八年级 第七章 数学为什么要证明 导学案
北师大版八年级数学(上)第七章 平行线的证明 第1节 为什么要证明
例 4:观察下列关于自然数的等式: (1)32-4×12=5 ① (2)52-4×22=9 ② (3)72-4×32=13 ③ … 根据上述规律解决下列问题: (1)完成第四个等式:92-4×( )2=( );
(2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性.
解:(1)4,17 (2)第 n 个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1= 右边,∴第 n 个等式成立.
练习:下列问题你不能肯定的是( D )
A.一支铅笔和一瓶矿泉水的体积的大小关系 B.三角形的内角和 C.八边形的外角和 D.三角形与矩形的面积关系
课程导入2:
代数式n2+ n+41的值是质数吗?取n=0,1,2,3,4, 5试一试,你能否 由此得到结论:对于所有自然数n2+ n+41的值都是质数?与同伴进行交流.
2.在学习中,小明发现:当 n=1,2,3 时,n2-6n 的值都是负数,于是小明猜想:当 n 为 任意正整数时,n2-6n 的值都是负数,小明的猜想正确吗?请简要说明你的理由.
解:小明的猜想不正确.理由为:当 n=6 时,n2-6n=62-6×6=0;当 n> 6 时,n2-6n=n(n-6)>0.
练习:观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …
请猜测,第 n 个算式(n 为正整数)应表示为 100n(n-1)+25 .
证明的必要性
1.要判断一个数学结论是否正确,仅仅依靠实验,观察、归纳是不够的,
解:小明的猜想正确,理由:因为 n 为奇数,所以可设 n=2k+1(k 为自然数), 所以 n2﹣1=(2k+1)2﹣1=(2k+1+1)(2k+1﹣1)=(2k+2)×2k=4k(k+1), 因为 k 为自然数,所以 k,k+1 是相邻的自然数, 所以 k,k+1 中必有一个是偶数,一个是奇数,所以 k(k+1)必定是 2 的倍数, 所以 4k(k+1)必定是 8 的倍数,故当 n 为任意正奇数时, n2﹣1 的值一定是 8 的倍数.
北师大版八年级数学上册_《为什么要证明》五环分层导学案
《7-1 为什么要证明》五环分层导学案第一环节:探究新知以前,我们通过观察、实验、归纳得到了很多正确的结论(例如:勾股定理与逆定理),观察、实验得到的结论一定正确吗?看一下几个问题:【问题1】图7-1-1-①中两条线段a ,b 的长度相等吗?图①中的四边形是正方形吗?请你先观察,再设法检验你观察到的结论:【问题2】如图7-1-2,把地球看成球形,假如用一根比地球赤道长1m 的铁丝将地球赤道围起来,铁丝与地球赤道之间的间隙能有多大?能放进一个拳头吗?先凭感觉想象一下,再具体算一算,看看与你的感觉是否一致,并与同伴进行交流.(赤道半径长度:6378.2千米)【问题3】代数式²11n n -+的值是质数吗?取n =0,1,2,3,4,5试你能否由此得到结论:对于所有自然数n ,²11n n -+的值都是质数?【问题4】如图7-1-3,在①ABC中,点D、E分别是AB、AC的中点,连接DE,DE与BC有怎样的位置关系和数量关系?请你先猜一猜,再设法检验你的猜想.你能肯定你的结论对所有的①ABC都成立吗?【问题5】实验,观察,归纳是人们认识事物的重要手段,通过实验、观察、归纳的结论都正确吗?在上面的问题中,你是怎样判断一个结论是否正确的?小结:实验、观察、归纳是人们认识事物的重要手段,但仅凭________、________、________得到的结论有时是不全面的,甚至是错误的,所以正确地认识事物,不能单凭直觉,必须一步一步、有根有据地进行________.第二环节:双击巩固【例题1】下列结论,你能肯定的是( )A. 今天天晴,明天必然还是晴天B. 三个连续整数的积一定能被6整除C. 小明的数学成绩一向很好,因而后天的竞赛考试中他必然能获得一等奖D.两张照片看起来完全一样,可以知道这两张必然是同一张底片冲洗出来的第三环节:综合运用【例题2】(①) 如图7-1-4, AB //DE , BC //EF , 那么你能判断ABC ∠与DEF ∠的大小关系吗?小颖据此得出结论:如果两个角的两边分别平行,那么这两个角相等,你认为她的想法正确吗?与同伴交流.第四环节:分层反馈1.小明和小华在手工制作课上用铁丝制作楼梯模型,如图7-1-5,那么他们两个人用的铁丝 ( )A. 小华用的多B. 小明用的多C. 两人用的一样多D. 不能确定谁用的多2.(①)某地发生车祸,A 、B 、C 三名司机中有一位司机肇事,警察找了A 、B 、C 三个司机询问,A 说:“是B 肇事.”,B 说:“不是我肇事.”,C 说:“不是我肇事.”这三个司机中只有一人说的话正确,请问,聪明的同学,你可以推断出是司机_______肇事.。
北师大版八年级数学上册第七章 为什么要证明
【题型二】数学中的推理验证
例2:在学习中,小明发现:当n=1,2,3时,n2-6n的值都是 负数.于是小明猜想:当n为任意正整数时,n2-6n的值都是负 数.小明的猜想正确吗?请简要说明你的理由.
解:不正确.理由:当n=6时,n2-6n=0,所以当n为任意正 整数时,n2-6n的值不一定为负数,所以小明的猜想不正确.
生活中的图片
彭罗斯楼梯
莫比乌斯环
克莱因瓶
视频导入
大家看 到的这 些魔术 是真实 发生的 吗?
眼见不一定为实,遇见问题需要证明
1.请同学们阅读课本162-163页. 2.观察课本162页的图片,完成下列问题.
①图7-1中两条线段a与b的长度相等吗? 请你先观察, 再测量一下. 结论:a与b 的长度__相_等_____. ②图7-2中的四边形是正方形吗? 将它四个角的度数,四条边的长度测量出来: _四__个__角__都_是__9_0_°_,__四__条_边__都__是__1_.7__c_m______________. 图7-2中的四边形__是__(填“是”或“不是”)正方形.
例4:如图所示,把一根细长的绳子沿中间对折,再将对折后的绳子沿 中间对折,这样连续沿中间对折5次,用剪刀将5次对折后的绳子从中 间全部剪断,此时细绳被剪成____3_3___段.
【题型三】实际生活中的推理验证
例5:甲、乙、丙、丁四人的车的颜色分别是白色、银色、蓝色和红色的其 中一种,且互不相同.在问他们各自车的颜色时,甲说:“乙的车不是白 色的.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说: “甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实
1 为什么要证明
1. 通过观察、猜想、归纳等得到的结论不一定正确,使学 生对由这些方法得到的结论产生怀疑,从而认识到证明 的必要性,发展推理能力.
北师大版-数学-八年级上册-导学案:7.1 为什么要证明
为什么要证明教学目标1.初步体会观察、猜测得到的结论不一定正确.2.通过探索,初步了解数学中推理的重要性.3.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.教学重点判断一个结论正确与否需要进行推理.教学难点理解数学推理的重要性.教学过程一、情景导入感受新知在现实生活中,我们常采用观察的方法来了解世界.在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果是正确的,那么用什么方法说明它的正确性呢?二、自学互研生成新知【自主探究】活动一:验证活动问题1:某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n, n2-n+11的值都是质数.你认为呢?与同伴交流.参考答案:列表归纳为n 0 1 2 3 4 5 6 7 8 9 10 11 …n2-n+1111 11 13 17 23 31 41 53 67 83 101121是否为质数是是是是是是是是是是是不是活动二:猜想并验证:问题2:如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?解:设赤道周长为c ,铁丝与地球赤道之间的间隙为:c +12π-c 2π=12π≈0.16(m),它们的间隙不仅能放进一个红枣,而且也能放进一个拳头.归纳总结:实验、观察、归纳得到的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.【师生活动】①明了学情:关注学生对数学推理的重要性的理解情况;②差异指导:对学生在探究中产生的疑惑及时引导与点拨;③生生互助:学生小组内交流讨论,相互释疑,达成共识.三、典例剖析 运用新知 【合作探究】例:如图,四边形ABCD 四边的中点E.F 、G 、H ,度量四边形E FGH 的边和角,你能发现什么结论?改变四边形ABCD 的形状,还能得到类似的结论吗?解:连接AC.∵E.F 、G 、H 分别是四边形ABCD 四边中点,∴EF ∥AC ,EF =12AC ;GH ∥AC ,GH 綊12AC ; ∴EF 平行且等于GH ,∴四边形EFGH 为平行四边形.四、课堂小结 回顾新知通过本节课的学习,你有什么收获?还有哪些疑惑?请谈一谈你的想法和同学们一起分享!五、检测反馈 落实新知1.(来宾期末)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有__11__天.2.(相城区期末)好久未见的A ,B ,C ,D ,E 五位同学欢聚一堂,他们相互握手一次,中途统计各位同学握手次数为:A 同学握手4次,B 同学握手3次,C 同学握手2次,D 同学握手1次,那么此时E 同学握手__2__次.3.(长安区校级月考)四个足球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分,有一个队一场都没输过,排名却倒数第一,你觉得可能吗?如果可能,请举出这情况何时出现;如果不可能,请说明理由.解:某队全平的情况下会排名倒数第一,如:甲队:全平,1+1+1=3(分);乙队:平1场,胜1场(乙胜丙),输1场,1+3+0=4(分);丙队:平1场,胜1场(丙胜丁),输1场,1+3+0=4(分);丁队:平1场,胜1场(丁胜乙),输1场,1+3+0=4(分).当然还有其它情况出现.六、课后作业巩固新知(见学生用书)。
河北省邯郸市肥乡区常耳寨中学北师大版八年级数学上册教案:7.1为什么要证明
(五)总结回顾(用时5分钟)
今天的学习,我们了解了证明的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对证明的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:在证明“三角形的内角和为180度”时,学生可能难以想到通过“辅助线”的方法来进行证明。
(2)逻辑推理能力的培养:学生在运用证明方法时,可能会出现逻辑错误,需要教师指导学生进行正确的逻辑推理。
举例:在使用反证法时,学生可能无法正确地设定“反设”条件,导致后续推理出现偏差。
(3)数学表达与交流能力的提升:学生在书写证明过程时,可能存在表达不清晰、逻辑关系混乱等问题,需要教师指导学生如何用简洁、准确的语言表达证明思路。
其次,在新课讲授环节,我意识到理论介绍和案例分析的重要性。在讲解证明的基本概念时,我尽量用简洁明了的语言,帮助学生理解。但在讲解难点时,我发现有些学生还是难以跟上节奏。因此,我需要在这方面多下功夫,寻找更多形象生动的例子,帮助学生突破难点。
在实践活动环节,分组讨论和实验操作使学生能够将所学知识应用到实际问题中,这有助于巩固他们对证明方法的理解。不过,我也注意到在讨论过程中,部分学生参与度不高,可能是因为他们对问题不够了解。为了提高学生的参与度,我考虑在下次活动中,提前为学生提供一些参考资料,激发他们的思考。
举例:如教材中的“等边三角形”性质,通过证明,让学生明白为什么等边三角形的三条边相等、三个角相等。
(2)掌握基本的证明方法:重点讲解反证法、归纳法等基本证明方法,并通过典型例题让学生掌握这些方法的应用。
北师大版数学八年级上册 7.1《为什么要证明》教案-最新教学文档
第七章平行线的证明1 为什么要证明教学目标【知识与技能】1.体会通过观察、猜想、归纳等得到的结论不一定正确,使学生对由这些方法得到的结论产生怀疑,从而认识到证明的必要性.2.理解并掌握检验数学结论是否正确的常用方法:试验验证、举出反例推理证明等,理解数学的严谨性.【过程与方法】通过观察、猜想、推理的过程,发展学生的探索意识与合作交流的意识.【情感、态度与价值观】发展学生的探索意识以及合作交流的习惯;关注现实,培养学生进行深入思考的能力和质疑精神.教学重难点【重点】理解判断一个结论正确与否需要进行推理证明,理解并掌握应用实验进行证明、举反例验证、利用推理论证来验证某些结论是否正确的方法.【难点】体会数学推理的重要性和必要性.教学过程一、创设情境,引入新课师:在以前的学习过程中,我们通过观察、实验、归纳得到了很多正确的结论,那么通过观察、实验、归纳得到的结论一定正确吗?下面我们一起来感受几个例子!1.探究一:观察得到的结论正确吗?教师多媒体出示.(1)图1中两条线段a,b的长度相等吗?图2中的四边形是正方形吗?请你先观察,再设法体验你观察到的结论.(2)如图3,把地球看成球形,假如用一根比地球赤道长1 m的铁丝将地球赤道围起来,铁丝与地球赤道之间的间隙能有多大?能放进一个拳头吗?先凭感觉想象一下,再具体算一算,看看与你的感觉是否一致,并与同伴进行交流.学生凭着自己的观察和直观感觉说想法后,组织学生动手量一量、算一算,验证结论是否正确.(图1中的两条线段相等;图2是正方形;图3中假设地球半径是R,则赤道长2πR,铁丝长(2πR+1)米,那么这个铁丝围成的半径是(R+)米,所以铁丝与赤道之间的间隙为米≈16厘米,能放进一个拳头).然后引导学生回答下列问题:(1)由观察得到的结论正确吗?(2)你还能举出日常生活中的例子吗?2.探究二:归纳得到的结论正确吗?(1)听故事“公鸡归纳法”:某主妇养小鸡十只,公母各半.她预备将母鸡养大留着生蛋,公鸡则养到一百天就陆续杀以佐餐.天天早晨她拿米喂鸡.到第一百天的早晨,其中的一只公鸡正在想:“第一天早晨有米吃,第二天早晨有米吃,……第九十九天早晨有米吃,所以今天,第一百天的早晨,一定有米吃.”这时,该主妇来了,正好把这只公鸡抓去杀了.第1天有食吃,第2天有食吃……第99天有食吃,一定能推出第100天有食吃吗?从这个故事中你明白了什么道理?同桌之间相互交流.(2)算一算验证“归纳法”:①出示代数式n2-n+11,让学生分别计算当n=1,2,3,4,5时,代数式的值是多少,提问它们的值都是质数吗?②追问学生:我们是不是可以由此得出结论,当n为任意自然数时,n2-n+11的值一定是质数呢?③让学生再多取几个数代入代数式中,验证结论是否正确.(不正确,比如当n=11时,n2-n+11=121,结果是合数.)④思考:由归纳得到的结论一定正确吗?(3)再次验证“归纳法”.如图,在△ABC中,点D,E分别是AB、AC的中点,连接DE,DE与BC有怎样的位置关系和数量关系?请你先猜一猜,再设法检验你的猜想.你能肯定你的结论对所有的△ABC都成立吗?与同伴进行交流.(DE与BC平行,且等于BC长度的一半;引导学生尝试猜想:连接三角形两条边的中点所得的线段平行第三条边,且是第三条边长度的一半;组织学生进行归纳并验证结论,发现这样的结论对所有的三角形都成立.)小结:归纳得到的结论有的正确有的不正确.3.交流与发现.通过上述几类问题的分析,你有什么发现吗?(1)通过实验、观察、归纳得到的结论是否都正确?怎样判断一个结论是否正确呢?(2)总结:实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.二、例题讲解【例1】观察图1中的两条线段a与b,你认为哪条线段长些?图1分析:观察往往会产生错觉,得出的结论不一定正确,想要判断两条线段是否一样长,最科学、合理的方式是量一量,组织学生动手操作量一量.【答案】两条线段一样长【例2】图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.【答案】线段b与线段d在同一直线上三、课堂小结1.通过本节课的学习,我们了解了实验、观察、归纳得到的结论不一定正确,从而明白证明的意义和必要性.2.让学生反思自己在本节课学习中的优缺点、不足之处以及改进的方法,并能积极地参与与总结性的发言.。
北师大版八年级上册7.1为什么要证明教案
在上完这节课后,我有一些想法想和大家分享。首先,我发现同学们在理解证明的概念和意义方面存在一定难度。这让我意识到,在接下来的教学中,我需要更加注重引导学生从实际例子中感受证明的重要性,帮助他们建立起证明的直观认识。
其次,关于逻辑推理这个难点,我觉得通过分组讨论和实验操作的方式,同学们有了更深刻的体会。但在讲解过程中,我发现部分同学还是难以跟上节奏,可能是我讲解得不够细致,或者是举例不够贴近他们的生活实际。因此,我计划在下一节课中,尝试使用更多生动有趣的例子,让学生在轻松愉快的氛围中掌握逻辑推理的方法。
北师大版八年级上册7.1为什么要证明教案
一、教学内容
北师大版八年级上册7.1为什么要证明:本节课主要围绕证明的概念、意义和必要性展开,使学生理解证明在数学学习中的重要作用。内容包括:
1.证明的概念:通过实例让学生了解证明是什么,以及证明的基本结构。
2.证明的意义:讨论证明在数学中的价值,如确保结论的正确性、培养逻辑思维能力等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与证明相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示证明过程的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“证明在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-证明的结构:介绍证明的基本结构,包括已知、求证、证明过程等,强调证明过程的逻辑性和条理性。
-证明方法:举例讲解教材中涉及的证明方法,如直接证明、反证法、归纳法等,并强调各种方法的应用场景。
北师大版八年级数学上册7.1为什么要证明导学案
第七章平行线的证明
7.1 为什么要证明
一、自主预习(感知)
课前收集有关哥德巴赫猜想的相关资料,上课时与同伴交流
二、合作探究(理解)
1、某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是
得到结论:对于所有自然数n,n2-n+11的值都是质数.你认为呢?与同伴交流.提示:可列表归纳
n 0 1 2 3 4 5 6 7 8 9 10 11 …n2-n+11
是否为
质数
2、如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝
与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放
进一个拳头吗?
三、轻松尝试(运用)
1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.
第1小题图第2小题图
2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再
用三角尺验证一下.
3.当n为正整数时,n2+3n+1的值一定是质数吗?
四、拓展延伸(提高)
五、收获盘点(升华)
要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步,有根有据的推理
六、当堂检测(达标)
教材P164页,习题7.1 1,2,3
七、课外作业(巩固)
1、必做题:①整理导学案并完成下一节课导学案中的预习案。
②完成《学练优》中的本节内容。
2、思考题:。
北师大版数学八年级上册1《为什么要证明》教案1
北师大版数学八年级上册1《为什么要证明》教案1一. 教材分析《为什么要证明》是北师大版数学八年级上册第一课时,本节课主要让学生了解证明的意义和作用,培养学生初步的逻辑思维能力,为后续的证明学习打下基础。
教材通过丰富的实例,引导学生体会证明的重要性,认识证明的基本方法,同时,让学生在证明的过程中,感受数学的严谨性和美感。
二. 学情分析学生在七年级时已经接触过一些简单的证明问题,对证明有初步的认识。
但大部分学生对证明的意义和作用理解不够深入,证明方法掌握不牢固。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的特点进行引导和讲解,提高学生对证明的理解和应用能力。
三. 教学目标1.让学生了解证明的意义和作用,认识证明的基本方法。
2.培养学生初步的逻辑思维能力,提高学生分析问题和解决问题的能力。
3.让学生感受数学的严谨性和美感,激发学生学习数学的兴趣。
四. 教学重难点1.教学重点:证明的意义和作用,证明的基本方法。
2.教学难点:证明方法的运用,逻辑思维能力的培养。
五. 教学方法采用问题驱动法、案例教学法、讨论法等教学方法,引导学生主动探究,提高学生分析问题和解决问题的能力。
六. 教学准备1.准备相关案例和实例,用于讲解和引导学生实践。
2.准备课件,辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生思考证明的意义和作用。
例如,证明勾股定理。
让学生认识到证明可以帮助我们理解和解决问题。
2.呈现(10分钟)介绍证明的基本方法,如直接证明、反证法、归纳法等。
通过具体的案例,让学生了解各种证明方法的运用。
3.操练(10分钟)让学生分组讨论,选取一个实例,运用所学证明方法进行证明。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)总结证明的方法和步骤,让学生加深对证明的理解。
通过练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考证明在实际生活中的应用,如逻辑推理、论证等。
拓宽学生的视野,提高学生的应用能力。
北师大版初中数学八年级(上)备课资料7-1 为什么要证明
第七章平行线的证明1为什么要证明典型例题题型一实验验证结论例1观察,再验证.(1)图1①中黑色的边是直的还是弯曲的?(2)图1②中两条线段a与b,哪一条更长?①②图1分析:先观察得出结论,再实验验证.解:对于(1)题,直接观察图1①可能得出结论:黑色的边是弯曲的.但实际上,黑色的边是直的.对于(2)题,直接观察图1②可能得出结论:线段b比线段a短.但实际上,这两条线段同样长.点拨:要判断一个数学结论是否正确,仅仅依靠经验、观察是不够的,必须给出严格的证明或实验验证.例2在学习中,小明发现:当n=1,2,3时,n2-6n的值都是负数.于是小明猜想:当n 为任意正整数时,n2-6n的值都是负数.小明的猜想正确吗?请简要说明你的理由.分析:因为n2-6n=n(n-6),所以只要n≥6,该式子的值都表示非负数,所以猜想不正确.解:(方法1:利用反例证明)不正确.理由:例如当n=7时,n2-6n=7>0.(方法2)不正确.理由:n2-6n=n(n-6),当n≥6时,n2-6n≥0.特别提示:通过此题可说明一点:学生在解答问题时不能太片面,而要全面考虑问题.题型二推理的应用1.图形中的推理例3如图2所示,一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成段.图2点拨:从简单、特殊的情况入手,运用比较、归纳的方法,探究内在的规律.2.数学式子中的推理例4观察下列关于自然数的等式:①1×7+2×9=52;②2×8+2×10=62;③3×9+2×11=72;…根据上述规律解决下列问题:(1)完成第4个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.解题关键:观察等式左右两边的数字变化情况,找出每个式子与序号之间的关系.解:(1)根据题意得,第4个等式为4×10+2×12=82.(2)猜想的第n个等式为n(n+6)+2(n+8)=(n+4)2.验证:左边=n(n+6)+2(n+8)=n2+6n+2n+16=n2+8n+42=(n+4)2=右边,所以n(n+6)+2(n+8)=(n+4)2.3.假设论证例5甲、乙、丙、丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色的.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的解析:∵丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,假设乙的车是红色的,∴乙说的是实话,∴丙的车也是红色的,和只有一个人的车是红色的矛盾.假设丙的车是红色的,∴丙说的是实话,而乙说“丙的车是红色的”,∴乙说的是实话,∴有两人说的是实话,与只有一个人说的是实话矛盾,∴只有甲的车是红色的.∴甲说的是实话,丙说的不是实话.∵丙说:“丁的车不是蓝色的”,∴丁的车是蓝色的,∴乙和丙的车一个是白色的,一个是银色的.∵甲说:“乙的车不是白色”,且甲说的是实话,∴丙的车是白色的,乙的车是银色的.综上,甲的车是红色的,乙的车是银色的,丙的车是白色的,丁的车是蓝色的.答案:C4.推理论证例6某球赛小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁解析:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分为5分,1胜2平,丙得分为3分,1胜0平,丁得分为1分,0胜1平.∵甲、乙都没有输球,∴甲一定与乙平.∵丙得3分,1胜0平,乙得5分,1胜2平,∴与乙打平的球队是甲与丁.答案:B拓展资源哥德巴赫猜想两百多年前,彼得堡科学院院士哥德巴赫曾研究过“将一个数表示成几个素数的和”的问题,他取了很多数做试验,想把它们分解成几个素数的和,结果得到一个断语:“总可将任何一个数分解成不超过三个素数之和.”但是哥德巴赫不能证明这个问题,甚至连如何证明的方法也没有,于是他写信给另一名彼得堡科学院院士、著名数学家欧拉,他在1742年6月7日的信中写道:“我想冒险发表下列假定‘大于5的任何数都是三个素数的和’.”这就是后来举世闻名的哥德巴赫猜想.同年6月30日,欧拉在给哥德巴赫的回信中说:“我认为‘每一个偶数都是两个素数之和’,虽然我还不能证明它,但我确信这个论断是完全正确的.”这两个数学家的通信内容传播出来之后,人们就称这个猜想为哥德巴赫猜想或者哥德巴赫-欧拉猜想.完整地说,哥德巴赫猜想是:大于1的任何数都是三个素数的和.后来,人们把它归纳为:命题A:每一个大于或者等于6的偶数,都可以表示为两个奇素数的和;命题B:每一个大于或者等于9的奇数,都可以表示为三个奇素数的和.人们在研究命题A的过程中,开始引进了“殆素数”的概念.所谓“殆素数”就是素数因子(包括相同的和不同的)的个数不超过某一固定常数的自然数.我们知道,除1以外,任何一个正整数,一定能表示成若干素数的乘积,其中每一个素数,都叫做这个正整数的素因子.相同的素因子要重复计算,它有多少素因子是一个确定的数.例如,从25~30这六个数中,25=5×5有2个素因子,26=2×13有2个素因子,27=3×3×3有3个素因子,28=2×2×7有3个素因子,29是素数有1个素因子,30=2×3×5有3个素因子.于是可说25,26,29是素因子不超过2的殆素数,27,28,30是素因子不超过3的殆素数.用殆素数的新概念,可以提出命题D来接近命题A.命题D:每一个充分大的偶数,都是素因子的个数不超过m与n的两个殆素数之和.这个命题简化为“m+n”.这样,哥德巴赫猜想的最后证明的方向就更明朗化了:如果能证明,凡是比某一个正整数大的任何偶数,都能表示成一个素数加上两个素数相乘,或者表示成一个素数加上一个素数,就算证明了“1+2”.当然如果能证明“1+1”就基本上证明了命题A,也就基本解决了哥德巴赫猜想了.1920年,挪威数学家布朗证明了“9+9”.1924年,德国数学家拉代马哈证明了“7+7”.1932年,英国数学家埃斯特曼证明了“6+6”.1938年,苏联数学家布赫雪托布证明了“5+5”.1938年,中国数学家华罗庚证明了几乎全体偶数都能表示成两个素数之和,即几乎所有偶数“1+1”成立.1940年,苏联数学家布赫雪托布证明了“4+4”.1948年,匈牙利的瑞尼证明了“1+c”,其中c是一个很大的自然数.1956年,中国数学家王元证明了“3+4”,稍后证明了“3+3”和“2+3”.1956年,苏联数学家维诺格拉多夫证明了“3+3”.1957年,中国数学家王元又证明了“2+3”.1962年,中国年轻数学家潘承桐证明了“1+5”,这是证明了相加的两个数中,有一个肯定是素数的成果,而另一个殆素数的因子小到不超过5.1962年,苏联数学家巴尔巴恩也证明了”1+5”.1963年,中国数学家王元、潘承桐及苏联数学家巴尔巴恩分别证明了“1+4”.1965年,维诺格拉多夫、布赫雪托布证明了“1+3”.1965年,意大利数学家朋比尼也证明了“1+3”.1966年,中国数学家陈景润宣布证明了“1+2”.。
《为什么要证明》教学设计1
为什么要证明教学设计(选自北师大版八年级上册第七章第一节)一、教材分析《为什么要证明》是北师大版数学八年级上册第七章第一节的内容。
本节是在前面对几何结论已经有了一定直观认识的基础上编排的。
本章中所涉及的很多结论在前面已由学生通过一些直观的方法进行了探索,学生了解这些结论,这里则依据学生平时的观察、实验、归纳、类比等方法得出一种猜想,从而让学生感受这种猜想未必一定正确,所以需要我一步一步有根有据地去验证。
此外,教材还注意渗透数学思想方法,如特殊结论到一般结论的归纳思想、类比、转化的思想方法等。
从本节课起,学生开始从有条理的口头表述逐渐过渡到书写自己的理由,要求证明的每一步都要有依据,进行严格的形式化证明。
因此本节课的学习对发展学生逻辑推理能力是非常重要的,对培养学生的创新意识也非常有利。
二、学情分析学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.三、教学任务分析学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《为什么要证明》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。
因此,本课时的教学目标是:1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.四、教法与学法分析教法分析:“教必有法而教无定法”只有方法得当,才会有效。
八年级数学教案--为什么要证明导学案[1]
§7、1 为什么要证明导学案学习目标:1.经历观察、归纳、验证等活动过程,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性,发展学生的推理意识.2.通过积极参与,获得正确的数学推理方法,理解数学的严谨、严密性,并培养与他人合作的意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.教学重点:学会判断一个数学结论必须一步一步、有理有据地进行推理,并进一步感受证明的必要性.教学难点:学会用数学的方法进行说理论证,学着寻找证明的思路学习过程:活动1:动手试一试:1.请在图中把编号相同的点用线段连起来,并观察图中有曲线吗?12345678123456782.在下图中画直线、三角形、正方形,并观察,你会发现什么我的感悟:3、如图中两条线段a 与b 的长度相等吗?请你先观察,再度量一下。
结论:a 与b 的长度活动2、猜猜看:如图把地球看成球形,假如用一根比地球赤道长1米的铁丝将地球赤道围起来,铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个拳头吗?先凭感觉想象一下,再具体算一算,和你的感觉一样吗?大家一起算一算:活动3:寻找质数:不难发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有自然数n , n 2-n+11的值都是质数.你认为呢?与同伴交流.你的结论是变式:n 为正整数时,n 2+3n +1的值一定是质数吗?归纳、结论:实验、观察、归纳得到的结论可能 也可能 。
因此,要判断数学结论 ,仅仅依靠实验、观察、归纳是不够的,必须进行课堂评价课后探究:如下左图是一张8 cm ×8 cm 的正方形纸片,面积是64cm 2。
把这张纸片按左图所示剪开,把剪出的4个小块按右图所示重新拼合,这样就得到一个长为13 cm ,宽为5 cm 的长方形,你发现了什么问题?3 335 5 58 3 5。
八年级数学上册《为什么要证明》教案、教学设计
3.思考题:
a.在数学学习中,你觉得证明的意义和作用是什么?请结合自己的学习体验进行阐述;
b.你在学习证明过程中遇到过哪些困难?你是如何克服这些困难的?请与同学们分享你的经验。
4.小组合作任务:
a.以小组为单位,讨论并解决一个共同的数学证明问题,记录讨论过程和解决方案;
5.变式训练,巩固提升:设计多样化的练习题,包括基础题、拓展题和创新题,让学生在不同的题目中巩固证明技巧,提升解决问题的能力。
6.反思总结,提炼方法:在每节课后,引导学生进行反思总结,提炼证明过程中的关键步骤和思维方法,帮助学生形成系统的知识结构。
7.跨学科联系,拓展视野:将数学证明与其他学科知识相联系,如物理实验中的验证、化学方程式的推导等,让学生认识到证明在各个学科中的广泛应用。
3.教学过渡:从扑克牌的例子,过渡到数学领域,引导学生思考在数学中,如何证明一个命题的真实性。
(二)讲授新知
1.教学内容:介绍数学证明的基本概念,包括命题、证明方法等,重点讲解直接证明、反证法、归纳法等证明方法。
2.教学方法:采用讲解、举例、演示等多种方式,让学生直观地感受证明的过程和方法。
3.教学步骤:
4.培养学生的合作意识,让学生在团队合作中学会尊重他人、倾听他人意见;
5.引导学生将数学证明与现实生活相结合,体会数学在生活中的应用,培养学生的数学素养。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的数学概念和运算技能。在此基础上,他们对数学证明的概念已有初步的认识,但对于为什么要证明、如何进行证明仍存在一定的困惑。因此,在本章节的教学中,教师需要关注以下几点:
在要证明”:
1.创设问题情境,激发学生的好奇心和求知欲,引导学生主动探究证明的重要性;
北师大版八年级上册数学7.1为什么要证明学案
第七章平行线的证明
7.1 为何要证明
一、自主(感知)
前采集有关哥德巴赫猜想的有关料,上与伙伴沟通
二、合作研究(理解)
1、某学小,当 n=0, 1, 2,3 ,代数式 n2-n+11 的都是数,于是获得:于全部自
然数 n, n2-n+11 的都是数.你呢?与伙伴沟通.
提示:可列表
n01234567891011⋯n2-n+11
能否
数
2、如,若是用一根比地球的赤道 1 米的将地球赤道起来,那么与地球赤道之的
隙能有多大(把地球当作球形)?能放一个?能放一个拳?
三、松(运用)
1.如中两条段 a 与 b 的度相等?你先察,再胸怀一下.
第 1小第2小
2.如中三条段 a、 b、 c,哪一条段与段 d 在同向来上?你先察,再用三角尺一
下 .
3.当 n 正整数, n2+3n+1 的必定是数?
四、拓展延长(提升)
五、收获清点(升华)
要判断一个数学结论是正确,仅察看、猜想、实验还不够,一定经过一步一步,有根有据的推理
六、当堂检测(达标)
教材 P164页,习题 7.1 1 ,2,3
七、课外作业(稳固)
1、必做题:①整理导教案并达成下一节课导教案中的预习案。
②达成《学练优》中的本节内容。
2、思虑题:。
八年级数学上册7.1为什么要证明教案 新版北师大版
八年级数学上册7.1为什么要证明教案新版北师大版一. 教材分析本次课程内容为北师大版八年级数学上册7.1节,主要介绍证明的概念和基本要求。
本节课内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
通过本节课的学习,学生应该能够理解证明的意义,掌握几何证明的基本方法。
二. 学情分析学生在进入八年级之前,已经学习了平面几何的基本概念和性质,对几何图形有了一定的认识。
但学生在证明方面的知识和能力还比较薄弱,需要通过本节课的学习,逐步提高证明能力。
同时,学生应该具备一定的逻辑思维能力和空间想象能力,能够理解和运用几何语言。
三. 教学目标1.理解证明的意义,知道证明的作用。
2.掌握几何证明的基本方法,能够正确书写几何证明步骤。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.教学重点:证明的概念和基本要求,几何证明的方法。
2.教学难点:证明的逻辑结构和证明方法的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,培养学生的逻辑思维能力。
通过分析典型案例,让学生理解证明的过程和方法。
通过小组合作学习,让学生互相交流和讨论,提高学生的合作能力和证明能力。
六. 教学准备1.准备相关的几何图形和证明案例。
2.准备证明的模板和参考资料。
3.准备教学PPT和教学视频。
七. 教学过程1.导入(5分钟)通过一个简单的几何问题,引导学生思考证明的意义和作用。
例如,给出一个三角形ABC,让学生证明AB=AC。
让学生意识到证明可以帮助我们解决几何问题。
2.呈现(10分钟)介绍证明的概念和基本要求。
证明是指用已知的事实和公理,通过逻辑推理,得出一个新的结论。
证明的要求包括:明确证明的目标,正确运用几何语言,严谨的逻辑结构,清晰的证明步骤。
3.操练(10分钟)让学生通过观察和分析几何图形,找出证明的逻辑结构和证明方法。
可以让学生分组讨论,每个小组找出一个证明案例,分析其证明过程和方法。
北师大版八年级数学上册《为什么要证明》示范课教学设计
第七章平行线的证明1 为什么要证明一、教学目标1.经历观察、归纳、验证等活动过程,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性.2.理解并掌握检验数学结论是否正确的常用方法:实验验证、举反例验证、推理证明等,理解数学的严谨性.3.通过观察、猜想、推理的过程,发展学生的探索意识与合作交流的意识,发展学生的推理意识.4.关注现实,培养学生进行深入思考的能力和质疑精神.二、教学重难点重点:了解推理的意义,知道要判断一个数学结论是否正确,必须进行推理;难点:会用实验验证、举出反例、推理等方法简单地验证一个数学结论是否正确.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【观察】教师活动:创设情境,出示图片,引导学生观察,思考.上图是静态的没有循环帧的图片,你看到的静止的图片是不是在动呢?据心理医生说,图片与心理承受力有关,你的心理承受力越强,图片运动越慢.美国曾经以此作为犯罪嫌疑人的心理测试,据说犯罪嫌疑人看到的图片是高速运动的.问题:这幅图是动还是静呢?问题:图中有几个黑点?问题:下面两个图形中中间两个圆的大小一样吗?眼见未必真实哦!不敢相信图中的横线是平行的,不过它们就是平行线!问题:你觉得观察得到的结论正确吗?多正确的结论. 观察、实验、归纳得到的结论一定正确吗?我们再感受几个!(1)图1中两条线段a,b的长度相等吗?图2中的四边形是正方形吗?请你先观察,再设法检验你观察到的结论.预设:图1的两条线长度相等,图2的四边形是正方形.教师活动:让学生大胆地进行预测,但要让学生说清理由,了解几何证明的必要.(2)如图3,把地球看成球形,假如用一根比地球赤道长l m的铁丝将地球赤道围起来,铁丝与地球赤道之间的间隙能有多大?问题:能放进一颗核桃吗?能放进一个拳头吗?别太信任你的眼睛和直觉哟!教师活动:充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生,这样就达不到预想的要求,不能让学生留下深刻的印象.建立“数学模型”!解:设地球赤道的周长为c ,半径为r 1,铁丝所围成的圆的半径为r 2. 则:它们的间隙不仅能放进一颗核桃,而且也能放进一个拳头.问题:观察得到的结论可靠吗? 观察得到的结论并不可靠.要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须一步一步、有根有据地进行推理证明.数学的结论必须经过严格的论证! 【做一做】(1) 当n =0,1,2,3,4,5时,代数式 n 2-n +11的值是质数吗?答案:你能否得到结论:对于所有自然数n ,代数式n 2-n +11的值都是质数?当n 为自然数时,n 2-n +11的值一定是质数吗?找数值代入,验证你的结论.122π2π1r c r c ==+∵,,121.2π2πc c r r ∴, 21110.16(m).2π2π2πc c r r +-=-=≈∴对于所有自然数n ,代数式n 2-n +11的值不一定都是质数.(2) 如图,在△ABC 中,点D ,E 分别是AB , AC 的中点,连接DE ,DE 与BC 有怎样的位置关系和数量关系?请你先猜一猜,再设法检验你的猜想.解:通过测量得出:位置关系:DE ∥BC数量关系: 你能肯定你的结论对所有的△ABC 都成立吗?与同伴进行交流.【议一议】教师活动:让学生用自己的语言进行叙述,培养学生的表达能力.问题:实验、观察、归纳是人们认识事物的重要手段.通过实验、观察、归纳得到的结论都正确吗?实验、观察、归纳得到的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.问题:在上面问题中,你是怎么判断一个结论是否正确的?检验数学结论常用的方法有哪些?常用方法:①实验验证:最基本的方法.②举反例验证:多用于验证某结论是不是正确的.③推理论证:最可靠、最科学的方法.12DE BC再小组交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.【例1】(1)图中三条线段a,b,c,哪一条和线段d在同一条直线上?请你先观察,再用直尺验证一下.答案:线段b与线段d在同一条直线上.(2)图中两条线段a与b的长度相等吗?答案:线段a与线段b的长度相等.【例2】当n为正整数时,n2+3n+1的值一定是质数吗?【分析】结合质数的概念,并通过取特值,即可得到答案.解:当n=1时,n2+3n+1=12+3×1+1=5,是质数;当n=2时,n2+3n+1=22+3×2+1=11,是质数;当n=3时,n2+3n+1=32+3×3+1=19,是质数;当n=4时,n2+3n+1=42+3×4+1=29,是质数;当n=5时,n2+3n+1=52+3×5+1=41,是质数;当n=6时,n2+3n+1=62+3×6+1=55,不是质数;所以当n为正整数时,n2+3n+1的值不一定是质数.【随堂练习】教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.某公园计划砌一个如图甲所示的喷水池,有人改为如图乙的形状.若外圆的直径不变,水池边沿的宽度和高度不变,你认为砌水池边沿( )A.甲需要的材料多B.乙需要的材料多C.甲、乙需要的材料一样多D.不确定答案:C.2.下列推理正确的是()A.若a∥b,b∥c,则a∥c.B.若a⊥b,b⊥c,则a⊥c.C.因为∠AOB=∠BOC,所以两角是对顶角. D.因为两角的和是180°,所以两角互为邻补角. 答案:A.3.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.则第二局的输者是() A.甲 B.乙 C.丙 D.丁答案:C.4.甲、乙、丙、丁四人商量周末出游.甲说:“乙去,我就肯定去.”乙说:“丙去我就不去.“丙说:“无论丁去不去,我都去.“丁说:“甲乙中至少有一人去,我就去.“以下结论可能正确的是()A.甲一个人去了B.乙、丙两个人去了C.甲、丙、丁三个人去了。
八年级数学上册71为什么要证明教案新版北师大版
第七章平行线的证明1 为什么要证明【知识与技能】1.经历观察、归纳、验证等活动过程,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性.2.发展学生的推理意识.【过程与方法】通过观察、猜想、验证、归纳等方法让学生多角度思考问题、解决问题.【情感态度】让学生明白仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明,培养学生科学严谨的学习态度.【教学重点】体会观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性.【教学难点】感受证明的必要性.一、创设情境,导入新课教材第162页“做一做”上方的问题.【教学说明】让学生通过观察、实验、归纳等方法初步体会得到的结论是否正确.二、思考探究,获取新知验证结论的正确性.做一做:教材第162页“做一做”.【教学说明】(1)中让学生体会数学教学中从特殊到一般的思想方法;(2)中利用先猜想再验证的方法;培养学生从不同的角度来用不同的数学方法解决实际问题.【归纳结论】实验、观察、归纳得到的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.三、运用新知,深化理解1.最近有很长一段时间没有下雨了.并且今天是艳阳高照,那么晚上不会下雨,这个判断是的.(填“正确”或“不正确”)2.下列说法不正确的是()A.若∠1=∠2,则∠1与∠2是对顶角.B.若∠1与∠2是对顶角,则∠1=∠2.C.若直线a∥b,a⊥c,则b⊥c.D.若∠1+∠3=90°,∠2+∠3=90°,则∠1=∠2.3.如图,甲沿着ACB由A到B,乙沿着ADEFB由A到B,同时出发,速度相等,则()A.甲先到B.乙先到C.甲乙同时到D.不确定4.在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点,连结EF,EF与AD和BC有怎样的位置关系和数量关系?你的结论对所有的梯形都成立吗?5.当a=1,b=2时,12+22>2×1×2;当a=-1,b=3时,(-1)2+32>2×(-1)×3;当a=-,b=-3时,(-)2+(-3)2>2×(-)×(-3).于是猜想:对于任意实数总有a2+b2>2ab成立.这个结论正确吗?说明理由.【教学说明】让学生独立完成,检查学生对于所学知识的掌握程度,根据反馈的情况适当查漏补缺,有困难的学生采用互相交流的形式得出结论.【答案】1.不正确; 2.A; 3.C4.EF∥AD∥BC.EF= (AD+BC).这个结论对所有的梯形都成立.证明:连结AF并延长交BC的延长线于点G.∵AD∥BC,∴∠D=∠FCG,∠DAF=∠G,又∵F是CD的中点,∴DF=CF,∴△ADF≌△GCF(AAS),∴AD=CG,AF=GF.又∵E是AB的中点,∴AE=BE,∴EF=BG=(BC+CG)=(BC+AD).5.解:不正确.当a=b时,a2+b2=2ab,找得到实数a、b,如a=b=1,使得a2+b2=2ab成立,因为对于任意的实数a、b都有a2+b2-2ab=(a-b)2≥0成立,所以a2+b2≥2ab成立,而不是a2+b2>2ab.四、师生互动,课堂小结通过这节课的学习,经过实验、观察、归纳得到的结论都正确吗?在上面的问题中,你是怎样判断一个结论是否正确?说说你的经验与困惑,与同学交流.【教学说明】让学生大胆发言,进行知识的提炼和归纳总结,与同学交换意见相互补充,利于共同提高.1.布置作业:习题7.1中的第1、2、3题.2.完成本课时练习部分.学生的直观判断、实验操作得出的结论可能带有极大的片面性.数学是一门科学,讲究的是周密的计算和合乎逻辑的推理证明,不能想当然,让学生在学习过程中不断去体会.。
北师大版八年级上册 第七章 71 为什么要证明 教案
第七章平行线的证明7.1为什么要证明(教案)教学目标知识与技能:体会检验数学结论的常用方法:实验验证、举出反例、推理等,发展学生的推理能力.过程与方法:经历观察、验证、归纳等过程,使学生对由这些方法所得的结论产生怀疑,以此激发学生的好奇心理,从而认识证明的必要性,培养学生的推理意识.情感态度与价值观:通过积极参与,获取正确的数学推理方法,理解数学的严密性,并培养与他人合作的意识.教学重难点【重点】要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.【难点】通过对一些规律的探讨和分析,养成动脑思考问题的习惯.教学准备【教师准备】教材图7 - 1、图7 - 2、图7 - 3的投影图片.【学生准备】有刻度的直尺.教学过程一、导入新课导入一:师:同学们,请你们用学过的数学知识解决下面的问题。
(多媒体展示)从A地到B地有五条道路,时间紧急,张先生要从B地赶往A地乘车,此时张先生应该选择哪条路?生:张先生应该走第③条路.师:你的依据是什么?生:两点之间,线段最短.师:你还记得我们是如何得到“两点之间,线段最短”这个结论的吗?生1:生活经验.生2:观察比较.生3:测量验证.师:很好!我们曾经通过观察、实验、归纳等活动得到了很多正确的结论.但是通过观察、实验、归纳得到的结论一定正确吗?如何才能得到正确的结论呢?本节课让我们共同来学习第七章《平行线的证明》中的第一节“为什么要证明”.(板书课题:1为什么要证明)[设计意图]从学生已知的数学结论出发,感受有些结论是通过观察、实验、归纳等活动得出的,适时提出问题,通过观察、实验、归纳得到的结论一定正确吗?设置悬念,激发学生的求知欲,为新课的学习做好铺垫.导入二:欣赏几组图片(多媒体展示):问题1:【课件1】第一组图中的线是直的吗?问题2:【课件2】第二组图中心的两个圆哪个大?我们常说“百闻不如一见”“耳听为虚,眼见为实”,但“眼见真的全为实”吗?(此时学生很兴奋,讨论很热烈)以前,我们通过观察、实验、归纳得到了很多正确的结论.那么通过观察、实验、归纳得到的结论一定正确吗?今天这节课我们就通过具体问题来探讨判断数学结论正确性的方法.(板书课题) [处理方式]给学生2分钟思考的时间,然后找学生回答.此时学生的回答各有不同,若学生的回答是否定的,可通过实际操作验证第一组图中的线是直的,第二组图中心的两个圆一样大,让学生明白只有实践才能出真知的道理,从而归纳知识:仅仅依靠观察不能判断一个数学结论是否正确.[设计意图]通过故事和精美的图片,在愉快的氛围中激发学生学习数学的兴趣,体现了学生走进生活感受数学的高涨热情.故事和精美的图片非常吸引学生,使学生很自然地进入本节课的学习.二、新知构建[过渡语]以前,我们通过观察、实验、归纳得到了很多正确结论.观察、实验、归纳得到的结论一定正确吗?(1)、“直观”可靠吗师:请观察下面几组图片,思考并回答下列问题.(多媒体出示)(1)图(1)中的两条线段a,b长度相等吗?图(2)中的四边形是正方形吗?请你先观察,再设法检验你观察到的结论.【师生活动】学生先观察,再动手验证,然后小组交流.教师巡视、指导学生,在学生回答的同时,教师利用多媒体进行验证.生1:我观察的结果是线段a比较长;经过测量,线段a,b长度相等.生2:我观察的结果是四边形的四条边是曲线;经过直尺验证,四边形是正方形.师:通过以上操作,你有什么感受?生:观察到的结果与事实不相符.师:以上操作说明仅仅依靠观察得到的结果是不能作为判断某些问题的结论的,要想得到正确的结论,必须进行验证.让我们再感受几个!请你欣赏:(多媒体出示)(1)这是平面吗?怎么看起来不像平面呢?(2)这些正方形怎么看起来扭曲了?(3)看,图在动!(4)你能想象这些都是同心圆吗?(5)图中的横线是平行的吗?(6)难以置信,这是一组平行线![设计意图]让学生的观察结果与实验结果产生思维上的碰撞,同时让学生明白只有实践才能出真知的道理,从而归纳知识:仅仅依靠观察不能判断一个数学结论是否正确.(2)、“直觉”可信吗师:请思考并回答下面问题.(多媒体出示)如图,把地球看成球形,假设用一根比地球赤道长1米的铁丝将地球赤道围起来,铁丝与地球赤道之间的间隙能有多大?能放进一个拳头吗?先凭感觉想象一下,再具体算一算,看看与你的感觉是否一致,并与同伴进行交流.【师生活动】学生先凭感觉想象,再动手验证,然后小组交流.教师巡视、指导学生,在学生回答的同时,教师利用多媒体进行展示.师:正常人的拳头有多大?量一量.生:通过测量、交流,发现我班的最大拳头宽度才10厘米.师:凭感觉想象一下,铁丝与地球赤道之间的间隙能放进一个拳头吗?生1:地球很大,铁丝的长度就比赤道的周长多一米,我觉得放不进一个拳头,也许能放进一只小蚂蚁.生2:赤道就是一个大圆,铁丝的长度比它的周长多一米,就能有一定的间隙,但是我认为间隙不大,不能放进一个拳头.师:算一算,结果与你的感觉是否一致?(学生计算,教师指导)生:设赤道的周长为C米,则铁丝的长为(C+1)米,那么铁丝与地球赤道间的间隙为R-r,即-≈0.16(m),0.16 m=16 cm.因此,能放进一个拳头.(教师板书)师:通过计算我们可以看出,判断一个结论是否正确,依靠直觉是不可靠的.要想得到正确的结论,必须经过计算来证实.[设计意图]通过理性的计算,验证了很难想象到的结论,让学生产生思维上的碰撞,进而对自己的直观感觉产生怀疑,再次为证明的必要性提供素材.【小试身手】1.图中三条线段a,b,c,哪一条线段与线段d在同一直线上?请你先观察,再用直尺验证一下.2.图中两条线段a和b的长度相等吗?【师生活动】学生独立思考,验证后并交流.教师巡视、指导学生,学生完成后借助多媒体展示正确的答案.[设计意图]进一步让学生感受通过观察、猜想、直觉、经验得出的结论可能不是正确的.(3)、特例归纳得出的结论可靠吗思路一:师:请大家解决下面问题.(多媒体出示)代数式n2-n+11的值是质数吗?取n=0,1,2,3,4,5试一试,你能否由此得到结论:对于所有自然数n,n2-n+11的值都是质数?与同伴进行交流.【师生活动】学生先思考,再动手计算,然后小组交流、归纳.教师巡视、指导学生,进行验证.生:当n=0时,n2-n+11=11.当n=1时,n2-n+11=11.当n=2时,n2-n+11=13.当n=3时,n2-n+11=17.当n=4时,n2-n+11=23.当n=5时,n2-n+11=31.因为当n=0,1,2,3,4,5时,代数式n2-n+11的值都是质数,所以对于所有自然数n,n2-n+11的值都是质数.师:你们都同意这个结论吗?生:同意.师:再取几个数试一试,看看你有什么发现.生:经过计算,我发现,当n=11时,n2-n+11=121,结果是合数,所以“对于所有自然数n,n2-n+11的值都是质数”这个结论是错误的.[设计意图]对归纳的结论进行验证,让学生感受到特例有时具有一定的迷惑性(欺骗性),从而对不完全归纳的合理性产生怀疑.师:你们解决得很好,此题告诉我们,仅由几个特例归纳得出的结论可能潜藏着错误.我们的大数学家费马也犯过类似的错误,请阅读教材第163页读一读:费马的失误.【学生活动】学生极有兴趣地阅读,并低声交流.师:说说你们的感想.生1:大数学家费马出现这样的低级错误,可能是因为过于相信自己的直觉和经验.生2:仅由几个特例归纳得出的结论可能是错误的.生3:我们应当向欧拉学习,敢于向权威质疑;同时学习他对待科学的严谨态度.生4:我发现可以用举反例的方法验证结论.师:说得很好,希望同学们不要再出现这样的问题.同时,这个故事告诉我们:要说明一个结论是错误的,举反例就是一种常用方法.[设计意图]了解数学小知识的目的是进一步让学生理解凭几个例子得出的结论未必是正确的,也让学生体会反例在数学中的重要作用;同时,让学生理解数学家也会犯错,也是凡人,使学生提高学习数学的自信心.思路二【问题】代数式n2-n+11的值是质数吗?取n=0,1,2,3,4,5,试一试,你能否由此得到结论:对于所有自然数n,n2-n+11的值都是质数?与同伴进行交流.【学生活动】让学生先独立思考,再以小组为单位进行讨论交流,最后通过计算回答.其中第1小题当n=0,1,2,3,4,5,6,7,8,9,10时,n2-n+11的值分别是11,11,13,17,23,31,41,53,67,83,101,全是质数.只要其他学生没有质疑就继续提问.但当n=11时,n2-n+11=121=112,就不是质数了.[设计意图]让学生进一步对归纳所得的结论产生怀疑,并且体验举反例是判断错误结论的方法.通过该题的计算,可知用归纳的方法,仍不能判断数学结论是正确的,同时培养了学生的合作竞争意识.四、实验得到的结论未必可靠师:请大家接着解决下面的问题.如图7 - 4所示,在ΔABC中,点D,E分别是AB,AC的中点,连接DE.DE与BC有怎样的位置关系和数量关系?请你先猜一猜,再设法验证你的结论对所有的ΔABC都成立吗?与同伴进行交流.【师生活动】学生先观察、猜一猜,再动手、作图验证,然后小组交流.教师巡视、指导学生,在学生回答的同时,教师利用多媒体进行成果展示.师:你认为DE与BC有怎样的位置关系和数量关系?生:我认为位置关系是DE∥BC;数量关系是DE=BC.师:你是如何验证你的结论的?生:我是利用刻度尺、量角器进行测量验证的.师:大家认同这个做法吗?生:(大部分学生)认同.师:那么你还能肯定这个结论对所有的ΔABC都成立吗?(部分学生说肯定,部分学生不能确定)师:同学们,我们知道测量是有误差的,误差是难免的,通过猜测,实验验证得出的结论,也不能作为判断某些问题的结论,要想得到图形的性质是需要进行推理的.[设计意图]让学生感受由观察、猜想、实验得出的结论仍有不确定性,需要更合适的方法来解决问题.[知识拓展]认识事物不能“想当然”,要想取得令人信服的结论,必须经过严格的数学证明,证明的依据一般有数学定义、定理、公式和性质等.三、课堂总结可能正确,也可能不正确证明四、课堂练习1.通过得到的结论往往是不可靠的,甚至是错误的.答案:观察、实验或归纳2.只有通过才能检验数学结论.答案:举出反例或推理3.下列判断正确吗?说明理由.(1)如果有一条线段AB=5 cm,另一条线段BC=2 cm,那么线段AC 长为7 cm;(2)当n=0,1,2,3时,代数式n2+n+5的值分别是5,7,11,17,它们都是质数,由此判断,对所有自然数n,n2+n+5的值都是质数.解:(1)不正确,因为A,B,C三点不一定在一条直线上,即使在一条直线上,也不一定能得出AC=7 cm,如点C在AB之间. (2)不正确,如当n=4时,n2+n+5=25,是合数.4.有一张厚0.01 mm的纸(设它有无限大),重复折叠20次,大约有多高?会有3层楼房那么高吗?(每层楼房的高按3米计算) 提示:大约10米高;会有3层楼房那么高.五、板书设计1为什么要证明问题探索猜想结论:不一定正确六、布置作业(1)、教材作业【必做题】教材随堂练习第1,2题.【选做题】教材习题7.1第3题.(2)、课后作业【基础巩固】1.小刚和小明在手工制作课上,用同种小铁丝制作的楼梯模型如图所示.那么他们用的材料长度()小刚A.一样多B.小刚的多C.小明的多D.无法判断2.骑自行车的速度是每小时15千米,骑摩托车的速度是每小时40千米,则下列结论中你能肯定的是()A.从A地到B地,骑摩托车的人一定比骑自行车的人先到达B.从A地到B地,骑自行车的人一定比骑摩托车的人先到达C.从A地到B地,骑自行车的人和骑摩托车的人不可能同时到达D.从A地到B地,骑自行车的人有可能比骑摩托车的人先到达3.下列说法正确的是()A.通过观察完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它们放进9个筐中,则至少有一个筐中的苹果数不少于2个【能力提升】4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第n个图需要火柴棒的根数为.【拓展探究】5.数学家迪布凡尔在1590年曾注意到,在形如6n-1和6n+1的数对5,7;11,13;17,19;23,25;29,31;35,37;41,43;…中,当“n”在取前几个自然数时,都至少有一个质数,由此他提出猜想:“对于任何自然数n(n≠0),6n-1和6n+1这两个数中至少有一个质数.”你认为这个猜想正确吗?验证一下:n=8时,结论成立吗?n=9呢?n=10呢?n=20呢?这说明了什么?【答案与解析】1.A2.D3.D4.6n+25.解:不正确.当n=8,9,10时结论都成立,当n=20时结论不成立.说明观察、归纳和猜想是重要的,但仅凭此得出的结论不一定可信,还必须经过严格的推理证明.。
青岛版初中数学八年级上册《为什么要证明》参考教案
青岛版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!青岛版初中数学和你一起共同进步学业有成!5.2 为什么要证明一、教与学目标:1.通过实例,使学生了解通过观察、实验、归纳、类比、猜测等活动得到的命题,其正确性有待确认。
2.知道证明的意义及证明的必要性。
二、教与学重点难点:重点;判定一个结论正确与否需进行推理.难点;理解数学推理的重要性.三、教与学方法:自学、讨论、引导法.四、教与学过程:(一)、情境导入:[师]在现实生活中,我们常采用观察的方法来了解世界.在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果不是,那么用什么方法才能说明它的正确性呢?[生]需要推理证明.(二)、探究新知:1、问题导读:学生自主学习课本P157-P159页内容。
2、合作交流:思考:观察,实验,归纳和类比是我们发现规律,获取结论的重要方法,用这些方法得到的结论一定正确吗?3、精讲点拨:(1)小亮通过计算发现,当n=1,2,3,4,5时,代数式n2+3n+1的值是质数,于是得出结论,当n为正整数时,n2+3n+1的值一定是质数,试举例证明,这个结论是正确的。
(2)小营在学习根式时,从乘法满足分配律ac+)(,类比得到a+=babca+=acb)(cab+,试举例说明这个结论是错误的。
(三)、学以致用:1、巩固新知:(1)图中两条线段a与b的长度相等吗?请你先观察,再度量一下.答案:a与b的长度相等.(2)图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b与线段d在同一直线上.2、能力提升:图中AB是直线还是折线?甲乙(四)、达标测评: 1、选择题:1)如图,甲沿着ACB 由A 到B ,乙沿着ADEFB 由A 到B , 同时出发,速度相等则()A 、甲先到B 、乙先到C 、甲乙同时到D 、不确定2)某公园计划砌一个如图甲的喷水池,有人改为图乙的形状,若外圆的直径不变,水池边沿的宽度和高度不变,你认为砌水池边沿()A 、甲需要的材料多B 、乙需要的材料多C 、一样多D 、不确定2、解答题:把正方形ABCD 的各边长度扩为原来长度的两倍,得到正方形EFGH ,则正方形ABCD 的面积是正方形EFGH 的面积的两倍,这个判断对吗?说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级第七章数学为什么要证明导学案
【学习目标】
1.初步体会观察、猜测得到的结论不一定正确.
2.通过探索,初步了解数字中推理的重要性.
3.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.
【学习重点】
判断一个结论正确与否需要进行推理.
【学习难点】
理解数学推理的重要性.
学习行为提示:创景设疑,帮助学生知道本节课学什么.
学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.
学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.情景导入生成问题在现实生活中,我们常采用观察的方法来了解世界.在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果是正确的,那么用什么方法说明它的正确性呢?
解:不一定都是正确的,如果正确,需要用推理证明的方法来说明它的正确性.自学互研生
成能力
知识模块一观察、实验、归纳得到的结论一定正确吗
先阅读教材第162页“做一做”之前的内容,然后完成书中设置的两个问题,最后与同伴进行交流.
【说明】让学生通过观察、实验、归纳等方法初步体会得到的结论不一定正确.
知识模块二启发学生有理有据地推理
师生合作共同完成教材第162页“做一做”的学习与探究.
【说明】(1)中让学生体会数学教学中从特殊到一般的思想方法;(2)中利用先猜想再验证的方
法,培养学生从不同的角度来用不同的数学方法解决实际问题的能力.
【归纳结论】实验、观察、归纳得到的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一观察、实验、归纳得到的结论一定正确吗
知识模块二启发学生有理有据地推理
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。