1.3.1集合的运算

合集下载

人教版(2019)高中数学必修上册备课课件:1.3.1 集合的基本运算——并集与交集

人教版(2019)高中数学必修上册备课课件:1.3.1 集合的基本运算——并集与交集

[ 思考]
集合 A∪B 中的元素个数就是集合 A 和 B 的所有元素的个
数和吗?
提示:不一定.因为集合元素满足互异性,所以若集合 A 和 B 有公
共元素,则只能出现一次.
并集的性质
【性质①】A∪A=A
任何集合与其本身的并集都等于自身
【性质②】A∪∅=A
任何集合与空集的并集都等于这个集合本身
【拓展】A,B,A∪B这三者的关系有如下5种情况:
要注意集合中元素的互异性.
(2)对于元素个数无限的集合,进行并集运算时,可借助数轴求解.注
意两个集合的并集等于两个集合在数轴上的相应图形所覆盖的全部范
围,建立不等式时,要注意端点值是否能取到,最好是把端点值代入题
目验证.
[ 变式训练]
1.已知集合 A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合 A
而 A 与 B 的并集是由 A 与 B 两个集合中的所有元素(重复元素只出
现一次)组成的,即集合 A∪B 中的元素可能 A 与 B 两个集合都有,也可
能 A 有 B 没有,或者 A 没有 B 有.
一般地,集合 A∩B 比 A 与 B 两个集合的范围都小或元素都少;集
合 A∪B 比 A 与 B 两个集合的范围都大或元素都多.当且仅当 A=B 时,
B
B
3.已知集合 M={-1,0,1},N={0,1,2},则 M∪N=
A.{-1,0,1}
B.{-1,0,1,2}
C.{-1,0,2}
D.{0,1}
答案:B
(
)
知识点二
交集
(一)教材梳理填空

B 的元素组成的集合,称
文字 一般地,由所有属于集合 A__属于集合

1.3.1交集与并集教学设计-2023-2024学年高一上学期数学人教A版

1.3.1交集与并集教学设计-2023-2024学年高一上学期数学人教A版

§ 1.3.1集合的基本运算—交集与并集1、教学目标(1)通过实例,抽象概括两个集合的并集与交集的概念,从三种语言理解交集与并集含义,发展学生数学抽象素养;(2)会求两个简单集合的并集与交集,能用Venn 图表达集合的关系及运算,发展学生直观想象素养与数学运算素养.2、教学重点与难点教学重点:集合的交集与并集的概念; 用集合语言表达数学对象或数学内容. 教学难点: “且”、“或”的理解及正确进行集合的交与并.3、教学过程:环节1:呈现情境,提出问题我们知道,实数有加、减、乘、除等运算。

集合是否也有类似的运算呢?请观察、思考下列集合之间的关系:问题1:(1)记A={x|x 是有理数},B={x|x 是无理数},C={x|x 是实数},集合A,B,C 之间有什么关系?(2)某文具店现有铅笔、中性笔、直尺、笔记本、橡皮5种商品出售,现计划再进中性笔、直尺、笔记本、订书机、三角板5种商品。

那么进货后该文具店有哪些商品可出售?共几种?用集合A 、B 、C 分别表示文具店现有品种、计划进货品种、进货后共有品种,那么集合A,B,C 之间有怎样的关系?(或改为观察下面的集合,类比实数的加法运算,你能说出集合C 与集合A,B 之间的关系吗?(1){}5,3,1=A ,{}6,4,2=B ,{}6,5,4,3,2,1=C ; (2)A={x|x 是有理数},B={x|x 是无理数},C={x|x 是实数}.师生活动:学生讨论,教师引导完成。

(3)异分母分数41,31通分时,要先求它们的公分母。

记{}*∈==N k k x x A .3|, {}*∈==N k k x x B .4|,那么41,31的公分母的集合C 是什么?集合A,B,C 之间有怎样的关系?(4)设{}是矩形x x A |=,{}是菱形x x B |=,{}是正方形x x C |=,集合A,B,C 之间有怎样的关系?【设计意图】从具体、学生熟悉的例子入手,使学生感受建立集合运算的必要性,并通过归纳、抽象建构并集、交集概念。

1.3.1交集与并集(共31张PPT)

1.3.1交集与并集(共31张PPT)
可以在数轴上表示例3中的并集,如下图:
说明 1:定义中的“或”字的意义,用它连接的并列成
分之间不一定是互相排斥的,“ x A或 x B ”这 一条件,包括下列三种情况,x A但 x B ; x B 但 x A; x A且 xB
AB
AB
AB
2: 对于A∪B ={x|x∈A或x∈B}。不能认为
(3)分配律:A U (B ∩ C) = (A U B) ∩ (A U C) (4)分配律:A ∩ (B U C) = (A ∩ B) U (A ∩ C)
作业
课本P14 A组1,2,(做书上) A组 3,4 B组1 (做作业本上)
作业
课本P12 A组T6, T7,T8 B组T3(提示:对a分类讨论)
所以,A B ={x|x是师大附中高一年级既参加百 米赛跑又参加跳高比赛的同学}.
2.交集的性质
(1) A A A (2)A (3)A B B A (4)A B A, A B B (5) A B A A B
类比引入
思考:
求集合的交集是集合间的一种运算,那么, 集合间还有其他运算吗?
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集(Union set).
记作:A∪B(读作:“A并B”) 即: A∪B ={x| x ∈ A ,或x ∈ B}
说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素).
Venn图表示:
说明:两个集合求交集,结果还是一个集合, 是由集合A与B 的所有公共元素组成的集合.
Venn图表示:
AB
B
A
B
A∩B

集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)

集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)
C={x│x是等腰直角三角形}
集合C的元素既属于A,又属于B,则称C为A与B的交集.
3 交集
交 由两个集合A、B的公共部分组成的集合,叫这两个

的 集合的交集,记作A∩B

文字语言
念 即 A∩B={ x| x∈A 且 x∈B }
读作 A交B
符号语言
图 示
Venn图
A
B
A∩B
图形语言
练一练 已知A={2,4,6,8,10},B={3,5,8,12}, C={6,8}. 求:(1)A∩B ; (2)A∩(B∩C)
2. (1)已知A={x| x2-6x+8=0},B={x |x2-mx+4=0}, 且A∩B=B,



素 养


则实数m的取值范围是
.
(2)已知A={x|x2-6x+8<0}, B={x|(x-2a)(x-a-2)<0},且A∩B=B,
则实数a的取值范围是
.
数 据 分
(1)A={2, 4};由A∩B=B知B⊆A.
④A∪B=A
B⊆A .
练一练
已知A={ x | x2 > 1 },B={ x | x < a},若A∪B =A,
则实数a的取值范围是 a≤-1
.
3 交集
观察下列集合,A、B与C之间有什么关系? (1)A={ 4,3,5 }、 B={ 2,4,6 }与 C={ 4 }. (2)A={x│x是等腰三角形}、B={x│x是直角三角形}与
第一章 集合与常用逻辑用语
1.3.1 并集和交集
高中数学/人教A版/必修一
1.3.1 并集和交集
思维篇 素养篇

1.3.1 集合的基本运算(交并)

1.3.1 集合的基本运算(交并)

课堂练习
3 设 = {|是等腰三角形}, = {|是直角三角形},
求 ∩ 和 ∪
4 设 = {|是幸福农场的汽车}, = {|是幸福农场的货车},
求 ∪
课堂练习
5 已知集合A = {x|x > −2} B = {x|x < 3} 求A ∩ B,A ∪ B
且 ∪ = 求实数的取值范围.
课堂练习
8 设 = | 2 + + = 0 , = | 2 + + 15 = 0 ,
又 ∪ = 3,5 , ∩ = 3 ,求实数,和的值。
课堂小结
课堂小结
1
集合运算

并运算
A
A∪B
= x x A或 x B
B={x|x是新华中学今年在校的高一级同学},
C={x|x是新华中学今年在校的高一级B的所有元素组成的集
合,称为A与B的交集,记作A∩B,(读作“A交B”),即
A∩B={x|x∈A,且x∈B}
用Venn图表示:
A
A∩B
B
典例分析
例题:
3 新华中学开运动会,设
A={x|x是新华中学高一年级参加百米赛跑的同学},
B={x|x是新华中学高一年级参加跳高比赛的同学},
求A∩B.
典例分析
4 设平面内直线l1 上的点的集合为L1,直线l2上的点的集合为L2,
试用集合的运算表示l1, l2的位置关系。
解: (1)直线l1 , l2
相交于一点P可表示为
L1 ∩ L2 = {点P};
A
B
-4 -3 -2 -1 0 1 2 3 4
A∪B
新课讲授
补充:

1.3.1集合的基本运算(并集与交集)

1.3.1集合的基本运算(并集与交集)
A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于集合 B的所有元素组成的集合叫做A与 B的交集.
记作 A∩B 读作 A交 B
即 A∩B={x x∈A,且x∈B}
A
B
A∩B
性质
⑴ A∩A = A A∩φ = φ A∩B =B∩A
⑵ A∪A = A A∪φ = A A∪B = B∪A
例6 设A={x x2+4x=0}, bbbbbcB={x x2+2(a+1)x+a2-1=0},
(1) 若A∩B=B,求a的值.
(2) 若A∪B=B,求a的值.
探究
(A∩B)∩C = A∩( B∩C ) A∩B∩C
(A∪B)∪C= A∪( B∪C ) A∪B∪C
课堂小结
1. 理解两个集合交集与并集的概念 bb和性质. 2. 求两个集合的交集与并集,常用 bbb数轴法和图示法. 3.注意灵活、准确地运用性质解题;
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
定义
一般地,由属于集合A或属于集合B 的所有元素组成的集合叫做A与B
的并集,
记作 A∪B 读作 A并 B
即A∪B={x x∈A,或x∈B}
A
B
A∪B
观察集合A,B,C元素间的关系:
则A∩B= Φ
A∪B= {斜三角形}
例3 设A={x x>-2},B={x x<3}, 求A∩B, A∪B.
例4 已知A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7}
且A∩B=C 求x,y的值及A∪B.

§1.3 (1)集合的运算(交集、并集)

§1.3 (1)集合的运算(交集、并集)

说明:本系列教案,学案,经多次使用,修改,其中有部分来自网络,它山之石可以攻玉,希望谅解。

为了一个课件,我们仔细研磨;为了一个习题,我们精挑细选;为了一点进步,我们竭尽全力;没有最好,只有更好!制作水平有限,错误难免,请多指教:28275061@【教学内容的课时安排】本章总共15课时,其中教案 §1.3 (1)集合的运算(交集、并集)一、教学内容分析本小节的重点是交集与并集的概念,只要结合图形,抓住概念中的关键词“且”、“或”,理解它们并不困难.本小节的难点是弄清交集与并集的概念及符号之间的联系和区别.突破难点的关键是掌握有关集合的术语和符号、简单的性质和推论,并会正确地表示一些简单的集合.利用数形结合的思想,将满足条件的集合用维恩图或数轴一一表示出来,从而求集合的交集、并集、补集,这是既简单又直观且是最基本、最常见的方法,要注意灵活运用. 二、教学目标设计理解交集与并集的概念; 掌握有关集合运算的术语和符号,能用图示法表示集合之间的关系,会求给定集合的交集与并集;知道交集、并集的基本运算性质.发展运用数学语言进行表达、交流的能力.通过对交集、并集概念的学习,提高观察、比较、分析、概括等能力. 三、教学重点及难点交集与并集概念、数形结合思想方法在概念理解与解题中运用; 交集与并集概念、符号之间的区别与联系. 四、教学过程设计 一、复习回顾(1)观察集合A,B,C 元素间的关系:A={4,5,6,8}, B={3,5,7,8}, C={5,8}小结:CA ,CB ,且C 是由所有B A ,中公共元素所构成的集合,称C 是集合B A ,的交集;(2)观察集合A,B,D 元素间的关系:A={4,5,6,8}, B={3,5,7,8}, D={3,4,5,6,7,8}小结:A D ,B D ,且D 是由所有A 或B 中元素所构成的集合,称D 是集合BA ,的并集;D 中元素由B A ,中的三部分构成. 二、讲授新课 1、概念引入⏹ 交集定义一般地,由集合A 和集合B 的所有公共元素所组成的集合,叫做A 与B 的交集. 记作A ∩B (读作“A 交B ”),即:{}B x A x x B A ∈∈=且| ⏹ 交集的图示法⏹ 并集的定义一般地,由所有属于A 或属于B 的元素组成的集合,叫做A 与B 的并集. 记作A ∪B (读作“A 并B ”),即{}B x A x x B A ∈∈=或| . ⏹ 并集的图示法⏹ 概念深化:交集的性质(1)A ∩A=A ; (2)A ∩B=B ∩A ; (3)A ∩φ=φ;(4)A B A ⊆ ,B B A ⊆ ; (5)B A A B A ⊆⇔=⏹ 类比规纳:类比交集的运算,写出并的性质. 2、例题解析例1:设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A ∩B.例2:设{}{}11|,22|-<>=<<-=x x x B x x A 或,求B A B A ,.练习:(1)已知}21{≤<-=x x A ,B=}02{<≤-x x ,求B A B A ,; (2)设集合{}{}40|,21|≤<=≤<-=x x B x x A ,求B A B A ,;(3)设{}A x x a =>,{}45B x x x =><-或,若A B=R U ,求实数a 的取值范围.例3:设A 、B 两个集合分别为{}102),(=+=y x y x A ,}53),{(=-=y x y x B ,求B A ,并且说明它的意义.例4:已知{}32|+≤≤=a x a x A ,{}51|>-<=x x x B 或,且φ=B A ,求a 的取值范围.例5:设集合{}(){}026|,02|22=+++==+-=b x a x x B b ax x x A ,且⎭⎬⎫⎩⎨⎧=21B A ,求B A三、课堂小结1.交集、并集的概念;交集并集的求法;交集并集的基本性质,以及有关符号的正确使用.2.求两个集合的交集、并集时,往往先将集合化简,求两个数集的交集、并集,可通过数轴直观显示或利用韦恩图表示,有助于解题. 3、区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字出发去揭示、挖掘题设条件,进而用集合语言表示,从而解决问题.1. 已知2{|230,}A x x x x R =+-=∈,2{|210,}B x x x x R =-+-=∈,若A B =___.2. 已知},|),{(2R x x y y x A ∈==,},2|),{(2R x x y y x B ∈-==,则A B = .3. 若集合{1,3,}A x =,{}2,1x B =,{1,3,}AB x =,则满足条件的实数x 为________.4. 若集合2{|120}A x xx =+-=,{|10}B x kx =+=,且A B A =,则k 所能取的值为____.5. 满足条件{1,3}{1,3,5}B =的所有集合B 的个数为 .6. 集合{|12}A x x =-≤≤,}|{a x x B <=.⑴ 若A B A =,实数a 的取值范围 .⑵ 若A B =∅,实数a 的取值范围 .7. 设集合{}0152=++=px x x A ,集合{}052=+-=q x xx B 且A {}3=B ,求p ,q 的值和B A .8. 已知关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,⎭⎬⎫⎩⎨⎧-=31B A ,求A ∪B .9. 设集合M=}71|{≤≤-x x ,S=}121|{-≤≤+k x k x ,若M ∩S=Φ,求k 的取值范围.10. 已知集合A=}023|{2=+-x x x ,}0)1(|{2=-+-=a ax x x B ,若A ∪B=A ,求a的范围。

高中数学 1.3.1 交集与并集

高中数学  1.3.1 交集与并集
A.{0} B.{1,2} C.{1} D.{2}
【解析】 因为 N={1,3,5,…},M={0,1,2},所以 M∩N={1} 【答案】 C
4.设 A={x|-3≤x≤3},B={y|y=-x2+t}.若 A∩B=∅,则实 数 t 的取值范围是( )
A.t<-3 B.t≤-3 C.t>3 D.t≥3
根据数轴可得k+1≤2k-1,
解得 2≤k≤52.
-3<k+1,
综合①②可得kk≤52
.
2k-1≤4,
(2)∵A∩B},B={x|k+1≤x≤2k-1},可知 B≠∅.
由数轴可知 k+1≤-3,
2k-1≥4, 解得 k∈∅,
即当 A∩B=A 时,k 的取值范围为∅.
【解析】 (1)P={x|x2=1}={-1,1},M={x|x2-2x-3=0}={- 1,3},所以 P∩M={-1},P∪M={-1,1,3}.
(2)借助数轴可知:
M∪N={x|x>-5}, M∩N={x|-3<x<-2}. (3)∵y=x2-4x+3=(x-2)2-1,x∈Z, ∴M={-1,0,3,8,15,…}. 又∵y=-x2-2x=-(x+1)2+1,x∈Z, ∴N={0,-3,-8,-15,…}, ∴M∩N={0}.
【思路点拨】 利用 A∩B=B 得 B⊆A,然后就 B 是否为空集讨 论,列出关于 a 的不等式(组)求解即可.
【解析】 ①当 B=∅时,只需 2a>a+3,即 a>3; ②当 B≠∅时,根据题意作出如图所示的数轴,
可得a+3≥2a, a+3<-1 或a+3≥2a, 2a>4,
解得 a<-4 或 2<a≤3.
2.已知集合 P={x|x<3},Q={x|-1≤x≤4},那么 P∪Q=( )

北师大1.3.1集合的基本运算-----交集与并集导学案

北师大1.3.1集合的基本运算-----交集与并集导学案

安边中学高一年级1 学期 数学 学科导学稿 执笔人: 邹英 总第3课时备课组长签字: 包级领导签字: 学生: 上课时间:2013.8.30 集体备课 个人空间一、课题:1.3.1集合的基本运算-----交集与并集二、学习目标1. 理解两个集合的并集与交集的的含义;2. 会用文字语言、符号语言、图形语言表示两个集合的并集与交集;3.会求两个简单集合的并集与交集;三、教学过程【温故知新】问题1、集合的基本关系有哪些?问题2、空集与任何集合有怎样的关系?问题3、做一做(1)集合},,,,,,{k j e d c b a A =与集合},,,{k c d b B =它们有什么关系,表示一下,并用Venn 图画一画;(2)写出集合}0)2)(1({=-+=x x x A 的所有子集。

【导学释疑】1、阅读课本P 11完成下表名称 交集 并集定义(文字语言)符号语言图形语言(一般情况)问题1、想一想,交集中的“且”与并集中的“或”有什么不同? 问题2、议一议,下面的空怎么填?(1)A ∪A = ________ A ∪φ =_______ A ∪B=________ (2 )A ∩A =_______ A ∩φ = ________ A ∩B _______ B ∩A(3)A ∩B ____ A A ∩B ____ B A _____ A ∪B B ____ A ∪B(4) 若A ∩B=A,则A ___ B 反之亦然,若A ∪B=A,则A___B 反之亦然(5)(A ∩B )∩C A ∩(B ∩C), (A ∪B )∪C A ∪(B ∪C)3、做一做:我校所有学生组成集合A ,高一年级所有学生组成集合B ,高一年级所有男生组成集合C ,高一年级所有女生组成集合D 。

求B A ⋂,D C ⋃。

【巩固提升】例1、设集合A ={x|2≤x<4},B ={x|3x+7≥8+2x},求A ∩B 与A ∪B 。

【检测反馈】1、已知集合A={1,2,3,4,5},B={4,5,6,7}求A ∩B 与A ∪B 。

1.3.1 集合的基本运算

1.3.1 集合的基本运算

并集与交集”我们就学到这儿, “全集与补集”我们下节课再见!
课时作业(一)
11~16小题
周二晚上交
求A B.
x+y =1
x = 3.5
解:解方程组 x - y = 6 得 y = -2.5
所以A B = { (-2.5 , 3.5) }.
2.设 A = x 2 < x < 4 , B = x a < x < 3a(a > 0) ,
若 A B = {x | 3 < x < 4}. 求a的取值范围.
3.设集合A = {x | -3 < x < -1}∪{x | x > 0},B = {x | a ≤ x ≤b} 若A∪B = {x | x > -3}, A∩B = {x | 0 < x ≤ 2},求a,b的值.
解:由A∪B = {x x > -3}可以知道 - 3 < a -1, 由A∩B = {x 0 < x 2}可以知道b = 2,a = -1.
探究1:并运算与并集
①请观察A,B,C这些集合之间是什么关系?
x是有a,b理数
集合A ②
x是c无,d理数
集合B
A
B
xa是,b实,c,d数 集合C
-2
2 4 6 8 10
C
集合C是由所有属于集合A或属于集合B的元素组成 ——“全部元素”组成.
1.并集
一般地,由所有属于集合A或属于集合B的元素 所组成的集合,称为集合A与B的并集,记作A∪B(读 作“A并B”),即
例 设A={a,b,c}, B={a,它c,d们,f}的,求公A共∪元B.素在并集中只 解: A∪B={a,b,c} ∪ {a能,c,d出,f现} 一次.如:a,c.

1.1.3.1集合的基本运算(交集与并集)高一数学(北师大版2019)

1.1.3.1集合的基本运算(交集与并集)高一数学(北师大版2019)

E D
F F
-1 0
2
集合F 的元素是由集合D 和集合E 的元素相加得到的
在此我们发现,有些集合的元素是由另一些集合的公共元素得到的,而有些集合的元素是由另一些 集合的元素加起来得到的,那么在集合中,有没有类似于数的加减法那样的运算方法呢?
为此,我们将学习一个新的运算方法——集合的基本运算(交集与并集).
(2)这两个等式是偶然成立,还是具有普遍意义 Nhomakorabea试用Venn
图说明.
A
B
C
(A B) C:
A
B
C
A (B C):
A
B
C
A
B
C
A
B
C
导入课题 新知探究 典例剖析 课堂小结
三、集合的运算性质
2
探究2:
已知A={5,7,8,9},B={1,3,7,8,9},C={2,3,8,9},则 (1)A∩(B∪C) 与(A∩B)∪(A∩C) ,A∪(B∩C)与(A∪B)∩(A∪C)
教材P9练习
导入课题 新知探究 典例剖析 课堂小结
教材P10练 习
导入课题 新知探究 典例剖析 课堂小结
U
A
C
B
导入课题 新知探究 典例剖析 课堂小结
1,集合是一门语言,用集合 的语言可以简洁、准确地描 述数学对象. 2,数形结合的思想方法,结 合Venn图和数轴来理解集合 3,类比的思想方法,类比实 数的运算性质,定义出集合 的运算性质.
导入课题 新知探究 典例剖析 课堂小结
课后作业
作业1:课本P12A组T7 作业2:课本P12B组T2
谢谢聆听!
A∪B⊇B,
A∪A⊇A,
A∪∅=A.

集合间的基本运算(第一课时)

集合间的基本运算(第一课时)

《1.3.1集合间的基本运算》(第一课时)
一、学习目标
1.理解两个集合的并集与交集的含义.会求两个简单集合的并集和交集.
2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.
二、知识思维导图
三、导学指导与检测
导学检测及课堂展示
知识点一并集
思考集合A∪B的元素个数是否等于集合A与集合B的元素个数和?
知识点二交集
预习小测自我检验
1.设集合M={4,5,6,8},N={3,5,7,8},则M∪N=________.
2.已知A={x|x>1},B={x|x>0},则A∪B=________.
3.已知集合A={-1,0,1,2},B={-1,0,3},则A∩B=________.
1.已知集合A={1,6},B={5,6,8},则A∪B等于( )
A.{1,6,5,6,8} B.{1,5,6,8}
2.若集合M={-1,0,1,2},N={x|x(x-1)=0},则M∩N等于( )
A.{-1,0,1,2} B.{0,1,2} C.{-1,0,1} D.{0,1}
3.已知集合M={-1,0,1},P={0,1,2,3},则图中阴影部分所表示的集合是( )
A.{0,1} B.{0} C.{-1,2,3} D.{-1,0,1,2,3}
4.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=________.
5.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.。

集合的运算(交集、并集、补集)

集合的运算(交集、并集、补集)

AB
x -3 -2 -1 0 1 2 3 4 5 6 7
解: A∪B ={x|0<x ≤2} ∩ {x|1<x ≤ 3} = {x|0 < x ≤ 3}
【新知识】 由并集的定义可知,对任意的两个集合A、B,有
– (1)A∪B= B∪ A – (2)A∪ A = A, A ∪ ∅ = ������ – (3)A⊆ A∪B,B⊆ A∪B
x-y=4
解:解方程组 x+y=0,得 x=2,所以A∩B={(2,-2)}。
x-y=4
y=-2
【想一想】能否把 {(2,-2)} 写作 {2,-1} ?
例3 设A={x|-1<x ≤2},B={x|0<x ≤ 3},求A∩B。 分析:这两个集合都是用描述法表示的集合,并且元素无法一一列举出来。 这两个集合都可以在数轴上表示出来,观察数轴上表示的两个集合,可以得 到这两个集合的交集。
A A∩B B
x -3 -2 -1 0 1 2 3 4 5 6 7
解: A∩B ={x|-1<x ≤2} ∩ {x|0<x ≤ 3} = {x|0 < x ≤ 2}
【新知识】
由交集的定义可知,对任意的两个集合A、B,有
– (1) A ∩ B= B ∩ A – (2) A ∩ A=A, A ∩ ∅= ∅ – (3) A ∩ B⊆ ������, A ∩ B ⊆ ������
A
B
A∩B=∅
B AA B
、 【知识巩固】
例1 设A={2,3,5},B={-1,0,1,2},求A∩B。 解: A∩B={2,3,5} ∩ {-1,0,1,2}={2}
例2 设A={(x,y)|x+y=0},B= {(x,y)|x-y=4},求A∩B。

1.3.1 集合的基本运算 第1课时 并集、交集

1.3.1 集合的基本运算 第1课时  并集、交集
1.两个集合的并集中的元素就是将两个集合中的元
素合在一起.
( ×)
2.A∪B仍是一个集合,由所有属于集合A或属于 集合B的元素组成.
√) (
( √)
3.若集合A和集合B有公共元素,根据集合元素的互
异性,则在A∪B中仅出现一次.
例1
设A={4,5,6,8}, B={3,5,7,8},
求A∪B.
【解题关键】
C.{x|1<x<2} D.{x|2<x<3} 【解题指南】本题考查集合的并集 .通过解不等式,
把集合 A 化为最简形式,然后把两集合在数轴上表 示出来,便可得出答案. 【 解 析 】 选 A. 由 (x+1)(x-2)<0, 得 -1<x<2, 即 A={x|-1<x<2},所以 A∪B={x|-1<x<3}.
解: A U B R.
3
集合是什么运算呢?
6
x
思考:求在数轴上集合A与集合B的公共部分对应的
观察下列各组中的3个集合
集合A,B与集合C的关系如何?
() 1 A -1,1,2 ,3 , B -2 ,-1,1 , C -1,1;
(2)A x x为高一( 11 )班语文测验优秀者 ,
Aቤተ መጻሕፍቲ ባይዱ
B
-2
-1
0
1
2
3
4
5
X
【提升总结】
1)两个集合求并集,结果还是一个集合,由集
合A与B的所有元素组成的集合。
2)它们的公共元素在并集中只能出现一次.
3)对于表示不等式解集的集合的运算,可借助
数轴解题.
【互动探究】

1.3.1交集并集

1.3.1交集并集

记作 A∩B 读作 A交 B 即 A∩B={x x∈A,且x∈B}
一般地,由既属于集合A又属于集合B的 所有元素组成的集合叫做A与B的交集.
你能用Venn图表示A∩B吗?
例3
瑞安五中开运动会,设
A={x|x是瑞安五中高一年级参加百米赛跑的同学} B={x|x是瑞安五中高一年级参加跳高比赛的同学} 求A B. 解:A B={x|x是瑞安五中高一年级参加百米赛 跑且参加跳高比赛的同学}
B A∪ B
⑸ 若A∪B=A,则A B. ⑹ 若A∩B=A,则A B.
课堂ห้องสมุดไป่ตู้习
求A∩B, A∪B
①设A={1,2,3,5},B={1,3,4,6} ②A={x |x是等腰三角形}, B={x |x是直角三角形} ③设A={x|-1< x<2},B={x|1<x<3}
④设A={x|x2-4x-5=0},B={x|x2=1}
例4 设平面内直线 l1上点的集合为 L1 ,直 线 l 2上点的集合为 L2 ,试用集合的运算表 示 l1 , l 2 的位置关系.
性质 填空
⑴ A∪ A = A A∪ φ = A φ A ∪ B = B∪ A
⑵ A∩A = A A∩φ =
⑶ A∩B
A∩B =B∩A
A
A∩B
B
⑷ A A∪ B
求A∪B
求关于不等式的并集时, 主要是借助于数轴, 直 观易懂. 注意实点和虚点.
观察集合A,B,C,你能说出集合C与集合 A,B之间的关系吗?
①A={4,5,6,8}, B={3,5,7,8},C={5,8}
②A={x|x是高一(3)班住校的学生}
B={x|x是高一(3)班男生}
C={x|x是高一(3)班住校的男生}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】 1.3集合的运算(1)【教学目标】知识目标:理解并集与交集的概念,会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.情感目标:(1)经历利用集合语言描述集合运算的过程,养成规范意识,发展严谨的作风。

(2)经历利用图形研究集合间运算的过程,体验“数形结合”的探究方法。

(3)经历合作学习的过程,树立团队合作意识。

【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A ={李佳,王燕,张洁,王勇};B ={王燕,李炎,王勇,孙颖};C ={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A ={直角三角形};B ={等腰三角形};C ={等腰直角三角形}.那么这三个集合之间有什么关系?解决 通过上面的三个问题的思考,可以看出集合C 中的元素是由既属于集合A 又属于集合B 中的所有元素构成的,也就是由集合A 、B 的相同元素所组成的,这时,将C 称作是A 与B 的交集.质疑引导 分析归纳 总结思考 自我 分析 了解自然 的走 向知 识点 引导 式启 发学 生思 考集 合元 素之 间的 关系5 *动脑思考 探索新知一般地,对于两个给定的集合A 、B ,由集合A 、 B 的相同元素所组成的集合叫做A 与B 的交集,记作A B I ,读作“A 交B ”.即{}A B x x A x B =∈∈I 且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算. 总结 归纳仔细 分析 讲解 关键 词语 强调 图像 含义 思考 理解 记忆 观察 带领 学生 总结 三个 问题 的共 同点 得到 交集 的定义10 *巩固知识 典型例题例1 已知集合A ,B ,求A ∩B .通过过 程行为 行为 意图 间(1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅; (4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B I . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2A B =-I .例3 设{}|12A x x =-<„,{}|03B x x =<„,求A B I .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03A B x x x x=-<<I I 剟{}|02x x =<„.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A I I =;说明强调 引领讲解说明引领强调含义说明 启发 引导观察 思考 主动 求解 观察 思考 求解 领会 思考 求解 了解例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现过 程行为 行为 意图 间1.设{}1,0,1,2A =-,{}0,2,4,6B =,求A B U . 2.设{}|22A x x =-<…,{}|04B x x =剟,求A B U .巡视 指导 交流 学习 效果 60 *理论升华 整体建构 思考并回答下面的问题:1.集合的并集和交集有什么区别?(含义和符号) 2.在进行集合的并运算和交运算时各自的特点是什么? 3.集合用列举法和描述法表示时进行运算需要注意的问题是什么?(1)由集合A 和集合B 的公共元素组成的集合叫做集合A 与集合B 的交集{}B x A x x B A ∈∈=且I .由集合A 和集合B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或Y ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 质疑 归纳 强调 小组 讨论 回答 理解 强化 以学 生的 小组 讨论 教师 归纳 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A I ,B A Y .解 {}{}{}22,1,0,15,3,2=-=I I B A ;{}{}2,1,0,15,3,2-=Y Y B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A I ,B A Y . 解 将集合A 、B 在数轴上表示:{1A B x x =<I ≤2},{0A B x x =<U ≤3}. 引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你引导 提问回忆 反思培养 学生 总结 反思 学习【教学目标】知识目标:理解全集与补集的概念,会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.情感目标:(1)经历利用集合语言描述集合运算的过程,养成规范意识,发展严谨的作风。

(2)经历利用图形研究集合间运算的过程,体验“数形结合”的探究方法。

(3)经历合作学习的过程,树立团队合作意识。

【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】过 程行为 行为 意图 间结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合. 归纳关系15*动脑思考 探索新知 概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合A 是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做A 在全集U 中的补集. 表示集合A 在全集U 中的补集记作U A ð,读作“A 在U 中的补集”.即{}|U A x x U x A =∈∉且ð.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将U A ð简记为A ð,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算. 仔细 分析 讲解 强调 引导 说明思考 理解 记忆 观察 领会特别 注意 讲解 关键 词的 含义 强调 表示 方法 的书 写规 范性 充分 利用 图形 的直 观性20*巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U ð及B U ð.分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合.说明 讲解观察 思考通过 例题 进一 步领 会补 集的 含义过 程行为 行为 意图 间解 {}0,2,6,7,8,9A =ðU ;{}0,1,2,4,6,9B =ðU . 例2 设U =R ,{}|12A x x =-<„,求A ð.分析 作出集合A 在数轴上的表示,观察图形可以得到A ð.解 {}|12A x x x =->或„ð.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ð;因为端点2属于集合A ,所以2不属于其补集A ð.由补集定义和上面的例题,可以得到: 对于非空集合A :A ∩(U A ð)=∅,A ∪(U A ð)=U ,U U ð=∅, U ∅ð=U ,U ð(U A ð)=A .引领 引导 分析讲解 说明 理解主动 求解 观察 思考 理解 自我 总结及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳35*运用知识 强化练习 教材 练习1.3.31.设{}U =小于10的正整数,{}147A =,,,求U A ð. 2.设U R =,{}|24A x x =-剟,求A ð.提问 巡视 指导互动 求解 交流反馈 学习 效果45*理论升华 整体建构 思考并回答下面的问题:1.什么是集合交运算?如何用符号表示?如何用图形表示? 什么是集合并运算?如何用符号表示?如何用图形表示? 什么是集合补运算?如何用符号表示?如何用图形表示?2.在进行集合的交、并、补运算时各自的特点是什么?3.集合用列举法和描述法表示时进行集合运算需要注意的问题是什么?质疑 归纳 强调 总结小组 讨论 交流 理解 强化以学 生小 组讨 论教 师归 纳的 形式 强调 重点 突破55。

相关文档
最新文档