五年级下奥数专题:整数的整除

合集下载

五年级数学讲义数的整除

五年级数学讲义数的整除

数的整除月日姓名【知识要点】1.整除概念:一个整数除以另一个整数,得到的商也是一个整数,叫做整除。

2.较常见数的整除特征:(一)能被2、5、4、25、8、125整除的数的特征:①末一位能被2或5整除;②末两位能被4或25整除;③末三位能被8或125整除。

(二)能被3、9整除的数的特征:各位数字之和能被3或9整除。

(三)能被6整除数的特征:既能被2整除又能被3整除。

3.能同时被2、5、3、9整除的数满足。

①末尾是0。

②各个数位上的数字之和能被9整除。

【典型例题】例1 谁能又快又好的写出下面的答案.(千万不要落下一个噢)26□4能被2整除. 259□能被5整除2□93能被3整除 6□93能被9整除51□4能被4整除 63□□能被25整除61□6能被8整除 98□□□能被125整除例2 5□4□(1)能同时被5和9整除(2)能被45整除呢?例3ab25这个四位数,能同时被2,3,5,9整除,则此四位数是_________.例 4 一位马虎的采购员买了72只桶,洗衣服时将购货票,洗坏了,只能看到:72只桶.共□67.9□元,请你帮他算一下这次采购一共用了多少钱?随堂小测月日姓名 1.下列数中12、25、100、36、18、99、111、250能被2整除的有().能被3整除的有().能被6整除的有().能被9整除的有().能被25整除的有().2.四位数BA18能同时被5、6整除,这个四位数是_________.3.7□11□能被12整除,则此5位数是__________.4 AB45这个四位数,同时能被2,3,4,5,9整除,求此四位数。

课后作业月日姓名1.填出所有的情况下的数。

762□能被2整除870□能被5整除93□76能被2整除9□391能被9整除87□4能被4整除81□5能被25整除7312□能被8整除73□25能被地125整除2.四位数392□能被6整除的所有符合条件的数。

3.五位数7□36□同时能被2.5和9整除,则此五位数是_________.。

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是__________元。

(注:微波炉单价为整数元)。

36792
例4、五位数能被12整除,这个五位数是____________。

42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。

713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。

39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。

48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。

数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。

”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。

小学奥数关于数的整除规律

小学奥数关于数的整除规律

数的整除规律1、一个数的个位上是2、4、6、8、0的数都能被2整除。

2、一个数的数字之和能被3或9整除,这个数就能被3或9整除。

3、这一个数的末两位如果能被4或者25整除,这个数就能被4或者25整除。

4、个位上是0或5的数都能被5整除。

5.这个数的末位数与末三位以前的数字所组成的数之差能被7,11或13整除,则原数能被7,11或13整除。

6.这个数的末三位如果能被8或者125整除,这个数就一定能被8或者125整除。

7.若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。

奥数知识点:数的整除

奥数知识点:数的整除

奥数知识点:数的整除奥数知识点:数的整除如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。

如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。

下面小编给大家精心搜集整理的奥数知识点:数的整除,欢迎阅读!奥数知识点:数的整除数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。

(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。

(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。

(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。

(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。

(6)能被7(或11或13)整除的.数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。

(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。

(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

一、例题与方法指导例1.一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能。

五年级奥数数的整除

五年级奥数数的整除

五年级奥数数的整除 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】数的整除(2)(4.9)姓名_______________数的整除特征:①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

因为0是任何整数的倍数,所以11|0。

因此13574是11的倍数。

例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数。

因为1059-282=777,又7|777,所以7|1059282。

因此1059282是7的倍数。

例如:判断3546725能否被13整除?解:把3546725分为3546和725两个数.因为3546-725=2821。

再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.例1、36、60、87、95、104、123、235、396、432、505、606、712、918这些数中。

能被2整除的数有________________________________________;是3的倍数的有_________________________________;5的倍数有____________________________。

小学五年级奥数-整除问题

小学五年级奥数-整除问题

五年级思维第二讲基础知识:1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷则称a 能被b 整除或者b 能整除a ,记做b a |,否则称为a 不能被b 整除或者b 不能整除a ,记做a b |. 性质1:如果a 、b 都能被c 整除,那么他们的和与差也能被c 整除.性质2:如果b 与c 的乘积能够整除a ,那么b 、c 都能整除a .性质3:如果b 、c 都能整除a ,并且b 、c 互质,那么b 、c 的乘积也能够整除a. 性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a .性质5:如果b 和c 的乘积能够被a 整除,并且a ,b 互质,那么c 能够被a 整除.2. 被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3. 被3,9整除特征:数字和被3,9整除.4. 被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.例题:例1、如果六位数2012□□能够被105整除,那么后两位数是多少?解:设六位数为,105=3,依次考虑被3,5,7整除得到3∣a+b -1,b=0或5, 7∣(10a+b-1),得到唯一解a=8,b =5.故后两位为85.例2、求所有的x ,y 满足使得72∣.解:72=8×9,根据整除9性质易得x +y =8或17,根据整除4 的性质y =2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费□67.9□元,其中□处字迹已经模糊不清,请你补上□中的数字并且算出每只羽毛球的单价.解:设两个□处的数字分别是a 、b ,则有143∣,根据11∣,有a+b =8,再根据13∣,所以13∣(100a +67-90-b ),再根据a+b =8得到13∣(10a -5)解得a =7 b =1所以方框处的数字是7和1,单价5.37元.例4、把若干个自然数1,2,3….乘到一起,如果已知这个乘积的最后14位都是0,那么最后的自然数至少是多少?解:最后14位都是0说明这个乘积整除1014,由于1×2×3×…中因数2比因数5多得多,只需考虑其整除514,5的倍数但是不是25的倍数可以提供一个因数5,25的倍数但是不是125的倍数可以提供2个因数5…可得出至少需要60个数,即这个自然数至少是60.例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.解:168=3⨯7⨯8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776.当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求. 因此唯一符合题目要求的数是768768.例6、 要使六位数能够被63整除,那么商最小是多少? 解:63=7⨯9. 考虑能被7整除,于是有7∣(100b+10c+6-100-a ),整理得 7∣(2b+3c-a +4),再考虑该数能被9整除,有a+b+c =2或11或20. 由于要求最小的商也就是最小的被除数,先希望a =0. 此时,易验证b =0, b =1无解,而在b =2时,有解c =9,所以最小的被除数是100296,最小的商是1592.例7、 所有五位数中,能够同时被7,8,9,10整除的有多少?解:7,8,9,10的最小公倍数是2520,五位数最小是10000,最大99999,共有90000个数,180035252090000 =÷,24403252010000 =÷,所以共有36个.例8、用1、2、3组成的四位数(可重复)中能够被11整除的数有多少个?解:这样的四位数被11整除,一定有奇数位数字之和等于偶数位数字之和. 在1,2,3,4中1+1=1+1,1+2=1+2,1+3=1+3, 1+3=2+2 ,2+2=2+2,2+3=2+3,3+3=3+3七种情况,其中1+1=1+1、2+2=2+2、3+3=3+3分别只能得到1个4位数,1+2=1+2,1+3=1+3,2+3=2+3情况相同可以得到4个4位数,1+3=2+2也能得到4个4位数,所以一共有19个.例9、已知(重复99次)能够被91整除,求.解:根据7和13的整除判断方法7(13)∣(重复99次)有7(13)∣(重复98次),因为(91,1000)=1,所以7(13)∣(重复98次),以此类推,就有7(13)∣,得到 =455,所以=55.例10、已知11个连续两位数的乘积的末四位都是0,而且是343的倍数,那么这11个数中最小的是多少?解:因为连续11个数是343的倍数,而33437=,但是11个数中之多有两个是7的倍数,所以这11个数中有49或者98,而11个数之多有3个是5的倍数,但却是10000的倍数,所以这11个数中又有25或者50或者75,并且以5的倍数开头和结尾,又要保证有2个7的倍数,所以只能是40到50这11个数.所以最小的数是40.数学万花筒——趣题欣赏:1. 鬼谷子问题:传说在春秋战国时期,鬼谷子随意从2-99中选取了两个数。

奥数 (五年级下)

奥数  (五年级下)

数的整除特征(一)(一)阅读思考1. 整除的意义:整数除以整数商是整数而没有余数,那么a就能被b整除。

记作b|a。

如果数a不能被数b整除,记作。

2. 数的整除特征:有时候,我们判断一个整数能不能被另一个整数整除,不需要通过除法演算来验证,而可以通过某些规律来判断,这些规律叫做“数的整除特征”。

下面就给同学们介绍一下:(1)个位是0,2,4,6,8的整数能被2整除。

例如:102,584,316976(2)个位是0或5的整数能被5整除。

例如:15,31560(3)各个数位上数字的和能被3或9整除的整数能被3或9整除。

例如:21能被3整除;36能被9整除。

能被9整除的数一定能被3整除。

(4)末尾两位数是4或25的倍数的整数,能被4或25整除。

例如:912能被4整除。

3175能被25整除;500既能被4整除又能被25整除。

(5)末尾三位数是8或125的倍数的整数,能被8或125整除。

例如:1008能被8整除。

1125能被125整除。

41000既能被8整除,又能被125整除。

(如果一个数既能被8整除,又能被125整除,这个数一定是整千数。

)(6)如果一个数奇数位上数字的和与偶数位上数字的和之差是11的倍数,那么这个数一定能被11整除。

例如:189354,奇数位上数字的和是,偶数位上数字的和是,它们的差是,因为0能被11整除,所以189354能被11整除。

(7)把一个数的末尾数字割去,从留下的数中减去所割去数字的2倍,这样继续下去,如果最后的结果是7的倍数,那么这个数就能被7整除。

例如:判断4158能不能被7整除。

4158割去末尾数字8399割去末尾数字921是7的倍数,所以4158能被7整除。

(8)把一个数的末尾数字割去,在留下的数上加上末尾数字的4倍,照这样做下去,如果最后的结果是13的倍数,这个数就能被13整除。

例如:判断10686能不能被13整除。

10686割去末尾数字61092割去末尾数字2117割去末尾数字739是13的倍数,所以10686能被13整除。

五年级奥数数的整除全国通用

五年级奥数数的整除全国通用

6和、可在能那算是式么91的a1b1倍cda或ebX2c倍3d,=ea即b=c和de是11中90或不01同08。0的0字母+表x示,不同ab的c数d字e,l1相=同1字0母x表+示1相,同的可数字得,求到abc方de。程:
2、有一个四位数7A2B能被2、3、5整除,这个四位数是多少?
五位数A691B能被55整除,符合要求的五位数有哪些? ( 100000 +x) x3=10x+ 1
答:符合要求的五位数是96910和46915。
1、四位数3AA1能被9整除,求A的值。
四位数3AA1要是9的倍数,它的各个数位之和就必 须是9的倍数,3 +A+A+1的和可能是9或18 当3 +A+A+1 =9时,A=2.5,2.5不是自然数,不符 合题目要求。 当3+A+A+1=18时,A=7,符合题目要求
300000 +3x= 10x + 1
( 100000 +x) x3=10x+ 1
=abc x1001 性质1:如果a、b都能被c整除,那么它们的和与差也 能被 c整除。 5不是自然数,不符合题目要求。 本讲内容较为抽象,同学们可以通过型例题的学习和练习的变式训练提高数感,做到有条理、有根据地思考。 性质3:如果b、c都能整除a,且b与c互质,那么b与c的积也能整除a。 1、四位数3AA1能被9整除,求A的值。 解题时应掌握以下整除的性质和特征
这个五位数是46915。
1047、1074、1407、1470、1700. 这样的四位数有7020、7320、7620、7920。
7x = 299999
7x = 299999 用逐步推理的方法,利用末位数字的特点得出结论。

奥数整除知识点总结

奥数整除知识点总结

奥数整除知识点总结整除是关于数学中的一种基本概念,是指一个数能够被另一个数整除,也就是能够被另一个数整数倍的数。

在奥数学习中,整除是一个非常重要的知识点,对于学生来说,掌握整除的相关知识是非常重要的。

本文将对奥数整除知识点进行详细的总结,希望能帮助学生更好地掌握整除的相关知识。

一、整数的概念在奥数学习中,整数是一个非常基本的概念。

整数包括正整数、负整数和零。

正整数是大于零的整数,负整数是小于零的整数,零是不大于也不小于零的整数。

在奥数整除的相关题目中,通常涉及到正整数的整除,因此在奥数学习中,学生需要了解和掌握正整数的相关概念。

二、整除的概念整除是指一个数能够被另一个数整除,也就是能够被另一个数整数倍的数。

在奥数学习中,整除是一个非常基础的概念,掌握整除的相关知识对学生来说是非常重要的。

当一个数a能够被另一个数b整除时,我们通常用"a能被b整除"表示,也可以用数学符号"a|b"表示。

对于两个整数a和b,如果存在另一个整数c,使得b=ac,那么我们就说a能被b整除。

三、整数的性质在奥数整除的相关题目中,通常会涉及到整数的一些基本性质,学生需要了解和掌握整数的一些基本性质。

下面我们将介绍整数的一些基本性质:1. 整数的加法性质:对于任意两个整数a和b,它们的和a+b也是一个整数。

2. 整数的减法性质:对于任意两个整数a和b,它们的差a-b也是一个整数。

3. 整数的乘法性质:对于任意两个整数a和b,它们的积ab也是一个整数。

4. 整数的除法性质:对于任意两个整数a和b,当a能够被b整除时,它们的商a/b也是一个整数。

四、整除的性质在奥数整除的相关题目中,通常会涉及到整除的一些基本性质,学生需要了解和掌握整除的一些基本性质。

下面我们将介绍整除的一些基本性质:1. 整除的传递性:如果a能被b整除,b能被c整除,那么a能被c整除。

2. 整除的继承性:如果a能被b整除,b能被c整除,那么a能被c整除。

五年级奥数专题数的整除性

五年级奥数专题数的整除性

数的整除性训练目标:数的整除是数论中最初步的知识,是学习约分、通分和进行分数四则运算的基础。

我们在这一讲要学习掌握整除的数的特点,并能灵便的运用。

【能被3(或9)整除的数的特点】各位数字之和能被3(或9)整除。

【能被4(或25)整除的数的特点】尾端两位数能被4(或25)整除。

【能被8(或125)整除的数的特点】尾端三位数能被8(或125)整除。

【能被 7、 11、 13 整除的数的特点】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被 7、 11、13 整除时,这个数就能被 7、 11、13 整除。

【能被 11 整除的数的特点】,还能够这样表达:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被 11 整除时,则这个数便能被 11 整除。

典型例题:例 1:有一个四位数7A2B 能被 2,3,5 整除,这个四位数是多少?例 2:在一个五位数 25□4□的□内填什么数字,才能使它既能被3整除,又能被5整除?例 3:有一个四位数7AA1 能被 9 整除, A 代表什么数字?这个四位数是几?例 4:在 568 后边补上三个数字,组成一个六位数,使它分别能被 3、4、5 整除。

在符合这些条件的六位数中,最小是多少?例 5:能被 11 整除,首位数字是 4,其他各位数字都不同样的最大及最小的六位数分别是多少?基础练习:1、从 0,1,2,4,5,7 中,选出 4 个数,排列成能被2,3,5 整除的四位数,其中最大的是多少?2.四位数 8A1B 能被 2,3,5 整除,这个四位数是多少?3.有一个四位数3AA1 ,它能被 9 整除,请问 A 代表几?4.已知五位数 A192B 能被 18 整除,其中 A 比大 3,求出这样的五位数。

5.一个五位数能被72 整除,首尾两个数字不知道,千、百、十位上的数字分别是 6、7、9,这个五位数是多少提高练习:1.有五筐苹果,质量分别为 12kg,15kg,10kg,8kg和 13kg,从中选出四张给小红和小张,小红的苹果的质量是小张的 2 倍,剩下的是哪一筐?2.已知整数 5a6b7c8d9e能被 11 整除,那么 a+b+c+d+e=?3.在 358 后边补上 3 个数字来组成一个六位数,使它能被4,5,9 整除,这个六位数最小是多少?5.从 1,2 ,3 ,4, 5 中选出 4 个数字组成一个四位数,使其能被3,5,7 整除,这个数是多少?6.两个整数,他们的积能被和整除,就称为一对“好数”,比方70和30,那么在 1,2,316,这 16 个整数中,有几对“好数”?7.商场里有六箱货物,分别重 16,19,20,18,15,31千克,两顾客买走其中 5 箱货物,其中一个顾客买的货物的重量是另一个顾客的两倍,商场里剩下的那箱货物是多少千克?一、填空题1.四位数“3AA1”是 9 的倍数,那么 A=_____.2.在“ 25□79 这个数的□内填上一个数字 ,使这个数能被 11 整除 ,方格内应填 _____.3.能同时被 2、3、5 整除的最大三位数是 _____.4.能同时被 2、5、7 整除的最大五位数是 _____.5.1 至 100 以内所有不能够被 3 整除的数的和是 _____.6.所有能被 3 整除的两位数的和是 ______.7.已知一个五位数□ 691□能被 55 整除 ,所有符合题意的五位数是 _____.8.若是六位数 1992□□能被 105 整除 ,那么它的最后两位数是 _____.9.42□28□是 99 的倍数 ,这个数除以 99 所得的商是 _____.10.从左向右编号为 1 至 1991 号的 1991 名同学排成一行 ,从左向右 1 至 11 报数 ,报数为11 的同学原地不动 ,其他同学出列 ;尔后留下的同学再从左向右 1 至 11 报数 ,报数为 11 的留下 , 其他同学出列 ; 留下的同学第三次从左向右 1 至 11 报数 ,报到 11 的同学留下 ,其他同学出列 ,那么最后留下的同学中 ,从左边数第一个人的最初编号是 _____号 .二、解答题11. 173□是个四位数字 .数学老师说:“我在这个□中先后填入 3 个数字 ,所获取的 3 个四位数 ,依次可被 9、 11、6 整除 . ”问:数学老师先后填入的 3 个数字的和是多少?12.在 1992 后边补上三个数字,组成一个七位数,使它们分别能被2、3、5、11 整除,这个七位数最小值是多少?13.在“改革”村的黑市上 ,人们只要有意 ,总是能够把两张随意的食品票换成 3 张其他票券 , 也能够反过来互换 .试问 ,合作社成员瓦夏可否将 100 张黄油票换成 100 张腊肠票 ,而且在整个互换过程中恰好出手了 1991 张票券?14.试找出这样的最小自然数,它可被 11 整除 ,它的各位数字之和等于13.二数的整除性 (B)年级班姓名得分一、填空题1.一个六位数 23□ 56□是 88 的倍数 ,这个数除以 88 所得的商是 _____或 _____.2. 123456789 □□ ,这个十一位数能被36 整除 ,那么这个数的个位上的数最小是_____.3.下面一个 1983 位数33...3 44...4中间漏写了一个数字 (方框 ),已知这个多位数被 7 整除,那么中991个991 个间方框内的数字是_____.4. 有三个连续的两位数,它们的和也是两位数,而且是 11 的倍数 .这三个数是 _____.5.有这样的两位数 ,它的两个数字之和能被 4 整除 ,而且比这个两位数大 1 的数 ,它的两个数字之和也能被 4整除 .所有这样的两位数的和是 ____.6. 一个小于 200 的自然数 ,它的每位数字都是奇数 ,而且它是两个两位数的乘积,那么这个自然数是 ___.7. 任取一个四位数乘 3456,用 A 表示其积的各位数字之和,用 B 表示 A 的各位数字之和 ,C 表示 B 的各位数字之和 ,那么 C 是 _____.8. 有 0、 1、 4、 7、9 五个数字,从中选出四个数字组成不同样的四位数,若是把其中能被 3 整除的四位数从小到大排列起来,第五个数的末位数字是_____.9. 从 0、 1、 2、 4、 5、 7 中,选出四个数,排列成能被2、 3、 5 整除的四位数,其中最大的是 _____.10.所有数字都是 2 且能被66...6整除的最小自然数是 _____位数 .100个二、解答题11. 找出四个互不同样的自然数,使得关于其中任何两个数,它们的和总能够被它们的差整除,若是要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12.只改正21475 的某一位数字 ,即可知使改正后的数能被225 整除 ,怎样改正?13. 500 名士兵排成一列横队.第一次从左到右1、2、 3、 4、 5( 1 至 5)名报数;第二次反过来从右到左 1、 2、 3、 4、 5、 6( 1 至 6)报数,既报 1 又报 6 的士兵有多少名?14.试问 ,可否将由 1 至 100 这 100 个自然数排列在圆周上,使得在任何 5 个相连的数中 ,都最罕有两个数可被 3 整除?若是回答:“能够”,则只要举出一种排法;若是回答:“不能够”,则需给出说明.———————————————答案——————————————————————1.7已知四位数 3AA1 正好是 9 的倍数 ,则其各位数字之和3+A+A+1 必然是 9 的倍数 ,可能是 9 的 1 倍或 2 倍,可用试验法试之 .设 3+A+A+1=9,则 A=2.5,不合题意 .再设 3+A+A+1=18,则 A=7,符合题意 .事实上 ,37719=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0 或是 11 的倍数 ,那么这个数能被 11 整除.偶数位上数字和是 5+7=12,所以 ,奇数位上数字和 2+□+9应等于 12, □内应填 12-2-9=1.3. 990 要同时能被 2 和 5 整除 ,这个三位数的个位必然是 0.要能被 3 整除 ,又若是最大的三位数 ,这个数是 990.4.99960解法一 :能被2、5整除,个位数应为0,其他数位上尽量取9,用7去除999□0,可知方框内应填 6.所以 ,能同时被 2、 5、 7 整除的最大五位数是 99960.解法二 :也许这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70 依旧是 70 的倍数 ,所以能被 2,5,7 整除的最大五位数是 100030-70=99960.5.3367 先求出 1~100 这 100 个数的和 ,再求 100 以内所有能被 3 整除的数的和 ,以上二和之差就是所有不能够被 3 整除的数的和 .(1+2+3+ +100)-( 3+6+9+12+ +99)=(1+100) 2 100-(3+99) 233=5050-1683=33676.1665 能被 3 整除的二位数中最小的是 12,最大的是 99,所有能被 3 整除的二位数以下 :12,15,18,21, ,96,99 这一列数共 30 个数,其和为12+15+18+ +96+99=(12+99) 30 2=16657.96910 或 46915五位数 A691B 能被 55 整除 ,即此五位数既能被 5 整除 ,又能被 11 整除 .所以 B=0 或 5.当 B=0 时, A6910 能被 11 整除 ,所以 (A+9+0)-(6+1)=A+2 能被 11 整除 ,所以 A=9;当 B=5 时,同样可求出A=4.所以 ,所求的五位数是96910 或 46915.8.90由于 105=3 5 7,依照数的整除性质 ,可知这个六位数能同时被3、 5 和 7 整除。

五年级奥数专题-数的整除

五年级奥数专题-数的整除

五年级奥数专题-数的整除如果整除a 除以不为零数b,所得的商为整数而余数为0,我们就说a 能被b 整除,或叫b 能整除a.如果a 能被b 整除,那么,b 叫做a 的约数,a 叫做b 的倍数.数的整除的特征:(1) 能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除.(2) 能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除.(3) 能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除.(4) 能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除.(5) 能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除.(6) 能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除.(7) 能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除.(8) 能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要990个 990个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34.[注]“三个连续自然数的和必能被3整除”可证明如下:设三个连续自然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2+nn+n能被3整除.(+)1(+二、巩固训练1.有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.2.一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.3.任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.4.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.1. 118符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.所以,所求的和是39+79=118.2. 195因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.3. 9根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9.4. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.三、拓展提升1. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?2.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?3. 500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?4. 试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.答案1. 如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2.我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除.再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.2. 因为225=25 9,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1.3. 若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名.4. 不能.假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾.。

五年级下册奥数试题-数的整除 (无答案)全国通用

五年级下册奥数试题-数的整除 (无答案)全国通用

数的整除姓名1(例)、判断:354796能不能被4整除?能否被8整除?2、(1)写一个六位数,使它能被4整除。

(2)写一个六位数,使它能被8整除。

3(例)、在□里填上适当的数,使47587□能被25整除。

4、在□里填上适当的数,使47587□能被9整除。

5(例)、923□□后面填上什么数字,使它能被60整除?6、97247□□后面填上什么数字,使它能被45整除?7(例)、在□里填上适当的数字,使七位数□2002□□能同时被8、9、25整除。

8、已知一个五位数□392□能被55整除,所有符合条件的五位数有哪些?9(例)、小明妈妈去批发市场购了72条毛巾,回家后不小心把发票弄脏了,只能看到总计栏里金额为□54.9□元,请你算算这些毛巾共用了多少钱?10、一位马虎的采购员购买了72只热水瓶,洗衣服时把发票洗烂了,只能依稀看到:72只热水瓶共□63.5□元(□内数字看不清),请你帮他算一算,共用了多少钱?11(例)、右边这个17位数333……3□999……9(其中3和9各8个)能被7整除,那么中间方格内的数字是多少?12、右边这个41位数777……7□444……4(其中7和4各20个)能被7整除,那么中间方格内的数字是多少?13(例)、商店里有6箱货物,分别重18、19、20、22、25、27千克,两位顾客买去了其中的5箱,已知一个顾客买走的重量是另一个顾客的2倍,问商店里剩下的一箱货物重多少千克?14、有一水果店进了6袋水果,分别装着苹果和橘子。

重量分别是18、20、30、31、38、46千克,当天下午卖出一袋苹果,在剩下的5袋水果中,橘子是苹果的3倍,问水果店进了多少千克橘子?练习题(A组)1、在62的右边补上三位数,组成一个五位数使它能被3、4、5整除,求这样的最小五位数。

2、一个五位数各个数位上的数各不相同,它能被3、5、7、13整除,这样的五位数最小是几?3、一个五位数能被11整除,首位是7,其余数位上的数各不相同,这五位数最小是几?4、有一个六位数□2002□能被88整除,求这个六位数。

五年级下册数学奥数讲义—第十三讲数的整除通用版

五年级下册数学奥数讲义—第十三讲数的整除通用版

数的整除一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3 如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4 如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6 如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a ,且d|c ,那么bd|ac;1. 2和5例:把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?解:乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.,,发现只有25、50、75、100、……这样的数中才会出现多个因数5,乘到55时共出现个因数5,所以至少应当写到55。

小学五年奥数-数的整除

小学五年奥数-数的整除

数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。

2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。

②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。

③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。

3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。

所以3□6□5能同时被3和25整除。

3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。

当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。

同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。

五年级下册数学试题-奥数——数的整除特性(全国通用)(无答案)

五年级下册数学试题-奥数——数的整除特性(全国通用)(无答案)

第5讲 数的整除特性一、知识点1. 整除概念定义 如果整数a 除以整数b ,商是整数且余数为0,则称a 能被b 整除或b 整除a ,记作a b ,其中a 叫做b 的倍数,b 叫做a 的约数(因数).注 (1)零是任何正整数的倍数;(2)1是任何正整数的约数;2. 数的整除性质(1)如果,,c b b a 则.c a(2)如果,,b c a c 则)(b a c .3. 数的整除特性(1)一个整数的个位上是0,2,4,6,8,这个数能被2整除;(2)一个整数的个位上是0,5,这个数能被5整除;(3)一个整数各位上数字的和能被3或9整除,那么这个整数也能被3或9整除;(4)一个整数的末两位数能被4或25整除,那么这个整数也能被4或25整除;(5)一个整数的末三位数能被8或125整除,那么这个整数也能被8或125整除;(6)一个整数既能被2整除,又能被3整除,那么这个数能被6整除;反之,一个整数能被6整除,那么这个数一定能被2或3整除;(7)能被11整除的数的特性:一个整数的奇数位上的数字之和与偶数位上的数字之和的差是11的倍数,那么这个数是11的倍数;(8)能被7(11或13)整除的数的特性:一个整数的末三位数与末三位之前的数之差能被7(11或13)整除,那么这个数能被7(11或13)整除.二、典型例题例1 下列11个数:23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407.其中能被4整除的有_____________________;能被8整数的是__________________; 能被25整除的有_____________________;能被125整除的有_____________________; 能被3整除的有______________________;能被9整除的有______________________; 能被11整除的有______________________.例2 173 是一个四位数,在方框内先后填入3个数字,得到3个四位数,依次能被9,11,8整除,则填入的3个数字之和是______________.例3 一个五位数y x 362能被55整除,则这个五位数是____________.例4 老师买了72本相同的书,当时没有记住每本书的价格,只记下了用掉的总钱数是13.7 元,回校后发现有两个数字看不清了.你能帮助补上这两个数字吗?例5 已知四位数abcd 是11的倍数,且有,a c b =+bc 为完全平方数,求该四位数.例6 六位数ABABA 3是6的倍数,这样的六位数有多少个?例7 由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?三、水平测试1.下列9个数:48、75、90、122、650、594、4305、7836、4100.其中能被4整除的有_______________;能被25整除的有_______________;能被9整除的有________________;能被11整除的有________________.x236能被63整除,则这个五位数是______________.2.一个五位数y3.125是一个四位数,在方框中先后填入3个数字,得到3个四位数,依次能被9,11,8整除,则填入的3个数字之和是_____________.4.在2、3、4、5、6这五个数字取四个不同的数字组成的四位数中,其中能被45整除的最大四位数是____________.568,能同时被3、4、5整除,这个六位数最小是___________.5.一个六位数abc6. 能被11整除,各位数字的和为14且小于1000的正整数有___________个.。

五年级下奥数专题:整数的整除

五年级下奥数专题:整数的整除

五年级下奥数专题:整数的整除数的整除的特征(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。

(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。

(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。

(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。

(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。

(6)能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。

(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。

(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

过关测试一、选择题1、某个正数分别与73,59和23相乘,所得的积均为整数,则这个最小数为( )。

A 、3211 B 、3123 C 、70 D 、140 2、一个五位数,各个数位上的数字互不相同,它能被3,5,7,11整除,这样的数中最大的是( )。

A 、98175B 、98765C 、98675D 、987153、王老师为班级买了28个价格相同的圆规,共付人民币1□6.□8元,已知□处的数字相同,则每个圆规( )。

A 、4.16 元B 、5.16元C 、4.86元D 、4.51元4、所有数字都是2且能被6100666个整除的最小自然数是( )位数。

A 、100 B 、200 C 、300 D 、4005、2005年11月11日20时在北京举行了距29届北京奥运会还有1000天的纪念活动。

五年级下册奥数试题-数的整除 (无答案)全国通用

五年级下册奥数试题-数的整除 (无答案)全国通用

数的整除姓名1(例)、判断:354796能不能被4整除?能否被8整除?2、〔1〕写一个六位数,使它能被4整除。

〔2〕写一个六位数,使它能被8整除。

3(例)、在□里填上适当的数,使47587□能被25整除。

4、在□里填上适当的数,使47587□能被9整除。

5(例)、923□□后面填上什么数字,使它能被60整除?6、97247□□后面填上什么数字,使它能被45整除?7(例)、在□里填上适当的数字,使七位数□2002□□能同时被8、9、25整除。

8、一个五位数□392□能被55整除,所有符合条件的五位数有哪些?9(例)、小明妈妈去批发市场购了72条毛巾,回家后不小心把发票弄脏了,只能看到总计栏里金额为□54.9□元,请你算算这些毛巾共用了多少钱?10、一位马虎的采购员购置了72只热水瓶,洗衣服时把发票洗烂了,只能依稀看到:72只热水瓶共□□元〔□内数字看不清〕,请你帮他算一算,共用了多少钱?11(例)、右边这个17位数333……3□999……9(其中3和9各8个)能被7整除,那么中间方格内的数字是多少?12、右边这个41位数777……7□444……4(其中7和4各20个)能被7整除,那么中间方格内的数字是多少?13〔例〕、商店里有6箱货物,分别重18、19、20、22、25、27千克,两位顾客买去了其中的5箱,一个顾客买走的重量是另一个顾客的2倍,问商店里剩下的一箱货物重多少千克?14、有一水果店进了6袋水果,分别装着苹果和橘子。

重量分别是18、20、30、31、38、46千克,当天下午卖出一袋苹果,在剩下的5袋水果中,橘子是苹果的3倍,问水果店进了多少千克橘子?练习题(A组)1、在62的右边补上三位数,组成一个五位数使它能被3、4、5整除,求这样的最小五位数。

2、一个五位数各个数位上的数各不一样,它能被3、5、7、13整除,这样的五位数最小是几?3、一个五位数能被11整除,首位是7,其余数位上的数各不一样,这五位数最小是几?4、有一个六位数□2002□能被88整除,求这个六位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级下奥数专题:整数的整除
数的整除的特征
(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。

(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。

(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。

(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。

(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。

(6)能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。

(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。

(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

过关测试
一、选择题
1、某个正数分别与
73,59和2
3相乘,所得的积均为整数,则这个最小数为( )。

A 、3211 B 、3123 C 、70 D 、140 2、一个五位数,各个数位上的数字互不相同,它能被3,5,7,11整除,这样的数中最大的是( )。

A 、98175
B 、98765
C 、98675
D 、98715
3、王老师为班级买了28个价格相同的圆规,共付人民币1□6.□8元,已知□处的数字相同,则每个圆规( )。

A 、4.16 元
B 、5.16元
C 、4.86元
D 、4.51元
4、所有数字都是2且能被
6
100666个整除的最小自然数是( )位数。

A 、100 B 、200 C 、300 D 、400
5、2005年11月11日20时在北京举行了距29届北京奥运会还有1000天的纪念活动。

事实上这次纪念活动是为期一天的,到11月12日20时截止,也就是说11月12日才是真正距北京奥运会的日子。

那么北京奥运会将在2008年8月( )日20时开幕。

A 、7
B 、8
C 、9
D 、10
二、填空题
6、y x 532能同时被2、3、5整除,则所有满足条件的五位数为 。

7、四位数□□47能被55整除,则所有这样的四位数有 。

8、四位数b a 47能被18整除,只要使这个四位数尽可能小,那么a= ,b= 。

9、在1~100这100个自然数中,不能被3或11整除的数有 个。

10、用2、8、8、6四个数字可以组成 个不同的四位数;所有这些四位数的平均值是 。

11、甲乙两数能被7整除,且甲数的61和乙数的5
2相等,甲乙两数的差最小是 。

12、有2006个不同的自然数(不包括0),它们当中的任意两个数的和都是2的倍数,任意三个数的和都是3的倍数。

为了使这2006个数的和尽可能小,那么这2006个数中最大的一个是 。

13、一次速算比赛共出了100道题,李明每分钟做3道题,张强每做5道题比李明少用6秒钟.那么张强做完100道题时,李明已做完 道题。

三、解答题
14、某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?
15、已知六位数□□1995 能被45整除,则所有满足条件的六位数有哪些?
16、五位数 b a 892能同时被4和9整除,求这样的五位数。

17、用3、8、8、3这四个数字组成的四位数,其中11的倍数有多少个?分别是哪几个?
18、把123连续写多少次,所组成的数能被9整除,并且这个数最小?
19、一个五位数,各个数位上的数字均不相同,它能被3、5、7、11整除,这样的数中最大的是几?
20、某养鸡场有三间饲养棚,第一间养鸡261只,第二间养鸡的只数占养鸡场养鸡总数的
5
1,第三间养鸡场只数的7倍恰好是鸡场养鸡总数的整数倍,问鸡场共养鸡多少只?
参考答案:
1-5、B A D C B
6、32250,32550,32850
7、7040,7645
8、7146
9、61
10、12,6666
11、49
12、12031
13、94
14、解:
(1)能被5整除,则末位为0或5。

(2)同时要被2整除,则末位为0。

(3)要被4整除,最后两位应该是00,20,40,60,80。

能被8整除,如果列举下去会很多。

我们先看看别的规律。

(4)既然已经知道个位是0,则十位,百位设为x ,y 。

有22+x +y 可以被9整除,(为什么不用被3整除来分析?思考一下)。

则x +y 应该为5或14。

(由于x +y 不超过18)
那么有500,320,140,860,680这几种可能。

已经可以检验,但我们继续运用规律。

(5)范围已经缩小了很多了,我们再看被7整除的特点。

注意到7│1993xy 0:则7│1993xy ,(规律4)可见3xy -199要被7整除。

则101+xy 能被7整除。

7×14=98。

可见xy +3能被7整除。

则53,17,89,71都不可,只有35可行。

则检验检验320可以被8整除。

可见最后三位数位3,2,0。

15、319950 719955
提示:
能被45整除,即能被5和9整除,所以末位数为0,5。

因此,,能被9整除,所以六位数为:319950,719955。

16、26892 22896 提示:b a 892能被4整除,则b=2、6, 即 8922a 、8962a 能被9整除,所以a=6、2, 五位数为26892,22896。

17、4个,3388,3883,8338,8833
提示:要使组成数能被11整除,则8,3只能分别位于奇或偶数位,讨论即可。

18、3次 提示:1+2+3=6,要连续多个123且能被9整除,最小的数字和为18,即3个连续123,这个最小数为123123123。

19、98175 提示:98765除以(3×5×7×11=)1155等于85余590,98765-590=98175。

20、答:3045只。

相关文档
最新文档