1放大电路的频响分析

合集下载

放大电路的频率响应和噪声

放大电路的频率响应和噪声

为新电路设计提供指导。
03
技术发展
随着电子技术的不断发展,对放大电路的性能要求也越来越高。理解频
率响应和噪声有助于推动相关技术的进步,促进电子工程领域的发展。
对未来研究的展望
新材料与新工艺
随着新材料和纳米技术的发展,未来研究可以探索如何将这些新技术 应用于放大电路中,以提高其频率响应和降低噪声。
系统集成
噪声的来源
01
02
03
04
热噪声
由于电子的热运动产生的随机 波动。
散粒噪声
由于电子的随机发射和吸收产 生的噪声。
闪烁噪声
由于半导体表面不平整或缺陷 引起的噪声。
爆米花噪声
由于材料的不完美性或晶体缺 陷引起的噪声。
噪声的分类
宽带噪声
在整个频率范围内具有均匀的 功率谱密度。
窄带噪声
在特定频率范围内具有较高的 功率谱密度。
抗干扰能力
放大电路的噪声也会影响通信系统的抗干扰能力。低噪声放 大电路有助于提高通信系统的抗干扰性能,确保信号传输的 稳定性。
在音频处理系统中的应用
音质
音频处理系统中,放大电路的频率响应和噪声对音质有重要影响。好的频率响 应能够保证音频信号的真实还原,而低噪声放大电路则有助于减少背景噪声, 提高音频清晰度。
宽频带型
在较宽的频率范围内具有较为平坦的放大倍 数。
频率响应的分析方法
解析法
通过电路理论中的传递函数和频率函数等概念, 推导放大电路的频率响应。
实验法
通过实际测量不同频率下的电压放大倍数,绘制 频率响应曲线。
计算机仿真法
利用电路仿真软件,模拟和分析放大电路在不同 频率下的性能表现。
03 放大电路的噪声

《模拟电子技术》课件第5章放大电路的频率响应

《模拟电子技术》课件第5章放大电路的频率响应

中频增益或通 带源电压增益
f
H
1 2πRC
上限频率
②高频响应和上限频率
共射放大电路
A VSH A VSM 1
1 j( f
/
fH )
RC低通电路
A VH
1
1 j( f
/
fH )
频率响应曲线变化趋势相同
幅频响应
20l g|A VSH | 20l g|A VSM |
20lg
1
1 ( f / fH )2
最大误差 -3dB
1 fH 2 πRC
fH称转折频率,上限截止 频率(上限频率),AVH(s) 的极点频率。
10
2. 低频特性
---- RC高通电路
RC高通电路
RC电路的电压增益:
AVH
Vo Vi
R
R
1
j ωC
1
1 1
j 2 πfR C

fL
1 2 πR
C
AVH
Vo Vi
1
1 j(fL /
f)
gmV b'e rce—c-e间的动态电阻(约100kΩ)
Cbe --发射结电容
互导
gm
iC vBE
VCE
iC vBE
VCE
2.混合等效电路中各元件的讨论: 简化模型 rce RL 略去rce
rbc
1 jω Cbc
略 去rbc
混合型高频小信号模型
晶体管的混合Π型等效电路
3.混合型等效电路的获得 低频时,混合模型与H参数模型等价
β0
1 ( f / fβ )2
的相频响应 arctg f
fβ fβ ——共发射极截止频率

频率响应的波特图分析

频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析目录一.频率响应的基本概念 (2)1. 概念 (2)2. 研究频率响应的意义 (2)3. 幅频特性和相频特性 (2)4. 放大器产生截频的主要原因 (3)二.频率响应的分析方法 (3)1. 电路的传输函数 (3)2. 频率响应的波特图绘制 (4)(1)概念 (4)(2)图形特点 (4)(3)四种零、极点情况 (4)(4)具体步骤 (6)(5)举例 (7)三.单级放大电路频率响应 (7)1.共射放大电路的频率响应 (7)2.共基放大电路的频率响应 (9)四.多级放大电路频响 (10)1.共射一共基电路的频率响应 (10)(1)低频响应 (11)(2)高频响应 (12)2.共集一共基电路的频率响应 (13)3.共射—共集电路级联 (15)五.结束语 (15)一.频率响应的基本概念1.概念我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。

但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。

即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。

我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。

2.研究频率响应的意义通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。

例如输入信号i u 为方波,s U 为方波的幅度,T 是周期,0/2ωπ=T ,用傅里叶级数展开,得...)5sin 513sin 31(sin 22000++++=t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。

但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。

模拟电路典型例题讲解

模拟电路典型例题讲解

频率响应典型习题详解【3-1】已知某放大器的传递函数为试画出相应的幅频特性与相频特性渐近波特图,并指出放大器的上限频率f H ,下限频率f L 及中频增益A I 各为多少【解】本题用来熟悉:(1)由传递函数画波特图的方法;(2)由波特图确定放大器频响参数的方法。

由传递函数可知,该放大器有两个极点:p 1=-102rad/s ,p 2=-105rad/s 和一个零点z =0。

(1)将A (s )变换成以下标准形式:(2)将s =j ω代入上式得放大器的频率特性: 写出其幅频特性及相频特性表达式如下: 对A (ω)取对数得对数幅频特性: (3)在半对数坐标系中按20lg A (ω)及φ(ω)的关系作波特图,如题图所示。

由题图(a )可得,放大器的中频增益A I =60dB ,上限频率f H =105/2π≈,下限频率f L =102/2π≈。

【3-2】已知某放大器的频率特性表达式为试问该放大器的中频增益、上限频率及增益带宽积各为多少【解】本题用来熟悉:由放大器的频率特性表达式确定其频率参数的方法。

将给出的频率特性表达试变换成标准形式: 则当ω = 0时,A (0) =200,即为放大器的直流增益(或低频增益)。

当ω =ωH 时,ωH =106rad/s相应的上限频率为 由增益带宽积的定义可求得:GBW=│A (0)·f H │≈ 思考:此题是否可用波特图求解【3-3】已知某晶体管电流放大倍数β的频率特性波特图如题图(a )所示,试写出β的频率特性表达式,分别指出该管的ωβ、ωT 各为多少并画出其相频特性的渐近波特图。

【解】本题用来熟悉:晶体三极管的频率特性及其频率参数的确定方法。

由β(ω)的渐近波特图可知:β0=100,ωβ=4Mrad/s ,ωT =400Mrad/s 。

它是一个单极点系统,故相应的频率特性表达式为:ωT 也可按ωT ≈β0ωβ=100×4=400 Mrad/s 求得。

第五章 放大电路的频率响应

第五章 放大电路的频率响应

1 fH 2 RC
1 fL 2 RC
当信号频率等于上(下)限频率时,放大电路的 增益下降3dB,且产生±45°相移
近似分析时,可用折线化的波特图表示电路的频 率特性
一个电容对应的渐进线斜率为20dB/十倍频
简单 RC 电路的频率特性
Ui

R C
Uo

Ui

C R
Uo

RC 低通电路
RC 高通电路
Au
• |Au |
1 0.707
1 f 1 j fH
1 0.707
Au
1 fL 1 j f
|Au |
fL
f

O

fH f
f
O
O –45° –90°
90° 45° O
f
研究频率响应的方法 (1) 三个频段的划分 1) 中频区(段) 特点:Aus与f无关
与f无关
5.4 单管放大电路的频率响应
本节以单管共射电路为例,介绍频率响应的一般 分析方法。
5.4.1 单管共射放大电路的频率响应
1、画出全频段的微变等效电路
+VCC RB C1 + . Ui VT RL . Uo RC C2 + + . Ui _ RB rb′e
C1
rbb′ . gmUb'e Cπ′
C2 + RC . RL U o _
R
fL
L 1 1 下限截止频率 2 2 2 RC
Au பைடு நூலகம்
1
L 1 j

1 fL 1 jf

f j fL f 1 j fL
1、RC高通电路的频率响应

放大器的频率响应

放大器的频率响应

5
1 1.6Ω 当 f =10khz 时:X C 2πfC
RC C1 RB + 10F + v'i vi

如果 f = 100 Hz
+VCC 10F + C2
1 XC 158Ω 2πfC
电路工作频率较低时,交流 通路中的耦合电容及旁路电容 不能视为短路。
vi 的幅度不变时,随着工作频
1014 s 2 A( s ) ( s 10)( s 102 )( s 105 )( s 106 )
解: A( s )
10 3 10 10 2 s s (1 )(1 )( 5 1)( 6 1) s s 10 10
14

1 3 AM 10 1 5 10 10 106
( s) A (1
L
s
AM )(1 s
AM )
1 (1
H
L
s
) (1
1 s
H
)
( s) F ( s) AM F L H
( s ) 0 、lim A ( s) 0 A 表征的响应为带通特性。 lim s 0 s
低通特性:
j 1 i 1 n
m
( s) K A
(s Z ) (s P )
j 1 j i 1 n i
m
式中: Zi ——零点频率、 pj —— 极点频率。
14
例1.求图所示RC高通滤波电路的电压转移函数,并画出幅 频特性曲线。 解:
( j ) V A( j ) o Vi ( j ) R 1 R j C jRC 1 jRC
2.电路中只含两个极间电容

模拟电子技术基础知识点总结

模拟电子技术基础知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯洁的具有单晶体构造的半导体。

4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

表达的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。

*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。

6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。

1〕图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。

*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

如何看懂频响曲线

如何看懂频响曲线

首先,频响是什么?频率响应,简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。

同失真一样,这也是一个非常重要的参数指标。

一个“完美”的交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大率,并且对于相应的负载具有同等的驱动能力。

显然这在目前技术水平下是完全不可能的,那么针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围内的频率的信号。

这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz,也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。

实际上,根据研究表明,高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放大器甚至会达到0.1~数百KHz。

但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们连这样的要求也不可能达到。

于是,就有了“频响”这个指标。

(附言:指标本身就代表着“不完美”,如果一切都“完美”了,指标也就没有存在的理由了。

)频响的测试方法与标注任何可以被写上说明书的“指标”都是必须借助仪器来测量的,这些指标必须有一个共同的特点,就是“可重复性”,也就是说,只要你用同样的设备,就可以重复得到相同货相近的测量结果。

我们把这一类指标称为“客观指标”,频响当然是属于此类。

频响的测量方法很简单,在放大器的输入端接入一个标准信号发生器,这个信号发生器可以产生标准的正弦波信号,并且可以通过调节使得这个发生器的输出信号的频率发生变化,而幅度不变。

在放大器的输出端接一个标准的纯阻性负载,并且接一个交流电平表,通过读取电平表的数据,就可以测量该放大器的频响特性了。

电路基础原理解读运算放大器的频率响应和增益带宽积

电路基础原理解读运算放大器的频率响应和增益带宽积

电路基础原理解读运算放大器的频率响应和增益带宽积在电子工程领域中,运算放大器是一种常用的电路元件,它具有放大输入信号的功能。

然而,运算放大器的频率响应和增益带宽积是其性能的重要参数之一。

接下来,我们将解读运算放大器的频率响应和增益带宽积,并探讨其应用。

首先,我们来了解一下运算放大器的频率响应。

频率响应可以理解为运放对不同频率输入信号的响应程度。

在理想情况下,运放应该对所有频率的信号都有相同的放大倍数,即在整个频率范围内保持恒定的增益。

然而,实际情况下,由于运放内部有限的带宽限制以及外部环境的干扰等因素,运放的增益在不同频率下可能有所变化。

运放的频率响应通常可以用一个曲线来表示,这个曲线被称为频率响应曲线。

频率响应曲线通常是由频率作为横坐标,增益作为纵坐标来绘制的。

根据曲线的形状,我们可以了解运放在不同频率下的放大性能。

一般来说,在低频范围内,运放的增益较高,但随着频率的增加,增益会逐渐下降,直至达到一个临界频率。

临界频率之后,运放的增益会进一步下降并趋于稳定。

其次,我们来了解一下运算放大器的增益带宽积。

增益带宽积是指运放的增益乘以其带宽的乘积,用来表示运放在不同频率下的放大能力。

增益带宽积越大,运放在高频范围内的放大能力就越好。

实际上,运放的增益和带宽之间存在一种平衡关系。

由于运放的内部电容和电感等元件存在,它们在高频下会对信号产生影响,导致增益下降。

而为了增加运放的带宽,需要减小内部电容和电感的影响,这又会导致增益下降。

因此,在设计运放电路时,我们需要根据具体应用来选择合适的增益带宽积,以满足对信号放大和频响特性的需求。

运放的频率响应和增益带宽积在电子工程中有着广泛的应用。

以音频放大器为例,由于音频信号的频率范围较窄,一般在20Hz到20kHz之间,我们可以选择增益带宽积较大的运放来保证音频信号的高保真度。

而在通信系统中,由于需要传输高频信号,我们则需要选择具有较宽带宽但增益较低的运放。

总结起来,运算放大器的频率响应和增益带宽积是评估其性能的重要指标。

放大电路的工作原理和波形

放大电路的工作原理和波形

放大电路的工作原理和波形一、放大电路简介放大电路是电子电路中的一种基本电路,主要用于放大输入信号的幅度。

它将输入信号的能量转换成电流或电压,以产生一个幅度更大的输出信号。

放大电路广泛应用于各种电子设备和系统中,如音频放大器、视频处理器、通信系统等。

二、工作原理1.输入信号的处理放大电路的输入信号通常是由信号源提供的微弱信号,如声音、光、温度等。

这些信号被转换为电信号,通过放大电路的输入端进入。

2.电压放大放大电路的核心是电压放大器。

电压放大器通过利用晶体管的放大作用,将输入信号的电压幅度进行放大。

在电压放大阶段,放大器将输入信号的电压变化转换成更大的输出电压。

3.输出信号的处理经过电压放大后,输出信号的幅度会变得很大。

为了使输出信号能够满足实际应用的需要,需要进行必要的处理,如滤波、稳压等。

三、波形1.正弦波正弦波是一种常见的输入信号波形,用于模拟音频、视频等信号。

在放大电路中,正弦波经过放大后,其幅度会得到显著增大,但波形仍保持基本不变。

2.方波方波是一种常见的数字信号波形,常用于数字通信和数字电路中。

在放大电路中,方波经过放大后,其幅度和边缘锐度会得到增强。

3.三角波三角波是一种介于正弦波和方波之间的波形,常用于各种控制和调节电路中。

在放大电路中,三角波经过放大后,其幅度会得到增大,同时波形会变得更加光滑。

4.脉冲波脉冲波是一种短暂的高幅度信号,常用于控制和触发各种电子设备。

在放大电路中,脉冲波经过放大后,其幅度会得到显著增大,同时保持清晰的脉冲形状。

四、放大电路的应用放大电路的应用非常广泛,主要包括音频放大、视频处理、通信系统、传感器信号处理等。

在这些应用中,放大电路起到至关重要的作用,能够将微弱的信号转换成可用的输出信号,以满足实际需求。

五、总结放大电路是电子设备和系统中的重要组成部分,用于放大输入信号的幅度。

其工作原理包括输入信号的处理、电压放大和输出信号的处理等环节。

根据不同应用需求,放大电路可以处理各种波形,如正弦波、方波、三角波和脉冲波等。

集成电子技术基础浙大版3篇1章习题解答

集成电子技术基础浙大版3篇1章习题解答
Ri=Ri1=R1∥rbe1
题3.1. 17两级阻容耦合放大电路如图题3.1.17所示,已知T1为N沟道耗尽型绝缘栅场效应管,gm=2mS,T2为双极型晶体管,=50,rbe=1KΩ,忽略rce,试求:
(1)第二级电路的静态工作点ICQ2和VCEQ2;
(2)画出整个放大电路简化的微变等效电路;
(3)该电路在中频段的电压放大倍数 ;
题3.1.1对于放大电路的性能指标,回答下列问题:
(1)已知某放大电路第一级的电压增益为40dB,第二级的电压增益为20dB,总的电压增益为多少dB?
(2)某放大电路在负载开路时输出电压为4V,接入3kΩ的负载电阻后输出电压降为3V,则该放大电路的输出电阻为多少?
(3)为了测量某CE放大电路的输出电压,是否可以用万用表的电阻档直接去测输出端对地的电阻?
(1)当输入信号为vi=0.1sinωt(V)时,画出g、d点的电压波形vG、vD,并标出峰、谷电压的大小;
(2)当输入信号为vi=0.3sinωt(V)时,画出g、d点的电压波形vG、vD,并标出峰、谷电压的大小。
图题3.1.3
解:(1)当vi=0.1sinωt(V)时,
栅极的静态电压为:
栅极的瞬态电压为:
图(c)电路:
(1)求静态工作点
ICQ=βIBQ=2mA
VCEQ=1.5-ICQ·Re=15-2×3=9V
(2)CC组态,微变等效电路为:
(3)动态指标计算
(4)当截止失真时,Vom1=ICQ·RL′=2×1.5=3V
当饱和失真时,Vom2=VCEQ-VCES=9-0.7=8.3V
所以,首先出现截止失真,Vom=3V
(2)
Ri=∞

题3.1.11FET恒流源电路如图题3.1.11所示。若已知管子的参数gm、rds。试证明该恒流源的等效内阻

运算放大器电路的误差分析+汇总.

运算放大器电路的误差分析+汇总.

1. 共模抑制比KCMR为有限值的情况集成运放的共模抑制比为有限值时,以下图为例讨论。

VP=ViVN=Vo共模输入电压为:差摸输入电压为:运算放大器的总输出电压为:vo=A VD v ID+A VC v IC闭环电压增益为:可以看出,AVD和KCMR越大,AVF越接近理想情况下的值,误差越小。

2.输入失调电压V IO一个理想的运放,当输入电压为0时,输出电压也应为0。

但实际上它的差分输入级很难做到完全对称。

通常在输入电压为0时,存在一定的输出电压。

解释一:在室温25℃及标准电源电压下,输入电压为0时,为使输出电压为0,在输入端加的补偿电压叫做失调电压。

解释二:输入电压为0时,输出电压Vo折合到输入端的电压的负值,即V IO=- V O|VI=0/A VO输入失调电压反映了电路的对称程度,其值一般为±1~10mV3.输入偏置电流I IBBJT集成运放的两个输入端是差分对管的基极,因此两个输入端总需要一定的输入电流I BN和I BP。

输入偏置电流是指集成运放输出电压为0时,两个输入端静态电流的平均值。

输入偏置电流的大小,在电路外接电阻确定之后,主要取决于运放差分输入级BJT的性能,当它的β值太小时,将引起偏置电流增加。

偏置电流越小,由于信号源内阻变化引起的输出电压变化也越小。

其值一般为10nA~1uA。

4.输入失调电流I IO在BJT集成电路运放中,当输出电压为0时,流入放大器两输入端的静态基极电流之差,即I IO=|I BP-I BN| 由于信号源内阻的存在,I IO会引起一个输入电压,破坏放大器的平衡,使放大器输出电压不为0。

它反映了输入级差分对管的不对称度,一般约为1nA~0.1uA。

5.输入失调电压VIO、输入失调电流IIO不为0时,运算电路的输出端将产生误差电压。

设实际的等效电路如下图大三角符号,小三角符号内为理想运放,根据VIO和IIO的定义画出。

为了分析方便,假设运放的开环增益AVO和输入电阻Ri均为无限大,外电路电阻R2=R1||Rf,利用戴维南定理和诺顿定理可得两输入端的等效电压和等效电阻,如下图所示则可得同相输入端电压反向输入端电压因AVO→∞,有V P≈V N,代入得Vo=(1+Rf/R1)[VIO+IIB(R1||Rf-R2)+ IIO(R1||Rf+R2)]当取R2=R1||Rf时,由输入偏置电流IIB引起的输入误差电压可以消除,上式可简化为V o=(1+R f/R1)(V IO+I IO R2)可见,1+Rf/R1 和R2越大,V IO和I IO引起的输出误差电压越大。

电子技术基础(于宝明)第二章 习题答案

电子技术基础(于宝明)第二章  习题答案

第二章习题2.1 既然BJT具有两个PN结,可否用两个二极管取代PN结并相联以构成一只BJT?试说明其理由。

答:不可以,因为BJT的两个PN结掺杂浓度、面积等制作工艺与二极管不同2.2 要使BJT具有放大作用,发射结和集电结的偏置电压应如何联接?答:集电极结反偏,发射结正偏2.3 一只NPN型BJT,具有e、b、c三个电极,能否将e、c两电极交换使用?为什么?答:不可以,因为为了吸收更多的电子,集电极面积大,为发射更多的电子发射极掺杂浓度高。

交换后,集电极发射电子的能力很低,三极管的放大能力降低。

2.4 为什么BJT的输出特性在V CE>1V以后是平坦的?又为什么说,BJT是电流控制器件?答:BJT的输出特性在V CE>1V以后因为发射极发射出来的所有电子都被集电极吸收,此时再增加集电极与发射极之间的电压,发射极也没有更多的电子向外发射了。

所以V CE>1V 以后的输出特性是平坦的。

由于基极的空穴被发射区来的电子中和,为了维持基区空穴的浓度不变,所以要向电源索取空穴,不断的向基区补充。

2.5 BJT的电流放大系数α、β是如何定义的,能否从共射极输出特性上求得β值,并算出α值?在整个输出特性上,β或α值是否均匀一致?答:β =I C/I B,α=I C/I E,在整个输出特性上,β或α值基本是均匀一致的。

2.6 在分析电路时,为什么要规定参考电位点和正方向?答:便于计算和进行相位分析2.7放大电路为什么要设置合适的Q点?在图中,设R b=300kΩ,R c=4kΩ,V CC=12V。

如果使I B=0μA或80μA,问电路能否正常工作?答:放大电路设置合适的Q点可以放大电路工作在放大区还可以使输出电压达到最大值。

R b=300kΩ,R c=4kΩ,V CC=12V。

如果使I B=0μA放大电路工作在截止区。

如果使I B= 80μA,I CMAX=V CC/R C=12/4=3mA β =I C/I B =3/0.08=37.5如果β<37 放大器可以工作在放大区。

功率放大电路毕业设计(精华)

功率放大电路毕业设计(精华)

功率放大电路设计目录1、课程发展史第一章放大电路的性能指标1.1 放大倍数1.2 输入电阻Ri (3) 输出电阻Ro1.3 输出电阻Ro1.4 通频带1.5 失真度1.6 频率响应1.7 音调控制范围1.8 信噪比第二章功率放大电路概述2.1 功率放大电路的特点2.2 主要技术指标2.3 功率放大电路中的晶体管2.4 功率放大电路的分析方法第三章功率放大电路的组成3.1 为什么共射放大电路不宜用作功率放大电路3.2 变压器耦合功率放大电路3.3 无输出变压器的功率电路3.4 无输出电容的功率放大电路3.5 桥式推挽功率放大电路第四章互补功率放大电路4.1 OCL电路的组成及工作原理4.2 OCL电路的输出功率及效率4.3 OCL电路中晶体管的选择第五章集成功率放大电路5.1 集成功率放大电路分析5.2 集成功率放大电路的主要性能指标5.3 集成功率放大电路的应用第六章集成功率放大电路的应用6.1 放大电路的静态分析6.2 放大电路的动态图解分析6.3 三极管的低频小信号模型6.4 共射组态基本放大电路微变等效电路分析法6.5 共集组态基本放大电路6.6 共基组态基本放大电路放大电路中常见问题及答案本课题小结论心得致谢参考文献1、课程发展史模拟电子技术课程的开设近50年,每当电子科学和电子工业发展的关键时刻,教研组都在模拟电子技术课程内容体系上作重大的改革,并及时总结教学改革的经验,进行教材的更新,选用的教材均具有开创性,学科内容始终处于领先水平,在引导和推动我校电子技术教学体系和内容的改革中起着重要作用。

20世纪60年代初,童诗白主持编写了我国最早出版的电子学教材,从此结束了我国长期使用外国翻译教材的历史,将我国高等院校以大功率、整流技术为主的“工业电子学”课程内容体系,转变为以小功率、控制为主的整流-放大-振荡-脉冲的“电子技术基础”课程内容体系,完成了从工业电子学到电子技术基础的转换,课程名称也随之改变,为培养我国自动化方面的人才打下基础,20世纪70年代“文化大革命”期间,国外电子技术飞速发展,国内因政治动乱而停滞不前。

苏州大学 模拟电路授课提纲

苏州大学 模拟电路授课提纲

模拟电子线路教案周鸣籁说明:1. 教学要求按重要性分为3个层次,分别以“掌握★、熟悉◆、了解▲”表述。

学生可以根据自己的情况决定其课程内容的掌握程度和学习目标。

2. 作业习题选自教材:康华光《电子技术基础模拟部分》第五版。

3. 以图表方式突出授课思路,串接各章节知识点,便于理解和记忆。

周次:1 课时:3教学内容1. 第一章绪论第一节信号第二节信号的频谱第三节模拟信号和数字信号第四节放大电路模型第五节放大电路的主要性能指标目的要求1. 了解信号的频谱分析。

2. 熟悉信号的分类、模拟信号和数字信号的概念。

3. 熟悉放大电路的四种模型。

4. 掌握放大电路的主要性能指标。

讲授思路1. 简述信号的频谱和分类,详述放大电路模型和性能指标:信号源的等效(戴维宁/诺顿)周期/非周期信号频谱分析◆分类(4类)若干正弦信号分量叠加模拟信号数字信号(傅里叶级数/变换)放大(模拟信号基本处理功能)◆电路模型分类性能指标定义及测量电压放大、电流放大、互阻放大、互导放大★主要指标其它指标★推导模型分析计算输入电阻、输出电阻、增益、最大输出功率、效率、频率响应、带宽信噪比、抗干扰作业布置思考题:1. 某放大电路输入信号为10pA时,输出为500mV,它的增益是多少?属于哪一类放大电路?2. 某放大电路开路输出电压为Voc,短路输出电流为Ios,试求其输出电阻Ro。

3. 对于一个正弦波信号,经有限带宽的放大电路放大后,是否有可能出现频率失真?为什么?习题:第21页题1.5.3 1.5.4 1.5.6周次:2 课时:3教学内容1. 第三章二极管及其基本电路第一节半导体的基本知识第二节 PN结的形成及特性第三节二极管第四节二极管基本电路及其分析方法第五节特殊二极管目的要求1. 了解半导体的基本知识。

2. 掌握PN结的单向导电性、特性曲线和方程、反向击穿特性、结电容效应。

3. 熟悉二极管的种类和参数。

4. 掌握二极管的四种等效模型和二极管电路的分析计算。

放大电路的频率响应

放大电路的频率响应

补充:RC电路的频率响应
• RC低通电路 • RC高通电路
RC低通电路
RC低通电路如图所示。 电
+. R +. C Vo Vi -
(
)
1 1 jω C & = Au = 1 1 + j ω RC R+ jω C 1 1 & ω0 = = 。 Av
RC
RC低通电路 低通电路τ源自1 Av = 1+ ( f
结 论 : 中频电压放大倍数的表达式 , 与利用简化 h
参数等效电路的分析结果一致。 参数等效电路的分析结果一致。
2. 低频段
三极管的极间电容可视为开路,耦合电容 不能忽略 不能忽略。 三极管的极间电容可视为开路,耦合电容C不能忽略。
& & Ausl = Ausm ⋅
f j fL f 1+ j fL
RC高通电路
RC高通电路如图所示。 & 其电压放大倍数 A v为: • • Uo R 1 Au = • = = U i R + 1 / jω C 1 + 1/j ω RC 式中
1 1 ωL = = 。 RC τ
RC 高通电路
=
f j fL f 1+ j fL
下限截止频率、模和相角分别为
1 f0 = fL = 2πRC
4.5.2.晶体管的高频等效模型 . 1. 晶体三极管的混合 π 型等效电路
Ub′e
混合π模型 混合 模型
(a)晶体管的结构示意图 )
这一模型中用 g m V b'代替β I b0 ,这是因为β本身 e 就与频率有关,而gm与频率无关。
.
.
2、简化的混合 π 模型 、简化的混合 通常情况下, 远大于c--e间所接的负载 通常情况下 , rce远大于 间所接的负载 电阻, 也远大于C 的容抗, 电阻 ,而 rb/c也远大于 μ 的容抗 , 因而可 认为r 开路。 认为 ce和rb/c开路。

音频放大电路实验报告(共9篇)

音频放大电路实验报告(共9篇)

音频放大电路实验报告(共9篇)音频功率放大器实验报告一、实验目的1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能;2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法;3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。

4)培养设计开发过程中分析处理问题的能力、团队合作的能力。

二、实验要求1)设计要求设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。

要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标:(1)频带宽度50Hz~20kHz,输出波形基本不失真;(2)电路输出功率大于8W;(3)输入阻抗:≥10kΩ;(4)放大倍数:≥40dB;(5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围;(6)所设计的电路具有一定的抗干扰能力;(7)具有合适频响宽度、保真度要好、动态特性好。

发挥部分:(1)增加电路输出短路保护功能;(2)尽量提高放大器效率;(3)尽量降低放大器电源电压;(4)采用交流220V,50Hz电源供电。

2)实物要求正确理解有关要求,完成系统设计,具体要求如下:(1)画出电路原理图;(2)确定元器件及元件参数;(3)进行电路模拟仿真;(4)SCH文件生成与打印输出;(5)PCB文件生成与打印输出;(6)PCB版图制作与焊接;(7)电路调试及参数测量。

三、实验内容与原理音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。

按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。

v图1 音频功率放大器的组成框图1)前置放大级音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。

14-3三种组态放大电路频响性能对比

14-3三种组态放大电路频响性能对比

U b'e
+ b’
C b'c rb'e C b'e
-
b
路的输入电容比共射电路的小得多。 而且共基电路
的输入电阻非常小, 因此, 共基电路输入回路的 时常数很小, fH1很高。 理论分析的结果fH1≈f������。
三种组态放大电路频响特性对比分析
e
Rs + ������s
-
g mU b'e
c
+
R
' L
Rs
+
������i ������s
RB2
������i 小,有利于减小共射电路的等效输入电容
-
RB3
共射—共基级联放大器
三种组态放大电路频响特性对比分析
三种组态放大电路频响特性对比分析
单管共集放大电路频率响应分析(高频)
+UCC RB Ii C1 + + RE Rs T C Io + 2 RL + ������o ������s ������i b Ii r ' bb +
b
'
C b 'c
c
rb 'e
+
U b'e
C b 'e
g mU b'e
+ ������o -
������s -
CM Io RE C ' RL M
三种组态放大电路频响特性对比分析
共集电路高频响应特点:
1、上限频率远大于共射电路,理论分析表明, 共集电路的fH可接近于管 子的特征频率fT; 2、输入电容很小,当信号源内阻较大时,仍具有较宽的通频带,可做为 输入隔离级; 3、输出电阻很小,当负载电容较大时,仍具有较宽的通频带,带容性负 载能力强,可做为输出隔离级;

共射放大电路的工作频率

共射放大电路的工作频率

共射放大电路的工作频率共射放大电路是一种常见的电子放大电路,它通过将输入信号加载到晶体管的基极并且通过负载电阻转换成输出信号,实现信号的放大。

在共射放大电路中,晶体管的集电极作为输出端,而基极作为输入端,通过控制基极电压来实现对输出信号的放大。

在共射放大电路中,工作频率是一个重要的参数,它影响着电路的性能和应用范围。

下面我们将从机理、影响因素和应用等方面来详细讨论共射放大电路的工作频率。

我们需要了解共射放大电路的工作原理。

在共射放大电路中,当输入信号加载到晶体管的基极时,通过改变基极电压,可以控制晶体管的导通状态,从而实现对输出信号的放大。

由于晶体管的频率响应特性,共射放大电路的工作频率受到一定的限制,不同类型的晶体管的频率响应特性有所不同。

共射放大电路的工作频率受到多种因素的影响。

首先是晶体管的频率响应特性,不同类型的晶体管具有不同的频率响应范围,这决定了整个电路的工作频率范围。

其次是电容和电感元件的影响,这些元件会对电路的频率特性产生影响,需要在设计中加以考虑。

载荷的影响也非常重要,负载电阻的大小和性质会对电路的频率响应产生较大的影响。

在设计共射放大电路时,需要综合考虑以上因素,以实现所需的工作频率范围。

除了以上因素外,共射放大电路的工作频率还受到供电电压、温度等环境因素的影响。

在不同的工作条件下,电路的频率响应特性可能会有所不同,因此需要在实际应用中进行相应的参数修正和调整,以确保电路能够在不同工作条件下稳定工作。

在实际应用中,共射放大电路的工作频率决定了它的适用范围。

一般来说,共射放大电路适用于中低频信号的放大,其工作频率范围一般在几十赫兹到数兆赫兹之间。

在音频放大、信号调理等应用中,共射放大电路都有着广泛的应用。

但是对于高频信号,由于晶体管的频率响应特性限制,共射放大电路的工作频率范围受到较大的限制,因此在高频应用中需要考虑使用其他类型的放大电路。

共射放大电路的工作频率是一个重要的设计参数,它直接影响着电路的性能和适用范围。

基于Cadence的电路频响分析及仿真

基于Cadence的电路频响分析及仿真

基于Cadence的电路频响分析及仿真实验⼆基于Cadence的电路频响分析及仿真实验⽬的:进⼀步熟悉Cadence Virtuoso软件的基本操作步骤,掌握频率响应的基本计算和仿真分析⽅法,理解系统设计中零极点与频响特性关系。

实验内容:1.基本RC电路频响分析和仿真2.两级RC频响特性仿真3.单级运放频响计算和分析实验环境:PC、Vmware虚拟机7.1.1、Cadence虚拟机版免安装程序、纸和笔预备知识:1. Cadence Virtuoso基本操作步骤2. 系统传递函数、零极点概念3. 单位增益带宽、相位裕度实验步骤:1. 基本RC电路频响分析和仿真1)。

单极点传输函数——RC 低通电路如图1所⽰为单极点系统——RC 低通电路,其中阻值为1k,电容为1p,传输函数为:计算极点p0=1/(2πRC)=______Hz,通过仿真获得频响结果并记录:(1) -3db 带宽点,即截⽌频率点的相位为__-44.6605__(2) 频率趋向⽆限⼤时的相位为_____(3) 在-20db、-40db、-60db、-80db时的频率值分别为多少1.5890G 16.001G 160.686G图1 RC低通电路仿真图例2)。

单极点单零点系统——CR ⾼通电路如图2所⽰为单零点系统——CR ⾼通电路,其中阻值为1k,电容为1p,传输函数为:H(s)=RCs/(1+RCs),计算单极点p0=1/(2πRC)= ______Hz,单零点为Z0=______通过仿真获得频响结果并记录:(1) -3db 带宽点,即截⽌频率点的相位为_____(2) 频率从0趋向⽆限⼤时,相位变化为_____(3) 在-20db、-40db、-60db、-80db时的频率值分别为多少图2 CR⾼通电路仿真图例3)。

两阶RC 系统如图3所⽰为两阶RC系统,相当于⼀个两级放⼤器的电容电阻负载图,通过AC仿真获得该电路的频响曲线并记录。

图3 两阶RC系统仿真图例2.单级运放零极点分析如图4,所⽰,电路参数为VDD=5V(vdc)Vin:dc=1.5V,ac magnitude=1V(vsin)M0: w/l=20u/1u(nmos4)Rd=10K(res)Rs=100K(res)Cc=1pF(cap)CL=2pF(cap)其中,mos管选⽤CSMC05MS库的nmos4,其他器件都在analogLib中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档