项公式a n=______.16.已知曲线x2-4y2=4,过点A(3,-1)且被点A平分的弦MN所在的直线方程为______ .三、解答题(本大题共5小题,共70分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.18.国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:支持不支持合计年龄不大于50岁______ ______ 80年龄大于50岁10______ ______合计______ 70100(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.附:,n=a+b+c+d,P(K2>k)0.1000.0500.0250.010k 2.706 3.841 5.024 6.63519.在平面xOy中,已知椭圆过点P(2,1),且离心率.(1)求椭圆C的方程;(2)直线l方程为,直线l与椭圆C交于A,B两点,求△PAB面积的最大值.20.已知函数f(x)=x2+a ln x.(1)当a=-2时,求函数f(x)的单调区间和极值;(2)若g(x)=f(x)+在上是单调增函数,求实数a的取值范围.21.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρsin2θ-16cosθ=0,直线l与曲线C交于A,B两点,点P(1,3).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求的值.答案和解析1.【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求其共轭复数得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.【解答】解:∵=,∴复数的共扼复数为,在复平面内对应的点的坐标为(),位于第二象限.故选B.2.【答案】A【解析】解:集合A={x|x<2},B={x|x2-5x+6<0,x∈Z}={x|2<x<3,x∈Z}=∅,则A∩B=∅,其中元素的个数为0.故选:A.化简集合B,根据交集的定义写出A∩B,再判断其中元素个数.本题考查了集合的化简与运算问题,是基础题.3.【答案】B【解析】解:∵等差数列{a n}的前n项和为S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选:B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前n项和公式能求出S7.本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.4.【答案】A【解析】解:当x=2时,f(2)==ln3>0,故排除C,当x=时,f()==4ln>0,故排除D,当x→+∞时,f(x)→0,故排除B,故选:A.根据函数值的变化趋势,取特殊值即可判断.本题考查了函数图象的识别,考查了函数值的特点,属于基础题.5.【答案】D【解析】解:由于=-,则n=1,S=-1;n=2,S=-+-1=-1;n=3,S=2-+-+-1=2-1;…n=2016,S=-1;n=2017,S=-1.2017>2016,此时不再循环,则输出S=-1.故选:D.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值并输出,模拟程序的运行过程,即可得到答案.本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.6.【答案】C【解析】根据三视图知该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,结合图中数据计算它的表面积即可.本题考查了根据几何体三视图求表面积的应用问题,是基础题目.解:根据三视图知,该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,如图所示,结合图中数据,计算它的表面积是S三棱柱=2××2×1+2×2+2×2+2×2=6+8.故选:C.7.【答案】D【解析】【分析】本题主要考查了抛物线的性质,双曲线的渐近线方程及其性质,属于中档题. 【解答】解:已知抛物线方程为,则2p=4,解得p=2,则F(1,0),抛物线准线方程为x=-1,设AB与x轴交点为M,则|MF|=2,双曲线:的渐近线方程为:,将x=-1代入到,解得,则,又△ABF为等边三角形,则,则,则,则,解得.故选D.8.【答案】A【解析】解:∵函数f(x)满足f(2-x)+f(x-2)=0,∴f(2-x)=-f(x-2),∴f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),∴函数f(x)为奇函数,又f(x)满足f(x)=f(4-x),∴f(x)=f(x-4),∴f(x+8)=f(x+8-4)=f(x+4)=f(x+4-4)=f (x),∴函数为周期函数,周期T=8,∴f(2014)=f(251×8+6)=f(6),又f(6)=f(6-8)=f(-2)=-f(2)=-1,故选:A.先由条件f(2-x)+f(x-2)=0推出f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),故函数f(x)为奇函数,再由条件f(x)=f(4-x)推出函数为周期函数,根据函数奇偶性和周期性之间的关系,将条件进行转化即可得到结论.本题主要考查了抽象函数及其应用,利用函数的周期性和奇偶性进行转化是解决本题的关键.9.【答案】B【解析】【分析】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象和性质,求得的值,属于中档题.【解答】解:∵f(x)=sinxcosx+cos2x-=sin2x+•-=sin(2x+),将f(x)的图象向右平移个单位,再向上平移1个单位,得到y=g(x)=sin(2x-+)+1=sin2x+1的图象.若对任意实数x,都有g(a-x)=g(a+x)成立,则g(x)的图象关于直线x=a对称,再根据g(x)的周期为=π,可得=1,故选B.10.【答案】C【解析】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.本小题主要考查直三棱柱ABC-A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.11.【答案】B【解析】解:函数f(x)=,可得:-1+lnx=0,可得:x=e;3x+4=0可得x=-.函数的零点为:2个.故选:B.利用分段函数,分别为0,然后求解函数的零点即可.本题考查函数的零点的求法,考查计算能力.12.【答案】B【解析】解:如图所示,当a≥1时,由,解得,y=.∴.当直线z=x+ay经过A点时取得最小值为7,∴,化为a2+2a-15=0,解得a=3,a=-5舍去.当a<1时,不符合条件.故选:B.如图所示,当a≥1时,由,解得.当直线z=x+ay经过A 点时取得最小值为7,同理对a<1得出.本题考查了线性规划的有关知识、直线的斜率与交点,考查了数形结合的思想方法,属于中档题.13.【答案】-4【解析】解:作出不等式组对应的平面区域,由z=x+2y,得y=-x+,平移直线y=-x+,由图象可知当直线经过点A时,直线y=-x+的截距最小,此时z最小,由,得A(-2,-1)此时z=-2+2×(-1)=-4.故答案为:-4.作出不等式组对应的平面区域,利用z的几何意义即可得到结论.本题主要考查线性规划的应用,利用图象平行求得目标函数的最小值,利用数形结合是解决线性规划问题中的基本方法.14.【答案】-1【解析】解:角θ的顶点在原点,始边与x轴的非负半轴重合,终边过点(),∴cosθ=,sinθ=,∴sin2θ=2sinθcosθ=,cos2θ=2cos2θ-1=-,则cos(2θ+)=cos2θ-sin2θ=--=-1,故答案为:-1.利用任意角的三角函数的定义求得cosθ 和sinθ的值,再利用二倍角公式求得sin2θ和cos2θ的值,再利用两角和的余弦公式求得要求式子的值.本题主要考查任意角的三角函数的定义,二倍角的正弦公式,两角和的余弦公式的应用,属于基础题.15.【答案】【解析】【分析】本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.由已知数列递推式可得数列{}是以-1为首项,以-1为公差的等差数列,求其通项公式后,利用a n=S n-S n-1求得数列{a n}的通项公式.【解答】解:由a n+1=S n•S n+1,得:S n+1-S n=S n•S n+1,即,∴数列{}是以-1为首项,以-1为公差的等差数列,则,∴.∴当n≥2时,.n=1时上式不成立,∴.故答案为:.16.【答案】3x+4y-5=0【解析】【分析】设两个交点的坐标分别为(x1,y1),(x2,y2),利用点差法求得直线的斜率,进一步求出直线方程,然后验证直线与曲线方程由两个交点即可.本题主要考查了直线与圆锥曲线的综合问题.解题的关键是充分运用数形结合的数学思想、方程的数学思想和转化的数学思想来解决较为复杂的综合题.【解答】解:设两个交点的坐标分别为(x1,y1),(x2,y2)所以x12-4y12=4,,两式相减得(x1+x2)(x1-x2)=4(y1+y2)(y1-y2),又=3,=-1,∴=-,所以直线的方程为y+1=-(x-3),即3x+4y-5=0.由点A(3,-1)在双曲线内部,直线方程满足题意.∴MN所在直线的方程是3x+4y-5=0.故答案为:3x+4y-5=0.17.【答案】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π-(A+B))=sin C2cos C sinC=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2-2ab•,∴(a+b)2-3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+.【解析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.【答案】解:(1)20;60;10;20;30.(2),所以能在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关;(3)记5人为abcde,其中ab表示教师,从5人任意抽3人的所有等可能事件是:abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde共10个,其中至多1位教师有7个基本事件:acd,ace,ade,bcd,bce,bde,cde,所以所求概率是.【解析】本题考查独立性检验的应用,考查概率的计算,本题解题的关键是根据所给的数据填在列联表中,注意数据的位置不要出错.(1)根据条件中所给的数据,列出列联表,填上对应的数据,得到列联表.支持不支持合计年龄不大于50岁20 60 80年龄大于50岁10 10 20合计30 70 100(2)假设聋哑没有关系,根据上一问做出的列联表,把求得的数据代入求观测值的公式求出观测值,把观测值同临界值进行比较得到结论.(3)列举法确定基本事件,即可求出概率.19.【答案】解:(1)椭圆C:过点P(2,1),且离心率.可得:,解得a=2,c=,则b=,椭圆方程为:;(2)设直线方程为,A(x1,y1)、B(x2,y2),联立方程组整理得:x2+2mx+2m2-4=0,x1+x2=-2m,-4,直线与椭圆要有两个交点,所以,即:,利用弦长公式得:,由点线距离公式得到P到l的距离.S=|AB|•d=•=≤=2.当且仅当m2=2,即时取到最大值,最大值为:2.【解析】本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.(1)利用已知条件列出方程组,然后求解a,b即可得到椭圆方程;(2)联立直线与椭圆方程,利用韦达定理以及弦长公式结合点到直线的距离公式表示三角形的面积,然后通过基本不等式求解最值即可.20.【答案】解:(Ⅰ)∵函数f(x)=x2+a ln x,∴函数f(x)的定义域为(0,+∞).当a=-2时,=.当x变化时,f′(x)和f(x)的值的变化情况如下表:x(0,1)1(1,+∞)f′(x)-0+f(x)递减极小值递增由上表可知,函数f(x)的单调递减区间是(0,1)、单调递增区间是(1,+∞)、极小值是f(1)=1.(Ⅱ)由g(x)=x2+a ln x+,得.若函数g(x)为[1,+∞)上的单调增函数,则g′(x)≥0在[1,+∞)上恒成立,即不等式2x-+≥0在[1,+∞)上恒成立.也即a≥在[1,+∞)上恒成立.令φ(x)=,则φ′(x)=-.当x∈[1,+∞)时,φ′(x)=--4x<0,∴φ(x)=在[1,+∞)上为减函数,∴φ(x)max=φ(1)=0.∴a≥0.∴a的取值范围为[0,+∞).【解析】本题考查函数的单调区间和极值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意构造法和导数性质的合理运用.(Ⅰ)函数f(x)的定义域为(0,+∞).当a=-2时,=,由此利用导数性质能求出函数f(x)的单调区间和极值.(Ⅱ)由g(x)=x2+alnx+,得,令φ(x)=,则φ′(x)=-.由此利用导数性质能求出a的取值范围.21.【答案】解:(1)直线l的参数方程为(t为参数),消去参数,可得直线l的普通方程y=2x+1,曲线C的极坐标方程为ρsin2θ-16cosθ=0,即ρ2sin2θ=16ρcosθ,得y2=16x即直线l的普通方程为y=2x+1,曲线C的直角坐标方程为y2=16x;(2)直线的参数方程改写为(t为参数),代入y2=16x,得,,,.即的值为.【解析】本题考查三种方程的转化,考查参数方程的运用,属于中档题.(1)利用三种方程的转化方法,求直线l的普通方程与曲线C的直角坐标方程;(2)直线的参数方程改写为(t为参数),代入y2=16x,利用参数的几何意义求的值.。

2019-2020年高三第二次联考(二模)(文科)数学试题 含答案

2019-2020年高三第二次联考(二模)(文科)数学试题 含答案

2019-2020年高三第二次联考(二模)(文科)数学试题 含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知复数1iz i=-(其中i 为虚部单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 已知集合{}{}2|6,x R |40A x N x B x x =∈≤=∈->,则AB =( )A .{}4,5,6B .{}5,6C .{}|46x x <≤D .{}|x 046或x x <<≤3.“1x <”是 “ln 0x <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.甲、乙、丙、丁四位同学各自对,A B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现,A B 两变量有更强的线性相关性 A .甲 B .乙 C .丙 D .丁5.下图为某算法的程序框图,则程序运行后输出的结果是( )A .3B .4C .5D .66.数列{}n a 中,已知121,2a S ==,且()11232,*n n n S S S n n N +-+=≥∈,则数列{}n a 为( )A .等差数列B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列8.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的侧面积是( )AB .π C.2π+D.π+9.已知P 是ABC ∆所在平面内一点,20PB PC PA ++=,现将一粒黄豆随机撒在ABC ∆内,则黄豆落在PBC ∆内的概率是( ) A .14 B .13 C .12 D .2310.对于ABC ∆,有如下四个命题:①若sin 2sin 2A B =,则ABC ∆为等腰三角形;②若sin cos B A =,则ABC ∆为直角三角形;③若222sin sin sin A B C +>,则ABC ∆为锐角三角形;④若coscoscos222a b c AB C ==,则ABC ∆为等边三角形,其中正确的命题个数是( )A .1B .2C .3D .411.已知双曲线()222210,0x y a b a b-=>>的焦距长为2c ,过原点O 作圆:()222x c y b -+=的两条切线,切点分别是,A B ,且120AOB ︒∠=,那么该双曲线的离心率为( )ABC .2 D12.设()f x 是定义在()(),00,ππ-的奇函数,其导函数为()'f x ,且02f π⎛⎫= ⎪⎝⎭,当()0,x π∈时,()()'sin cos 0f x x f x x -<,则关于x 的不等式()2sin 6f x f x π⎛⎫< ⎪⎝⎭的解集为( ) A .,00,66ππ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭ B .,066,πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ C .,0662,πππ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭ D .,0,66πππ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用系统抽样从160名学生中抽取容量为20的样本,将160名学生随机地从1-160编号,并按编号顺序平均分成20组(1-8号,9-16号,…,153-160号),若按等距的规则从第16组抽出的号码为126,则第1组中用抽签法确定的号码是 .14.点(),P x y 在不等式组031x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(),P x y 到直线()10y kx k =->的最大距离为k = .15.已知3sin 45x π⎛⎫-=⎪⎝⎭,则sin 2x = . 16.某同学在研究函数()f x=的性质时,受到两点间的距离公式的启发,将()f x变形为()f x =()f x 表示||||PA PB +(如图),下列关于函数()f x 的描述正确的是 .(填上所有正确结论的序号)①()f x 的图象是中心对称图形;②()f x 的图象是轴对称图形;③函数()f x的值域为)+∞;④方程()()1f f x =+三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知公差大于零的等差数列{}n a ,各项均为正数的等比数列{}n b ,满足1142831,2,,a b a b a b ====.(1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,数列{}n c 的前n 项和为n S ,求证:2n S <. 18. (本小题满分12分)2016年9月20日是第28个全国爱牙日,为了迎接此节目,某地区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该地区小学六年级800名学生进行检查,按患龋齿的不换龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.(1)能否在犯错率不超过0.001的前提下,认为该地区学生的常吃零食与患龋齿有关系? (2)4名区卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率. 附:. ()()()()()22n ad bc K a b c d a c b d -=++++19. (本小题满分12分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,22,//,,90,AB EF EF AB EF FB BFC BF FC ==⊥∠==,H 为BC 的中点.(1)求证://FH 面EDB ; (2)求证:AC ⊥面EDB ; (3)求四面体B DEF -的体积.20. (本小题满分12分)已知抛物线2:E y ax =上三个不同的点()1,1A ,、C B 满足关系式0AB BC ⋅=. (1)求抛物线E 的方程;(2)求ABC ∆的外接圆面积的最小值及此时ABC ∆的外接圆的方程. 21. (本小题满分12分)已知函数()()()223x f x e x a a R =--+∈.(1)若函数()f x 的图象在0x =处的切线与x 轴平行,求a 的值; (2)若0x ≥时,()0f x ≥恒成立,求a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1:几何证明选讲如图, AB 是圆O 的直径,C 是半径OB 的中点,D 是OB 延长线上一点,且DB OB =,直线MD 与圆O 相交于点、M T (不与、A B 重合),DN 与圆O 相切于点N ,连结、、MC MB OT .(1)求证:DT DM DO DC ⋅=⋅; (2)若60DOT ∠=,试求BMC ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为2224484t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).(1)求曲线C 的普通方程;(2)过点()0,1P 的直线l 与曲线C 交于、A B 两点,求PA PB ⋅的取值范围. 24. (本小题满分10分)选修4-5:不等式选讲 已知()()0,,0,,2a b a b ∈+∞∈+∞+=. (1)求14a b+的最小值; (2)若对()14,0,,211a b x x a b∀∈+∞+≥--+恒成立,求实数x 的取值范围.2016届高中毕业班联考试卷(二)数学(文科)参考答案及评分标准1.B 解:i z 2121+-= ,故选B. 2.B 解:}6,5{}64,0|{=≤<<∈=⋂x x N x B A 或 ,故选B. 3.B 解:100ln <<⇔<x x ,故选B.4.D 解:r 越大,m 越小,线性相关性越强,故选D.5.A 解:1,1,1===T a k ;1,0,2===T a k ;1,0,3===T a k ;2,1,4===T a k ;3,1,5===T a k ,故选A. 6.D 解:)2(21≥=+n a a n n ,又112=a a不满足上式,故选D.7.A 解:x x g 2sin3)(π=,Z k k k x ∈++∈∴],34,14[,故选A.10.A 解:①B A =或2π=+B A ,错;②A B -=2π或A B +=2π,错;③只能得到C ∠为锐角,错;④2sin 2sin 2sinCB A == ,C B A ==∴,正确.故选A. 11.C 解:c b 23=,2=∴e . 12.B 解:令xx f x g sin )()(=,则)(x g 在),0(π上递减,在)0,(π-上递增,当),0(π∈x 时,πππ<<⇒<x g x g 6)6()(;当)0,(π-∈x 时,06)6()(<<-⇒->x g x g ππ;故选B.13.6 解:第1组中用抽签法确定的号码是6815126=⨯-.14.1 解:221|130|2=+--⨯k k ,0>k ,1=∴k .15.257 解:257)4(sin 21)22cos(2sin 2=--=-=x x x ππ . 16.②③ 解:)()3(x f x f =- ,)(x f ∴关于直线23=x 对称;13||||||=≥+AB PB PA ,),13[)(+∞∈∴x f .17.解: ⑴设等差数列}{n a 的公差为d )0(>d ,等比数列}{n b 的公比为q )0(>q⎩⎨⎧==3824b a b a ⎩⎨⎧=+=+⇒2271231q d q d ⎩⎨⎧==⇒21q d ……3分 n a n =∴,n n b 2= ………6分⑵n n nc 2=n n n n n S 221232221132+-++++=∴- 143222123222121++-++++=n n n n n S 2222<+-=∴n n n S …………12分18.解:⑴由题意可得列联表:828.10667.16600200640160)14010050060(80022>≈⨯⨯⨯⨯-⨯=K 故能在犯错率不超过0.001的前提下,认为该地区学生的常吃零食与患龋齿有关系. …6分种,工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率3162==P …12分 19.解:⑴设BD 与AC 交于点O ,连结OE 、OH .O 、H 分别为AC 、BC 的中点 AB OH //∴,又AB EF // EF OH //∴,又EF OH = OEFH ∴为平行四边形OE FH //∴,又⊄FH 平面BDE ,⊂OE 平面BDE//FH ∴平面BDE . …………4分 ⑵AB EF // ,FB EF ⊥FB AB ⊥∴,又BC AB ⊥ ,B BC FB =⋂ ⊥∴AB 平面BCF ,又⊂FH 平面BCF AB FH ⊥∴,又BC FH ⊥,B AB BC =⋂ ⊥∴FH 平面ABCD ,又OE FH // ⊥∴OE 平面ABCDAC OE ⊥∴,又BD AC ⊥,O OE BD =⋂⊥∴AC 平面BDE . …………8分⑶31221213131=⨯⨯⨯⨯=⨯⨯=-BF S V DEF B …………12分20.解: ⑴211⨯=a ,1=∴a ,抛物线E 的方程为2x y = …………2分 ⑵设),(211x x B ,),(222x x C ,则)1,1(211--=→x x AB ,),(212212x x x x BC --=→→→=⋅0BC AB0))(1())(1(212221121=--+--⇒x x x x x x11≠x ,21x x ≠0))(1(1211=+++∴x x x ,且11-≠x1)111(112++++-=∴x x x当011>+x 时,12-≤x ;当011<+x 时,32≥x),3[]1,(2+∞⋃--∞∈∴x …………5分→→=⋅0BC AB ,BC AB ⊥∴,从而ABC ∆的外接圆的直径为||AC 要使ABC ∆的外接圆面积最小,须||AC 最小22)1()1(||2224222222+--=-+-=x x x x x AC令22)(24+--=x x x x f ,),3[]1,(+∞⋃--∞∈x]1)12)[(1()244)(1(224)(223++-=++-=--='∴x x x x x x x x f]1,(--∞∈∴x 时,0)(<'x f ,)(x f 递减;),3[+∞∈x 时,0)(>'x f ,)(x f 递增又4)1(=-f ,68)3(=f2||min =∴AC ,此时12-=x …………9分 1=∴r ,ABC ∆的外接圆面积π=min S . …………10分 12-=x ,)1,1(-∴CA B C ∆∴的外接圆的圆心为)1,0(,半径1=rABC ∆∴的外接圆方程为1)1(22=-+y x …………12分21.解:⑴3)(2)(2+--=a x e x f x ,R x ∈)(2)(a x e x f x +-='∴ …………2分0)0(='f ,即:0)1(2=+a1-=∴a . ……… 4分⑵令)(2)(a x e x g x+-=,),0[+∞∈x0)1(2)(≥-='∴x e x g 对),0[+∞∈x 恒成立)(2)(a x e x g x +-=∴在),0[+∞内单调递增,且)1(2)0(a g += ………6分①当0)1(2≥+a ,即1-≥a 时,0)0()(2)(≥'≥+-='f a x e x f x)(x f ∴在),0[+∞上为增函数05)0(2≥-=∴a f 55≤≤-⇒a51≤≤-∴a ………8分②当012<+)(a ,即1-<a 时,0)0(<∴g 由)(2)(a x e x g x+-=在),0[+∞内单调递增知:存在唯一),0[0+∞∈x ,使得0)(2)(000=+-=a x ex g x ,即00x a e x =+. 令0)(>'x f ,得0x x >,0)(<'x f ,得00x x <≤;3)(2)()(200min 0+--==∴a x e x f x f x ……… 10分 a e x x +=003)(2)(2000+-=∴x x e e x f )3)(1(00-+-=x x e e030≤-∴x e ,即3ln 00≤<x .)1,33[ln 00--∈-=∴x e x a综上,实数a 的取值范围是]5,33[ln -. ……… 12分22.解:⑴设r OB =)0>r (,则有:r BD =,2rCB OC ==. 233r r r DA DB DM DT =⋅=⋅=⋅又23232r r r DC DO =⋅=⋅DC DO DM DT ⋅=⋅∴ …………… 5分 ⑵DC DO DM DT ⋅=⋅DMDODC DT =∴ 又CDM TDO ∠=∠ DTO ∆∴∽DCM ∆ DMC DOT ∠=∠∴ DMB DOT ∠=∠∴2030=∠∴BMC . …………… 10分23.解:⑴1)44()44()44(42222222222=++=+++-=+t t t t t t y x 又)1,1[48144222-∈+-=+-=t t t x C ∴的普通方程为1422=+y x ,)1,1[-∈x ……… 5分⑵设直线l 的参数方程为⎩⎨⎧+==ααsin 1cos t y t x ,α(为倾斜角,且)),43()43,0[πππα⋃∈ 代入曲线C 得:03sin 2)cos 3122=-⋅+⋅+t t αα( 设两根为21,t t ,α221cos 313+==⋅∴t t PB PA ,),43()43,0[πππα⋃∈ 故]3,43[||||∈⋅PB PA . ……… 10分24.解:⑴),0(+∞∈a ,),0(+∞∈b ,2=+b a292252222522252)41(41=+=⋅+≥++=+⋅+=+∴b a a b b a a b b a b a b a 29)41(min =+∴b a ,此时32=a ,34=b . ……… 5分⑵|1||12|41+--≥+x x ba 对),0(,+∞∈∀b a 恒成立29|1||12|≤+--∴x x⎪⎩⎪⎨⎧≤+++--≤⇔291121x x x 或⎪⎩⎪⎨⎧≤--+-≤<-29112211x x x 或⎪⎩⎪⎨⎧≤--->2911221x x x 125-≤≤-⇔x 或211≤<-x 或21321≤<x 21325≤≤-⇔x]213,25[-∈∴x ……… 10分。

2020届海南省海口市高三6月测试模拟(二模)数学试题参考答案

2020届海南省海口市高三6月测试模拟(二模)数学试题参考答案

2020年海口市高考调研考试数学参考答案一、单项选择题:1、C 2、C 3、B 4、A 5、B 6、A 7、D 8、B二、多项选择题:9、BC 10、AB 11、ABC 12、CD三、填空题:13、乙 14、17-15、 4 、 1 16、136四、解答题17.解析:在△ABC 中,已知(2)cos cos b c A a C -=, 由正弦定理得:(2sin sin )cos sin cos B C A A C -⋅=⋅ …………1分即2sin cos sin cos sin cos B A C A A C ⋅-⋅=⋅ ,得2sin cos sin cos sin cos sin()B A A C C A A C ⋅=⋅+⋅=+…………2分又因为sin()sin A B C A C B π++=+=,,所以,2sin cos sin B A B ⋅= …………3分 (0),sin 0,B B π∈≠又, 得12cos 1cos .2A A ==,(0),A π∈, 所以,.3A π=…………5分 若选条件①②,由余弦定理得:2222212cos 4222472a b c bc A c c c c =+-=+-⨯⨯⨯=-+= …………7分 223031()c c c c --===-得,或舍去 …………8分所以,11sin 232222ABC S bc A ∆=⋅=⨯⨯⨯=…………10分若选条件①③,由13cos (0)sin 14B B B π=∈==,,,得…………6分又由正弦定理sin sin7a bbA B===解得…………7分因为,A B Cπ++=所以,131sin sin()sin cos+cos sin2142147C A B A B A B=+==+⨯=…………8分sinsin2a CcA⋅===从而,…………9分11sin22777ABCS ab C∆=⋅==…………10分若选条件②③,由13cos(0)sin14B B Bπ=∈==,,,得…………6分又由正弦定理14.sin sin3a baA B===解得…………7分因为,A B Cπ++=所以,131sin sin()sin cos+cos sin2142147C A B A B A B=+==+⨯=…………8分14sin16.sin32a CcA⨯⋅===又…………9分1114sin222373ABCS ab C∆=⋅=⨯⨯⨯=…………10分18.解析:(1)由已知得…………1分所以,数列{}是以1为首项,公差为1的等差数列;………… 2分则=1+…………4分(2)由(1)知…………5分…………9分所以,…………12分19.解析:(1)法一如图,在平面SBC 内,过点E 作//EM CB 交SB 于点M ,则有3SM MB =,连OM ,取SB 的中点F ,连接DF . ,SA ABCD ⊥因为面,SA DB DB AC SA AC A ⊥⊥=I 所以,又,,11+=+n n a a n a n a n n =⋅-1)1(n a n n n b b 221==-+112211)()()(b b b b b b b b n n n n n +-++-+-=---Λ12222321+++++=---Λn n n 122121-=--=n n212212)12()12)(12(----=-++++n n n n n n b b b 022425<-=⋅+⋅-=n n n 212++<⋅n n n b b b,DB SAC ⊥所以,面OE SAC ⊂面,所以OE DB ⊥……………………2分又因为,SA BC AB BC SA AB A ⊥⊥=I , 所以,,BC SAB ⊥面,SB SAB ⊂面所以,BC SB ⊥又//EM CB ,所以,EM SB ⊥易知SDB ∆为等边三角形,则DF SB ⊥,由3SM MB =得M 为BF 的中点,在DFB ∆中,O 为DB 的中点,则有//OM DF ,从而有OM SB ⊥因为,,OM EM M OM EM OEM =⊂I 面所以,SB OEM ⊥面………………4分又OE OEM ⊂面,所以,OE SB ⊥ 因为,,BD SB B BD SB SDB =⊂I 面所以,OE SDB ⊥面………………6分(1) 法二 以A 为坐标原点,,,AB AD AS 所在直线分别为,,x y z 轴建系如图:则(0,0,4),(4,4,0),(4,0,0),(0,4,0)(2,2,0)S C B D O ,,由4(3,3,1)SC EC E =u u u r u u u r ,得……2分(1,1,1)OE =u u u r ,(4,4,0),(4,0,4)DB SB =-=-u u u r u u r440,OE DB =-=u u u r u u u r g 440,OE SB =-=u u u r u u r g,OE DB OE SB ⊥⊥u u u r u u u r u u u r u u r ………………4分,,,,OE DB OE SB SB DB SDB SB DB B ⊥⊥⊂=I 面所以,OE SDB ⊥面………………6分(2)易得平面1(0,0,1)BDC n =u r 法向量………………8分设平面2(,,)BDE n x y z =u u r 法向量,(4,4,0),(1,3,1)DB BE =-=-u u u r u u u r由22n DB n BE ⎧⊥⎪⎨⊥⎪⎩u u r u u u r u u r u u u r 得,22=0=0n DB n BE ⎧⋅⎪⎨⋅⎪⎩u u r u u u r u u r u u u r 即44030x y x y z -=⎧⎨-++=⎩取2(1,1,2)n =-u u r ………………10分则12cos ,3n n <>==u r u u r ,所以,锐二面角E BD C --………………12分 20.解析:(1)由题知抛物线的焦点为(2,0),则椭圆中2c =……………………1分 D 到圆O 的最大距离为7,=5OD b OD +=,则2b =,……………2分则圆O 的方程为224x y +=……………3分 由2228a b c =+=,椭圆C 方程为:22184x y +=……………4分 (2)由题,设()(,),(,),2,0)(0,2P m n Q t n n ∈-U由(A B -…………………………5分得:直线:PB y x =-,从而N直线:PA y x=+,从而M………………………7分(),()QM t n QN t n=--=-u u u u r u u u r得22228m nQM QN tm⋅=+-u u u u r u u u r………………………9分因为P在椭圆C上,所以2228m n+=,因为Q在圆O上,所以224,t n+=…………………10分所以:2222222222(82)=4(4)=082m n n nQM QN t t n nm n-⋅=+=-----u u u u r u u u r,90,.QM QN MQN∴⊥∠=o为定值…………………12分21解析:(Ⅰ)由题意,1011100.310iix x===∑,……………1分101022221111()(10)0.091010i ii ix x x xσ===-=-=∑∑,……………3分所以ˆ100.3μ=,ˆ0.3σ=,样本的均值与零件标准尺寸差为100.31000.3-=,并且对每一个数据ix,均有ˆˆˆˆ(3,3)ixμσμσ∈-+(1,2,3,,10i=L),由此判断该切割设备技术标准为B级标准.……………5分(Ⅱ)方案1:每个零件售价为70元.方案2:设生产的零件售价为随机变量ξ,则ξ可以取60,100.由题意,设备正常状态下切割的零件尺寸为X ,且X ~2(100.3,0.3)N .所以(100)(99.7100.3)(2)0.4772P P X P X ξμσμ==<<=-<<=,(60)1(100)0.5228P P ξξ==-==,……………8分所以随机变量ξ的分布列为所以ξ的数学期望600.52281000.4772600.51000.477770E ξ=⨯+⨯>⨯+⨯=>.…………11分 综上,方案二能够给公司带来更多的利润.……………12分22. 解析:(1)由已知:22()()-2cos ln (0,)g x x f x x k x x π=-=⋅∈+∞'2cos ()2-k g x x x π= …………………………………1分当k 为奇数时,cos -1k π=,'2()20g x x x =+> 2()-2cos ln g x x k x π=⋅在区间)0∞+,(上单调递增。

2019年海南省高考数学二模试卷(文科)(解析版)

2019年海南省高考数学二模试卷(文科)(解析版)

2019年海南省高考数学二模试卷(文科)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在本卷上作答无效)1.已知全集U=R,集合M={x|0<x<2},集合N={x|x≥1},则集合M∩(∁U N)等于()A.{x|0<x<1} B.{x|0<x<2} C.{x|x<1} D.∅2.已知复数z满足(1+2i)z=4+3i,则z=()A.2+i B.2﹣i C.1+2i D.1﹣2i3.已知等差数列{a n}中,a5+a9﹣a7=10,记S n=a1+a2+…+a n,则S13的值()A.130 B.260 C.156 D.1684.已知P是平行四边形ABCD所在平面外的一点,M、N分别是AB、PC的中点,若MN=BC=4,PA=4,则异面直线PA与MN所成角的大小是()A.30°B.45°C.60°D.90°5.若正实数a,b满足a+b=4,则log2a+log2b的最大值是()A.18 B.2 C.2D.26.一个容量100的样本,其数据的分组与各组的频数如下表组别(0,(10,(20,(30,(40,(50,(60,10]20]30]40]50]60]70]频数12 13 24 15 16 13 7则样本数据落在(10,40]上的频率为()A.0.13 B.0.39 C.0.52 D.0.647.已知圆x2+(y﹣2)2=4的圆心与抛物线y2=8x的焦点关于直线l 对称,则直线l的方程为()A.x﹣y=0 B.x﹣y+2=0 C.x+y+2=0 D.x﹣y﹣2=08.已知一个三棱柱的底面是正三角形,且侧棱垂直于底面,此三棱柱的三视图如图所示,则该棱柱的全面积为()A.24+ B.24+2C.14D.129.一个算法流程图如图所示,要使输出的y值是输入的x值的2倍,这样的x值的个数是()A.1 B.3 C.5 D.610.区间[0,2]上随机取一个数x,sin的值介于到1之间的概率为()A.B. C.D.11.已知直线x=2a与双曲线﹣=1(a>0,b>0)相交A,B两点,O为坐标原点,若△AOB是正三角形,则双曲线的离心率是()A. B.C.D.12.已知函数y=f(x),y=g(x)的导函数的图象如右图所示,那么y=f(x),y=g(x)的图象可能是()A.B.C.D.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡中的指定位置)13.已知向量=(2,4),=(1,1),若向量⊥(+λ),则实数λ的值是.14.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.15.若曲线f(x)=x2﹣e x不存在垂直于y轴的切线,则实数a的取值范围是.16.下列4个命题:①∃x∈(0,1),()x>log x.②∀k∈[0,8),y=log2(kx2+kx+2)的值域为R.③“存在x∈R,()x+2x≤5”的否定是”不存在x∈R,()x+2x≤5”④“若x∈(1,5),则f(x)=x+≥2”的否命题是“若x∈(﹣∞,1]∪[5,+∞),则f(x)=x+<2”其中真命题的序号是.(请将所有真命题的序号都填上)三.解答题:(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.请将答题的过程写在答题卷中指定的位置)17.在△ABC中,已知AC=3,sinA+cosA=,(Ⅰ)求sinA的值;(Ⅱ)若△ABC的面积S=3,求BC的值.18.某企业有两个分厂生产某种零件,现从两个分厂生产的零件中随机各抽出10件,量其内径尺寸(单位:mm),获得内径尺寸数据的茎叶图如图.(Ⅰ)计算甲厂零件内径的样本方差;(Ⅱ)现从乙厂这10零件中随机抽取两件内径不低于173cm的零件,求内径176cm的零件被抽中的概率.19.在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,AC⊥BC,BC=C1C=AC=2,D是A1C1上的一点,E是A1B1的中点,C1D=kA1C1.(Ⅰ)当k为何值时,B,C,D,E四点共面;(Ⅱ)在(Ⅰ)的条件下,求四棱锥A﹣BCDE的体积.20.在直角坐标平面内,已知两点A(1,0),B(4,0),设M是平面内的动点,并且||=2||.(Ⅰ)求动点M的轨迹E的方程;(Ⅱ)自点B引直线l交曲线E于Q,N两点,求证:射线AQ与射线AN关于直线x=1对称.21.已知函数f(x)=x++b(x≠0),其中a,b∈R.(Ⅰ)若f′(1)=9,f(x)的图象过点(2,7),求f(x)的解析式;(Ⅱ)讨论f(x)的单调性;(Ⅲ)当a>2时,求f(x)在区间[1,2]上的最大值.[选修4-1:几何证明选讲]22.如图,PA是⊙O的切线,切点为A,PB,PC是⊙O的割线,它们与⊙O分别交于B,D和C,E,延长CD交PA于M,∠MPC=∠MDP.(Ⅰ)求证:AP∥BE;(Ⅱ)求证:M是AP的中点.[选修4-4:坐标系与参数方程]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.曲线C的极坐标方程为7ρ2﹣ρ2cos2θ﹣24=0.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)点(x,y)在曲线C上,试求x﹣2y的取值范围.[选修4-5:不等式选讲]24.设A={(x,y)||x|+|y|=2}(x,y∈R).(Ⅰ)若(x,y)∈A,试求u=x2+y2的取值范围;(Ⅱ)设集合B={(w,v)|w2+v2=x2+y2,(x,y)∈A},试求集合B表示的区域面积.参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在本卷上作答无效)1.已知全集U=R,集合M={x|0<x<2},集合N={x|x≥1},则集合M∩(∁U N)等于()A.{x|0<x<1} B.{x|0<x<2} C.{x|x<1} D.∅【考点】交、并、补集的混合运算.【分析】先根据集合补集的定义求出集合N的补集,然后根据交集的定义求出所求即可.【解答】解:∵N={x|x≥1},∴C U N={x|x<1}M∩(C U N)={x|0<x<1}故选A.2.已知复数z满足(1+2i)z=4+3i,则z=()A.2+i B.2﹣i C.1+2i D.1﹣2i【考点】复数代数形式的乘除运算.【分析】复数方程两边同乗1﹣2i,化简即可.【解答】解:∵(1+2i)z=4+3i,∴(1﹣2i)(1+2i)z=(4+3i)(1﹣2i)5z=10﹣5i,z=2﹣i,故选B.3.已知等差数列{a n}中,a5+a9﹣a7=10,记S n=a1+a2+…+a n,则S13的值()A.130 B.260 C.156 D.168【考点】等差数列的性质;等差数列的前n项和.【分析】利用等差数列的性质化简已知等式的左边前两项,得到关于a7的方程,求出方程的解得到a7的值,再利用等差数列的求和公式表示出S13,利用等差数列的性质化简后,将a7的值代入即可求出值.【解答】解:∵数列{a n}为等差数列,且a5+a9﹣a7=10,∴(a5+a9)﹣a7=2a7﹣a7=a7=10,则S13==13a7=130.故选:A4.已知P是平行四边形ABCD所在平面外的一点,M、N分别是AB、PC的中点,若MN=BC=4,PA=4,则异面直线PA与MN所成角的大小是()A.30°B.45°C.60°D.90°【考点】异面直线及其所成的角.【分析】连接AC,并取其中点为O,连接OM,ON,则∠ONM就是异面直线PA与MN所成的角,由此能求出异面直线PA与MN所成的角.【解答】解:连接AC,并取其中点为O,连接OM,ON,则OM BC,ON PA,∴∠ONM就是异面直线PA与MN所成的角.由MN=BC=4,PA=4,得OM=2,ON=2,MN=4,cos∠ONM===.∴∠ONM=30°.即异面直线PA与MN成30°的角.故选:A.5.若正实数a,b满足a+b=4,则log2a+log2b的最大值是()A.18 B.2 C.2D.2【考点】基本不等式;对数的运算性质.【分析】利用基本不等式的性质、对数的运算性质即可得出.【解答】解:∵正实数a,b满足a+b=4,∴4≥,化为:ab≤4,当且仅当a=b=2时取等号.则log2a+log2b=log2(ab)≤log24=2,其最大值是2.故选;B.6.一个容量100的样本,其数据的分组与各组的频数如下表组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70]频数12 13 24 15 16 13 7则样本数据落在(10,40]上的频率为()A.0.13 B.0.39 C.0.52 D.0.64【考点】频率分布表.【分析】根据表格可以看出(10,20]的频数是13,(20,30]的频数是24,(30,40]的频数是15,把这三个数字相加,得到要求区间上的频数,用频数除以样本容量得到频率.【解答】解:由表格可以看出(10,20]的频数是13,(20,30]的频数是24,(30,40]的频数是15,∴(10,40)上的频数是13+24+15=52,∴样本数据落在(10,40)上的频率为=0.52.故选C.7.已知圆x2+(y﹣2)2=4的圆心与抛物线y2=8x的焦点关于直线l 对称,则直线l的方程为()A.x﹣y=0 B.x﹣y+2=0 C.x+y+2=0 D.x﹣y﹣2=0【考点】抛物线的简单性质.【分析】求得圆的圆心和抛物线的焦点坐标,运用中点坐标公式和直线的斜率公式,以及两直线垂直的条件:斜率之积为﹣1,可得直线l的斜率,进而得到所求直线l的方程.【解答】解:圆x2+(y﹣2)2=4的圆心为C(0,2),抛物线y2=8x的焦点为F(2,0),可得CF的中点为(1,1),直线CF的斜率为=﹣1,可得直线l的斜率为1,则直线l的方程为y﹣1=x﹣1,即为y=x.故选:A.8.已知一个三棱柱的底面是正三角形,且侧棱垂直于底面,此三棱柱的三视图如图所示,则该棱柱的全面积为()A.24+ B.24+2C.14D.12【考点】由三视图求面积、体积.【分析】由三视图和题意求出三棱柱的棱长、判断出结构特征,由面积公式求出各个面的面积,加起来求出该棱柱的全面积.【解答】解:根据三视图和题意知,三棱柱的底面是正三角形:边长2,边上的高是,侧棱与底面垂直,侧棱长是4,∴该棱柱的全面积S==24+,故选:B.9.一个算法流程图如图所示,要使输出的y值是输入的x值的2倍,这样的x值的个数是()A.1 B.3 C.5 D.6【考点】程序框图.【分析】模拟执行程序,可得程序的功能是计算并输出y=的值,根据条件,分x<1,1≤x<4,x≥4三种情况分别讨论,满足输出的y值是输入的x值的2倍的情况,即可得到答案.【解答】解:模拟执行程序,可得程序的功能是计算并输出y=的值.当x<1时,由x2+7x+4=2x,解得:x=﹣4,﹣1满足条件;当1≤x<4时,由3x+1=2x,可得:x无解;当x≥4时,由3x﹣4=2x,解得:x=6,或﹣2(舍去),故这样的x值有3个.故选:B.10.区间[0,2]上随机取一个数x,sin的值介于到1之间的概率为()A.B. C.D.【考点】几何概型.【分析】求出0≤sin x≤的解集,根据几何概型的概率公式,即可求出对应的概率.【解答】解:当0≤x≤2,则0≤x≤π,由0≤sin x≤,∴0≤x≤,或≤x≤π,即0≤x≤,或≤x≤2,则sin x的值介于0到之间的概率P=;故选A.11.已知直线x=2a与双曲线﹣=1(a>0,b>0)相交A,B两点,O为坐标原点,若△AOB是正三角形,则双曲线的离心率是()A. B.C.D.【考点】双曲线的简单性质.【分析】联立方程求出A,B的坐标,结合三角形是正三角形,建立方程关系求出a,b的关系进行求解即可.【解答】解:当x=2a时,代入双曲线方程得﹣=1,即=4﹣1=3,则y=±b,不妨设A(2a,b),B(2a,﹣b),∵△AOB是正三角形,∴tan30°==,则b=a,平方得b2=a2=c2﹣a2,则a2=c2,则e2=,则e=,故选:B12.已知函数y=f(x),y=g(x)的导函数的图象如右图所示,那么y=f(x),y=g(x)的图象可能是()A.B.C.D.【考点】函数的图象.【分析】由图象可得f(x)与g(x)导函数值均为负数,且|f′(x)|越来越大,即表示f(x)的单调递减的程度越来越大,而|g′(x)|越来越小,即表示g(x)的单调递减的程度越来越小,从四个选项中判断,可以得知答案.【解答】解:由图象可得f(x)与g(x)导函数值均为负数,所以f (x)与g(x)均单调递减,从图象中可以看出|f′(x)|越来越大,即表示f(x)的单调递减的程度越来越大,即下凸;而|g′(x)|越来越小,即表示g(x)的单调递减的程度越来越小,即上凸.从四个选项中判断,可以得知,选择:D.故选:D.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡中的指定位置)13.已知向量=(2,4),=(1,1),若向量⊥(+λ),则实数λ的值是﹣3.【考点】数量积判断两个平面向量的垂直关系;向量数乘的运算及其几何意义.【分析】由向量=(2,4),=(1,1),我们易求出向量若向量+λ的坐标,再根据⊥(+λ),则•(+λ)=0,结合向量数量积的坐标运算公式,可以得到一个关于λ的方程,解方程即可得到答案.【解答】解: +λ=(2,4)+λ(1,1)=(2+λ,4+λ).∵⊥(+λ),∴•(+λ)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=﹣3.故答案:﹣314.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【考点】等比数列的性质.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为15.若曲线f(x)=x2﹣e x不存在垂直于y轴的切线,则实数a的取值范围是[0,e).【考点】利用导数研究曲线上某点切线方程.【分析】求得f(x)的导数,由题意可得f′(x)=ax﹣e x=0无实数解,即有a=,设g(x)=,求得导数和单调区间,求得极小值,结合图象即可得到a的范围.【解答】解:f(x)=x2﹣e x的导数为f′(x)=ax﹣e x,由f(x)不存在垂直于y轴的切线,可得ax﹣e x=0无实数解,由a=,设g(x)=,可得g′(x)=,当x>1时,g′(x)>0,g(x)在(1,+∞)递增;当x<0或0<x<1时,g′(x)<0,g(x)在(﹣∞,0),(0,1)递减.即有g(x)在x=1处取得极小值,且为e,由于直线y=a与y=g(x)图象无交点,可得0≤a<e,故答案为:[0,e).16.下列4个命题:①∃x∈(0,1),()x>log x.②∀k∈[0,8),y=log2(kx2+kx+2)的值域为R.③“存在x∈R,()x+2x≤5”的否定是”不存在x∈R,()x+2x≤5”④“若x∈(1,5),则f(x)=x+≥2”的否命题是“若x∈(﹣∞,1]∪[5,+∞),则f(x)=x+<2”其中真命题的序号是①④.(请将所有真命题的序号都填上)【考点】命题的真假判断与应用.【分析】①根据指数函数和对数函数的性质进行判断.②根据对数函数的性质进行判断.③根据特称命题的否定是全称命题进行判断.④根据否命题的定义进行判断.【解答】解:①当x∈(0,1),()x>0,log x<0.∴∃x∈(0,1),()x>log x.故①正确,②当k=0时,满足k∈[0,8),但此时y=log2(kx2+kx+2)=log22=1,此时函数的值域为{1},不是R.故②错误③“存在x∈R,()x+2x≤5”的否定是”任意x∈R,()x+2x>5”,故③错误,④“若x∈(1,5),则f(x)=x+≥2”的否命题是“若x∈(﹣∞,1]∪[5,+∞),则f(x)=x+<2”,正确,故④正确,故答案为:①④.三.解答题:(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.请将答题的过程写在答题卷中指定的位置)17.在△ABC中,已知AC=3,sinA+cosA=,(Ⅰ)求sinA的值;(Ⅱ)若△ABC的面积S=3,求BC的值.【考点】两角和与差的正弦函数;正弦定理;余弦定理.【分析】(Ⅰ)由得,由此能求出sinA的值.(Ⅱ)由得,由此及余弦定理能求出BC的值.【解答】解:(Ⅰ)由,得,由此及0<A<π,即得,故,∴sinA=sin=;(Ⅱ)由,得,由此及余弦定理得,故,即BC=.18.某企业有两个分厂生产某种零件,现从两个分厂生产的零件中随机各抽出10件,量其内径尺寸(单位:mm),获得内径尺寸数据的茎叶图如图.(Ⅰ)计算甲厂零件内径的样本方差;(Ⅱ)现从乙厂这10零件中随机抽取两件内径不低于173cm的零件,求内径176cm的零件被抽中的概率.【考点】列举法计算基本事件数及事件发生的概率;茎叶图.【分析】(Ⅰ)由茎叶图,先求出甲厂零件内径的平均数,由此能求出甲厂零件内径的样本方差.(Ⅱ)设内径为176cm的零件被抽中的事件为A,利用列举法能求出内径176cm的零件被抽中的概率.【解答】解:(Ⅰ)由茎叶图,得甲厂零件内径的平均数为:==170,甲厂零件内径的样本方差:S2= [2+2+2+2+2+2+2+2+2+2=57.(Ⅱ)设内径为176cm的零件被抽中的事件为A,从乙厂抽中两件内径不低于173cm的零件有:共10个基本事件,而事件A含有4个基本事件;∴内径176cm的零件被抽中的概率P(A)=.19.在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,AC⊥BC,BC=C1C=AC=2,D是A1C1上的一点,E是A1B1的中点,C1D=kA1C1.(Ⅰ)当k为何值时,B,C,D,E四点共面;(Ⅱ)在(Ⅰ)的条件下,求四棱锥A﹣BCDE的体积.【考点】棱柱、棱锥、棱台的体积;棱柱的结构特征.【分析】(Ⅰ)由题意可知,k=时,B,C,D,E四点共面.然后利用三角形中位线定理可知DE∥B1C1,再由B1C1∥BC,得DE∥BC,由此说明B,C,D,E四点共面;(Ⅱ)在三棱锥A﹣BCD中,利用等积法求出点A到平面BCDE的距离h,然后代入四棱锥的体积公式求得答案.【解答】解:(Ⅰ)当k=时,B,C,D,E四点共面.事实上,若k=,则D是A1C1的中点,又E是A1B1的中点,∴DE∥B1C1,又B1C1∥BC,∴DE∥BC,则B,C,D,E四点共面;(Ⅱ)在(Ⅰ)的条件下,即D为A1C1的中点,又A1A⊥平面ABC,A1ACC1是矩形,此时,,又A1A⊥平面ABC,∴BC⊥A1A,又BC⊥AC,∴BC⊥平面ACD,由V A﹣BCD=V B﹣ACD,设点A到平面BCDE的距离h,则,∴,则=.20.在直角坐标平面内,已知两点A(1,0),B(4,0),设M是平面内的动点,并且||=2||.(Ⅰ)求动点M的轨迹E的方程;(Ⅱ)自点B引直线l交曲线E于Q,N两点,求证:射线AQ与射线AN关于直线x=1对称.【考点】轨迹方程;直线与圆的位置关系.【分析】(Ⅰ)由已知条件,设点M坐标,代入||=2||,化简即可得动点M的轨迹E的方程;(Ⅱ)射线AQ与射线AN关于直线x=1对称,证明k QA+k NA=0即可.【解答】(Ⅰ)解:设M(x,y),,,由于,则=,化简得,x2+y2=4,动点M的轨迹E的方程x2+y2=4.﹣﹣﹣﹣﹣﹣﹣(Ⅱ)证明:设Q(x1,y1),N(x2,y2),直线l:y=k(x﹣4),联立,得(1+k2)x2﹣8k2x+16k2﹣4=0,判别式△=16(1﹣3k2)>0,解之:,,,又因为y1=k(x1﹣4),y2=k(x2﹣4),k QA+k NA===,由于2x1x2﹣5(x1+x2)+8=+=0,所以,k QA+k NA=0,即,k QA=﹣k NA,因此,射线AQ与射线AN关于直线x=1对称.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.已知函数f(x)=x++b(x≠0),其中a,b∈R.(Ⅰ)若f′(1)=9,f(x)的图象过点(2,7),求f(x)的解析式;(Ⅱ)讨论f(x)的单调性;(Ⅲ)当a>2时,求f(x)在区间[1,2]上的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(1),求出a的值,将点(2,7)代入函数表达式,求出b的值,从而求出函数的解析式即可;(Ⅱ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅲ)根据a的范围,求出函数的单调区间,从而求出函数的最大值即可.【解答】解:(Ⅰ),f'(1)=1﹣a=9,∴a=﹣8,∵f(x)图象过点(2,7),∴,∴b=9,f(x)解析式为.﹣﹣﹣﹣﹣﹣﹣(Ⅱ)当a≤0时,显然f′(x)>0(x≠0),这时f(x)在(﹣∞,0),(0,+∞)内是增函数;当a>0时,令f′(x)=0,解得:x=±,当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,﹣)﹣(﹣,0)(0,)(,+∞)f′(x)+0 ﹣﹣0+f(x)↗极大值↘↘极小值↗所以f(x)在区间(﹣∞,﹣],[,+∞)上是增函数,在区间(﹣,0),上是减函数.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由(Ⅱ)知当a>0时,f(x)在(0,)内是减函数,在[,+∞)内是增函数,若即2<a<4时,f(x)在内是减函数,在内是增函数,f(x)最大值为f(1),f(2)的中较大者,>0,∴当2<a<4时,f(x)max=f(1)=1+a+b,若即a≥4时,f(x)在[1,2]上递减,f(x)max=f(1)=1+a+b,综上,a>2时,f(x)在区间[1,2]上的最大值f(x)max=f(1)=1+a+b.﹣﹣﹣﹣﹣﹣[选修4-1:几何证明选讲]22.如图,PA是⊙O的切线,切点为A,PB,PC是⊙O的割线,它们与⊙O分别交于B,D和C,E,延长CD交PA于M,∠MPC=∠MDP.(Ⅰ)求证:AP∥BE;(Ⅱ)求证:M是AP的中点.【考点】与圆有关的比例线段;相似三角形的性质.【分析】(Ⅰ)由已知题意可得△PMD∽△CMP,∠MPD=∠C,结合∠EBD=∠C得∠EBD=∠MPD,即可证得结论;(Ⅱ)由△PMD∽△CMP得MP2=MD•MC,即可证明M是AP的中点.【解答】证明:(Ⅰ)∵∠MPC=∠MDP且∠PMD=∠PMC,∴△PMD∽△CMP,∴∠MPD=∠C,又∠EBD=∠C,∴∠EBD=∠MPD,∴AP∥BE﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由(Ⅰ)△PMD∽△CMP,∴即MP2=MD•MC,又MA是圆的切线,∴MA2=MD•MC,即MA2=MP2,∴MA=MP,即M是AP的中点﹣﹣﹣﹣﹣﹣[选修4-4:坐标系与参数方程]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.曲线C的极坐标方程为7ρ2﹣ρ2cos2θ﹣24=0.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)点(x,y)在曲线C上,试求x﹣2y的取值范围.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)曲线C的极坐标方程为7ρ2﹣ρ2cos2θ﹣24=0.由倍角公式cos2θ=1﹣2sin2θ,方程变形为3ρ2+ρ2sin2θ﹣12=0,利用极坐标与直角坐标互化公式即可得出.(Ⅱ)由曲线C的直角坐标方程,可设x=2cosθ,y=sinθ.利用和差公式即可得出.【解答】解:(Ⅰ)曲线C的极坐标方程为7ρ2﹣ρ2cos2θ﹣24=0.由倍角公式cos2θ=1﹣2sin2θ,方程变形为3ρ2+ρ2sin2θ﹣12=0,再由ρ2=x2+y2,ρsinθ=y得曲线C的直角坐标方程是.(Ⅱ)由曲线C的直角坐标方程,可设x=2cosθ,y=sinθ.则z=x﹣2y==,则﹣4≤z≤4,故x﹣2y的取值范围是[﹣4,4].[选修4-5:不等式选讲]24.设A={(x,y)||x|+|y|=2}(x,y∈R).(Ⅰ)若(x,y)∈A,试求u=x2+y2的取值范围;(Ⅱ)设集合B={(w,v)|w2+v2=x2+y2,(x,y)∈A},试求集合B表示的区域面积.【考点】集合的表示法.【分析】(Ⅰ)若(x,y)∈A,表示的区域如图所示的正方形,即可求u=x2+y2的取值范围;(Ⅱ)设集合B={(w,v)|w2+v2=x2+y2,(x,y)∈A},表示的区域是以原点为圆心,,2为半径的圆环,即可求集合B表示的区域面积.【解答】解:(Ⅰ)A={(x,y)||x|+|y|=2}(x,y∈R),表示的区域如图所示的正方形,原点到区域的距离的范围是[,2],∴u=x2+y2的取值范围是[2,4];(Ⅱ)设集合B={(w,v)|w2+v2=x2+y2,(x,y)∈A},表示的区域是以原点为圆心,,2为半径的圆环,∴集合B表示的区域面积是π•22﹣π•2=2π.第31页(共31页)。

2019-2020学年海南省海口市路中学高三数学文模拟试题含解析

2019-2020学年海南省海口市路中学高三数学文模拟试题含解析

2019-2020学年海南省海口市路中学高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数在区间上是减函数,那么的最大值为________________;参考答案:略2. 已知双曲线=1(a>0,b>0)的一条渐近线与直线x+3y+1=0垂直,则双曲线的离心率等于()A.B.C.D.参考答案:C考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:渐近线与直线x+3y+1=0垂直,得a、b关系,再由双曲线基本量的平方关系,得出a、c的关系式,结合离心率的定义,可得该双曲线的离心率.解答:解:∵双曲线﹣=1(a>0,b>0)的一条渐近线与直线x+3y+1=0垂直.∴双曲线的渐近线方程为y=±3x∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.点评:本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.3. 函数的图象大致是参考答案:C4. 在△ABC中,H为BC上异于B、C的任一点,M为AH的中点,若,则等于()A. B. C. D.参考答案:A【分析】根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,,,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.5. 某程序框图如图所示,则该程序运行后输出的值等于()A.B.C.D.参考答案:C【考点】EF:程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,当k=0时,不满足退出循环的条件,S=,k=1;当k=1时,不满足退出循环的条件,S=,k=2;当k=2时,不满足退出循环的条件,S=,k=3;当k=3时,不满足退出循环的条件,S=,k=4;当k=4时,满足退出循环的条件,故输出的S值为,故选:C6. 将函数的图象向左平移个单位后得到函数g(x)的图象,且函数f(x)满足,则下列命题中正确的是()A. 函数g(x)图象的两条相邻对称轴之间距离为B. 函数g(x)图象关于点对称C. 函数g(x)图象关于直线对称D. 函数g(x)在区间内为单调递减函数参考答案:D【分析】由已知可得和是函数的两条对称轴,可确定出和值,得到f(x)解析式,由平移可得函数g(x)解析式,根据正弦函数的性质对选项逐个检验判断即可得到答案.【详解】因为函数最大值是,所以,周期是,则又故n=1时,又因为所以,,故于是函数的图象向左平移个单位后得到.函数g(x)周期为,则两条相邻对称轴之间的距离为,故选项A错误;将代入函数g(x)解析式,函数值不为0,故选项B错误;将代入函数g(x)解析式,函数取不到最值,故选项C错误;当时,,由正弦函数图像可知函数单调递减,故选:D.7. 定义在[1,+)上的函数满足:①(为正常数);②当时,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省高中毕业班阶段性测试数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|320}A x x x =+-≤,2{|log (21)0}B x x =-≤,则A B =I ( ) A .2|13xx ⎧⎫-≤≤⎨⎬⎩⎭ B .2|13x x ⎧⎫≤≤⎨⎬⎩⎭C .{|11}x x -≤≤D .12|23x x ⎧⎫<≤⎨⎬⎩⎭2. 已知复数z 满足(34)34z i i +=-,z r为z 的共轭复数,则z =( )A .1B .2C .3D .43. 如图,当输出4y =时,输入的x 可以是( )A .2018B .2017C .2016D .20144.已知双曲线C :22221(0,0)x y a b a b-=>>过点2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是( )A .22112x y -= B .22193x y -= C.2213y x -= D .2212332x y -= 5.要得到函数2sin 22y x π⎛⎫=-⎪⎝⎭的图象,只需把函数2cos 24y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移4π个单位 B .向右平移4π个单位C. 向左平移8π个单位 D .向右平移8π个单位 6. 已知实数x ,y满足12103x x y x y ≥⎧⎪-+≤⎨⎪+≤⎩,则3z x y =+的最大值是( )A .4B .7 C.8 D .1737. 把一枚质地均匀、半径为1的圆形硬币抛掷在一个边长为8的正方形托盘上,已知硬币平放在托盘上且没有掉下去,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为( ) A .18B .916C .4πD .1516 8.函数3cos sin y x x x =+的图象大致为( )A .B . C. D .9. 如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为( )A .2.3.8 D .910.已知函数2017()2017log xf x =+2(1)20173x x x -+-+,则关于x 的不等式(12)()6f x f x -+>的解集为( )A .(,1)-∞B .(1,)+∞ C.(1,2) D .(1,4)11.在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,已知3a =22(3)tan 3b c A bc +-=,22cos 2A B+(21)cosC =-,则ABC ∆的面积为( ) A .33+B .326+ C.326- D .33- 12.已知点(4,0)M -,椭圆2221(02)4x y b b +=<<的左焦点为F ,过F 作直线l (l 的斜率存在)交椭圆于A ,B 两点,若直线MF 恰好平分AMB ∠,则椭圆的离心率为( )A .14 B .2 C.12D .3二、填空题:本题共4小题,每小题5分,共20分. 13.已知0,2πα⎛⎫∈ ⎪⎝⎭,tan 3α=,则2sin 2sin cos ααα+=. 14.已知(3,4)a =,2b =,且221a b +=,则a 与b 的夹角为.15.已知函数()f x 的导函数为'()f x ,且满足关系式()3'(2)ln f x xf x =+,则'(1)f 的值等于. 16. 如图,在三棱锥P ABC -中,PC ⊥平面ABC ,AC CB ⊥,已知2AC =,26PB =,则当PA AB +最大时,三棱锥P ABC -的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 是公差为1的等差数列,且4a ,6a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设(2)(1)n ann n b a =-+-,求数列{}n b 的前2n 项和.18.如图,在直三棱柱111ABC A B C -中,90BAC ∠=o,2AB AC ==,点M 为11A C 的中点,点N 为1AB 上一动点.(1)是否存在一点N ,使得线段//MN 平面11BB C C ?若存在,指出点N 的位置,若不存在,请说明理由.(2)若点N 为1AB 的中点且CM MN ⊥,求三棱锥M NAC -的体积.19.某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过9站的地铁票价如下表:车的可能性是相同的.(1)若甲、乙两人共付费2元,则甲、乙下车方案共有多少种? (2)若甲、乙两人共付费4元,求甲比乙先到达目的地的概率.20.已知抛物线C :24x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B (B 位于第一象限)两点. (1)若直线AB 的斜率为34,过点A ,B 分别作直线6y =的垂线,垂足分别为P ,Q ,求四边形ABQP 的面积;(2)若4BF AF =,求直线l 的方程. 21.已知函数()x x f x e=. (1)求函数()f x 的单调区间; (2)证明:12ln x x e ex>-. (二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l :1232x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 3πρθ⎛⎫=+ ⎪⎝⎭. (1)求曲线C 的直角坐标方程; (2)设点M 的极坐标为3,2π⎛⎫⎪⎝⎭,直线l 与曲线C 的交点为A ,B ,求MA MB +的值. 23.[选修4-5:不等式选讲] 已知函数()1f x x x m =-+-.(1)当3m =时,求不等式()5f x ≥的解集;(2)若不等式()21f x m ≥-对x R ∈恒成立,求实数m 的取值范围.海南省高中毕业班阶段性测试数学(文科)·答案一、选择题1-5: DABCC 6-10: BBDDA 11、12:AC 二、填空题 13.32 14. 23π 15. 1416.4 三、解答题17.(1)因为4a ,6a ,9a 成等比数列,所以2649a a a =⋅,又因为数列{}n a 是公差为1的等差数列,615a a =+,413a a =+,918a a =+,所以2111(5)(3)(8)a a a +=++,解得11a =,所以1(1)n a a n d n =+-=.(2)由(1)可知n a n =,因为(2)(1)n an n n b a =-+-,所以(2)(1)n nn b n =-+-.所以2222(2)(2)nn S =-+-+⋅⋅⋅+-(123452)n +-+-+-+⋅⋅⋅+222212n n -+⋅=++21223n n +-=+. 18.(1)存在点N ,且N 为1AB 的中点. 证明如下:如图,连接1A B ,1BC ,点M ,N 分别为11A C ,1A B 的中点, 所以MN 为11A BC ∆的一条中位线,//MN BC ,MN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(2)如图,设点D ,E 分别为AB ,1AA 的中点,连接CD ,DN ,NE ,并设1AA a =,则221CM a =+,22414a MN +=+284a +=,2254a CN =+2204a +=,由CM N ⊥M ,得222CM MN CN +=,解得2a =又易得NE ⊥平面11AAC C ,1NE =,M NAC N AMC V V --=111332AMC S NE ∆=⋅=⨯22213⨯⨯⨯=.所以三棱锥M NAC -的体积为23.19.(1)由题意知甲、乙乘坐地铁均不超过3站,前3站设为1A ,1B ,1C ,甲、乙两人共有11(,)A A ,11(,)A B ,11(,)A C ,11(,)B A ,11(,)B B ,11(,)B C ,11(,)C A ,11(,)C B ,11(,)C C 9种下车方案.(2)设9站分别为1A ,1B ,1C ,2A ,2B ,2C ,3A ,3B ,3C ,因为甲、乙两人共付费4元,共有甲付1元,乙付3元;甲付3元,乙付1元;甲付2元,乙付2元三类情况.由(1)可知每类情况中有9种方案,所以甲、乙两人共付费4元共有27种方案.而甲比乙先到达目的地的方案有13(,)A A ,13(,)A B ,13(,)A C ,13(,)B A ,13(,)B B ,13(,)B C ,13(,)C A ,13(,)C B ,13(,)C C ,22(,)A B ,22(,)A C ,22(,)B C ,共12种,故所求概率为124279=. 所以甲比乙先到达目的地的概率为49. 20.(1)由题意可得(0,1)F ,又直线AB 的斜率为34,所以直线AB 的方程为314y x =+. 与抛物线方程联立得2340x x --=,解之得11x =-,24x =. 所以点A ,B 的坐标分别为11,4⎛⎫- ⎪⎝⎭,(4,4). 所以4(1)5PQ =--=,123644AP =-=,642BQ =-=, 所以四边形ABQP 的面积为12315525248S ⎛⎫=+⨯=⎪⎝⎭. (2)由题意可知直线l 的斜率存在,设直线l 的斜率为k ,则直线l :1y kx =+.设11(,)A x y ,22(,)B x y ,由21,4,y kx x y =+⎧⎨=⎩化简可得2440x kx --=, 所以124x x k +=,124x x =-. 因为4BF AF =,所以214x x -=, 所以21212()x x x x +12212x x x x =++22(4)9444k k ==-=--, 所以2944k =,即2916k =,解得34k =±. 因为点B 位于第一象限,所以0k >,则34k =. 所以l 的方程为314y x =+. 21.(1)由题意可得1'()xxf x e -=,令'()0f x =,得1x =. 当(,1)x ∈-∞时,'()0f x >,函数()f x 单调递增;当(1,)x ∈+∞时,'()0f x <,函数()f x 单调递减. 所以()f x 的单调递增区间为(,1)-∞,()f x 的单调递减区间为(1,)+∞. (2)要证12ln x x e ex >-成立,只需证2ln x x x x e e>-成立.令()ln g x x x =,则'()1ln g x x =+,令'()1ln 0g x x =+=,则1x e =,当10,x e ⎛⎫∈ ⎪⎝⎭时,'()0g x <,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,'()0g x >,所以()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以11()g x g e e ⎛⎫≥=- ⎪⎝⎭,又由(1)可得在(0,)+∞上max 1()(1)f x f e ==,所以max21x x e e e ⎛⎫-=- ⎪⎝⎭,所以命题得证. 22.(1)把4sin 3πρθ⎛⎫=+⎪⎝⎭展开得2sin ρθθ=+, 两边同乘ρ得22sin cos ρρθθ=+①.将222x y ρ=+,cos x ρθ=,sin y ρθ=代入①即得曲线C的直角坐标方程为2220x y y +--=②.(2)将1,23x t y ⎧=-⎪⎪⎨⎪=+⎪⎩代入②式,得230t ++=,易知点M 的直角坐标为(0,3).设这个方程的两个实数根分别为1t ,2t ,则由参数t 的几何意义即得12MA MB t t +=+=23.(1)当3m =时,原不等式可化为135x x -+-≥. 若1x ≤,则135x x -+-≥,即425x -≥,解得12x ≤-; 若13x <<,则原不等式等价于25≥,不成立; 若3x ≥,则135x x -+-≥,解得92x ≥. 综上所述,原不等式的解集为:19|22x x x ⎧⎫≤-≥⎨⎬⎩⎭或. (2)由不等式的性质可知()1f x x x m =-+-1m ≥-, 所以要使不等式()21f x m ≥-恒成立,则121m m -≥-, 所以112m m -≤-或121m m -≥-,解得23m ≤, 所以实数m 的取值范围是2|3m m ⎧⎫≤⎨⎬⎩⎭.。

相关文档
最新文档